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Deep learning is having a tremendous impact in many areas of computer science and engineering. Moti-
vated by this success, deep neural networks are attracting increasing attention in many other disciplines,
including the physical sciences. In this work, we show that artificial neural networks can be success-
fully used in the theoretical modeling and analysis of a variety of radiative-heat-transfer phenomena and
devices. By using a set of custom-designed numerical methods able to efficiently generate the required
training data sets, we demonstrate this approach in the context of three very different problems, namely
(i) near-field radiative heat transfer between multilayer systems that form hyperbolic metamaterials,
(ii) passive radiate cooling in photonic crystal slab structures, and (iii) thermal emission of subwave-
length objects. Despite their fundamental differences in nature, in all three cases we show that simple
neural-network architectures trained with data sets of moderate size can be used as fast and accurate
surrogates for doing numerical simulations, as well as engines for solving inverse design and optimiza-
tion in the context of radiative heat transfer. Overall, our work shows that deep learning and artificial
neural networks provide a valuable and versatile toolkit for advancing the field of thermal radiation.
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I. INTRODUCTION

Deep learning is a form of machine learning that allows
a computational model composed of multiple layers of
processing units (or artificial neurons) to learn multiple
levels of abstraction in given data [1–3]. In recent years,
there has been a revival of deep learning triggered by
the availability of large data sets and recent advances in
architectures, algorithms, and computational hardware [1].
This, in turn, has resulted in a huge impact of deep learning
in topics related to computer science and engineering, such
as computer vision [4], natural-language processing [5],
autonomous driving [6], or speech recognition [7], to men-
tion just a few. Motivated by this success, deep learning
is attracting increasing attention from researchers in other
disciplines. In particular, deep learning and artificial neural
networks have already found numerous applications in the
physical sciences (see recent reviews of Refs. [8–10]).

A paradigmatic example is the field of photon-
ics (including nanophotonics, plasmonics, metamaterials,
etc.), in which all the basic types of neural networks have
already been employed to model, design, and optimize
photonic devices. The applications of neural networks in
photonics actually date back to the 1990s and were related
to the computer-aided design of microwave devices [11].
But it has only been in the past three years that a true
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revolution has been witnessed in this topic (for detailed
reviews, see Refs. [12–17]). Neural networks in photonics
are being used for three main purposes. First, deep neu-
ral networks, configured as discriminative networks, are
used to do forward modeling of photonic structures, i.e.,
they are operated as high-speed surrogate electromagnetic
solvers (see, e.g., Refs. [18,19]). Second, it has been shown
that properly trained networks can be efficiently used to
optimize structures for a given purpose [18,20,21]. Third,
neural networks are used to tackle inverse-design prob-
lems [22–25] and, once trained, they have been shown to
be clearly faster for this task than other existing numerical
strategies [18].

Radiative heat transfer [26–28] has been experiencing
its own revival in recent years [29]. Thus, for instance, the
study of the thermal-radiation exchange in the near-field
regime is attracting a lot of attention [29–32]. The progress
on this topic includes crucial experimental advances and
numerous theoretical proposals to tune, actively control,
and manage near-field thermal radiation. Other topics of
great current interest in this field are the control of ther-
mal emission of an object, with special emphasis on
its implications for energy applications [33,34], and the
comprehension of far-field radiative heat transfer beyond
Planck’s law [35]. Although certain traditional problems
in the field of radiation have already been investigated with
the help of neural networks [36–39], the more modern and
pressing topics mentioned above still need to be addressed
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and it remains unclear how deep-learning techniques
can be systematically applied to model radiative-heat-
transfer phenomena and to solve related inverse-design
problems.

In this work, we show how artificial neural networks
can be helpful in the modeling and analysis of a wide
variety of thermal-radiation phenomena, as well as in the
optimization and inverse design of structures for radia-
tive heat transfer. To illustrate these ideas, we present here
the use of neural networks in three distinct problems that
cover many of the basic aspects of current interest in the
field of radiative heat transfer. In the first example, we
use neural networks in the context of near-field radiative
heat transfer between multilayer systems that form hyper-
bolic metamaterials. In a second example, we show how
neural networks can be used to optimize the performance
of a device in the context of passive radiative cooling.
In the third example, we illustrate how neural networks
can be helpful in the description of the thermal emission
of an object of arbitrary size, paying special attention to
subwavelength objects. In all three cases, we use custom-
designed numerical methods that allow us to carry out an
efficient and robust generation of the training data required
in the proposed approach.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce the topic of neural networks, as used
in this work, and discuss some of the technical details
related to their practical implementation. In Sec. III, we
discuss the use of neural networks in the context of the
near-field radiative heat transfer between multilayer struc-
tures. Then, Sec. IV is devoted to the use of neural net-
works for the optimization of devices in the context of
passive radiative cooling. In Sec. V, we show how neural
networks can be helpful in the problem of the description
of the thermal emission of a single object of arbitrary size
and shape. Finally, we summarize our main conclusions in
Sec. VI.

II. THEORETICAL BACKGROUND

Neural networks (NNs), as used in this work, are nonlin-
ear models for supervised learning. More specifically, they
are general-purpose function approximators that can be
trained using many examples. The basic unit of a NN is an
artificial neuron that takes n input features {x1, x2, . . . , xn}
and produces a scalar output a(xi) [see Fig. 1(a)]. The
value of the neuron a is obtained starting from the val-
ues xk of some other neurons that feed into it as follows.
First, one calculates a linear function of those values:
z = ∑

k wkxk + b, where the coefficients wk are called the
weights and the offset b is called the bias. Then, a nonlin-
ear function σ , known as the activation function, is applied
to yield the value of the neuron: a = σ(z). There are many
different choices for the activation function σ and in this
work we mainly use two of the most popular ones, namely

Layer L-1 Layer L
(output)

Layer l-1 layer l
(hidden layers)

Layer 0 layer 1
(input)

Sigmoid

ReLU

(a)

(b)

FIG. 1. (a) A schematic representation of a neuron, the basic
component of a neural network. The value of a neuron is deter-
mined by a linear transformation that weights the importance
of various inputs, followed by a nonlinear activation function.
Two typical nonlinear activation functions are also shown: sig-
moid and ReLU. (b) A feed-forward neural network with neurons
arranged into layers, with the output of one layer serving as the
input to the next layer.

the sigmoid σ(z) = 1/(1 + e−z) and the rectified linear
unit (ReLU) σ(z) = max(0, z) [see Fig. 1(a)].

