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Deep reinforcement learning for radiative heat transfer optimization problems
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Reinforcement learning is a subfield of machine learning that is having a huge impact in the different
conventional disciplines, including physical sciences. Here, we show how reinforcement learning methods
can be applied to solve optimization problems in the context of radiative heat transfer. We illustrate their
use with the optimization of the near-field radiative heat transfer between multilayer hyperbolic meta-
materials. Specifically, we show how this problem can be formulated in the language of reinforcement
learning and tackled with a variety of algorithms. We show that these algorithms allow us to find solutions
that outperform those obtained using physical intuition. Overall, our work shows the power and potential
of reinforcement learning methods for the investigation of a wide variety of problems in the context of
radiative heat transfer and related topics.
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I. INTRODUCTION

Thermal radiation is a ubiquitous physical phenomenon
whose understanding is of critical importance for many
different areas of science and engineering [1–3]. The field
of radiative heat transfer is enjoying a revival due to var-
ious recent advances [4]. Maybe the most notable one is
the demonstration that the near-field radiative heat transfer
(NFRHT) between two closely placed bodies can largely
overcome the blackbody limit set by the Stefan-Boltzmann
law. This was predicted in the early 1970s [5] and it
has been verified in recent years in a large variety of
systems with the help of novel experimental techniques
[4,6,7]. This effect originates from the fact that, when two
objects are separated by a distance smaller than the ther-
mal wavelength λTh (about 10 µm at room temperature),
the radiative heat flux can be greatly enhanced by the
additional contribution of evanescent waves—which is not
considered in the Stefan-Boltzmann law. Near-field ther-
mal radiation has opened new possibilities and holds the
promise to have a notable impact in different technolo-
gies such as heat-assisted magnetic recording [8], scan-
ning thermal microscopy [9–11], coherent thermal sources
[12,13], near-field-based thermal management [4,7], or
thermophotovoltaics [14].

NFRHT is by no means the only breakthrough in
the field of thermal radiation in recent times. Thus, for
instance, it has been shown that nanophotonic structures,
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where at least one of the structural features is at sub-
wavelength scale, can have thermal radiation properties
that differ drastically from those of conventional ther-
mal emitters [15]. This has led to the development and
improvement of energy applications such as daytime pas-
sive radiative cooling [16,17], thermal radiative textiles
[18,19], radiative cooling of solar cells [20], or thermopho-
tovoltaic cells [21]. On a more fundamental level, another
remarkable discovery has been the possibility of overcom-
ing the far-field limits set by Planck’s law in the context
of the thermal emission and the radiative heat transfer
between subwavelength objects [22–24].

At this stage, the physical mechanisms of radiative heat
transfer in the different regimes are relatively well under-
stood and the interest is now shifting towards the optimiza-
tion and design of novel thermal devices. This process is
being mainly assisted by physical intuition and standard
numerical optimization methods. Thus, for instance, in the
context of NFRHT, many different analytical upper bounds
have been put forward to establish the limits of near-field
thermal radiation [7,25]. These bounds are extremely inge-
nious, but often lack the ability to guide in practice the
fabrication of actual structures. On the other hand, conven-
tional numerical optimization techniques, such as Bayesian
or topology optimization [26], are also being routinely
used in the field.

At the same time, the impressive achievements of
machine learning techniques in different engineering areas
have motivated many researchers to pursue a data-driven
approach to investigate a plethora of problems in con-
ventional science disciplines, including physical sciences
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[27–29]. Radiative heat transfer is not an exception and in
recent years different groups have applied various machine
learning techniques to address key problems in this field.
Most of the work thus far has been carried out with the help
of artificial neural networks (ANNs) and deep learning
algorithms. Thus, for instance, we have shown how ANNs
can be used to tackle optimization and inverse design prob-
lems in the context of NFRHT, passive radiative cooling,
and thermal emission of subwavelength objects [30]. There
has also been tremendous activity in the context of deep
learning–aided design and optimization of thermal meta-
materials; for a recent review, see Ref. [31]. However,
reinforcement learning, another subfield of machine learn-
ing, has barely been used in modern radiative heat transfer
problems, with notable exceptions [32]. Reinforcement
learning (RL) is much closer to the layman’s view of arti-
ficial intelligence and it deals with problems concerning
sequential decision making [33]. In RL, an agent learns
via the interaction with an environment from which it
receives feedback to make good decisions towards a given
goal, such as the optimization of a physical process or the
inverse design of a device.

In this work we want to fill this gap and show how RL
can be used to tackle optimization problems in the con-
text of radiative heat transfer. To be precise, we illustrate
the core ideas with a problem related to the optimization
of NFRHT between multilayer hyperbolic metamaterials.
We show how this type of problem can be framed in the
language of RL and how different RL algorithms can be
implemented to address them. In particular, we critically
assess the advantages and disadvantages of the different
methods to help new users of RL to select the most con-
venient algorithm for a given application. The methods
presented in this work can be straightforwardly applied to a
large variety of problems in thermal radiation science and
related fields.

The rest of the manuscript is organized as follows. In
Sec. II, we briefly introduce the topic of RL for nonexperts
to make our contribution more self-contained. In Sec. III,
we present the system and problem that we have chosen to
illustrate the use of RL in the context of thermal radiation
problems, namely, the optimization of NFRHT between
multilayer hyperbolic metamaterials. Then, Sec. IV is
devoted to the description of the main results of this work
obtained with different RL algorithms. We have organized
those results according to the RL algorithm employed
and we also provide detailed descriptions of such algo-
rithms. Finally, we present some additional discussions and
summarize our main conclusions in Sec. V.

II. REINFORCEMENT LEARNING: A BRIEF
REMINDER

In this section we provide a brief introduction to RL fol-
lowing Ref. [34]. This will allow us to set the language and

FIG. 1. The reinforcement learning control loop diagram.

make the manuscript more self-contained. Readers familiar
with RL can safely skip this section.

RL is a subfield of machine learning that aims at solv-
ing sequential decision-making problems. Many problems
can be formulated in this way, including those concern-
ing the optimization of systems, devices, and processes in
the physical sciences. To solve a problem within RL, we
begin by defining a goal. Then, an algorithm takes actions
and gets information about the external world on how
well the goal is being achieved. To that end, we normally
need to take many actions in a sequential fashion, where
each action modifies the world around us. We observe the
changes in the world and, with the help of the feedback we
receive, we decide on the next action to take.

The RL formulation of the process described above is
the following. RL problems are formulated as a system
that comprises an agent and an environment, the world sur-
rounding the agent. The environment produces information
that allows us to describe the state of the system, while
the agent interacts with the environment by observing the
state and selecting an action. The environment accepts
the action and transitions into a new state, which is then
observed by the agent to select a new action. In doing so,
the environment also returns a reward to the agent, which
is used by the agent to select future actions. When the
cycle of state→ action→ next state and reward is com-
pleted, we say that one time step has passed. This cycle
is repeated until the environment terminates, for example,
when the problem is solved. This process is summarized in
the control loop diagram of Fig. 1.

