Probing & tuning Rydberg excitons/polaritons in 2D semiconductors via a magnetic field

> Francesca Maria Marchetti Universidad Autónoma de Madrid

Rydexc8, INSA, Toulouse, 17 June 2025,

PHENOMENOLOGY OF NON-LINEAR CLASSICAL WAVES

Towards quantum polaritonics $g_{PP} > \gamma$

Rydberg polaritons with Cu₂O crystals

Strong non-linearity (Rydberg blockade)

Rydberg polaritons with TMD monolayers

▷ Tuning resonance by temperature ▷ Strong non-linearity (polariton blockade)

Towards quantum polaritonics: beyond mean-field effects

Outline

- 1. <u>Magneto-optical spectroscopy</u>
 - \rightarrow probing & tuning exciton properties
 - \rightarrow enhanced exciton binding & coupling to light
- 2. Cavity polaritons

[Laird et al. PRB (2022)] [de la Fuente Pico et al. PRB (2025)]

Outline

- 1. <u>Magneto-optical spectroscopy</u>
 - \rightarrow probing & tuning exciton properties
 - \rightarrow enhanced exciton binding & coupling to light
- 2. <u>Cavity polaritons: Very-strong coupling $\Omega \sim E_B$ </u>
 - \rightarrow hybridization of multiple excitonic states
 - \rightarrow NON-PERTURBATIVE MICROSCOPIC THEORY
- 3. $g_{XX} \& g_{PP}$ interaction strengths

see David de la Fuente Pico's poster!

[Laird et al. PRB (2022)] [de la Fuente Pico et al. PRB (2025)]

excitons in QWs

excitons in TMD monolayers

excitons in TMD monolayers

excitons in QWs

Exciton magneto-optical spectroscopy: theoretical framework

- \triangleright Total magnetic momentum $\hat{\mathbf{K}} = -i\nabla_{\mathbf{R}} \frac{e}{2c}\mathbf{B} \times \mathbf{r}$
- ▷ Center of mass frame: Lamb transformation

$$\hat{X}_{\mathbf{K}}^{\dagger} = \frac{1}{\sqrt{\mathcal{A}}} \int d\mathbf{r}_e d\mathbf{r}_h e^{i\left(\mathbf{K} + \frac{e}{2c}\mathbf{B} \times \mathbf{r}\right) \cdot \mathbf{R}} \varphi_{\mathbf{K}}(\mathbf{r}) \hat{\Psi}_e^{\dagger}(\mathbf{r}_e) \hat{\Psi}_h^{\dagger}(\mathbf{r}_h)$$

phB h^+ r_e^- R

$$\begin{aligned} \langle 0|\hat{X}_{\mathbf{K}}|\hat{H}_{m}|\hat{X}_{\mathbf{K}}^{\dagger}|0\rangle &= \int d\mathbf{r}\varphi_{\mathbf{K}}^{*}(\mathbf{r})\hat{H}_{m}^{\prime}\varphi_{\mathbf{K}}(\mathbf{r}) \\ \hat{H}_{m}^{\prime} &= \left[-\frac{\nabla_{\mathbf{r}}^{2}}{2\mu} - \underbrace{i\frac{e\eta}{2\mu c}\mathbf{B}\cdot(\mathbf{r}\times\nabla_{\mathbf{r}})}_{\propto(m_{e}-m_{h})\hat{L}_{z}} + \underbrace{\frac{e^{2}}{8\mu c^{2}}(\mathbf{B}\times\mathbf{r})^{2}}_{\frac{\mu\omega_{c}^{2}}{2}r^{2}} + \frac{e}{Mc}(\mathbf{K}\times\mathbf{B})\cdot\mathbf{r} + \frac{\mathbf{K}^{2}}{2M} + V(r)\right]
\end{aligned}$$

Numerically efficient & exact solution at arbitrary field strength

[Laird et al. PRB (2022)] [de la Fuente Pico et al. PRB (2025)]

- \rightarrow avoids manipulation of derivatives
- → mapping 2D harmonic oscillator 2D hydrogen problem [Duru&Kleinert FdP (1982)]
- \rightarrow (Landè) subtraction scheme to cancel the pole of the potential $\left\{ \begin{array}{l} Coulomb \\ Coulomb \end{array} \right\}$

Rytova-Keldysh

GaAs QWs: exciton diamagnetic shift

Probing & tuning Rydberg excitons/polaritons in 2D semiconductors via a magnetic field

GaAs QWs: exciton diamagnetic shift & binding energies

Probing & tuning Rydberg excitons/polaritons in 2D semiconductors via a magnetic field

GaAs QWs: exciton oscillator strength & size

[Laird et al. PPB (2022)]

TMD monolayers (experiments Scott Crooker's group)

10 µm

Probing & tuning Rydberg excitons/polaritons in 2D semiconductors via a magnetic field

Magnetopolaritons: very strong light-matter coupling

\triangleright Light-matter coupling $g = \frac{\Omega}{2}$

g

$g > \gamma$	strong	energy transfer between excitons and photons
$g \sim E_B$	very strong	hybridization of different excitonic levels
$g \sim E_g$	ultra strong	hybridization with different number of excitations

