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Abstract. The mechanism of multiple Andreev reflections (MAR) leads to
a rather complex behavior of the noise spectral density in superconducting
quantum point contacts as function of the relevant parameters. In this con-
tribution we analyze recent theoretical and experimental efforts which have
permitted to clarify this issue to a great extent. The theoretical description
of noise in the coherent MAR regime will be summarized, discussing its
main predictions for equilibrium and non-equilibrium current fluctuations.
We then analyze noise measurements in well characterized superconduct-
ing atomic contacts. These systems allow for a direct test of the theoretical
predictions without fitting parameters. In particular, the increase of the
effective charge corresponding to the openning of higher order Andreev
channels has been verified.

1. Introduction

Non-equilibrium current fluctuations provide a powerful probe of the trans-
port mechanisms in mesoscopic structures. Indeed, in contrast to the uni-
versal equilibrium thermal noise, even the low-frequency power spectrum of
these nonequilibrium fluctuations, or "shot-noise”, contains a wealth of in-
formation on the interactions and quantum correlations between electrons
[1]. When the current I is made up from independent shots, the low fre-
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quency spectrum acquires the well-known Poissonian form S = 2¢I, where
q is the “effective charge” transferred at each shot. This result was derived
by Schottky as early as in 1918 for a vacuum diode [2]. In the case of nor-
mal, i.e. nonsuperconducting, metallic reservoirs, the charge of the shots is
simply the electron charge e. Interactions and correlations lead to large de-
viations from this value. One of the most striking examples is the fractional
charge of quasiparticles in the fractional quantum Hall regime, as it was
evidenced through noise measurements [3]. The mechanism giving rise to
superconductivity is another source of correlations among electrons. How
big are the shots when superconducting electrodes are involved? And more
generally, what can we learn from the analysis of noise in superconducting
nanostructures? These are the central questions that we shall address in
this contribution.

Noise phenomena when superconductors are involved is of particular
interest due to the peculiar nature of the charge transfer mechanisms aris-
ing from the presence of a Cooper pair condensate. Thus, for instance, the
current between a superconducting reservoir and a normal one connected
by a short normal wire proceeds through the process of Andreev reflection
in which charge is transferred in shots of 2¢, thus resulting in a doubling
of the noise with respect to the normal case [4]. When two superconduct-
ing electrodes connected through structures such as tunnel junctions or
short weak links are voltage biased on an energy scale eV smaller than the
superconducting gap A, the current proceeds through multiple Andreev re-
flections (MAR) [5]. Fig. 1 illustrates the lowest order processes contribut-
ing to quasiparticle transport in a superconducting junction. In a n-order
MAR process, which has a threshold voltage of eV = 2A/n, an electron (or
hole) is created on the right (left) electrode after n — 1 Andreev reflections,
the total charge transmitted in the whole process being ne. For a given
voltage many such processes can contribute to the current, but roughly
speaking, “giant” shots, with an effective charge ¢ ~ e(l + 2A/eV) are
expected at subgap energies. Of course, the exact value of ¢, like all other
transport properties of a coherent nanostructure, depends on its “meso-
scopic pin code”, i.e. the set of transmission coefficients 7; characterizing
its conduction channels.

Although the MAR mechanism in superconducting junctions was first
introduced nearly two decades ago [5], a complete understanding of trans-
port in the coherent MAR regime has only recently been achieved due
to the combination of theoretical and experimental developments. On the
theoretical side, fully quantum mechanical calculations have allowed to
obtain detailed quantitative predictions for different transport properties
6,7, 8,9, 11, 10, 12, 13].

At the same time, the development of atomic size contacts by means
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Figure 1. Schematic representation of the MAR processes. We have represented the
density of states of both electrodes. The transmission probability is 7. In the upper panel
we describe the single-quasiparticle process in which an electron tunnels through the
system overcoming the superconducting gap due to a voltage eV > 2A. The intermediate
panel shows an Andreev reflection in which an electron is reflected as a hole, which can
reach an empty state in the left electrode if the voltage is eV > A. During this process,
which for small transmission has a probability 72, two electron charges are transferred as
a Cooper pair from left to right. The lower panes shows an Andreev reflection of order 3
in which an Andreev reflected hole is still Andreev reflected as an electron, which finally
reaches an empty state in the right electrode. In this process, whose threshold voltage is
eV = 2A/3, three charges are transferred with a probablity 2.

of break junction and STM techniques [14, 15, 16, 17, 18, 19, 20, 21], has
opened the possibility of a direct comparison between theory and exper-
iments [17, 18, 19, 20, 21]. These systems are caracterised by a few con-
duction channels whose transmission coefficients can be determined exper-
imentally with great accuracy [17, 18, 19].