A NN consists of many neurons stacked into layers, with
the output of one layer serving as the input of the next
one [see Fig. 1(b)]. In this simple feed-forward fully con-
nected network, which is the architecture used throughout
this work, the first layer (l = 0) is called the input layer,
the middle layers (from l = 1 to l = L − 1) are called hid-
den layers, and the final layer (l = L) is called the output
layer. Here, we have nl neurons in layer l. The task of this
network is for every input to produce an output, which will
depend on the current value of the parameters of the model
(weights and biases). To see how the network operates, let
us consider a single-input example with n features encoded
in the row vector x = (x1, x2, . . . , xn). Let us call W(l) the
nl−1 × nl matrix the element W(l)

ij of which is the weight
connecting the neuron i of layer l − 1 with neuron j of
layer l and b(l) the row vector the element b(l)

j of which
is the bias corresponding to neuron j in layer l. The output
of the network is obtained by going layer by layer, start-
ing at the input layer l = 0, the neuron value of which is
simply the example x provided by the user, i.e.,

z(0) = x, a(0) = z(0),

z(1) = a(0)W(1) + b(1), a(1) = σ [z(1)],

...
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z(l) = a(l−1)W(l) + b(l), a(l) = σ [z(l)],

...

z(L) = a(L−1)W(L) + b(L), ŷ = a(L) = σ [z(L)]. (1)

Here, z(l) and a(l) are row vectors with nl elements and ŷ
is a row vector with nL elements containing the output of
the network corresponding to the input x. Moreover, σ [z(l)]
should be understood as the element-wise application of
the activation function σ , which could be different in differ-
ent layers. These equations can be trivially generalized to
deal in parallel with an arbitrary number of input examples.

Once a network architecture is fixed, the next step is to
train the NN, i.e., to adjust the parameters of the model
(weights and biases) to reproduce the desired function.
As in all supervised learning procedures, one starts by
providing a set of examples (or training set) {(xi, yi); i =
1, . . . , m}, where xi contains the n input variables or fea-
tures of example i and yi corresponds to the target variable
or output of example i. In the problems addressed in the
following sections, the features are the geometrical param-
eters defining the investigated structures (thickness, size,
filling factor, etc.) and the number of these input variables
sets the number of neurons of the input layer (n0 = n). On
the other hand, the target corresponds to a spectral function
(such as a spectral thermal conductance or a frequency-
dependent emissivity) that is calculated numerically using
different computational methods. The number of neurons
of the output layer nL is equal to the number of frequency
or wavelength points used to represent that spectral func-
tion and the value of the output neurons corresponds to
the prediction made by the NN for that function. To train
the network, one also needs an error function, alternatively
known as a cost or loss function, that provides a metric of
the deviation between the NN output and the function that
it is trying to approximate. A typical choice, which we use
frequently, is the mean-square error (MSE), given by

E(θ) = 1
m

m∑

i=1

[yi − ŷi(θ)]2, (2)

where θ represents the set of model parameters (weights
and biases), m is the number of examples in the training
set, yi is target i, and ŷi is the NN prediction for example i.

Once the cost function is defined, the idea is to find its
minimum in the high-dimensional space of parameters θ .
This minimization can be done with the method of gradi-
ent descent or any of its generalizations [8] and a proper
choice of the learning rate (the parameter that determines
how big a step we should take in the direction of the gra-
dient). In this work, we always make use of the Adam
optimizer [40], which has been shown to be a robust choice
for deep-learning optimization in a variety of different con-
texts [41]. Adam makes use of running averages of both the

gradients of the cost function and their second moments. In
general, we use Adam as a stochastic algorithm. Stochas-
ticity is incorporated by approximating the gradient of the
cost function on a subset of the data called a minibatch,
which has a size (mbatch) much smaller than the number of
training examples m. In every optimization step, we use
the minibatch approximation to the gradient to update the
parameters θ and then we cycle over all m/mbatch mini-
batches one at a time. A full iteration over all m data points
(i.e., using all m/mbatch minibatches) is called an epoch.

Due to the large number of parameters θ , the training
procedure of a NN requires a specialized algorithm, which
is referred to as backpropagation [42,43]. This algorithm
is conceptually very simple and makes clever use of the
chain rule for derivatives of a multivariate function to com-
pute the gradient of the cost function with respect to all
the parameters in only one backward pass from the out-
put layer to the input layer. This algorithm is described in
many textbooks and reviews (see, e.g., Refs. [8,10,43]) and
we make use of it in all our calculations.

Another point worth mentioning is that, following the
common practice in supervised learning, and in order to
evaluate the ability of our models to generalize to previ-
ously unseen data, we divide our training sets into two
portions, the data set we train on, which we simply refer
to as the training set, and a smaller validation (or cross-
validation) set that allows us to gauge the out-of-sample
performance of the model. While training our models,
we follow both the training error and the validation error
(using the same cost function). Then, we adjust the hyper-
parameters, such as the numbers of layers and of neurons
per layer, to reduce the validation error to optimize the per-
formance for a specific data set. Additionally, one should
also use a third and independent portion of the original data
set as a test set, i.e., as a set that is neither used for training
nor for validation and that provides an unbiased measure
of the generalization ability of a model. This test set is
strictly necessary when one uses any regularization method
based on the validation error, such as the so-called early
stopping; otherwise, the validation set very much plays
the role of the test set and the test set becomes unneces-
sary. Finally, we point out that most of our NN calculations
are done using the open-source library TENSORFLOW [44]
and, in particular, its higher-level application programming
interface (API) KERAS [45].

III. NEAR-FIELD RADIATIVE HEAT TRANSFER
BETWEEN MULTILAYER SYSTEMS

One of the major advances in recent years in the field
of thermal radiation has been the experimental confirma-
tion of the long-standing prediction that the limit set by
the Stefan-Boltzmann law for the radiative heat transfer
between two bodies can be largely overcome by bringing
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them sufficiently close [46]. This phenomenon is possi-
ble because in the near-field regime, i.e., when the sep-
aration between two bodies is smaller than the thermal
wavelength λTh (approximately 10 μm at room tempera-
ture), radiative heat can also be transferred via evanescent
waves (or photon tunneling). This mechanism provides
an additional contribution not taken into account in the
Stefan-Boltzmann law and it turns out to dominate the
near-field radiative heat transfer (NFRHT) for sufficiently
small gaps or separations. To date, this phenomenon has
been confirmed in numerous experiments and it has led
to huge experimental and theoretical activity on the topic
of NFRHT (for recent reviews, see Refs. [29,31,32]). The
workhorse geometry in the study of NFRHT is that of
two parallel plates and to maximize the heat transfer,
special attention is devoted to the use of materials that
exhibit electromagnetic surface modes at the body-vacuum
interfaces, such as polar dielectrics (SiO2, SiN, etc.) or
metallic materials exhibiting surface plasmon polaritons in
the infrared. Different strategies have recently been pro-
posed to further enhance NFRHT [29,31,32]. One of the
most popular ideas is based on the use of multiple surface
modes that can naturally appear in multilayer structures.
In this regard, a lot of attention has been devoted to mul-
tilayer systems where dielectric and metallic layers are
alternated to give rise to hyperbolic metamaterials [47–56].
The hybridization of surface modes appearing in different
metal-dielectric interfaces has indeed been shown to lead
to a great enhancement of the NFRHT, as compared to the
case of two infinite parallel plates (see, e.g., Ref. [54]).
The goal of this section is to show how NNs can be used
to describe the NFRHT between multilayer structures and
how they can assist in the design and optimization of these
structures for different purposes.