Going deeper with the formulation of the process, a pol-
icy in RL is the agent’s action-producing function that
maps states to actions. As previously indicated, actions
change the environment and affect what an agent observes
and does next, which can be viewed as a sequential
decision-making process that evolves in time. This RL
process is driven by an objective, which is defined as the
sum of rewards received from the environment. The agent
aims at maximizing the objective by selecting good actions
and learns to do this by interacting with the environ-
ment according to an optimizing policy in a trial-and-error
process, which uses rewards to reinforce good actions
and penalize bad ones. Therefore, the signals exchanged
between agent and environment are (st, at, rt), which stand
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for state, action, and reward, respectively, and where t
denotes the time step in which these signals occurred.
The defined tuple (st, at, rt) is referred to as an experience,
which is the basic unit of information describing an RL
system. The control loop is then repeated forever or ter-
minated by reaching either a terminal state or a maximum
time step t = T. The time frame from t = 0 to the termi-
nal state [either a defined state(s) or a maximum state] is
called an episode. In addition, the sequence of experiences
over an episode, τ = (s0, a0, r0), (s1, a1, r1), . . . , is known
as a trajectory. An agent typically needs many episodes to
learn a good policy.

In a more formal way, we can describe states, actions,
and rewards as (i) st ∈ S , where S is the state space,
(ii) at ∈ A, where A is the action space, and (iii) rt =
R(st, at, st+1), where R is the reward function. Here, the
state space S is the set of all possible states in an environ-
ment. It can be defined as integers, real numbers, vectors,
etc. Similarly, the action space A is the set of all possi-
ble actions. It is commonly defined as either a scalar or
a vector. The reward function R(st, at, st+1), for its part,
assigns a real number (positive or negative) to each transi-
tion. The state space, action space, and reward function are
determined by the environment.

Let us now consider how an environment transitions
from one state to the next using the transition function.
In RL, a transition function is formulated as a Markov
decision process (MDP), which means in practice that
one assumes that the transition to the next state st+1
depends only on the previous state st and action at. This is
known as the Markov property and can be mathematically
formulated as

st+1 ∼ P(st+1|st, at), (1)

which means that the next state st+1 is sampled from a
probability distribution P(st+1|st, at).

With this new ingredient, we can now compile all MDP
elements, i.e., S , A, R(·), P(·), where we recall that S is
the set of states, A is the set of actions, P(st+1|st, at) is the
transition function of the environment, and R(st, at, st+1)

is the reward function. Let us remark that RL algorithms
tackled in this work are model-free, that is, the agents have
access to neither the transition function, P(st+1|st, at), nor
the reward function, R(st, at, st+1). The only way in which
an agent gets information about these functions is through
the states, actions, and rewards it actually experiences in
the environment.

As previously indicated, to formulate an RL problem,
it is necessary to formalize the objective that the agent is
intended to maximize. For this purpose, we first define the
return G(τ ) using a trajectory from an episode,

G(τ ) = r0 + γ r1 + γ 2r2 + · · · + γ TrT =
T∑

t=0

γ trt, (2)

i.e., as a discounted sum of the rewards in a trajectory,
where γ ∈ [0, 1] is the discount factor. The discount fac-
tor is an important parameter that changes the way future
rewards are considered. The smaller γ , the less weight is
given to rewards in future time steps.

On the other hand, the objective J (τ ) is simply defined
as the expectation of the returns over many trajectories
evaluated with a given policy π , i.e.,

J (π) = Eτ∼π [G(τ )] = Eτ

[ T∑

t=0

γ trt

]
. (3)

The expectation accounts for stochasticity in the actions
and the environment.

A key question in RL concerns what an agent should
learn. There are three basic properties that can be useful to
an agent: (i) a policy, (ii) a value function, and (iii) an envi-
ronment model. First, if we recall, policy π is that which
maps states to actions, which can be formalized with the
notation a ∼ π(s). A policy can be stochastic and, there-
fore, we can write this as π(a|s) to denote the probability
of an action a given a state s.

The value functions provide information about the
objective. They help an agent to understand how good the
states and available actions are in terms of the expected
future return, allowing one to determine a policy from
this information. There are two types of value functions,
defined as

Vπ(s) = Est′=s,τ∼π

[ T∑

t=t′
γ trt

]
, (4)

Qπ(s, a) = Est′=s,at′=a,τ∼π

[ T∑

t=t′
γ trt

]
. (5)

The state-value function Vπ(s) in Eq. (4) evaluates the
quality of a state. It measures the expected return from
being in state s, assuming that the agent continues to act
according to its current policy π . It is worth noting that
the return G(τ ) =∑T

t=t′ γ
trt is measured from the current

state to the end of an episode. The action-value function
Qπ(s, a) of Eq. (5) evaluates how good a state-action pair
is. It measures the expected return from taking action a in
state s, assuming that the agent continues to act according
to its current policy, π .

Finally, an environment model is summarized in the
transition function P(st+1|st, at) that provides information
about the environment. If an agent learns this function, it
is able to predict the next state st+1 that the environment
will transition into after taking action a in state s. Often,
good models of the environment are not available and in
this work we will not make use of this type of function or
the corresponding algorithms.
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In RL, an agent learns a function of any of the previous
properties to decide what actions to take with the goal of
maximizing the objective. In most practical problems the
different spaces—state, action, etc.—are so large that the
key functions need to be approximated. Currently, the most
popular methods to approximate these functions are based
on deep neural networks, which gives rise to the concept of
deep reinforcement learning. This is the method of choice
in this work.

On the other hand, according to the three primary learn-
able functions in RL (see above), there are three major
families of deep RL algorithms—policy-based, value-
based, and model-based methods that learn policies, value
functions, and models, respectively. In Sec. IV below, we
present the main results of this work organized according
to the corresponding RL algorithm employed and we also
include a brief description of the main characteristics of
every used algorithm.

III. OPTIMIZING NFRHT BETWEEN
MULTILAYER HYPERBOLIC METAMATERIALS

A. Physical problem

In this section we describe the specific problem that
we have selected to illustrate the use of RL in the con-
text of radiative heat transfer, namely, the optimization of
the near-field radiative heat transfer between multilayer
hyperbolic metamaterials [30,35].

As discussed in the Introduction, a major breakthrough
in recent years in the field of thermal radiation has been
the confirmation of the possibility to overcome the Stefan-
Boltzmann law for the radiative heat transfer between two
bodies by bringing them sufficiently close [5]. This phys-
ical phenomenon is due to the fact that in the near-field
regime, bodies can exchange radiative heat via evanes-
cent waves. This type of contribution is not considered in
the Stefan-Boltzmann law and dominates the NFRHT for
sufficiently small separations [4,7,36]. Different strategies
have recently been proposed to further enhance NFRHT.
One of the most prominent ones makes use of multiple
surface modes that appear in multilayer structures where
dielectric and metallic layers are alternated to give rise
to the so-called hyperbolic metamaterials [37–46]. The
hybridization of surface modes in different metal-dielectric
interfaces can lead to a great enhancement of the NFRHT,
as compared to the case of two infinite parallel plates [44].

Following Ref. [44], here we consider the radiative heat
transfer between two identical multilayer structures sep-
arated by a gap d0; see Fig. 2(a). Each thermal reservoir
contains Nl total layers alternating between a metallic layer
with a permittivity εm and a lossless dielectric layer of per-
mittivity εd. The thickness of layer i is denoted di. The
dielectric layers are set to vacuum (εd = 1) and the metal-
lic layers are described by a permittivity given by a Drude

model: εm(ω) = ε∞ − ω2
p/[ω(ω + iγ )] with ε∞ the per-

mittivity at infinite frequency, ωp the plasma frequency,
and γ the damping rate. From now on, we set ε∞ = 1,
ωp = 2.5× 1014 rad/s, and γ = 1× 1012 rad/s. With this
choice of parameters, the surface plasmon frequency is
similar to the surface phonon-polariton frequency of the
interface between SiC and a vacuum.