In the present paper we shall review recent advances in the understand-
ing of noise phenomena in nano-scale superconducting devices. In the first
section we summarize the theoretical description of noise in the coherent
MAR regime. An approach based on non-equilibrium Green functions tech-
niques will be discussed with some detail. We then present the main theo-
retical predictions for equilibrium and non-equlibrium current fluctuations.
The experimental studies of noise in SNS nanostructures are reviewed in
Sect. III. We shall mainly concentrate in the discussion of noise measure-
ments using well characterized superconducting atomic contacts. Finally,
in Sect. IV we present our concluding remarks.
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2. Theoretical description of noise in the coherent MAR regime

The MAR mechanism was introduced by Klapwijk et al. [5] to explain
the subgap structure observed in different types of superconducting junc-
tions. That first approach was based on semi-classical arguments which
neglected quantum interference between different processes. An earlier mi-
croscopic theory due to Schrieffer and Wilkins [22] attempted to introduce
the contribution of multiparticle processes like the ones depicted in Fig. 1
by means of lowest order perturbation theory in the tunnel Hamiltonian
coupling two superconducting leads. In spite of being a fully quantum me-
chanical approach, this Multiparticle Tunneling Theory (MPT), is plagued
with divergencies which can only be avoided by carrying out the calculation
up to infinite order. This goal was achieved more recenlty by the so called
Hamiltonian approach [9], based on a Green functions formalism, which
demonstrated the essential equivalence of the MPT and MAR arguments.

Recent calculations in the coherent MAR regime have been based on
two different approaches: the Hamiltonian approach mentioned above and
the scattering approach developed in Refs. [7] and [8]. Although both ap-
proaches yield equivalent results in the limit when the energy dependence
of the normal transmission can be neglected, each one has its own advan-
tages. Thus, although the scattering approach might appear as conceptualy
simpler, the Hamiltonian approach is more rigorous as it does not rely on
ad-hoc assumptions on boundary conditions. In addition the use of Green
function techniques allows to deal, for instance, with electron correlation
effects within this approach. In what follows we briefly sketch the basic
ingredients in the Hamiltonian approach for the description of a voltage
biased superconducting contact. We shall consider the case of a supercon-
ducting quantum point-contact, i.e. a short (L < &) mesoscopic constric-
tion between two superconducting electrodes with a constant applied bias
voltage V. For the range eV ~ A one can neglect the energy dependence of
the transmission coefficients and all transport properties can be expressed
as a superposition of independent channel contributions. Thus, we will con-
centrate in analyzing a single channel model which can be described by the
following Hamiltonian [9]

ﬁ(t) =H, + Hp + Z (vei¢(t)/20TLgcRU + h.c. ) , (1)

where I:ILR are the BCS Hamiltonians for the left and right uncoupled elec-
trodes, ¢(t) = ¢g + 2eV't/h is the time-dependent superconducting phase
difference, which after a gauge transformation enters as a phase factor in
the hopping terms describing electron transfer between both electrodes.
To obtain the transport properties we use a perturbative Green functions



QUANTUM NOISE AND MULTIPLE ANDREEV REFLECTIONS D

approach including processes up to infinite order in the hopping param-
eter v (all MAR processes of arbitrary order are in this way naturally
included). In the normal state, the one-channel contact is characterized by
its transmission coefficient 7, which as a function of v adopts the form
7 =4(v/W)?/(1 + (v/W)?)2, where W = 1/mpF, pr being the electrodes
density of states at the Femi energy [9]. Within this model the current
operator is given by

I(t) = %Z [vei¢(t)/2620(t)CRg(t) - v*e_i¢(t)/20TRU(t)CLg(t)] . (2)

g

The current noise spectral density is defined as

S(w,t) = h/dt’ e (ST(t + )1 (t) + S1(1)51(t + 1))

h / dt' e K (1), (3)

where 61(t) = I(t)—(I(t)) is the time-dependent fluctuations in the current.

The relevant quantities to be determined can be expressed in terms of
non-equilibrium Keldysh Green functions [23] in a Nambu representation
C;’j"j*(t, t') and é;f(tj’) where 7,7 = L, R defined as

N (e
G ) i ( (430 (0) (e (e(d) ) | "
’ (cjr () (1) (ej ()e; (1))
and obey the relation é;j’(t, t) = —64 [C;”f-*(t’, t)]T 0z, 05 being the Pauli
matrix.
Then, the mean current and the kernel K(¢,t') in the noise spectral
density are given by

<itt)> = %Tr[&z (6(t)GH7 (1) - o' (G R (1. 1)]
2 N
Ktt) = 2h—2{Tr 60T (G (4 1)ae0 ()G (1, 1)
e (WG (460N ()G (0] + (> 1)}, (5)

where 6, is the Pauli matrix, Tr denotes the trace in the Nambu space and
0 is the hopping in this representation

