Early-time dynamics of Bose gases quenched into the strongly interacting regime

> Francesca Maria Marchetti UAM Universidad Autónoma de Madrid

Dynamics & interactions in quantum gases, 4 Sept 2019, Maó, Menorca

Tunable interactions (Feshbach resonance)

- \rightarrow Tune quantum (many-body) correlations
- 1. Strongly interacting Bose gases
 - \rightarrow beyond MF corrections
 - \rightarrow existence, stability, scaling,...
- 2. Unitary regime $a \rightarrow \infty$
 - \triangleright Universality (*n* scales only)?
 - \rightarrow 3-body phenomena & Efimov physics
 - \rightarrow non-universality

$$N_{\mathbf{k}} \simeq \frac{C_2}{k^4} + C_3 \frac{F(R^*k)}{k^5} + \dots$$
(201)

 $a \rightarrow \infty \rightarrow$

0

 $n^{-1/3}$

- \rightarrow metastability
- \rightarrow three-body recombinations: losses & heating
- 3. Accessing the unitary regime by interaction quenches

Early-time quench dynamics of strongly interacting Bose gases

 $\begin{cases} k_n \simeq 7 \ \mu \text{m}^{-1} \\ t_n = \epsilon_n^{-1} \simeq 30 \mu \text{s} \end{cases}$

[Eigen et al. Nature (2018)]

Deep quenches $na_i^3 \ll 1 \rightarrow na_f^3 \sim 1$

1. Role & nature of 3-body losses?

2. Universality?
$$k_n = (6\pi^2 n)^{\frac{1}{3}}$$
 $\epsilon_n = t_n^{-1} = \frac{k_n^2}{2m}$

- 3. [Cambridge experiment]
 - ▷ universal pre-thermal post-quench dynamics
 - \rightarrow universal scaling laws of momentum distribution growth time $\tau_{\rm gr}(k)$

0

0

 $n^{-1/3}$

 $a \rightarrow \infty \rightarrow$

 \rightarrow quasiparticle excitations Bogoliubov-like

[Eigen et al. Nature (2018)]

Early-time quench dynamics of strongly interacting Bose gases

What about 3-body & Efimov physics?

- 1. Degenerate gas exp [Eigen et al. Nature (2018)]
 - \rightarrow universal lossless dynamics up to $t \preceq \epsilon_n^{-1}$
- 2. Thermal gas exp
 - $\rightarrow C_3(t)$ negligible up to $t \preceq 5\epsilon_n^{-1}$
 - Efimov physics important only at later times of the dynamics
 short-times dominated by short-distance pairwise processes

- 3. Our work (outline)
 - > variational formalism including pairwise excitations out of the condensate
 - \rightarrow condensate depletion + correlations between non-condensed atoms
 - \triangleright crossover from shallow to deep quenches
 - \rightarrow from coherent atom-molecule to atom-medium oscillations
 - > universal scaling behaviour of the typical growth time of the momentum distribution

Model & results

Modelling a Feshbach resonance

1. Short-range pseudopotential
$$\hat{H} = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} + \frac{U_{\Lambda}}{2V} \sum_{\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{q}} \hat{a}_{\mathbf{k}_{1}+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}_{2}-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}_{2}} \hat{a}_{\mathbf{k}_{1}}$$
$$\triangleright s-wave scattering length \qquad \frac{m}{4\pi a} = \frac{1}{U_{\Lambda}} + \frac{1}{V} \sum_{\mathbf{k}}^{\Lambda} \frac{1}{2\epsilon_{\mathbf{k}}}$$
$$\triangleright molecular bound state (a > 0) for contact potential (r_{0} \sim \Lambda^{-1} \rightarrow 0) \qquad E_{\mathrm{B}} = -\frac{1}{ma^{2}}$$

- 2. BEC $(\hat{a}_0 \delta_{\mathbf{k},\mathbf{0}})$ + excited states $(\hat{a}_{\mathbf{k}\neq\mathbf{0}})$
 - \rightarrow quantum depletion not negligible

$$\begin{split} \hat{H} &= \hat{H}_{0} + \hat{H}_{2} + \hat{H}_{3} + \hat{H}_{4} \\ \hat{H}_{2} &\mapsto \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}, \ \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger}, \ \hat{a}_{-\mathbf{k}} \hat{a}_{\mathbf{k}} \\ \hat{H}_{3} &\mapsto \hat{a}_{\mathbf{k}-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}}, \ \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{q}} \hat{a}_{\mathbf{k}-\mathbf{q}} \\ \hat{H}_{4} &\mapsto \hat{a}_{\mathbf{k}_{1}+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}_{2}-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}_{2}} \hat{a}_{\mathbf{k}_{1}} \end{split}$$
 (Beliaev decay, Landau damping)
$$\begin{array}{c} \mathbf{k} \neq \mathbf{0} \\ \mathbf{fluctuations} \\ \mathbf{k} \neq \mathbf{0} \\ \mathbf{fluctuations} \\ \mathbf{k} = \mathbf{0} \\ \mathbf{BEC} \\ \end{array}$$