Following Ref. [54], we consider here the radiative heat
transfer between two identical multilayer structures sep-
arated by a gap d0, as shown in Fig. 2(a). Each body
contains N total layers (thin films) alternating between a
metallic layer with a permittivity εm and a lossless dielec-
tric layer of permittivity εd. These N layers are deposited
on top of a semi-infinite substrate made of a Drude metal
[see Fig. 2(a)]. The thickness of the layer i is denoted by
di and it can take any value within a given range (speci-
fied below). While the dielectric layers are set to vacuum
(εd = 1), the metallic layers are described by a permittivity
given by a Drude model:

εm(ω) = ε∞ − ω2
p

ω(ω + iγ )
, (3)

where ε∞ is the permittivity at infinite frequency, ωp is the
plasma frequency, and γ is the damping rate. From now
on, we set ε∞ = 1, ωp = 2.5 × 1014 rad/s, and γ = 1 ×
1012 rad/s.
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)

(1
014

 r
ad

/s
)

(c)

(b)

(a)

FIG. 2. (a) A sketch of two identical multilayer systems sepa-
rated by a vacuum gap of size d0. The two reservoirs feature N
total layers alternating between a Drude metal (gray areas) with
permittivity εm and a dielectric (white areas) with permittivity εd.
The last layer in both cases is made of metal and the thickness of
layer i is denoted by di. (b) The transmission of the evanescent
waves as a function of the frequency ω and the magnitude of the
parallel wave vector k for the bulk system, i.e., two parallel plates
made of the metal, and d0 = 10 nm. (c) The same as in (b), but
for the multilayer system with N = 160 and di = 10 nm for all
layers.

We describe the radiative heat transfer within the frame-
work of theory of fluctuational electrodynamics [57,58]
and focus on the near-field regime. In this regime, the
radiative heat transfer is dominated by TM- or p-polarized
evanescent waves and the heat-transfer coefficient (HTC)
between the two bodies, i.e., the linear radiative thermal
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conductance per unit of area, is given by [30]

h = ∂

∂T

∫ ∞

0

dω

2π

(ω, T)

∫ ∞

ω/c

dk
2π

kτp(ω, k), (4)

where T is the temperature, 
(ω, T) = �ω/(e�ω/kBT − 1)

is the mean thermal energy of a mode of frequency ω, k
is the magnitude of the wave vector parallel to the surface
planes, and τp(ω, k) is the transmission (between 0 and 1)
of the p-polarized evanescent modes, given by

τp(ω, k) = 4
{
Im

[
rp(ω, k)

]}2 e−2q0d0

|1 − rp(ω, k)2e−2q0d0 |2 . (5)

Here, rp(ω, k) is the Fresnel reflection coefficient of the
p-polarized evanescent waves from the vacuum to one of
the bodies and q0 =

√
k2 − ω2/c2 (ω/c < k) is the wave-

number component normal to the layers in vacuum. The
Fresnel coefficient needs to be computed numerically and
we do it by using the scattering matrix method described
in Ref. [59]. In our numerical calculations of the HTC,
we also take into account the contribution of s-polarized
modes but it turns out to be negligible for the gap sizes
explored in this work.

Let us briefly recall that, as explained in Ref. [54], the
interest in the NFRHT in this multilayer structure resides in
the fact that the heat exchange in this regime is dominated
by surfaces modes that can be shaped by playing with the
layer thicknesses. In the case of two parallel plates made
of a Drude metal, the NFRHT is dominated by the two
cavity surface modes resulting from the hybridization of
the surface plasmon polaritons (SPPs) of the two metal-
vacuum interfaces [54]. As shown in Fig. 2(b), these two
cavity modes give rise to two near-unity lines in the trans-
mission function τp(ω, k). Upon introducing more internal
layers with appropriate thickness, one can have NFRHT
contributions from surface states at multiple surfaces, as
we illustrate in Fig. 2(c) for the case of N = 160 layers.
As shown in Ref. [54], the contribution of these additional
surface states originating from internal layers can lead to a
great enhancement of the NFRHT as compared to the bulk
system (two parallel plates) in a wide range of gap val-
ues. Our goal in this section is to show that NNs can learn
the NFRHT characteristics of these multilayer systems and
that they can be used in turn to solve inverse-design and
optimization problems in this context.

We start by considering the NFRHT between two sys-
tems formed by N = 4 layers (two metallic and two dielec-
tric layers). We set the vacuum gap to d0 = 10 nm and the
temperature to T = 300 K. Our objective is to show that
a NN can learn, in particular, the spectral HTC hω, i.e.,
the HTC per unit of frequency: h = ∫ ∞

0 hωdω. To train the
network, we use the theory detailed above and prepare a
training set with 881 hω spectra, where the thicknesses di

of the four layers are varied between 5 and 20 nm. Every
spectrum contains 200 frequency points in the range ω ∈
[0.3, 3] × 1014 rad/s. The training set is, in turn, divided
into 80% for actual training and 20% for the test set. In
this case, we find that a NN with five hidden layers and 250
neurons per layer is able to accurately reproduce the train-
ing set. This network contains four neurons in the input
layer (corresponding to the four input parameters, i.e., the
layer thicknesses), while the output layer has 200 neurons
corresponding to the frequency values in the hω spectra.
The NN is trained over 50 000 epochs using the MSE as
the cost function, the Adam optimizer, and the ReLU acti-
vation function in all layers, except in the output one—we
do not use early stopping. We find it helpful to use a vari-
able learning rate (lr) to improve the training given by
lr = 0.001 × 0.3p/20 000, where p is the number of epochs
(the numerical values defining lr are found by a trial-and-
error process). To give a quantitative idea about the ability
of our network to reproduce the training set and to gener-
alize, we calculate the average relative error in the integral
of the hω spectra (i.e., the total HTC) and find that is 0.81%
for the training set and 1.45% for the test set. The general-
ization accuracy of the NN is illustrated in Fig. 3(a), where
we show how the network is able to reproduce different
spectra from the test set (i.e., spectra it is not trained on).

As a next step, we show how the NN can be used to solve
inverse-design problems. As a proof-of-principle calcula-
tion, the idea is to show that with the help of the NN we
can find the layer thicknesses that would be able to repro-
duce an arbitrary hω spectrum. For this purpose, we freeze
all the parameters of the NN and use backpropagation to
train the inputs. This is done by fixing the output to the
desired output and iterating the input to minimize the dif-
ference between the spectrum predicted by the NN and the
target spectrum. In practice, this means that the cost func-
tion for this task is simply defined as the MSE between
the predicted and the target spectrum. This minimization
process is very efficient because the gradients of the cost
function with respect to the inputs can be computed analyt-
ically using backpropagation [18]. Once the minimization
process is finished, the NN suggests the thickness values to
reproduce the target spectrum. We illustrate this inverse-
design problem in Fig. 3(b), where the target spectrum is
randomly chosen to correspond to the layer thicknesses
{d1, d2, d3, d4} = {5.0, 12.5, 12.5, 16.25} nm (to ensure that
we have a physically realizable spectrum). Note that the
NN is able to reproduce this target spectrum very well
and suggests that the corresponding layer thicknesses are
{5.0, 12.45, 12.66, 16.55} nm, which is in excellent agree-
ment with the actual value.