. vei¢(t)/2 0
o(t) = ( 0 sz | - (6)
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The expression of the Kernel in terms of one-particle Green functions (Eq.
5) has been obtained using Wick’s theorem. This is equivalent to neglect
correlations beyond the BCS mean-field theory. As mentioned above, in
order to determine the Green functions we follow a perturbative scheme
and treat the coupling term in Hamiltonian (1) as a perturbation. The
unperturbed Green functions, §, correspond to the uncoupled electrodes
in equilibrium. Thus, the retarded and advanced components adopt the
BCS form: §"%(e) = ¢"%(e)1 + f7%(€)6,, where g"%(e) = —("*/A)f(e) =
—e"/W/A? — ()2, where €% = € &+ in, and 1 is a small energy relax-
ation rate that takes into account the damping of quasiparticle states due to
inelastic processes inside the electrodes. This parameter can be estimated
from the electron-phonon interaction to be a small fraction of A [24]. To
determine the Keldysh Green functions appearing in the current and noise
expression we first use their relation with the advanced and retarded func-
tions G7,

Ghtt)=(1+6 o) eg o (i+370 6, (7)

where the @ product stands for an integration over the common time vari-
able.AThe self—energy in this problem is simply given by %77 = E%% =0
and 274 = (X7%7)1 = 0(t). The unperturbed Green function g+~ are given
by g7 (e) = [¢%(€) — g"(€)] f(€), where f(e) is the Fermi function. Finally,
the functions G™ satisfy the Dyson equations

G«r,a(t’tl) — gr,a + gr,a ® ﬁ:r,a ® G«r,a_ (8)

In order to solve the above integral equations it is convenient to work in the
energy space. Thus, we Fourier transform the Green functions with respect
to the temporal arguments

Gt 1) = % / de / dé' el (e, '), (9)

Due to the special time dependence of the coupling elements (see Eq. 6),
every Green function admits a Fourier expansion of the form

Gt 1) = emdt)/2 fe*“(t*t’)é(e, € +neV), (10)
~ 27

which, in other words, means that G(e,e’) = 3=, G(e, e+neV)§(e—e +neV).

Thus, the calculation of the different transport properties is reduced to the

determination of the Fourier components G7;% (¢) = G"%(e+neV, e+meV).

Eq. 10 indicates that the different transport properties of this system should

contain terms oscillating with all the harmonic of the Josephson frequency.
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In particular, S(w,t) = 3, Sn(w)exp[ing(t)]. At finite bias voltage, we shall
concentrate ourselves in the dc part of the noise, i.e. Sy, which for simplicity
will be denoted as S(w). This noise component can be expressed in terms
of the Fourier components of the Green functions as follows

2¢2 oA oA
Sw) = T 3 [ deTe (5D, (e £ )5 D00

+w,n

6:Dion (€ £ w)a2 Dit ()} (11)

where we have defined D(t,#') = #(t)G(t, ') to simplify the notation. The
last step in the calculation is the computation of the Fourier components
G;ﬁl They can be determined by Fourier transforming Eq. 8 and using the
relation of Eq. 10. Thus for instance, it can be shown that the components
G%’%’nm = Gy fulfill the following algebraic linear equation (assuming
that the contact is symmetric)

~

Gnm = gnmén,m + é‘nnénm + f}n,n72GAn72,m + ))n,n+2@n+2,ma (12)

where the matrix coefficients f:'nn and IA)nm can be expressed in terms of
the Green’s functions of the uncoupled electrodes, as

g _ v2<9n9n1 fngn+1>
" faGn-1 gngns1

~ 0
Vn,n+2 = —’L)an+1 < fn 0)

dn
. 0 g,
Vn,n—Q = _Uan—l < 0 ? ) ) (13)

In these equations the notation g, = g;(e + neV’) is used. Notice that this
set of linear equations is analogous to those describing a tight-binding chain
with nearest-neighbor hopping parameters )A/n,,H_g and f)n,n_g. A solution
can then be obtained by standard recursive techniques (see Ref. [9] for
details), which permits to obtain analytical results in some limits, and in
any case an efficient numerical evaluation of the Fourier components. In the
case of zero bias, all the harmonics of noise give a finite contribution. In
this limit the calculation can be greatly simplify noticing that the problem
becomes stationary (the time-dependent Green functions only depend on
the time difference) and using the equilibrium relations

GH(e) =[G = G ()] f(o), (14)
G e) =[G -G (9)] [f(e) - 1]. (15)
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In this limit one can obtain analytical results, as we shall detail in the next
section.