Early-time quench dynamics of strongly interacting Bose gases

Length & time scales for early dynamics

- \triangleright shallow quenches ($a_f k_n \ll 1$)
 - \rightarrow healing-length ξ & mean-field time τ
- \triangleright intermediate/deep quenches ($a_f k_n \sim 0.1$)
 - → universal atom-molecule coherent oscillations $T = 2\pi/|E_{\rm B}|$
- \triangleright quenches to unitarity ($a_f \rightarrow \infty$)
 - → coherent oscillations condensate-medium beyond the $t \leq \epsilon_n^{-1}$ limit (3-b, heating, loss)
 - ightarrow universal scaling of growth time $au_{
 m gr}$

quench

 a_f

³⁹ K gas	at $n = 10^{12} \text{ cm}^{-3}$				16	
	$ak_n = (6\pi^2 n a^3)^{1/3}$	$\xi = (8\pi an)^{-1/2}$	$\tau = m/(4\pi a n)$	$ E_B ^{-1} = ma^2$	$k_n^{-1} = (6\pi^2 n)^{-1/3}$	$\epsilon_n^{-1} = 2m/k_n^2$
shallow	2.1×10^{-2}	$3 \ \mu m$	$9 \mathrm{ms}$	20 ns		
deep	2.1×10^{-1}	$0.9 \ \mu \mathrm{m}$	$0.9 \mathrm{ms}$	$2 \ \mu s$	$]$ 0.3 μm	$80 \ \mu s$
unitary	12	$0.1 \ \mu \mathrm{m}$	$15 \ \mu s$	6 ms		

Early-time quench dynamics of strongly interacting Bose gases

а

 $a_i=0$

0

Length & time scales for early dynamics

- \triangleright shallow quenches ($a_f k_n \ll 1$)
 - \rightarrow healing-length ξ & mean-field time τ
- \triangleright intermediate/deep quenches ($a_f k_n \sim 0.1$)
 - → universal atom-molecule coherent oscillations $T = 2\pi/|E_{\rm B}|$
- \triangleright quenches to unitarity ($a_f \rightarrow \infty$)
 - → coherent oscillations condensate-medium beyond the $t \leq \epsilon_n^{-1}$ limit (3-b, heating, loss)
 - ightarrow universal scaling of growth time $au_{
 m gr}$

³⁹ K gas	at $n = 10^{12} \text{ cm}^{-3}$				16	
	$ak_n = (6\pi^2 na^3)^{1/3}$	$\xi = (8\pi an)^{-1/2}$	$\tau = m/(4\pi a n)$	$ E_B ^{-1} = ma^2 $	$k_n^{-1} = (6\pi^2 n)^{-1/3}$	$\epsilon_n^{-1} = 2m/k_n^2$
shallow	2.1×10^{-2}	$3 \ \mu \mathrm{m}$	$9 \mathrm{ms}$	20 ns		
deep	2.1×10^{-1}	$0.9~\mu{ m m}$	$0.9 \mathrm{ms}$	$2 \ \mu s$	$]$ 0.3 μm	$80 \ \mu s$
unitary	12	$0.1~\mu{ m m}$	$15 \ \mu s$	6 ms		

Universal prethermal dynamics in the unitary regime

Universal prethermal dynamics in the unitary regime

Early-time quench dynamics of strongly interacting Bose gases

Universal prethermal dynamics in the unitary regime

Early-time quench dynamics of strongly interacting Bose gases

Open questions & perspectives

- 1. Include 3-point correlations
 - \triangleright e.g., third-fourth order cumulant expansion

[see S. Musolino's poster]

- 2. Excitation spectrum of the strongly interacting Bose gas
 - \rightarrow precursor of roton minimum
 - → signatures in the dynamics of density-density correlations

$$g^{(2)}(\mathbf{r},\mathbf{r}';t) = \langle \psi(t) | \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') \hat{\psi}(\mathbf{r}') | \psi(t) \rangle$$

- 3. Quench dynamics for binary mixtures
 - \triangleright quenching across a quantum phase transition
 - \rightarrow also in polaritons

[see G. Bruun & J. Levinsen talks]

[Radzihovsky et al. PRL (2004)] [Romans et al. PRL (2004)] [Marchetti&Keeling PRL (2014)]

In collaboration with

Alberto Muñoz de las Heras (now PhD student in Trento)

Meera Parish (Monash University)

[*] A. Muñoz de las Heras, M. M. Parish, F. M. Marchetti, PRA 99 023623 (2019)