We now want to illustrate how the NN can also be used
to solve optimization problems. A first natural problem is
to determine the layer structure (with N = 4) that max-
imizes the total HTC h. Naively, in the limit N → ∞,
one expects to maximize the HTC by having all the layer
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FIG. 3. Results for the spectral heat-transfer coefficient hω

between two multilayers with N = 4 and a gap size d0 = 10 nm.
(a) A comparison between real hω spectra computed with fluc-
tuational electrodynamics (solid lines) and the prediction of the
NN (dashed lines). The layer thicknesses (in nanometers) are
indicated in the legend. (b) A comparison of the NN approxima-
tion to the target spectrum (layer thicknesses in nanometers are
indicated in the legend), following the inverse-design problem
described in the text. (c) The result of the optimization problem
in which the total heat-transfer coefficient is maximized. (d) The
result of the optimization problem where hω is minimized in the
frequency region indicated by the dashed vertical lines.

thicknesses equal, and equal to the gap size (d0 = 10 nm)
[54], but for finite N this is not necessarily the case and one
cannot simply rely on physical intuition. This optimiza-
tion problem can be easily solved by fixing the parameters
of the NN, using the total HTC as the cost function to
be maximized and optimizing the network with respect to
the input parameters (layer thicknesses). The result for this
optimization problem is shown in Fig. 3(c) and the optimal
thicknesses are {9.29, 9.78, 11.84, 14.43} nm, which lead to
a total HTC at room temperature of 1.01 × 105 W/(m2 K).
This value is approximately 2.9 times larger than the HTC
of the bulk system [0.35 × 105 W/(m2 K)], which illus-
trates the fact that these multilayer systems can be used
to further increase the NFRHT. Note also that the optimal
result is close to the case where all di are equal to the value
of the gap size (d0), which, as mentioned above, would
be the naive choice based on the idea of a quasiperiodic
system, which in turn would reduce the (Anderson-like)
disorder in the structure.

Another interesting optimization problem consists in
minimizing the heat transfer in a given frequency region
[see Fig. 3(d)], which might be motivated by the desire to
inhibit the heat transfer in a certain frequency range. In

this case, the cost function is defined as the ratio of the
average of hω inside the range of interest and the corre-
sponding average outside that region: E = h̄ω,in/h̄ω,out. In
this way, we ensure the maximization of the heat trans-
fer in the selected region, while minimizing it outside that
range. The result of this optimization problem is shown
in Fig. 3(d) and the corresponding layer thicknesses are
{5.0, 12.44, 5.0, 19.32} nm. Note that the network suggests
rather disparate thicknesses for the neighboring layers and,
in particular, the smallest possible thickness (within the
range explored here) for the first metallic layer. This lat-
ter fact simply means that it is advantageous to have the
first metallic layer as thin as possible to make it transparent
and avoid the contribution of the surface mode appearing
in the layer 1–vacuum interface at ωp/

√
2 ≈ 1.77 × 1014

rad/s, which corresponds to the center of the chosen gap.
We extend our analysis above to structures with six and

eight layers. As explained above, the presence of addi-
tional layers in the system makes possible the appearance
of extra surface states that may lead to the increase in the
heat transfer [54]. On the other hand, from a deep-learning
standpoint, the additional degrees of freedom associated
with the additional layers enable the used NNs to feature
broader generalization abilities. For this purpose, we use
the same network architecture (only changing the number
of features in the input layer) and study the same inverse
and optimization problems. The results for these two struc-
tures are summarized in Fig. 4. The NNs are trained in
these two cases with training sets containing 4825 hω spec-
tra for N = 6 and 65 536 for N = 8. Again, this amounts
to an average of between four and five thickness values
per layer in the same range as for N = 4. The training is
done using the same cost function, optimizer, and variable-
learning-rate scheme, and the same division (80%–20%)
between the training set and the test set. The main dif-
ference in the training is the use of transfer learning, a
standard technique in deep learning that consists in using
the parameters (weights and biases) of certain layers of a
pretrained network to train another network with similar
architecture. In our case, we find that the best strategy is
to use the parameters of all the layers of the network for
N = 4 (N = 6) to initialize the parameters of the network
for N = 6 (N = 8) and then proceed with the training.
Since the networks for different values of N have different
numbers of neurons in the input layer, the extra parame-
ters in the first layer are initialized randomly. With the help
of transfer learning, we achieve average relative errors in
the total integral of the hω spectra of 1.28% (1.95%) for
the training set and 1.70% (2.00%) for the structure with
N = 6 (N = 8). Without transfer learning, the correspond-
ing errors are 1.52% (2.81%) for the training set and 1.81%
(2.83%) for the structure with N = 6 (N = 8), which is a
significant difference.

Another important point to highlight is that in the
optimization problem, which consists in maximizing the
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FIG. 4. (a)–(d) The same as in Fig. 3 but now for N = 6. (e)–(h) The same as in Fig. 3 but for N = 8.

total heat transfer, this results in an optimal structure for
N = 6 with thicknesses {9.95, 9.49, 10.10, 12.10, 14.49,
15.49} nm with a HTC of 1.19 × 105 W/(m2 K), while
for N = 8 the optimal structure is {9.36, 8.80, 9.34, 11.18,
12.59, 13.67, 20.00, 17.51} nm with a HTC of 1.31 ×
105 W/(m2 K). Note that, as expected, the maximum HTC
increases with the number of layers in the structure.

It is worth stressing that the main goal of this section,
and of our work in general, is to show how neural networks
can be applied to solve inverse-design and optimization
problems in the context of radiative heat transfer. Of
course, it would be interesting to carry out a systematic
comparison of the speed and efficiency of NNs with other
strategies such as genetic algorithms [60,61] but this is
beyond the scope of this work.

We conclude this section by emphasizing that the study
presented here can be extended to essentially any mul-
tilayer system, which may include anisotropic materials
and metamaterials, in general, or the effect of external
fields [56,62]. Moreover, it could also be straightforwardly
extended to deal with NFRHT between periodically pat-
terned structures [63] (this is exemplified in Sec. IV in the
case of far-field emission).

IV. PASSIVE RADIATIVE COOLING

It has recently been shown that it is possible to cool
down a device simply by exposing it to sunlight and
without any electricity input [64,65]. This striking phe-
nomenon, referred to as passive radiative cooling, is possi-
ble due to the fact that the Earth’s atmosphere has a trans-
parency window for electromagnetic radiation between

8 and 13 μm, which coincides with the peak thermal-
radiation wavelengths at typical ambient temperatures. By
exploiting this window, one can cool a body on the Earth’s
surface by radiating its heat away into the cold outer space.
While nighttime radiative cooling has been widely studied
in the past, a proposal to realize this phenomenon during
daytime was put forward in 2013 by Rephaeli et al. [64].
Inspired by nanophotonic concepts, these authors proposed
a passive cooler that consisted of two thermally emitting
photonic crystal layers comprised of SiC and quartz, with
a broadband solar reflector underneath. Subsequently, the
same group designed and fabricated a multilayer photonic
structure consisting of seven dielectric layers deposited on
top of a silver mirror [65]. This design has been shown
to reach a temperature that is 5 ◦C below the ambient air
temperature, despite having about 900 W/m2 of sunlight
directly impinging upon it. After this realization, there has
been intense research activity with the goal of optimiz-
ing this daytime radiative cooling [66–77]. The goal of
this section is to illustrate how deep-learning techniques
can help in the theoretical design of devices for passive
radiative cooling.