3. Theoretical results

3.1. THERMAL NOISE

In the limit of vanishing bias voltage the current is due to Cooper pair
tunneling (non-dissipative Josephson current). One would naively expect
that thermal noise at temperatures kT < A would be negligible. This is
certainly the case for a tunnel junction with a exponentially small barrier
transparency. However, in a superconducting point contact the situation
can be radically different due to the presence of the Andreev states inside
the gap. Fluctuations in the population of these states can lead to a huge
increase of the noise in certain conditions. The noise spectral density in
this regime was calculated in Ref. [11] using the formalism discussed in the
previous section. The spectrum at subgap frequencies can be understood
in terms of a simple two-level model describing the Andreev states. Let us
recall that for a single channel contact of transmission 7 there are two bound

states at energies +eg, where €5 = Ay/1 — 7sin? ¢/2. The zero temperature
supercurrent is just given by I(¢) = —(2e/h)dges. In such a two-level
system at finite temperature the upper level can be thermally populated
giving rise to a reverse in the sign of the supercurrent. It is important to
notice that in a real system the Andreev bound states are affected by a
long but finite life-time fixed by the typical inelastic tunneling rate of the
system n < A [24]. The current fluctuations thus correspond to a type of
telegraph noise in which the system switches between positive and negative
current with a characteristic time given by 2/n [10].

As the gap between the Andreev states decreases with increasing con-
tact transmission one could expect a large increase of the noise. In fact,
the results of Ref. [11] show that the noise exhibits a huge increase when
A1 — 71 K kT. The exact result for the zero-frequency noise is found to
be given by

_ 2?1 A'7?sin?(¢)

5(0,¢) = fles)[1 = fles)]. (16)

T &

From this expression one can verify that the thermal noise approaches
its maximum value, e2A2/An, when ¢ — 7 and 7 — 1, for any finite
temperature. This result is strictly valid in the limit of small inelastic
tunneling rate, 7 < 7A, and in the low transmission regime differ strongly

from the noise spectrum that is obtained for tunnel junctions using standard
tunnel theory [25], which yields S(0) ~ 7(1 + cos ¢) In(A/n). As shown in
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[26], the reason for this discrepancy is that the limits 7 — 0 and n — 0
actually do not commute: when n < 7A the main contribution to the noise
comes from the MAR processes building up the Andreev states and should
be taken into account up to infinite order; while for n > 7A higher order
MAR processes become heavily damped and the lowest order perturbation
theory in the tunnel Hamiltonian gives the correct answer.

It is interesting to point out that the contact linear conductance, G(¢),
can be obtain from Eq. (16) through the fluctuation dissipation theorem,
which states that S(0,¢) = 4kpTG(¢). The expression of the linear con-
ductance can also be obtained by a direct calculation of the current in the
limit V' — 0 [26]. The full noise spectrum in the zero bias limit exhibits also
an additional peak at w = 2¢, associated with excitations from the lower to
upper Andreev state. The weight of this peak is found to be given by [11]

e A*r2(1 — 7)sin?
S(es) = 2 TAT U= S0 20y 4 2] 7)

h n e%

It is worth noticing that in the zero temperature limit this is the only
remaining subgap feature in the noise spectrum. This expression clearly
shows that S(2eg) is proportional to the square of the zero temperature
supercurrent with a Fano reduction factor (1 — 7).

VN

S(w)
A

| / >
0 26s(@) A A+eg() W

Figure 2. Schematic representation of the thermal noise spectrum. Notice the discrete
character of the spectrum for w < es + A. Only two sharp resonances (width ~ 7) at
w = 0 and w = 2¢s appear due to the contribution of the subgap states.
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In addition to the subgap features, the noise spectrum has a continuous
part for w > eg+ A. Figure 2 illustrates the overall features in the zero bias
noise spectrum. Notice the small width of the subgap resonances which is
controlled by the inelastic tunneling rate 7.

3.2. SHOT NOISE

When a finite bias voltage is applied, the current is due to quasiparticle
tunneling mediated by MAR processes. In this section we shall concentrate
in the analysis of the shot noise regime (eV > kpT ). As discussed in
the introduction, shot noise in the Poissonian limit provides a measure
of the charge of the quasiparticles being transmitted. The question then
arises on whether this relation still holds for superconducting junctions in
the coherent MAR regime. As we discuss below, the situation is far more
complex in this case. Only in the low transmission regime one can clearly
identify the charge which is being transmitted for a given voltage bias.

In general, it is not possible to obtain a compact expression for the
noise spectrum in the non-equilibrium situation. The zero-frequency noise
for arbitrary transmission and voltage has been calculated in Refs. [12, 13].
The numerical results are summarized in Fig. 3, where we also show the dc
current for comparison. As can be observed, the most prominent features
in the shot noise are: (i) the presence of a strongly pronounced subgap
(V < 2A) structure, which remains up to transmissions close to one (in the
dc current this structure is only pronounced for low transmissions). In the
low transparency limit the shot noise subgap structure consists of a series of
steps at voltages eV;,, = 2A/n (n integer) as in the case of the dc current. (ii)
The shot noise can be much large than the Poisson noise (Spyisson = 2¢I),
as can be seen in Fig. 4. (iii) For higher transmissions there is a steep
increase in the noise at low voltages. (iv) For perfect transmission the shot
noise is greatly reduced. (v) In the large voltage limit (eV > A) there is
an excess noise with respect to the normal case.