We describe the NFRHT between the hyperbolic meta-
materials within the theory of fluctuational electrodynam-
ics [47,48]. In this system, the NFRHT is dominated by
TM- or p-polarized evanescent waves and the heat transfer
coefficient (HTC) between the two bodies, i.e., the linear
radiative thermal conductance per unit of area, is given by
[49]

h = ∂

∂T

∫ ∞

0

dω

2π
	(ω, T)

∫ ∞

ω/c

dk
2π

kτp(ω, k), (6)

where T is the temperature, 	(ω, T) = �ω/(e�ω/kBT − 1)

is the mean thermal energy of a mode of frequency ω, k
is the magnitude of the wave vector parallel to the surface
planes, and τp(ω, k) is the transmission (between 0 and 1)
of the p-polarized evanescent modes given by

τp(ω, k) = 4
[
Im

{
rp(ω, k)

}]2 e−2q0d0

|1− rp(ω, k)2e−2q0d0 |2 . (7)

Here, rp(ω, k) is the Fresnel reflection coefficient of the
p-polarized evanescent waves from the vacuum to one of
the bodies and q0 =

√
k2 − ω2/c2 (ω/c < k) is the wave-

vector component normal to the layers, in vacuum. The
Fresnel coefficient needs to be computed numerically and
we have done it by using the scattering matrix method
described in Ref. [50]. In our numerical calculations of
the HTC we also took into account the contribution of s-
polarized modes, but it turns out to be negligible for the
gap sizes explored in this work.

The interest in the NFRHT in these multilayer structures
resides in the fact that the heat exchange in this regime is
dominated by surface modes that can be tuned by play-
ing with the layer thicknesses. In the case of two parallel
plates made of a Drude metal, the NFRHT is dominated by
the two cavity surface modes resulting from the hybridiza-
tion of the surface plasmon polaritons (SPPs) of the two
metal-vacuum interfaces [44]. These two cavity modes
give rise to two near-unity lines in the transmission func-
tion τp(ω, k). If we introduce more internal layers, we can
have additional NFRHT contributions from surface states
at multiple surfaces. This is illustrated in Fig. 2 for the
case of N = 16 active layers with di = 5 nm and a gap size
d0 = 10 nm. Apart from the active layers, both reservoirs
contain an additional 5-nm-thick metallic layer to ensure
that the outer surfaces feature SPPs and to properly define
the gap, as well as a semi-infinite metallic substrate on the
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(a)

(b)

(c)

FIG. 2. (a) Schematic representation of the physical system
under study. It features two identical hyperbolic metamateri-
als comprising alternating metallic (gray) and dielectric (blue)
layers. Both reservoirs have infinitely extended layers and are
separated by a distance d0 = 10 nm. Each layer has a thickness
of 5 nm and both subsystems are backed by a metallic substrate.
(b) Transmission of evanescent waves as a function of the fre-
quency (ω) and the parallel wave vector (k) for the periodic
structure of panel (a) composed of 16 active layers per subsys-
tem. (c) The corresponding spectral heat transfer coefficient hω

at room temperature (T = 300 K) as a function of the frequency,
labeled baseline in the legend. The result is compared to that of
two metallic plates (bulk) with the same gap and a system like the
baseline structure, but with 160 layers (N = 160), which mimics
an infinite periodic system.

other side. This example, in which we have in practice a
periodic structure with eight physical layers (four metal-
lic and four dielectric layers) with thickness di = 10 nm
[see Fig. 2(a)], exhibits multiple near-unity resonances in

the transmission function τp(ω, k) [see Fig. 2(b)]. These
contributions resulting from additional surface states orig-
inating from internal layers lead to a great enhancement
of the NFRHT as compared to the bulk system (two par-
allel metallic plates) in a wide range of gap values [44].
This is illustrated in Fig. 2(c) where we show the spec-
tral HTC, hω, defined as the HTC per unit of frequency:
h = ∫∞

0 hω dω for both the system pictured in Fig. 2(a)
(labeled baseline) and the bulk system with the same gap
d0 = 10 nm.

Our concrete goal is to maximize the HTC between
these two hyperbolic metasurfaces by finding the opti-
mal configuration of alternating dielectric and metallic
layers (number and thickness). Theoretically, that maxi-
mum HTC is achieved when an infinite number of alter-
nating layers is arranged so as to form ideal periodic
one-dimensional photonic crystals, where the NFRHT is
determined by the corresponding Bloch waves [44]. We
illustrate this fact in Fig. 2(c) where we also show the result
for the spectral HTC for a system like the baseline in panel
(a), but for N = 160, which mimics the infinite periodic
system. Obviously, in reality truly periodic systems cannot
be fabricated and one has to deal with systems with a finite
number of layers. It is then when physical intuition faces
limitations and machine learning techniques become help-
ful to solve these optimization problems, as we show in this
work. For concreteness, in our study we keep the gap size
fixed at d0 = 10 nm, the total active thickness of the mul-
tilayer areas, and assume room temperature (T = 300 K).
We also assume the two multilayer systems to be identical
since any asymmetry tends to reduce the HTC.

B. RL formulation of the optimization problem

We now describe how we tackle our optimization prob-
lem in the spirit of RL, which requires us to formulate it as
a sequential decision-making problem. The physical sys-
tem is composed of two identical layered structures that,
unless we state otherwise, contain 16 active layers with
a thickness of 5 nm. The two subsystems are separated
by a gap d0 = 10 nm, each having a semi-infinite metallic
substrate.

Irrespective of the employed algorithm, we define the
central RL concepts as follows.

(1) Goal: our goal is to maximize the HTC via the
modification of the layer configuration.

(2) State: each state describes a layer configuration. We
define the material by an integer label, 0 for the dielectric
and 1 for the metal. Thus, a state is represented by a vector
of 0s and 1s with 16 components, each representing one of
the 5-nm-thick layers.

(3) Action: the action space is an ensemble of two deci-
sions made concurrently, namely, which layer to study
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and what material to consider for it. This includes the
possibility for the configuration to remain unchanged.

(4) Reward: the reward is the HTC corresponding to the
next state in units of 105 W/m2K. Thus, for this problem,
R = R(st+1) only. For better performance, we consider as
a baseline for the reward values the HTC of our physically
intuitive “best-guess” configuration, which corresponds to
the periodic photonic crystal shown in Fig. 2(a). Any pos-
itive reward implies that we have found a higher HTC
value.

(5) Episode termination: we impose an episodic formu-
lation by defining a fixed number of actions taken in a
trajectory before resetting to the initial state, containing
all 0s (all dielectric layers except the 5-nm-thick metallic
layer defining the gap). This enables the network to per-
form much more training on known states, and to finish
the optimization in an acceptable number of steps. We take
the length of an episode to be twice or 4 times the num-
ber of layers of an state, so any existing state is potentially
reached comfortably.

IV. RESULTS

In this section we describe the main results obtained
for the optimization of the NFRHT between the multilayer
hyperbolic structures described in the previous section. For
didactic reasons, we present separately the results obtained
with the different RL algorithms and in every subsec-
tion we describe the basics of the corresponding method
alongside a discussion of the peculiarities concerning their
application to our problem.

A. Value-based algorithms: SARSA algorithm, deep
Q-learning, and extensions

As value-based algorithms are historically the most
widely used and discussed in RL [33], we first address their
formulation and usage. Value-based algorithms are based
on two core ideas. The first one is temporal difference (TD)
learning, which is an alternative to the use of Monte Carlo
sampling for gathering experiences from an environment
(see Sec. IV B below) to estimate state or state-action val-
ues. The key idea in TD learning is that state or state-action
values are defined recursively, that is, their values in a
given time step are defined in terms of the values in the
next time step. This makes TD learning a useful method
for backing up the reward information from later to earlier
steps through time. As state-action-value functions repre-
sent an expectation over different trajectories, this leads to
the display of a lower variance than Monte Carlo sampling.