Let us start by recalling the basics of the theory of pas-
sive radiative cooling, following Refs. [64,65]. Consider a
radiative cooler at temperature T with a spectral and angu-
lar emissivity given by ε(λ, θ). When the radiative cooler
is exposed to a daylight sky, it is subject to both solar
irradiance and atmospheric thermal radiation (correspond-
ing to an ambient air temperature Tamb). The net cooling
power density Pcool of such a radiative cooler is given by
the following balance:

Pcool = Prad(T) − Patm(Tamb) − PSun − Pcond+conv. (6)
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Here, Prad corresponds to the power density radiated out by
the structure and is given by

Prad(T) =
∫

d cos θ

∫ ∞

0
dλ IBB(λ, T)ε(λ, θ), (7)

where
∫

d = 2π
∫ π/2

0 dθ sin θ is the angular integral over
a hemisphere and

IBB(λ, T) = 2hc2

λ5

1
ehc/(λkBT) − 1

(8)

is the Planck distribution describing the spectral radiance
of a black body at temperature T. On the other hand, Patm
is the absorbed power density due to incident atmospheric
thermal radiation and is given by

Patm(Tamb) =
∫

d cos θ

∫ ∞

0
dλ IBB(λ, Tamb)

× ε(λ, θ)εatm(λ, θ), (9)

where Tamb is the ambient atmospheric temperature and
εatm(λ, θ) is the angle-dependent emissivity of the atmo-
sphere [78]. The term PSun in Eq. (6) is the incident solar
power density absorbed by the structure and is given by

PSun = cos(θSun)

∫ ∞

0
dλ IAM1.5(λ)ε(λ, θSun), (10)

where IAM1.5(λ) is the AM1.5 spectrum representing the
solar illumination and θSun corresponds to the angle at
which the structure is facing the Sun, which we assume
to be zero. Finally, the term Pcond+conv in Eq. (6) is the
power density lost due to convection and conduction,
which adopts the form

Pcond+conv(T, Tamb) = hc (Tamb − T), (11)

where hc = hcond + hconv is a combined nonradiative heat
coefficient that takes into account the net effect of conduc-
tive and convective heating due to the contact of the cooler
with external surfaces and the air adjacent to the radiative
cooler.

A given structure behaves effectively as a daytime cool-
ing device when Pcool > 0 at the ambient temperature, i.e.,
when the power radiated out by the cooler is greater than
the combined effects of the incoming sources of heat from
the Sun, atmosphere, and local conduction and/or convec-
tion. The power outflow Pcool(T = Tamb) then defines the
cooling power density of the device at ambient air tem-
perature. Another important metric of the performance of
the device is the equilibrium temperature, Teq, at which
Pcool = 0 in Eq. (6). A radiative cooler with Teq below the
ambient temperature would cool an attached structure to a
temperature below ambient over time.

From the above discussion, it is obvious that the basic
requirements for a structure to be a good passive cooler
are (i) to selectively emit thermal radiation in the atmo-
spheric transparency window (from 8 to 13 μm) and (ii) to
reflect the solar radiation as much as possible. This requires
tuning of the emissivity over a very wide range (from the
midinfrared to the ultraviolet) and many complex struc-
tures have been proposed and realized. Here, we use as a
starting point a rather simple configuration put forward in
Ref. [69], which consists of a silica mirror [see Fig. 5(a)],
featuring a SiO2 slab of thickness dSiO2 , which is respon-
sible for a near-ideal black body in the midinfrared, and a
silver thin film of thickness dAg, which provides reflection
for the solar radiation. This simple structure with dSiO2 =
500 μm and dAg = 120 nm has been shown to achieve
radiative cooling below the ambient air temperature under
direct sunlight (approximately 8 ◦C), which clearly out-
performs more sophisticated designs [65]. Furthermore, it
has been estimated that this cooler reaches an average net
cooling power density of approximately 110 W/m2 dur-
ing daytime at ambient temperature, even considering the
significant influence of external conduction and convection
[69]. The performance of the device has also been shown to
improve slightly when it is coated with a polymer. In what
follows, we investigate how the performance of this sil-
ica mirror can be improved via nanostructuration and how
NNs can be used to optimize its design.

To be precise, we now discuss how the introduction of
a periodic array of circular air holes in the silica layer can
boost the performance of the device as a passive cooler
[see Fig. 5(b)]. We consider the case of a square lattice with
a lattice parameter a and holes of radius R. We define the
filling factor f as the fraction of the area occupied by the
air holes, f = π(R/a)2, which varies between 0 (no holes)
and π/4 ≈ 0.785 (for the largest possible holes, R = a/2).
The basic idea is that this photonic crystal can enhance
the emissivity of silica in the atmospheric transparency
window, while maintaining the sunlight absorption of the
unstructured silica mirror [79]. The infrared enhancement
of the photonic crystal is simply due to a reduction of the
impedance mismatch between the silica surface and the
surrounding air. This effect is illustrated in Fig. 5(c), where
we compare the normal-incidence emissivity of a silica
photonic crystal with the corresponding silica mirror with
no holes. For reference, we also show in that figure the
AM1.5 spectrum, the normal incidence of the emissivity
of the atmosphere, and the Planck black-body distribution.
As one can see, the photonic crystal device behaves almost
as a black body in the relevant infrared region, which is
precisely what we are looking for.

We illustrate the role of the nanostructuration in more
detail in Fig. 6(a), where we show how the emissiv-
ity of a photonic crystal device progressively increases
in the atmospheric transparency window upon increas-
ing the filling factor. In this example, we set R = 50 nm,
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FIG. 5. (a) Schematics of the silica mirror used as a pas-
sive radiative cooler in Ref. [69]. It consists of a SiO2 slab of
thickness dSiO2 and a silver thin film of thickness dAg. (b) A
nanostructured version of the cooler shown in (a) but featuring
a periodic array of circular holes of radius R with a lattice param-
eter a (square lattice). (c) The emissivity as a function of the
wavelength for a silica photonic crystal (black solid line) and
a silica mirror (red solid line) for dSiO2 = 500 μm and dAg =
120 nm. For the photonic crystal, a = 100 nm and R = 50 nm
(f = 0.785). The cyan solid line corresponds to the AM1.5 solar
spectrum IAM1.5 (see right vertical axis), the orange curve to the
atmospheric emissivity or absorptivity spectrum εatm, and the
gray dashed line to the black-body radiation curve IBB (50 times
enlarged in spectral irradiance) at 300 K.

dSiO2 = 500 μm, and an ambient temperature Tamb =
300 K. The emissivity increase in the midinfrared results
in an improvement of the performance of the cooling
device, as shown in Fig. 6(b), where we display the cor-
responding cooling power density Pcool as a function of
the device temperature T. Here, we ignore the contribu-
tion of nonradiative processes (conduction and convection)
and approximate the emissivities by the normal incidence
results (this approximation will be used throughout this
section). Note that upon increasing the filling factor, the
cooling power density can increase up to 40% at ambient
temperature (300 K) and the equilibrium temperature Teq
can be reduced by approximately 5 ◦C, as compared to the
unstructured silica mirror.