The shot noise can be analyzed with more detail in the two opposite
limits: 7 — 0 (tunnel) and 7 — 1 (ballistic regime). Let us start by con-
sidering the low transmission regime (7 < 1). In this limit the electronic
transport can be analyzed as a multiple sequential tunneling process in
which the dc current can be written as the addition of the tunneling rates
corresponding to different MAR processes: In(V) = >, nel',(V), with
I'y = (2/h) [ deRy(€), where the probability of an nth-order Andreev pro-
cess R, is given by [9]
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Figure 3. (a) Current-voltage and (b) noise-voltage characteristics for different trans-
missions at zero temperature. The values of the transmission are the same in both panels.
G = (2¢*/h)7 is the normal conductance.

2 _n [n—1
Ry(e) = — [H Ip(e — keV)Q] p(e—neV)p(e) ;where € € [A,neV —A],

(18)
where p(e) = |e|/Ve? — A? is the dimensionless BCS density of states and
p(e) = A/VA? — €2 is the Cooper pair creation amplitude. This expression
for R, clearly displays the different ingredients in a MAR processes, i.e. it is
proportional to the initial and final density of states, to the probabitlity of
creating n—1 Cooper pairs and to the probability of a quasiparticle crossing
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Figure /. Effective charge ¢ = S/(2I) as a function of the reduced inverse voltage for
different transmissions.

n times the interface (7"). This current expression already suggests that
the transmitted charge associated with each MAR process is well defined in
this limit. In contrast to a normal channel, characterized by a binomial dis-
tribution (the electron is either emitted or reflected), in the present case the
quasiparticles can tunnel through many different channels (corresponding
to the different MAR processes) giving rise to a multinomial distribution.
Consequently, the shot noise can be written as

. (19)

n=1

S0.V) =~ [de |3 n’Ry, — (Z an>
n=1

The MAR probability, R,, is proportional to 7" and is finite only for eV >
2A/n. Therefore, when 7 — 0 in the voltage interval [2A/en,2A/e(n —1)]
the main contribution to the current comes from a n-order MAR, and the
current distribution becomes Poissonian with a different charge depending
on the voltage range. In fact, the effective charge defined as ¢ = S(0,V")/2I
exhibits in this limit a staircase behavior given by ¢(V')/e = Int[14+2A/eV].
In Fig. 4 we show the effective charge calculated for different transmissions.
As can be observed ¢(V') increases for decreasing bias as 1/V, its shape
becoming progressively steplike for decreasing transmission.
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In the ballistic regime the calculation of the amplitudes for the MAR
processes is simplified due to the absence of interference effects due to
backscattering. Averin and Imam [10] derived the following expression for
the spectral density in this limit

62
S(w,V) = %Z/deF(e) 1= Fle+ hw)]
tw

x k

1 —|—2ReZHa(e—i—leV)a*(e—l—leV:l:hw) . (20)
k=11=1

Here a(e) = (e +ivV A% — €2)/A is the amplitude of Andreev reflection from
the superconductors, and F' is the nonequilibrium distribution of quasipar-
ticles in the point contact,

X

o0 n
F(e) = f(e)-i-z H la(e—meV)|? [f(e = (n 4+ 1)eV) — f(e —neV)]. (21)
n=0m=0

At zero frequency and zero temperature, this expression gives rise to the
rather featureless curve as a function of bias shown in Fig. 3 for 7 = 1.
The great reduction of the noise is due to the fact the probabilities of the
different MARs are equal to 1 inside the gap. However, the noise does not
vanish completely, like in the normal case, because the MAR probabilities
are less than 1 outside the gap. As mentioned above, an interesting fea-
ture of the noise is the huge enhancement close to perfect transparency
at small voltages (see curve 7 = 0.95 in Fig. 3). Following the analysis
of Naveh and Averin [13], the behavior of the noise in this limit can be
understood in terms of Landau-Zener transitions between the two ballistic
subgap states. Within this picture the noise is originated by the stochas-
tic quantum-mechanical nature of the transitions between the two states.
As explained in the previous section, these two states carry the currents
+(eA/h)sin ¢/2, where ¢ is the Josephson phase difference across the junc-
tion, with ¢ = 2eV/h. In each period of the Josephson oscillations the
junction either stays on one of the Andreev levels and carries the current of
the same sign during the whole oscillation period, or either makes a tran-
sition between the two states at ¢ = 7w so that the current changes sign
for the second half of the period. The first case occurs with probability
p =exp{—mRA/eV}, where R =1 — 7, and then the charge

A To 2A
QO:%/O dtsin¢/2=7,

where Ty = wh/eV is the period of the Josephson oscillations, is transferred
through the junction. In the second case the probability is 1 — p and no net
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charge is transferred. Therefore statistics of charge @) transferred through
the junction during the large time interval 7' > Tj is characterized by a
binomial distribution with probability p. The noise is then given by

2(Q) — (Q)?) _ 8ea?