The second idea has to do with the famous exploration-
exploitation trade-off in RL. When the agent is learning
an estimate of the state or state-action values, the usage of
this estimate can lead to better returns (exploitation). How-
ever, if one always selects actions based on current values,
which might be far from the optimal ones, this would

lead to deterministic behavior that can prevent the agent
from discovering better unknown actions (exploration).
This exploration-exploitation trade-off is a key challenge
in RL and it can be addressed by employing stochastic
policies, where the exploration can be distributed along all
the training and, as the estimation gets better, it gradually
shifts closer to a deterministic policy. An example of an
stochastic policy, which will be used in this work, is the ε-
greedy policy, where the agent explores with a probability
of ε and exploits with a probability of 1− ε.

1. SARSA algorithm

The state-action-reward-state-action (SARSA) algori-
thm is one of the oldest RL value-based algorithms and,
despite its limitations (see below), it is convenient to start
by describing its use for our problem. This algorithm is
based on the estimation of the action-value function or the
Q function. It employs TD learning to produce the tar-
get state-action values or Q values, from now on denoted
Qtar. Therefore, it combines the reward given by the envi-
ronment, rt, with the Q-value estimates of the next state
that approximate the remaining part of the expected return.
This is summarized in the update rule

Qπ
tar(st, at) = rt + γ Qπ(st+1, at+1). (8)

Note that the Q-value estimate depends on the follow-
ing action, as we base our estimates solely on state-action
estimates. Over the course of many examples, the propor-
tion of selected actions given a state will approximate the
probability distribution over all actions.

In practice, we employ a neural network for the approxi-
mation of the Q function, the Q network, which returns the
Q-value estimates of the selected state-action pairs. As a
consequence, each update of the Q value is not complete,
as neural networks learn gradually using gradient descent,
moving partially towards the target value. With all that, the
SARSA algorithm is summarized in Algorithm 1.

The workflow of the SARSA algorithm is similar to a
supervised learning workflow, in which each estimate has
a target value to reach and, with it, we can evaluate how
well our neural network is performing and thus reduce the
discrepancies between the values. In this sense, we use
an iterative approach to improve the Q value, as we can
explicitly see in line 3. Note from lines 5 and 7 that, as
the SARSA algorithm is based on TD learning, only infor-
mation from the next step is required to form the target
of the current Q value, allowing us to update the Q func-
tion in a batched manner. Regarding sample efficiency, we
can see from line 4 that the next action at+1 is obtained
with the same policy used to gather the previous action
at, that is, the ε-greedy policy over the only Q network
of the algorithm. This specific selection of the next action
makes the SARSA algorithm an on-policy algorithm, that
is, an algorithm in which information for improving the
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ALGORITHM 1. SARSA pseudocode [33,34].

policy (at+1) depends on the policy to gather data (at).
Because of this on-policy behavior, each training iteration
can only use experiences obtained following the current
policy, so each time the Q-network parameters are updated,
all experiences must be discarded and new experiences
have to be collected, as reflected again with line 4 and its
position within the training loop. Finally, something that
arises from the use of currently collected experiences for
the estimation of the target Q value is the high correlation
between experiences, as the data used to update the net-
work are often from a single episode, which can lead to
high variance in different parameter updates.

In Fig. 3 we present a summary of the results obtained
with the SARSA algorithm for our hyperbolic multilayer
system with 16 layers, which includes 40 independent
runs, represented with their means and standard deviations.
These results were obtained with the hyperparameters
specified in Table I in Appendix A. Figure 3(a) shows the
largest HTC obtained as a function of the number of found
states. To gauge the quality of our method, we compare
SARSA results in this panel with an algorithm in which
different states are randomly selected and the maximum
HTC is recorded as the algorithm progresses. This random
algorithm is particularly efficient for relatively small state
spaces, as it is forced to always find new states. There-
fore, its results constitute a good test for the different RL
algorithms. To ensure reliable statistics, its mean value and
deviation were obtained with 1000 independent runs in all
cases.

In Fig. 3(b) we present the evolution of the loss function
of the Q network as the training proceeds. Finally, Fig. 3(c)
displays the return in a greedy simulation of an episode
with the Q function obtained each training step. Recalling
the basis of RL (see Sec. II), the usual goal of RL is to max-
imize the expected return G(τ ). In this sense, we can see
in Fig. 3(c) that the return increases along the exploratory

(a)

(b)

(c)

FIG. 3. Training of the SARSA algorithm for our physical
problem of interest. (a) Largest HTC discovered as a function of
the number of found states in the problem with 16 layers obtained
with the SARSA algorithm. We also present the results obtained
with the random algorithm. (b) The evolution of the correspond-
ing loss curve of the SARSA algorithm. (c) Return obtained in
a simulation of an episode with the Q network of the SARSA
algorithm at each training step. The dashed line corresponds to
the value of ε (right scale). In all panels the solid lines correspond
to mean values and the shaded areas to standard deviations, as
obtained in 40 independent runs of the SARSA algorithm.

phase, so the SARSA algorithm is achieving better poli-
cies as the training proceeds, as expected. Regarding the
loss function, Fig. 3(b) shows that its general tendency is
indeed to decrease, indicating that the Q network tends
to converge, as desired. However, some noise during the
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training can be noticed. When ε is close to 0.5, the aver-
age loss starts increasing, and when ε reaches its minimum
value, the loss rapidly adopts its lowest value. Apart from
the variance arising just from the SARSA formulation due
to the high correlation between the experiences of each
batch, the noise seems to arise from the greedy behavior
of the method in intersection with the shape of the state-
action space. In our case, the noise could indicate that the Q
value of the state actions visited through the greedy policy
is not that close to the value of the previously seen state-
action pairs. With that, an overfitting of the Q network is
thought to be made to the state actions of the greedy behav-
ior, which increases the mean loss when those states are not
that frequently visited and gradually decreases the loss as
the greedy behavior is more prominent.

On the other hand, Fig. 3(a) shows that the SARSA
algorithm is capable of finding the optimal configuration
for our problem, but it performs similarly to the random
algorithm with the exception of the end of the curve,
where SARSA runs exhibit a smaller variance. Thus, the
main conclusion from this analysis is that although the
SARSA algorithm can learn an improved policy, it is not
sample efficient enough to achieve our objective for the
selected environment. It is important to emphasize that, as
in any machine learning problem, we cannot rule out that,
with a better selection of hyperparameters, the SARSA
algorithm could clearly beat the random algorithm, espe-
cially in problems of higher dimensionality. In any case,
as we will see in the next subsection, sample efficiency
can be notably improved using other types of value-based
algorithms, so we will not dwell too much here with the
SARSA algorithm.

2. Q learning

As in the SARSA algorithm, Q learning is based on TD
learning in order to obtain the target value. In this case, the
update rule for the Q values reads

Qπ
tar(s, a) = rt + γ max

at+1
Qπ(st+1, at+1). (9)

Note that the selection of the following action at+1 is
made with a max operator, which indicates that we are
taking the action that maximizes the Q value of the next
state. This might be seen as a small change with respect
the SARSA algorithm, but it has important consequences,
overcoming some of the SARSA algorithm’s limitations.
With it, in Eq. (9) we are learning the optimal Q func-
tion instead of the Q function of the current policy as in
the SARSA algorithm, and so improving the stability and
speed of learning. In addition, this makes Q learning an
off-policy algorithm, as the information used to learn the
Q value is independent of the policy used for gathering
data. Therefore, off-policy behavior allows us to learn from
experiences gathered by any policy. It allows us to reuse

ALGORITHM 2. Q-learning pseudocode [33,34].

and decorrelate experiences, reducing the variance of each
update and improving the sample efficiency with respect to
the SARSA algorithm.