All the results in this work for the emissivity of the
periodically patterned structures are calculated using the
rigorous coupled wave analysis (RCWA) described in Ref.
[59]. It is important to stress that this is a numerically exact
method that makes use of the so-called fast Fourier fac-
torization when dealing with the Fourier transform of two
discontinuous functions in the Maxwell equations. This
factorization solves the known convergence problems of
the RCWA approach (see Ref. [59] for details) and its use
is critical in this case because we are dealing with materials
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FIG. 6. (a) The emissivity of the photonic crystal cooling
device as a function of the wavelength for several filling factors
f and a hole radius R = 50 nm. The remaining parameters are
dSiO2 = 500 μm and dAg = 120 nm. (b) The corresponding cool-
ing power density as a function of the device temperature under
AM1.5 illumination. The ambient temperature of the atmosphere
is taken to be Tamb = 300 K.

with very different dielectric functions and the emissivi-
ties have to be computed over a huge wavelength range
(from the UV to the midinfrared). Owing to its ability to
generate training sets in a robust and efficient way, our
own implementation of the RCWA method becomes a key
ingredient in the successful application of deep techniques
in this context.

Finally, we point out that for all the parameter values
considered here, we make sure that the emissivity spectra
are converged up to a 1% relative error for every wave-
length point. This is required to take into account up to
several thousand plane waves for the shortest wavelength
(UV-visible range) and the largest holes. To give an idea of
the required computational time, the most time-consuming
emissivity spectra takes about 24 h on a desktop computer
with a 2.3-GHz Intel Xenon processor running in paral-
lel in 18 CPUs. For the RCWA calculations, we use as an
input the dielectric function of SiO2 tabulated in Ref. [80]
and for Ag that of Ref. [81].

To study systematically the role of the nanostructuration
in the performance of the cooler, we define the follow-
ing optimization problem. We consider as input parameters
the silica-layer thickness dSiO2 , the filling factor f , and the
hole radius R (we fix the thickness of the back reflector
to dAg = 120 nm) and we search for the optimal values of
these parameters to maximize the cooling power density at
ambient temperature. To solve this problem with the help
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of NNs, we first construct a training set with RCWA cal-
culations of the emissivity of the cooler, which are then
used to compute Pcool using Eqs. (6)–(11). The training
set contains 900 emissivity spectra with 15 different val-
ues of dSiO2 between 1 and 2000 μm, ten different values
of f between 0 and π/4, and six values of R from 30 to
200 nm. Every spectrum contains the emissivity for 525
wavelength values ranging from 270 nm to 25 μm. A
preliminary analysis using this training set indicates that
below hole radii of 100 nm, the results are fairly insensi-
tive to the exact radius value, while for larger holes the
sunlight absorption increases and the performance of the
device decreases drastically. For this reason, we fix the
radius value to R = 30 nm and reduce the input parame-
ters to dSiO2 and f (the filling factor). Thus, in practice,
our training set contains 150 emissivity spectra, which are
divided into an actual training set (80%) and a test set
(20%).

For this problem, we find that a NN with three hidden
layers (with 250 neurons per layer) is enough to satisfacto-
rily reproduce the training set. This network contains two
neurons in the input layer (corresponding to the two input
parameters or features in this problem), while the output
layer has 525 neurons, corresponding to the wavelength
values in the emissivity spectra. The NN is trained over
50 000 epochs using the MSE as the cost function, the
Adam optimizer, and the ReLU activation function in all
layers, except in the output one. No early stopping is used
in this case. After training, the MSE for the training set
is 3.35 × 10−5 and that for the test set is 4.14 × 10−4. In
Fig. 7, we illustrate the ability of this NN to reproduce the
emissivity spectra of the test set. As can be seen, the NN
is able to accurately reproduce very different spectra over
the entire wavelength range, which demonstrates the abil-
ity of our NN to generalize to cases it is not trained on. It is
also remarkable to find that degree of accuracy despite the
moderate size of our training set (as mentioned, formed by
just 150 samples).

Next, we use the NN as a computational engine to solve
our optimization problem, namely the maximization of the
cooling power of the device. As explained in Sec. III, this
optimization process is very efficient because we can ana-
lytically compute the NN gradients with respect to the
inputs using backpropagation [18]. In Fig. 8(a), we illus-
trate the results predicted by the NN for the cooling power
density as a function of the filling factor and the silica-layer
thickness for T = Tamb = 300 K. For these calculations,
and since we are mainly interested in comparing with the
results for the unstructured silica mirror, we ignore the
contribution of the nonradiative processes (conduction and
convection). For completeness, we also show in Fig. 8(b)
the corresponding equilibrium temperature. Let us recall
that, contrary to the cooling power, the equilibrium temper-
ature is very sensitive to the contribution of conduction and
convection. As is obvious from Fig. 8(a), the optimization
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FIG. 7. (a)–(c) A comparison between the emissivity spec-
tra of silica photonic crystal devices computed with the RCWA
method (solid lines) and the prediction of the NN (dashed lines)
for different values of the silica-layer thickness and filling factor,
as indicated in the legends. The hole radius is R = 30 nm and
dAg = 120 nm.

process suggests that the optimal parameters are f = 0.785
and dSiO2 = 2 mm. This means that the filling factor has to
be as large as possible, which confirms the naive expecta-
tion. With respect to the silica-layer thickness, there is no
significant difference in the cooling power density in the
range dSiO2 ∈ [500 μm, 2 mm].

The study presented in this section can be generalized in
a number of ways. For instance, we also analyze the role of
a finite depth of the air holes (in the calculations discussed
above, it is assumed that the silica layer is perforated all
the way down to the Ag thin film). In particular, we find
that for the optimal parameters found above, a hole depth
of around 10 μm is enough to reach values for the cooling
power density that are very similar to those obtained for a
fully perforated silica layer. Of course, there are a number
of different Bravais lattices that one could also explore, as
well as many different shapes of the air holes. In the case
of regular hole shapes, one could still use sequential fully
connected NNs as in this work, but if one wants to con-
sider arbitrary shapes, it might be more convenient to use
two-dimensional convolutional neural networks (CNNs)
[82], which have already been used successfully in the con-
text of nanophotonics for the design of metasurfaces with
desired properties [12–17].

V. THERMAL EMISSION OF SUBWAVELENGTH
OBJECTS

The goal of this section is to show how NNs can
also be helpful in the context of the description of the
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FIG. 8. (a) The cooling power density as a function of the
silica-layer thickness and the filling factor of photonic crys-
tal cooling devices as computed with the trained NN. In this
case, the device temperature and the ambient temperature are
assumed to be 300 K. The contribution of nonradiative processes
is neglected. The black dot indicates the point for which the
cooling power density reaches its maximum. (b) The correspond-
ing equilibrium temperature. Note that the horizontal axes are
inverted with respect to (a) to improve visibility.