5(0,V) = T hV

p(l-p). (22)

The noise reaches a maximum at small voltages eV ~ 7RA and its peak
value increases with decreasing R as 1/R. One can check that Eq. (22)
describes accurately the low-voltage behavior of the curves with small R
in Fig. 3. It is also interesting to analyze the large voltage limit, in which
the zero-frequency noise behaves as S(eV > A = (4e?/h)7(1 — 1)V +
Sexc, 1.6. the shot-noise of a normal contact with transmission 7 plus a
voltage-independent “excess noise” S.;.. The excess noise as a function of
transmission is shown in Fig. 5. S¢;. has the same physical origin as the
excess current (I.;.), which arises from the contribution of the first order
Andreev process. We obtain that at zero temperature Se,. is twice the
excess noise of a N-S contact [27] with the same transmission. In particular,
this relation yields Seze = 2/5elcy. for the perfect ballistic case [28].

= o
(o)) [o0]
| |

2
s, /(8°A/)
o
>

0.2

| |
0 0.2 04 06 0.8 1
Transmission (1)

Figure 5. Excess noise as a function of the transmission at zero temperature.
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3.3. NON-EQUILIBRIUM NOISE AT FINITE FREQUENCIES

Our knowledge about shot noise in the coherent MAR regime is mainly re-
stricted to the zero frequency limit. However, a rich frequency-dependency
is to be expected according to the strong non-linear behavior of the I'V
characteristics. This dependency should contain very valuable information
on the dynamics of quasiparticles in the MAR regime. Additonal interest
on the full noise spectrum arises from its connection with the Coulomb
blockade phenomena as recently pointed out in Ref. [29]. In this work it
was shown that the deviation from the Ohmic behavior of normal a co-
herent conductor due to its electromagnetic environment can be expressed
in terms of the conductor noise spectrum S(w,V’). Thus, the dynamical
Coulomb blockade in a circuit containing a quantum point contact should
vanish in the same way as shot noise when the contact transmissions ap-
proach unity. It is to be expected that a similar relation should hold in
the superconducting case. In order to get an idea about the behavior of
the full noise spectrum we have extended the calculations of the previous
section to the finite-frequency domain. In Fig. 6 we show some numerical
results for the finite-frequency shot noise for different transmissions. The
most important feature is the splitting of the subharmonic gap structure,
which now takes place at voltages eV = (2A £ hw)/n, with n integer. This
is specially clear at low transparencies and at frequencies iw < A (see
Fig. 6(a)). This result can be understood with the sequential analysis de-
scribed in the previous section. As in the case of the zero-frequency noise,
the subharmonic gap structure is progressively washed out as the trans-
parency is increased. Close to perfect transparency the main feature is the
suppression of the peak at low voltages. When 7 = 1 the noise spectrum is
almost featureless and exhibits a linear increase with frequency. The conse-
quences of these findings on the dynamical Coulomb blockade of multiple
Andreev reflections is currently under investigation.

4. Experimental studies of noise in SNS nanostructures

Motivated by some of the previously discussed theoretical predictions, shot
noise has been studied experimentally in different types of SNS nanostruc-
tures. In 1997, Dieleman et al. observed what seemed to be a divergence
of the effective charge at low voltages in NbN/MgO/NbN tunnel junctions
[30]. The measured junctions consisted probably of parallel SNS point con-
tacts due to the presence of small deffects acting as ”pin-holes” in the tun-
nel barrier. This interpretation was confirmed by the observation of a finite
subgap current exhibiting the typical structure at eV = 2A/n. The mean
transmission of the pin-holes was estimated to be 7 ~ 0.17. In spite of the
rather large error bars in the noise determination it was possible to observe
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Figure 6. Finite frequency shot noise as a function of the voltage for different transmis-
sion and frequencies at zero temperature.

a clear increase of the effective charge with decreasing voltage. Dieleman et
al. developed a qualitative explanation of their data within the framework
of the semiclassical theory of MAR of Refs. [5]. The increase of the effective
charge at low voltages has also been observed in diffusive SNS junctions by
Hoss et al. [31]. They used high transparency Nb/Au/Nb, Al/Au/Al and
Al/Cu/Al junctions prepared by lithographic techniques. Although being
diffusive, the normal region is these junctions was smaller than the phase
coherence lenght, which allowed to observe the coherent MAR regime. On
the other hand, the junctions presented a very small critical current, which
permitted to reach the low voltage regime. The excess noise in these ex-
periments exhibited a pronounced peak at very low voltages (of the order
of a few uV') corresponding to an effective charge increasing much faster
than the predicted 1/V behavior. It should be pointed out that there is at
present no clear theory for diffusive SNS junctions in the coherent MAR
regime.