It is interesting to underline that, for our application, the
reuse of experiences is of great importance as our goal is to
obtain the maximum HTC with as few explored states as
possible. In addition, the usage of neural networks makes
this aspect even more relevant as they rely on gradient
descent, for which each parameter update must be small
because the gradient only returns meaningful information
near employed parameters. This makes the possibility of
reusing experiences important as the network’s parameters
may need to be updated multiple times.

We summarize the Q-learning algorithm in Algorithm
2. Comparing lines 4 and 7, one sees that Q learning gath-
ers experiences selecting action at with ε-greedy behavior,
while it estimates the target Q value with a greedy selec-
tion of at+1, as previously seen in the update rule of Eq.
(9). Although those lines are the only difference with the
SARSA algorithm, they enable us to further implement
all previously mentioned advantages like experience reuse
with the extensions described below. In this work we
present only the Q-learning results obtained with the most
refined version of the Q-learning algorithm. Therefore, we
postpone discussion of the Q-learning results and intro-
duce in what follows several sophistications for the naive
version of this algorithm.

3. Q-learning extensions

As mentioned above, Q learning is potentially better
than the SARSA algorithm to achieve our goal because of
its off-policy nature [33]. Building upon this nature, here
we make use of several modifications of Q learning that
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have been proposed to enhance its sample efficiency and
stability.

Experience replay. Introduced by Lin [51], this idea con-
sists of storing experiences in a memory in order to reuse
them even if they were taken with old policies, allowing
for more efficient learning from a reduced number of gath-
ered experiences. In practice, an experience replay memory
stores the agent’s most recent experiences up to a given
memory size, large enough to contain many episodes,
replacing the oldest experiences by the newest ones once
this size is reached. With that, every time an agent needs
batches to be trained, it retrieves them from the replay
memory in a random-uniform manner. Then, each one of
the batches is used to update the training network. In this
way, in addition to introducing a higher sample efficiency,
we ensure that we have decorrelated experiences for train-
ing as they are likely to be from different policies and
episodes, contrary to the SARSA algorithm, stabilizing the
training as we reduce the variance of parameter updates.
Finally, to set a widely used notation, the combination of
Q learning with the usage of Q networks and the presented
memory replay technique is referred to as the deep Q net-
works (DQN), set by Mnih et al. [52]. We use this notation
throughout the rest of the paper.

Target network. Introduced by Mnih et al. [53], it
focuses on reducing the changes in the target value by
means of a second network, called the target network. The
idea is to use a lagged copy of the training network whose
update frequency is less than that of the training network.
Then, this secondary network is used to generate the state-
action estimate for the target value, maxat+1 Qπ(st+1, at+1),
stopping its value from moving. This idea addresses the
issue of the target constantly changing because of network
updates, stabilizing the training and making divergences
less likely as it avoids ambiguity regarding the values the
network must approach.

Double Q learning. Introduced by van Hasselt et al.
[54,55], the basic idea is to use two different networks
trained with different experiences for the estimation of
the next Q value used for obtaining the target value. This
double estimation is computed using a network for retriev-
ing the maximizing action, and the remaining network for
producing the Q value with the selected action:

Qπ
tar(s, a) = rt + γ Qπ

2

(
st+1, argmax

at+1
Qπ

1 (st+1, at+1)
)

.

(10)

It mitigates the systematic overestimation of the state-
action values by the deep Q-learning algorithm. This effect
arises from the use of an approximated algorithm. As it
does not return a perfect estimation, if Q estimations con-
tain any errors, maximum state actions are likely to be
positively biased, resulting in an overestimation of the Q
values as Hasselt et al. [54] showed in their paper. With

that, if we introduce the usage of a second network trained
with different experiences, we can remove the positive bias
in the estimation. As with the introduction of the target net-
work, we already have a second network and we want to
avoid sampling more experiences; a common practice is
the usage of it as the secondary network. Although it is
just a lagged copy of the training network, if the update
frequency of the target network is sufficiently low, it is con-
sidered to be different enough from the training network to
function as a different one.

Taking into consideration all these modifications, the
final double DQN algorithm we use for our application is
summarized in Algorithm 3. Let us emphasize the main
differences with respect to the Q-learning algorithm in
Algorithm 2. Lines 4, 6, and 8 describe the usage of
memory replay, first initializing it to gradually add more
experiences at each training step. For training, B batches
of experiences are sampled, further leveraging the reuse of
experiences compared to not using several batches. Next,
lines 2, 12, and 15 refer to the usage of a target network,
which is updated to the weights of the training network
with a frequency F . Finally, double estimation is reflected
in lines 11 and 12, where at+1 is taken with the training
network q̂, while the next state-action value is obtained
through the target network q̃.

Making use of this final double DQN algorithm and
the hyperparameters listed in Table II in Appendix A, we
obtained the results summarized in Fig. 4 for our mul-
tilayer system, again with 40 independent runs of the
double DQN algorithm. In Fig. 4(a) we display the max-
imum HTC for the double DQN and random algorithms
as a function of the number of found states. The dou-
ble DQN algorithm surpasses the random algorithm for
a relatively small amount of explored states, about 7000
versus about a possible 65 000 states of the system. To
emphasize the quality of these results, let us say that,
for the 40 runs of the double DQN algorithm, the top
five best HTC values for this system are found in 77.5%
of the runs and the best possible state in 35.0% of the
runs, while for the 1000 runs of the random algorithm,
these values are found in 44.3% and 12.9% of the runs,
respectively.

To gain some insight into the training process of our
algorithm, we display in Fig. 4(b) the evolution of the loss
of the Q network. This loss decreases almost monotoni-
cally, which indicates that our algorithm is training. How-
ever, some irregularities can be appreciated again. First, we
can see some regular peaks. These just correspond to the
update of the target network, which produces the sudden
change of the target. In addition, some noise appears at the
end of the curve, which we believe could arise from two
effects. First, from the same effect as in the SARSA’s loss,
i.e., the overfitting of the Q network. Second, it could be
due to the target network not being that frequently updated,
leading to a target with less information. Therefore, we can
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ALGORITHM 3. Double Q learning with memory replay and
target network pseudocode [33,34].

again end with a less generic Q network, which can lead to
higher values of loss.

Finally, as previously discussed, an important metric for
the performance of the algorithm is the return in a greedy
simulation with the Q function obtained each training step;
see Fig. 4(c). Note that the return first increases, but ends
up decreasing, which could appear to be upsetting. Let us
recall that the return is the main result for RL applications
with the standard algorithm’s objective: to obtain a policy
that maximizes the return of the system. However, our final
objective here is slightly different: to explore the optimal
state with as few explored states as possible. This is why
the observed decay in the return is not worrisome in our
case, although it means that we end up having a nonoptimal
policy.

In Fig. 4(c) we also show as a vertical green line with
a shaded area both the mean and standard deviation of
the training step at which the highest HTC is discovered
in the different runs. Two things are worth noting: in this
region ε still has a sizeable value, so the algorithm still
has chances of discovering better states, and the return is
still growing and is higher than the return of a completely

exploratory policy, so we have a policy with some learn-
ing. This supports the fact that the decrease of the return is
not something to worry about: with selected hyperparam-
eters, our algorithm uses the policy learned at early stages
to explore better states.