thermal emission of a single object of arbitrary size and
shape. In particular, we are interested in the thermal emis-
sion of subwavelength objects, i.e., objects in which some
of their dimensions are smaller than the thermal wave-
length λTh. Part of the interest in this problem lies in the
fact that, as already acknowledged by Planck in his seminal
work [83], Planck’s law fails to describe the thermal prop-
erties of subwavelength objects simply because it is based
on ray optics. In this sense, one may wonder whether the
black-body limit for the thermal emission of a body (given
by the Stefan-Boltzmann law) can be overcome in the case
of subwavelength objects, something that is not possible in
the case of infinite objects. Actually, it is well known that
the emissivity of a finite object can be greater than 1 at cer-
tain frequencies [84,85] but that is not enough to emit more
than a black body. In fact, only a modest super-Planckian
thermal emission has been predicted in rather academic sit-
uations [86,87] and it has never been observed. Recently,
Fernández-Hurtado et al. [88] have shown that elongated
objects with subwavelength dimensions can indeed have
directional emissivities much larger than 1, which can lead
to super-Planckian far-field radiative heat transfer between
two of those bodies, as has been experimentally verified
[89]. However, the total thermal emission of those objects

is still smaller than that of a black body. There are by
now several experiments showing the failure of Planck’s
law in the description of the thermal emission of subwave-
length objects (although no super-Planckian emission has
yet been observed). For instance, Ref. [90] has reported
this failure in the case of small optical fibers, while Ref.
[91] has done it in the case of nanoribbons made of sil-
ica with a thickness of 100 nm, much smaller than both
λTh and the skin depth, while the other dimensions could
be much larger. From the theory side, the description of
the thermal emission of a single object of arbitrary size
and shape continues to be very challenging and there is
only a handful of general-purpose numerical approaches
that can tackle this problem [92–96]. These techniques are
often exceedingly time consuming and systems such as
the nanoribbons explored in Ref. [91] are still beyond the
scope of these techniques. Thus, in the rest of this section,
we show how the use of NNs can contribute to alleviating
this situation.

The total power emitted by any object at a temperature
T is given by [26]

Pem = πA
∫ ∞

0
dω IBB(ω, T)ε(ω), (12)

where A is the total area of the object, ε(ω) is the angular-
averaged frequency-dependent emissivity of the body, and
IBB(ω, T) is the frequency-dependent Planck distribution,
given by

IBB(ω, T) = ω2

4π3c2

�ω

e�ω/kBT − 1
. (13)

In the case of a black body, ε(ω) = 1 for all fre-
quencies and the total emitted power is given by
the Stefan-Boltzmann law: Pem, BB = AσT4, where σ =
5.67 × 10−8 W/(m2 K4).

To illustrate the use of NNs in this particular context,
we consider here a proof-of-principle example, namely
the thermal emission of a silica cube of arbitrary side L
and at room temperature (T = 300 K) [see the inset of
Fig. 9(b)]. A cube is already a sufficiently complicated
geometry such that its emissivity cannot be calculated ana-
lytically. We compute this emissivity using the numerical
approach known as thermal discrete dipole approximation
(TDDA), as described in Sec. IV of Ref. [96]. In this
approach, an object is discretized in terms of point dipoles
in the spirit of the DDA method, which is widely used for
describing the scattering and absorption of light by small
particles [97,98]. In our case, we model silica cubes with
sides ranging from 0.1 μm (much smaller than the ther-
mal wavelength) to 20 μm, which is comparable to the
thermal wavelength. We discretize the cubes in terms of a
lattice of cubic dipoles and use up to approximately 12 000
dipoles, which is checked to be enough to accurately con-
verge the results even for the largest cubes considered here.
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FIG. 9. (a) The emissivity of a silica cube of side L as a func-
tion of the frequency. The dotted orange line corresponds to the
Planck distribution IBB(ω, T) at T = 300 K in arbitrary units. (b)
The total power emitted by a SiO2 cube (see inset) as a function
of its side L at T = 300 K. The power is normalized with the
black-body result, AσT4, where A = 6L2 is the total area of the
cube.

The calculation of a single spectrum with 200 frequency
points and with a discretization with approximately 12 000
dipoles takes about 24 h on a desktop computer with a 2.3-
GHz Intel Xenon processor running in parallel in 18 CPUs.
The dielectric function of SiO2 is taken from the tabulated
values in Ref. [80].

A representative set of examples of the computed emis-
sivity are shown in Fig. 9(a) for various values of L. Note
that for certain frequencies, the emissivity can be larger
than 1 (e.g., for L = 1 μm and ω ∼ 2.1 × 1014 rad/s, ε ∼
2.9). However, this does not mean that a silica cube can
be a super-Planckian emitter. As we show in Fig. 9(b),
where one can see the total emitted power as a function
of L, a cube always emits less than a black-body cube of
the same size. Note also that for small cubes, the emitted
power is proportional to the cube volume, which is due
to the fact that in this regime the silica skin depth at the
relevant frequencies is larger than L [99,100]. This means
that the whole object contributes to the thermal emission.
However, as the size increases, the emitted power becomes
proportional to the cube area and it tends to converge to the
value of an infinite silica surface, which, with the optical
constants used here, is equal to 0.79 at room tempera-
ture. This behavior reflects the fact that when L becomes

larger than the skin depth, the thermal emission only
originates from the surface, as happens in macroscopic
objects.

Now, we show that a NN can learn the emissivity spec-
tra of a cube. For this purpose, we compute a training set
of 100 emissivity spectra with L ∈ [0.1 μm, 20 μm] with
equally spaced side values in a logarithmic scale. Addi-
tionally, we calculate another 20 spectra in the same range
to form the test set. Later on, we explore what happens
when varying the size of the training set. In this case, we
do a hyperparameter search (changing the number of lay-
ers, the number of neurons per layer, the learning rate,
etc.), and use k-fold cross-validation (with k = 5) to select
the optimal hyperparameters [101]. The only input feature
in this is the cube side (i.e., we have a single neuron in
the input layer) and the output is the emissivity spectrum
sampled at 200 equidistant points between 0.15 × 1014 and
3.04 × 1014 rad/s (i.e., the output layer has 200 neurons).
The NNs are trained using the MSE as the cost function,
the Adam optimizer, and the ReLU activation function in
all layers except for the output one, where no activation
function is used, as is customary in a regression problem.
The NNs are trained for a maximum of approximately
50 000 epochs and we use early stopping based on the
validation error to conclude the training. We find that an
optimal NN is composed of four hidden layers with 250
neurons per layer, which is the network we use for all the
calculations that we describe below.

As in the previous examples, the first application is to
test the forward computation of the network to see how
well it reproduces the emissivity spectra it is not trained on.
This is illustrated in Fig. 10(a), where we show that the NN
can very accurately reproduce several representative exam-
ples of the test set. We also show in Fig. 10(b) that using
the NN predictions for the emissivity spectra and Eq. (12),
we can accurately reproduce the size dependence of the
total emitted power. To be more quantitative, we compute
the average relative error per point in the emissivity spec-
tra and find that is equal to 0.65% for the training set and
0.63% for the test set, which demonstrates the excellent
generalization ability of the optimal NN.

Now, we illustrate the possibility of using the NN to do
inverse design. The goal is to show that with the help of the
NN, we can find the geometry (the value of the cube side)
that would be able to reproduce an arbitrary emissivity
spectrum. Again, the idea is to keep fixed all the parame-
ters of the NN and use backpropagation to train the inputs.
This is done by fixing the output to the desired output
and iterating the input to minimize the difference between
the spectrum predicted by the NN and the target spectrum
(i.e., the cost function in this case is simply defined as
the MSE between the predicted and the target spectrum).
As also pointed out in Sec. III, this minimization process
is extremely efficient because we can analytically com-
pute the NN gradients of the cost function with respect to
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FIG. 10. (a) A comparison between the real emissivity spectra
of a SiO2 cube computed with TDDA (solid lines) and the predic-
tion of the NN (dashed lines) for various values of the cube side
L. (b) The corresponding comparison for the total power emit-
ted by a SiO2 cube as a function of its side L at T = 300 K. The
power is normalized with the black-body result.

the inputs using backpropagation [18]. After converging
this process, the NN suggests a geometry to reproduce the
target spectrum. The inverse-design ability of our NN is
illustrated in Fig. 11(a), where the target spectrum is ran-
domly chosen to be that of a cube of L = 10.250 μm (to
ensure that we have a physically realizable spectrum). As
observed, the NN is able to accurately reproduce this target
spectrum and suggests that the corresponding cube side is
L = 10.246 μm, which is in excellent agreement with the
actual value. We obtain similar results with all the target
spectra explored in the range of cube sides used to train
the network.