4.1. MEASUREMENTS OF SHOT NOISE IN WELL CHARACTERIZED
ATOMIC CONTACTS

As we emphasized in the introduction, atomic-size contacts provide an al-
most ideal "test-bed” for many of the predictions of the theory. Since all
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their characterstic dimensions are of the order of the Fermi wavelenght,
atomic contacts are perfect quantum conductors, even at room temper-
ature, and accomodate only a small number of conduction channels. For
one-atom contacts the number of conduction channels is directly related to
the number of valence orbitals of the central atom [18]. For example gold
one-atom contacts contain only one channel, while aluminum and lead have
three, and niobium five. For such a small number of channels it is possi-
ble to determine with good accuracy the mesoscopic code [17] from the
precise measurement of the current-voltage characteristic in the supercon-
ducting state. The discovery that their mesoscopic "PIN-code”, i.e. the set
of transmission eigenvalues {7, }, could be accurately decoded, paved a way
to a new generation of quantum transport experiments in which the mea-
sured quantities could be compared to the theoretical predictions without
adjustable parameters.

Figure 7. Micrograph of a nanofabricated break junction used in the noise measurements
of Ref. [21].

It is worth mentionning that van den Brom and van Ruitenbeek [32],
reversing this point of view, have performed shot noise measurements in
atomic-size contacts in the normal state, in order to get information about
the number of conduction channels and their transmission probabilities(see
article by JVR in this book). For 27 different gold contacts they measured
a spectral density well below the poissonian value, indicating that current
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is mostly carried by well transmitting channels. The values of the conduc-
tance and the shot noise density are related respectively to the first and
second moment of the transmission probability distribution. Because from
two parameters the code can be disentangled only if the contact contains
no more than two conduction channels, their results were quantitative only
for total conductances below two conductance quanta. For a single gold
atom contact the conductance is about one and their shot noise measure-
ments established that the contribution of partially transmitted conduction
channels is only a few percent.

Spectrum
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Low noise
Stanford SR560
pre-amplifiers

Low noise
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pre-amplifiers
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enuator 500

First stage of
lossy cables

Bias >
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Microfabricated
filters

Cryostat ground =

Figure 8. Schematic representation of the measurement set-up consisting of a coax-
ial line to bias the atomic-size contact (two triangle symbol) and of two twisted-pair
lines used to measure twice the voltage across it. The spectrum analyzer calculates the
cross-correlation of these two signals.

In a recent work, we have used nanofabricated Al break junctions for
analyzing shot noise in atomic-size contacts. A micrograph of a nanofabri-
cated junction is shown in Fig. 7. It consists of a metallic bridge clamped
to an elastic substrate and suspended over a few micrometers between two
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anchors. The bridge presents in its center a constriction with a diameter
of approximately 100 nm. In order to obtain an atomic-size contact, the
substrate is first bent till the bridge breaks at the constriction. The two
resulting electrodes are then slowly brought back into contact. The high
mechanical reduction ratio of the bending bench allows to control the num-
ber of atoms forming the contact one by one; in this way, single atom
contacts can be produced in a controlled fashion. Nanofabricated atomic-
size contacts are extremely stable and can be maintained for days. Due to
its high mechanical stability, this technique [33] is particularly suitable for
shot-noise measurements at very low bias currents.

The set-up used to measure shot noise is depicted in Fig 8. It consists ba-
sically of one coaxial line, used to bias the on-chip grounded atomic contact,
and of two twisted-pair lines used to obtain two independent measurements
of the voltage across with two sets of low-noise amplifiers. With this set-
up current fluctuations are thus not directly measured, but instead inferred
from the fluctuations of the voltage across the contact. The current and volt-
age fluctuations spectral densities S; and Sy respectively, are related, at a
given voltage V through Sy (V) = R%S;(V), where Rp(V) = aV/dI(V) is
the differential resistance. In the normal state, this differential resistance
is essentially constant in the voltage range in which the experiments are
carried out, and equals Ry, the normal resistance of the contact. In the
superconducting state, the differential resistance can be highly non-linear
and is determined using a lock-in amplifier for each point at which the noise
is measured.