▷ + magnetic field B

Use diamagnetic shift to verify very strong coupling effects: [Yang et al. NJP (2015)]'s proposal

Probe the modifications of the e-h wavefunction due to very-strong coupling to light

Polaritons in a magnetic field [Laird et al. PPB (2022)] [de la Fuente et al., PRB (2025)]

$$\begin{aligned} & \vdash \text{ Light-matter coupling } \hat{H}_{Cm} = \frac{g}{\sqrt{\mathcal{A}}} \left[\hat{a} \int d\mathbf{r} \hat{\Psi}_{e}^{\dagger}(\mathbf{r}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}) + \text{h.c.} \right] \\ & \vdash \text{ Polariton state } \hat{P}^{\dagger} = \frac{1}{\sqrt{\mathcal{A}}} \int d\mathbf{r}_{e} d\mathbf{r}_{h} e^{i\frac{e}{2c}(\mathbf{B}\times\mathbf{r})\cdot\mathbf{R}} \varphi_{\mathbf{0}}(\mathbf{r}) \hat{\Psi}_{e}^{\dagger}(\mathbf{r}_{e}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) + \gamma \hat{a}^{\dagger} \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) + \gamma \hat{\mu}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) + \gamma \hat{\mu}_{h}^{\dagger} \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) + \gamma \hat{\mu}_{h}^{\dagger} \hat{\Psi}_{h}^{\dagger}(\mathbf{r}_{h}) \hat{\Psi}_{h}^{\dagger}(\mathbf{r$$

Allows matter properties to be modified by light & vice versa
 → access the very-strong coupling regime

Probing & tuning Rydberg excitons/polaritons in 2D semiconductors via a magnetic field

ph

Magnetopolaritons: strong coupling $g = \frac{\Omega}{2} \ll E_B$

Magnetopolaritons: very-strong coupling $g = \frac{\Omega}{2} \sim E_B$

7nm 28 × GaAs QWs [Brodback et al. PRL (2017)] $\Omega = 17.4 \text{meV}$ $E_B = 13.5 \text{ meV}$ $\frac{g}{E_B} \sim 0.64$ **LPAUP** data — exact theory [Laird et al. PPB (2022)] — 3 COM (perturbative light-matter) $\frac{1}{2}\mu\omega_c^2 \langle r^2 \rangle_{UP} = \frac{1}{2}\mu\omega_c^2 (1 - \gamma^2) \langle r^2 \rangle_{\varphi, UP}$ (perturbative magnetic field)

Probe the modifications of the e-h wavefunction due to very-strong coupling to light

- LP: light-induced shrinkage of matter component → smaller eh separation in LP than 1s exciton
- UP: importance of the admixture of exciton Rydberg states

XX & PP interaction strength [de la Fuente et al., PRB (2025)]

Born Approximation	(1.	analytical	
$\left P^{2} ight angle=\hat{P}^{\dagger}\hat{P}^{\dagger}\left 0 ight angle$	2.	$g_{XX} = g_{PP} _{g=0=\Omega}$	
$a_{PP} \langle P^2 \hat{H} P^2 \rangle$	3.	$g_{XX}^{B=0}$ recovers same result from	[Ciuti et al. PRB (1998)]
$\frac{g_{PP}}{g_{PP}} = \frac{\sqrt{1 + 1 + 1}}{2} - 2E$	2		[Tassone & Yamamoto PRB (1999)]
${\cal A} \qquad \langle P^2 P^2 angle =$	<u>\</u> 4.	$g_{PP}^{B=0}$ recovers same results from	[Levinsen et al. PRR (2019)]

 \rightarrow strict upper bound on the interaction strength [Li et al., PRB (2021)]

 \rightarrow no momentum transfer: exchange interactions only

XX & PP interaction strength [de la Fuente et al., PRB (2025)]

→ strict upper bound on the interaction strength [Li et al., PRB (2021)] → no momentum transfer: exchange interactions only

XX & PP interaction strength [de la Fuente et al., PRB (2025)]

PP interaction strength [de la Fuente et al., PRB (2025)]

- 1. Magneto-optical spectroscopy
 - \rightarrow probing & tuning exciton properties
 - \rightarrow enhanced exciton binding & coupling to light

- NON-PERTURBATIVE AICROSCOPIC THEORY
- 2. Cavity polaritons: Very-strong coupling $\Omega \sim E_B$
 - \rightarrow hybridization of multiple excitonic states
 - \rightarrow unambiguous signatures in the diamagnetic shift
 - Probe the modifications of the e-h wavefunction due to verystrong coupling to light
 - → agreement with experiments
- 3. $g_{XX} \& g_{PP}$ interaction strengths
 - \rightarrow g^{B=0}_{XX}TMD monolayer: failure of variational approaches
 - \rightarrow magnetic field weakens interactions
 - \rightarrow light-induced modifications can enhance g_{PP} beyond

 g_{XX}

[Laird et al. PRB (2022)] [de la Fuente Pico et al. PRB (2025)]

D. de la Fuente

J. Levinsen

M. Parish

E. Laird now @Queensland

D. de la Fuente

D. Sanvitto

J. Bürger