Next, we illustrate the fact that the NN can also be
used to solve optimization problems. In particular, we aim
at determining what is the optimal cube side to maxi-
mize the emissivity at a given narrow frequency range
while minimizing the emissivity outside this range. For
this purpose, we fix the parameters of the NN, define a
cost function for this task, and optimize the network with
respect to the input parameters (the cube side in this prob-
lem). As discussed in Sec. III, a convenient cost function
in this case is defined as the ratio of the average of the
emissivity inside the range of interest and the correspond-
ing average outside that region: E = ε̄in/ε̄out. The results
for this optimization problem for two ranges around the
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FIG. 11. (a) A comparison of the NN approximation for the
emissivity of a SiO2 cube to a target spectrum for L = 10.250 μm
following the inverse-design problem described in the text.
(b),(c) The result of the optimization problem, where the emissiv-
ity of a SiO2 cube in the frequency range defined by the vertical
dashed lines is maximized while the emissivity outside is mini-
mized. The obtained value of the optimal cube side is indicated in
the panels. (d) Learning curves showing the mean relative error
(training and validation) as a function of the training set size for
the optimal NN simulating the emissivity of a SiO2 cube.

frequencies of the silica phonon polaritons are shown in
Figs. 11(b) and 11(c), where we also indicate the corre-
sponding optimal values of the cube side L. Note that for
the high-frequency phonon polariton shown in Fig. 11(b),
the emission is maximized for a relatively small cube,
in which the emission comes from the whole body. For
the low-frequency resonance shown in Fig. 11(c), such an
emission is maximized for a cube of size comparable to the
skin depth, in which thermal emission is mainly a surface
phenomenon.

The use of neural networks becomes particularly use-
ful when there is a lack of real (or training) data. In this
sense, one may wonder how large the training set has to
be in this case for the NN to be able to generalize well,
i.e., to accurately predict spectra that have not been used
in the training procedure. To answer this question, we
analyze the performance of our optimal NN as a func-
tion of the training-set size. The corresponding learning
curves are shown in Fig. 11(d), where one can see both
the training and validation error expressed as the mean
percentage off per point on the spectrum. As can be seen,
even training the NN with as little as 20 spectra, the val-
idation error is on the order of 1%, which illustrates how
efficient NNs are at learning complex patterns such as our
emissivity spectra. Note also that the evolution of the train-
ing and validation errors, which are very similar, shows
that there is little overfitting, irrespective of the training-set
size.
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Finally, having shown that simple NNs can efficiently
learn the emissivity spectra of small objects, we also
explore how to extend their use in this context. Thus, for
instance, we try and succeed in using the NN trained on
silica cubes to study the thermal emission of other sim-
ple objects such as spheres. Following the idea of transfer
learning, we use the weights and biases of our NN as an
initial starting point to train a network with the same archi-
tecture to learn the emissivity spectra of silica spheres of
arbitrary radius (not shown here). As expected, this type of
transfer learning substantially improves the accuracy of the
training process and provides a promising path to model
more demanding structures. In this sense, we are currently
investigating if such an approach may allow us to model
structures such as the silica nanoribbons mentioned above
[91], which still remain beyond the scope of any current
theoretical method.

VI. CONCLUSIONS

In summary, in this work we report a systematic study of
the application of deep-learning techniques to the theoreti-
cal analysis of different radiative-heat-transfer phenomena.
In particular, we apply deep artificial neural networks to
three state-of-the-art problems, ranging from near-field
radiative heat transfer between multilayer systems to the
description of the far-field thermal emission of extended
systems in the context of passive radiative cooling and
finite systems of arbitrary size that defy Planck’s law.
Despite the significant differences in the three studied sce-
narios, in all of them we show that, after training them on
data sets of moderate size, simple neural-network architec-
tures can be used to do fast simulations of a great variety
of thermal processes with a high precision. Moreover,
we demonstrate that neural networks can also be used as
computational engines to solve interesting inverse-design
and optimization problems in the context of radiative heat
transfer.

It is also important to emphasize the main limitations
and challenges that we find in the application of neu-
ral networks to thermal-radiation problems. Typically, the
main problem is related to the generation of the necessary
sets used to properly train the networks. For instance, on
the topic of NFRHT between multilayers, rather than the
ability of the networks to learn the heat-transfer spectra,
the problem is the time needed to compute the training
sets, which increases exponentially as the number of lay-
ers increases. On the other hand, in the examples analyzed
in this work, the neural networks show a remarkable abil-
ity to interpolate and relatively small training sets are
needed. However, the networks do not show the same
ability to extrapolate to parameter ranges that are not
included in the training sets. That ability is very impor-
tant, since it would allow us to solve problems that are

currently beyond the scope of the existing numerical tech-
niques in the field of thermal radiation. This is something
that we are currently investigating more systematically.
Let us also say that it is well known that when deal-
ing with optimization and inverse-design problems, one
may have difficulties related to the nonuniqueness of the
solution. In our examples, we do not encounter these
problems simply because of their nature (structures with
different parameters do not exhibit identical spectra) but
this could well be in related situations. In that case, dif-
ferent authors have reported strategies to get rid of those
problems. For instance, Liu et al. [22] have shown that
this issue can be solved by combining forward modeling
and inverse design in a tandem architecture. If needed,
that strategy could be applied to radiative-heat-transfer
problems.

In this work, we focus on proof-of-principle examples
with the goal of illustrating some of the main ideas. We
believe that the concepts put forward here can be gen-
eralized to deal with much more complex structures and
phenomena. Thus, for instance, it would be of great inter-
est to use the ideas discussed here in the context of heat
transfer in many-body systems, a vast topic that is cur-
rently attracting a lot of attention [32]. Although we mainly
focus on the use of neural networks as function approxi-
mators, this is by no means the only possibility. It would
also be very interesting to apply generative models to
thermal-radiation problems based on techniques such as
variational autoencoders (VAEs) or generative adversar-
ial networks (GANs) [2]. Those techniques could, for
instance, help to generate new data in situations where it
is very hard to provide extensive training sets. This, in
turn, could help to better train neural networks via data
augmentation. On the other hand, less conventional net-
works such as recurrent neural networks (RNNs) might
find applications in the modeling of time-dependent ther-
mal phenomena or in the development of protocols for
thermal management. Overall, we believe that the appli-
cation of deep learning to radiative heat transfer is still in
its infancy and we hope that this work can stimulate fur-
ther research work aimed at exploring how artificial neu-
ral networks—and, more generally, artificial-intelligence
techniques—can contribute to accelerating the advance of
this field.
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