All noise sources along the measurement lines, like the Johnson-Nyquist
thermal noise of the resistors or the current and voltage noise of the am-
plifiers input stages, induce fluctuations that poison the shot noise signal.
Because of that, the measurement lines and the bias line were carefully
designed and built so as to limit and keep under control this additional
noise. As mentionned before, the voltage across the atomic-size contact is
measured twice and the real part of the cross-correlation spectrum of the
two amplified signals is calculated in real time by a spectrum analyzer.
This cross-correlation technique allows one to get rid of the voltage noise
coming from the preamplifiers and the measurement lines that poison the
white noise signal. Typically, the spectra were measured over 800 points
in a frequency window [360, 3560H z] and averaged 1000 times in 4 min (a
detailed discussion of the setup calibration can be found in [34]). Once the
PIN-code of a given contact has been determined, a first check of consis-
tency is obtained from the measurement of the current fluctuations in the
normal state. The normal state is recovered without changing the tempera-
ture by applying a small magnetic field (of the order of 50 mT') which does
not affect the transmissions. The measured low frequency spectral density
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as a function of the average current is shown in Fig. 9 for different contacts.
These results can be compared with the predictions of the theory for noise
in normal contacts [27]

2;ZT)G0 PRETCEED (23)

1
+4kpTGo > 77 .
i

Si(V,T,{7;}) = 2eV coth(

The full lines in Fig. 9 corresponds to Eq. (23) using the set of PIN-
codes extracted from the analysis of the superconducting IV curves. As
can be observed, there is a remarkable agreement between theoretical and
experimental results. It should be emphasized that there are no fitting
parameters in this comparison as the transmission coefficients have been
determined independently. This good agreement provides additional proof
of the accuracy that can be obtained in the determination of the contact
PIN-code.
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Figure 9. Symbols: measured low frequency spectral density of aluminum atomic-size
contacts versus poissonian spectral density 2el. Solid lines are prediction of for the cor-
responding mesoscopic codes. The dashed line is the poissonian limit.
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The following step in the experiments was the measurement of the noise
in the superconducting state. Fig. 10 shows the measured spectral densities
as a function of bias voltage for three different contacts. In contrast to the
behavior in the normal case, the measured S7 is markedly nonlinear and for
high enough voltages it is above the value determined in the normal state.
For comparison, the theoretical predictions for the corresponding PIN-codes
are shown as full lines. As can be observed the agreement between theory
and experiment is quantitative both regarding the subgap structure and
the excess noise at large bias. The data can be presented in a more intu-
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Figure 10. Dots: Measured current fluctuation spectral density as a function of re-
duced voltage of three atomic-size contacts. Mesoscopic PIN codes: {0.98, 0.55,0.24, 0.22}
(squares), {0.68,0.25,0.22} (diamonds), {0.996, 0.26} (circles). Full curves: theoretical
predictions of the MAR theory using the mesoscopic code.

itive way, by plotting the effective charge ¢ = S;/2I as a function of the
inverse voltage. Fig. 11 shows the data for a contact having an intermediate
transmission. Let us recall that only in the tunnel limit the theory predicts
that ¢ should increase in a perfect staircase pattern with decreasing bias.
Our setup sensitivity was not enough to measure the noise in this limit of
very small bias currents. However, the emergence of a staircase pattern can
already be recognized in the data shown in Fig 11.
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Figure 11. Effective size of the shot-noise “pellets”, in units of e, as a function of the
inverse reduced voltage for a contact in the superconducting state. Dashed line : MAR
theory prediction in the tunnel limit. As the voltage increases, MAR processes of lower
order set-in one by one leading to this perfect staircase pattern. Dots : Data for an
aluminum atomic contact with mesoscopic PIN code {0.40,0.27,0.03}. Full line : MAR
theory prediction for this code.

5. Conclusions

We have analyzed several aspects of noise phenomena in superconducting
quantum point contacts. The more remarkable features both in the equilib-
rium and non-equilibrium current fluctuations appear as a consequence of
the underlying MAR mechanism for electronic transport. At zero bias volt-
age huge supercurrent fluctuations are predicted due to transitions between
the subgap Andreev states. At finite bias the noise spectrum exhibits a very
pronounced subgap structure which corresponds to the onset of higer order
MAR processes when the voltage is reduced. The effective charge generally
increase as 1/V but is only quantized in the tunnel limit when the interfer-
ence between different MAR processes can be neglected. All these properties
exhibit a highly non-trivial dependence on the contact transparency. On the
experimental side, noise measurements in well characterized superconduct-
ing atomic contacts have provided an unambiguous test of the theoretical
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predictions. The possibility of obtaining the corresponding set of trans-
missions (the PIN-code) from the analysis of the subgap structure in the
superconducting IV curves has allowed a direct comparison with theory
without fitting parameters. The quantitative agreement found for the noise
completes a comprehensive series of tests which includes the measurement
of the supercurrent [20] and the current-voltage characteristics [?]. Finally,
the study of non-equilibrium noise in the finite-frequency domain appears
as a very promising avenue of reaserch.

* Present address: Institut fiir Theoretische Festkorperphysik, Universitat
Karlsruhe, 76128 Karlsruhe, Germany
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