Although the decay of the return is not something criti-
cal in our case, it is important to understand why it occurs.
A possible explanation is the lack of convergence to the
optimal Q function. As mentioned in Sec. III B, our reward
is the difference of the HTC of the periodic multilayer
system and that of the next state. In Fig. 4(c), we can
see that the return does not surpass the zero value, so we
are not close to the optimal policy and, therefore, to the
optimal Q function. The reason why a below-zero value
is not close to a simulation of an episode of the opti-
mal policy is the following. Knowing the optimal state
(see Sec. V below) and given a large episode length of
64 steps, an intuitively good policy would imply transi-
tioning with as few steps as possible from the start state
to the optimal one. It would result in transitioning to the
optimal state in just seven steps. Therefore, this policy
would output seven unknown rewards and a reward of
0.28× 105 W/m2K during 57 steps. In addition to the
best reward, we know the worst possible one, which has a
value of−1.37× 105 W/m2K. With it, the seven unknown
rewards must be equal or higher than the worst possible
reward. Therefore, the good policy we have imagined has
a return G(τ ) ≥ 6.37× 105 W/m2K, which has a posi-
tive value. By definition, the optimal policy is such that
its expected return is greater than or equal to any of the
remaining existent policies for all states [33]. With this
example, we have found a policy whose expected return
from the initial state is higher than zero, which is over the
return displayed at Fig. 4(c). Thus, this demonstrates that
we have not reached the optimal policy in that figure.

As we have not reached the optimal policy and therefore
the true value of the Q function, we only have an imper-
fect estimation of it. This estimation can help us reach
the optimal policy during training. However, if we exploit
it instead of using it to continue looking for the optimal
policy, we can end up overtraining our network with expe-
riences that a good policy is not likely to visit. This puts
our policy farther from the optimal Q function, losing the
part of the estimation that was towards the good policy and,
finally, turning the policy into a worst one because we are
following nonoptimal state actions.

An interesting issue at this stage concerns the impact
of having a better estimation of the Q values with the
usage of more experiences and exploiting this knowledge
to obtain the optimal state. To elucidate this issue, in
Fig. 5 we present the results obtained for the double DQN
algorithm using now 25 experiences stored in the memory
replay per training step, rather than four, as presented in
Fig. 4. In Fig. 5(b), the loss function of the neural network
still decays, as expected with already known irregularities,

054071-10



DRL FOR RADIATIVE HEAT TRANSFER PHYS. REV. APPLIED 22, 054071 (2024)

(a)

(b)

(c)

FIG. 4. Training of the double DQN algorithm. (a) Largest
HTC discovered as a function of the number of found states in the
problem with 16 layers obtained with the double DQN algorithm.
We also present the results obtained with the random algorithm.
(b) Evolution of the corresponding loss curve of the double DQN
algorithm. (c) Return obtained in a simulation of an episode with
the Q network of the double DQN algorithm at each training step.
The dashed line corresponds to the value of ε (right scale). The
vertical line and the green shaded area correspond to the training
steps at which the highest HTC of the runs is found. In all panels
the solid lines correspond to mean values and the shaded areas
to standard deviations, as obtained in 40 independent runs. In all
cases, four experiences were stored per training step.

while in Fig. 5(c), the return increases up to a maximum
value and stays there, as desired in regular applications
of RL. This can mean that a sufficiently good policy is
reached, so following it does not put us further from
the state actions an optimal or suboptimal policy would

(a)

(b)

(c)

FIG. 5. Same as in Fig. 4, but with 25 experiences stored per
training step.

follow. However, something must be noted from Fig. 5(a),
namely, higher HTC values with respect to the random
algorithm are now discovered when more states have been
explored, distancing us from our true objective: obtain-
ing the state that gives us the maximum HTC with as few
explored states as possible. This leads to the conclusion
that, although we can miss the opportunity of learning a
decent estimation of relevant state-action values, it is worth
gathering states more slowly during the training as, just
employing them, we can discover the optimal states too.
A similar behavior will also be seen with policy-based
algorithms.

Finally, Fig. 5(c) shows that the highest HTC values are
discovered early during the training. Again, this means that
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there is no need to reach a good policy in order to find
the good states of our application, which suggests train-
ing the Q network with fewer states during more training
time.

B. Policy-based algorithms: REINFORCE

Now we focus on the analysis of the results obtained
with REINFORCE [56], which is the most widely used
policy-based RL algorithm. In this type of algorithm, the
agent learns a policy function π , which in turn is used to
produce actions and generate trajectories τ that maximize
the objective J (τ ). REINFORCE needs three components:
(i) a parametrized policy, (ii) an objective to be maximized,
like any other RL algorithm, and (iii) a method for updat-
ing the policy parameters. Concerning the parametrized
policy, this is obtained with the help of deep neural net-
works that learn a set of parameters θ . We denote the policy
network as πθ to emphasize that is parametrized by θ .
Framed in this way, the process of learning a good policy
is equivalent to searching for a good set of values for θ .

The objective that is maximized by an agent in REIN-
FORCE is the expected return over all complete trajecto-
ries generated by an agent:

J (πθ ) = Eτ∼πθ
[G(τ )] = Eτ∼πθ

[ T∑

t=0

γ trt

]
. (11)

Note that the expectation is calculated over many tra-
jectories sampled from a policy, that is, τ ∼ πθ . This
expectation approaches the true value as more samples are
collected, and it is specific to policy πθ used.

The final component of the algorithm is the policy
gradient, which formally solves the problem

max
θ

J (πθ ) = Eτ∼πθ
[G(τ )]. (12)

To maximize the objective, we perform gradient ascent on
the policy parameters θ :

θ ← θ + α∇θJ (πθ ). (13)

Here α is the learning rate, which controls the size of the
parameter update. The term ∇θJ (πθ ) is known as the pol-
icy gradient and, thanks to the policy gradient theorem,
[33,34] can be expressed as

∇θJ (πθ ) = Eτ∼πθ

[ T∑

t=0

Gt(τ )∇θ log πθ(at|st)

]
. (14)

Here, the term πθ(at|st) is the probability of the action
taken by the agent at time step t. The action is sampled
from the policy, at ∼ πθ(st).

ALGORITHM 4. REINFORCE pseudocode [34,56].

In practice, the REINFORCE algorithm numerically
estimates the policy gradient using Monte Carlo sam-
pling. Instead of sampling many trajectories per policy, one
samples just one:

∇θJ (πθ ) ≈
T∑

t=0

Gt(τ )∇θ log πθ(at|st). (15)

The REINFORCE algorithm is summarized in Algorithm
4. Let us emphasize how this is an episodic, on-
policy algorithm: every episode we start from the start-
ing state s0 in line 3 and collect a full trajectory τ =
(s0, a0, r0), . . . , (sT, aT, rT) for an episode in lines 6 and 7.
Then, in line 9 the return Gt(τ ) is computed for each time
step t in the current trajectory, which is later used in line
10 to estimate the policy gradient along with this policy’s
action probabilities πθ(at|st). In line 11, the sum of the
policy gradients for all time steps calculated in line 10 is
used to update the policy network parameters θ , and the
experiences are discarded.

It is known that the fact that the policy gradient is esti-
mated, sampling with a single trajectory typically leads to
a high variance. One way to reduce this variance is to mod-
ify the returns by subtracting a suitable action-independent
baseline as

∇θJ (πθ ) ≈
T∑

t=0

[Gt(τ )− b(st)]∇θ log πθ(at|st). (16)

In our case we chose as a baseline the mean return over
the trajectory, namely, b = (1/T)

∑T
t=0 Gt(τ ). Our base-

line is state independent, being a constant value for each
trajectory, and centers the returns around 0. This enables
faster learning, correcting any imbalance between positive
and negative returns. Note that this REINFORCE-specific
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baseline is independent of the baseline considered for the
HTC values in the rewards.

Let us now describe our application of REINFORCE to
our optimization problem. We first consider hyperparame-
ters given in Table III in Appendix A. The corresponding
evolution of the training for 105 full episodes is shown in
Fig. 6(a), where we present the return of each episode as
training progresses. These results correspond to 40 inde-
pendent runs. Note that the return increases until it reaches
a plateau, when the policy algorithm converges. The verti-
cal line and the green shaded area correspond to the mean
value and standard deviation of the training step at which
the highest HTC of the run is found. We can see that it
was found in a much smaller number of steps compared to
the total number of training steps needed for the conver-
gence of the policy. This is a very similar result to what
we found using the DQN algorithm. In Fig. 6(b) we show
the comparison between the best HTC found by REIN-
FORCE and by a random search, also for 40 different runs
of the REINFORCE algorithm and 1000 runs of the ran-
dom algorithm. The random search algorithm is the same
as in previous algorithms, so as to ensure a fair compar-
ison. We can see how REINFORCE seems to behave in
a very similar fashion to random search, being unable to
significantly outperform it.

To improve these results, we explored the same idea
as in the double DQN algorithm, namely, to increase the
learning rate so it can learn with a reduced number of
explored states. In Fig. 6(c) we show the same as in
Fig. 6(a), but with a value of α = 3× 10−4, 10 times larger
than before. As one can see, the training of the policy fails,
with the return initially increasing, but eventually decreas-
ing abruptly, with a much larger standard deviation than
before. In a regular RL problem, we would say that training
has failed, and the learning rate is too high. However, if we
look at Fig. 6(d), the same as in Fig. 6(b) but with the new
value for the learning rate, REINFORCE shows the same
effect as in the double DQN algorithm: it is able to slightly
outperform the random search algorithm in both the mean
and the area covered by the standard deviation. Moreover,
the green shaded area in Fig. 6(c) clearly demonstrates how
the best examples are found with a really small number of
training steps, even lower than in Fig. 6(a), and the decay
of the return is inconsequential to our goal. This is also
analogous to our results for the double DQN algorithm.

We can further identify this improvement through the
statistics of the runs, both from REINFORCE and the
random search algorithm. Considering the 104 new exam-
ples found in Fig. 6(b), the random search algorithm is able
to find one of the five configurations with the highest HTC
57.0% of the runs, with 17.3% finding the actual maxi-
mum. On the other hand, REINFORCE is able to find one
of the five highest HTC configurations 60% of the runs,
which is only slightly better than the random search, with
12.5% finding the actual maximum, less than the random

search. With this, we would conclude that the algorithm is
worse than random search. But using the improved version
in Fig. 6(d), with a new restriction of 5000 new exam-
ples, which is half the amount of new states compared
to Fig. 6(b), the random search can only find one of the
five configurations with the highest HTC 34.9% of the
runs, with 9.3% finding the actual maximum, and REIN-
FORCE can find one of the five configurations with the
highest HTC 42.5% of the runs, with 15% finding the
actual maximum, being able to surpass the random search
results. However, the difference is not significant enough,
and as such, REINFORCE is not the best option for solving
our RL problem. The Monte Carlo sampling and the sam-
ple inefficiency of the algorithm prevent it from obtaining
comparable or even better results than other algorithms.
Still, its convergence is more easily guaranteed, albeit
noisy, and its implementation is more straightforward than
value-based algorithms, so it can still be a candidate for
other possible applications.

C. Combined methods: actor-critic and proximal
policy optimization algorithms

So far, we have discussed both policy-based and value-
based algorithms. Now, we consider combined methods
that learn two or more of the primary RL functions. To be
precise, we discuss both advantage actor-critic (A2C) [57]
and proximal policy optimization (PPO) [58] algorithms,
which are among the most widely used RL algorithms
for a wide variety of applications. Actor-critic algorithms
receive their name from the two elements that compose
them: an actor, which learns a parameterized policy like
in REINFORCE; and a critic, which learns a value func-
tion to evaluate state-action pairs, becoming a learned
reinforcement signal. In simple words, the foundations of
actor-critic algorithms involve trying to learn a value func-
tion to give the policy a more informative metric than just
the rewards. When the learned reinforcement signal is the
advantage function, the algorithm is called the advantage
actor-critic algorithm. The advantage function is defined as

Aπ(st, at) = Qπ(st, at)− Vπ(st), (17)

thus describing how preferable an action would be com-
pared to the average weighted by the policy in a particular
state. This allows us to rescale their values for all states
and actions, similarly to a state-dependent baseline, and
presents other useful properties such as Ea∈A[Aπ(st, a)] =
0. The actor uses this signal in place of the estimate of the
return from the REINFORCE algorithm, performing the
same gradient ascent technique. That is, the actor performs
the following policy optimization (setting πθ → π ):

∇θJ (π) = Et[Aπ
t ∇θ log π(at|st)]. (18)

The critic is tasked with estimating this advantage function
for all states and actions. In principle, this would imply
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being able to estimate both Qπ(s, a) and Vπ(s), but there
are methods that allow the estimation of Qπ(s, a) through
Vπ(s) over the trajectory, allowing us to only need to learn
the latter. There are various ways to estimate the advan-
tage function using these value functions. The first one is
called n-step returns, in which we expand the definition of
Qπ(s, a) using the rewards obtained in the current trajec-
tory for n steps, and then take the V value of the following
one. That is, we expand

Qπ(st, at) = Eτ∼π [rt + γ rt+1 + γ 2rt+2 + · · · + γ nrt+n]

+ γ n+1Vπ(st+n+1)

≈ rt + γ rt+1 + γ 2rt+2 + · · · + γ nrt+n

+ γ n+1Vπ(st+n+1), (19)

which assumes accurate Vπ(s) estimations. This leaves
our bias-variance trade-off explicit: the rewards from the

trajectory have high variance, while Vπ(s) is a biased esti-
mation. Higher values of n present higher variance, so n
should be chosen to balance these two effects. Another way
to estimate the advantage is called generalized advantage
estimation (GAE) [59]. GAE calculates an exponentially
weighted average of all n-step advantages, intending to
reduce the variance of the estimation while keeping the
bias low. The expression is

Aπ
GAE(st, at) =

∞∑

k=0

(γ λ)kδt+k, (20)

where δt = rt + γ Vπ(st+1)− Vπ(st) with λ ∈ [0, 1] con-
trolling the decay rate. A higher value introduces higher
variance, up to a value of 1 that represents the Monte Carlo
estimate. A value of 0, on the other hand, computes the TD
estimate of the returns. GAE is our estimation of choice
for the advantage function, which we use for our physi-
cal problem. Finally, we need to obtain a way to estimate

(a) (b)

(c) (d)

FIG. 6. Training of a REINFORCE algorithm. (a) Evolution of the return for the trajectories as training progresses. The vertical
line and the green shaded area correspond to the training steps at which the highest HTC of the runs is found. Learning rate chosen
as α = 3× 10−5. (b) Largest HTC discovered as a function of the number of found states for the evolution in (a). REINFORCE in
blue versus a random search in orange. (c),(d) Same as in (a) and (b), but with a learning rate α = 3× 10−4. In all panels the solid
lines correspond to mean values and the shaded areas to standard deviations, as obtained in 40 independent runs of the REINFORCE
algorithm.
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ALGORITHM 5. A2C pseudocode with GAE and mean square
error (MSE) [34].

the Vπ(s) values for each state. Following the structure of
value-based algorithms and the definition of advantage, we
set the target of the critic network as

Vπ
tar(st) = Aπ

GAE(st, at)+ Vπ(st), (21)

which we obtain in a similar manner to the SARSA and
double DQN algorithms [34]. Thus, the full A2C algorithm
can be summarized as in Algorithm 5.

Actor-critic algorithms present a series of issues too,
some of the most common including performance collapse
and sample inefficiency from being on-policy algorithms.
PPO is one of the most popular algorithms designed to
solve them, using a surrogate objective that ensures mono-
tonic improvements and allows one to reuse off-policy data
samples. This new PPO objective replaces the original
A2C objective, and could also be applied to REINFORCE.

To understand this algorithm, we first need to consider
that we are performing the search of optimal policies in the
parameter space of 	, while the policies are sampled from
the policy space �. Thus, regular steps in the parameter
space do not translate to regular steps in the policy space,
where the optimal step size may vary depending on the
local geometry, and might result in too big or too small
policy steps. This is what eventually causes performance
collapse.

To avoid this issue, we consider a constraint to the
change in the policy space. We define the distance in the
objective between policies as [58]

J (π ′)− J (π) = Eτ∼π ′

[ T∑

t=0

γ tAπ(st, at)

]
, (22)

where π is the original policy, which we used to calcu-
late Aπ , and π ′ is the policy that we would obtain after the
parameter update. This is a measure of the performance of
the new policy, and our goal would be to maximize it. This
new maximization problem ensures that there is always a
monotonic positive improvement, since the worst possible
result would be to let π ′ = π , without any modification to
the policy.

Still, we cannot properly use this function as an objec-
tive function, because the expectation is performed by
sampling from the new policy, but the new policy is only
available after the update that would require said new pol-
icy. To solve this issue, we perform the sampling using the
old policy, but including importance sampling terms, the
ratio between new and old policies. Thus, the surrogate
objective [renamed J (π ′)] becomes an expectation over
the current policy π , as desired:

J (π ′) = Eτ∼π

[ T∑

t=0

γ tAπ(st, at)
π ′(at|st)

π(at|st)

]
. (23)

Optimization using this objective is still gradient ascent,
so this can become the new objective for the policy gra-
dient function. Lastly, we need to check that the error of
the estimation given by the approximation with importance
sampling is not big enough to no longer fulfill the condi-
tion of always having a positive distance in the objective
between policies. We know that, for sufficiently close poli-
cies, we can bind their error by their KL divergence [60].
We only need to ensure that the policy improvement is
bigger than this limit to accept a change. The application
of this constraint can be quite straightforward: we simply
need to constrain this KL divergence to be smaller than a
given value, δ. Thus, the problem becomes

max
θ

E

[
π ′(st, at)

π(st, at)
Aπ(st, at)

]

ensuring that Et{KL(π ′(st, at)||π(st, at))} ≤ δ.
(24)

We solve this problem using PPO with a clipped surro-
gate objective, a much simpler implementation doing away
with the need to compute the KL divergence. For this,
we define a hyperparameter ε to constrain the importance
sampling terms. Thus, we constrain the objective between
(1− ε)Aπ

t and (1+ ε)Aπ
t . The implementation is fairly
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simple, only needing to change the objective function from
A2C in line 12 of Algorithm 5 by this new function:

J CLIP(θ) = Et

{
min

[
π ′(st, at)

π(st, at)
Aπ(st, at),

clip
(

π ′(st, at)

π(st, at)
, 1− ε, 1+ ε

)
Aπ(st, at)

]}
.

(25)

Let us now describe our application of A2C and PPO to
our optimization problem. Since these algorithms involve
a larger amount of hyperparameters, we made use of exter-
nal packages to a more optimized implementation. The RL
problems themselves were implemented with the help of
the library Stable-Baselines3 [61], which features a set of
reliable RL algorithms using PyTorch. For the optimiza-
tion of the hyperparameters, we used the library Optuna
[62], an automatic hyperparameter optimization software
framework. Still, fundamentally, there is no change in the
algorithms themselves or their application.

The hyperparameters used in the implemented codes for
A2C and PPO are detailed in Tables IV and V in Appendix
A, respectively. Most of them were chosen and kept fixed
from the beginning, with only the last four entries of their
respective tables being optimized by the Optuna hyperpa-
rameter search. The hyperparameters of the said search
are available in Table VI in Appendix A. The training
results for both A2C and PPO are shown in Fig. 7, where
we again compare the best state found by the algorithms
and a random search; see Fig. 7(a) for A2C and Fig. 7(b)
for PPO. Both algorithms were trained for only 4000 full
episodes, since training with 105 episodes like in REIN-
FORCE yielded the exact same results. Following the
format from the rest of the paper, the algorithm is presented
in blue, the average in dark blue, and the standard devia-
tion in light blue, while the random search is presented in
orange. The random search algorithm results are always
obtained using 1000 runs, while for the RL algorithms, we
only considered those that were able to perform a reason-
able exploration of new found states, resulting in 11 for
A2C and 14 for PPO. Note that this is similar to having
considered a “pruning” procedure over exploration, and
does not consider how efficient those runs were in finding
good states, only new ones.

Figure 7(a) compares the A2C and random search algo-
rithms for a total number of 3500 states found, much
smaller than other algorithms. The A2C algorithm is able
to outperform the random algorithm slightly, in a simi-
lar fashion to REINFORCE, but it is not decidedly better.
Figure 7(b) compares the PPO and random search algo-
rithms for a total number of 1500 states found, an even
smaller number. The PPO algorithm is able to outperform
both the random search and A2C algorithms with much

(a)

(b)

FIG. 7. Training of both the A2C and PPO algorithms for our
physical problem of interest. (a) Evolution of the largest HTC
found as new states are explored for the A2C algorithm. The A2C
algorithm in blue versus a random search in orange. (b) Same as
in (a), but with the PPO algorithm instead. In both panels the
solid lines correspond to mean values and the shaded areas to
standard deviations, as obtained in 11 and 14 independent runs
of the A2C and PPO algorithms, respectively.

smaller exploration. However, it also presents a wider
standard deviation compared to the A2C algorithm.

We can more clearly describe these results by consid-
ering the statistics from the runs presented. For the 3500
found states in the study of A2C, the algorithm is able to
find one of the five configurations with highest HTC 36%
of the runs, finding the best configuration 9.1% of the runs.
In comparison, random search is only able to find one of
the best five configurations in 26.2% of the runs, and the
best one in 6.8% of them. For PPO, the results are even bet-
ter than for A2C with a much lower number of states. PPO
is able to find one of the best five configurations 29% of
the runs, with the best configuration 21% of the runs. Con-
versely, random search can only find one of the top five
configurations 12.3% of the runs, and 3.2% the configura-
tion with highest HTC. This makes PPO the best combined
method for our purposes, and a strong candidate for an RL
algorithm in these kinds of problem.
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V. DISCUSSION AND CONCLUSIONS

All algorithms employed in this work were able to
identify, with differing success, the best configuration
among the possibilities explored. This optimal 16-layer
configuration is shown in Fig. 8(a). Note that it differs
from the baseline configuration of Fig. 2(a), which corre-
sponds to the periodic structure that one would propose
based on physical intuition. The best state found by our
algorithms does not seem to have any particular symme-
try, although one can identify a periodic pattern forming
a “supercell”; see Fig. 8(a). This pattern is repeated 4

(a)

(b)

(c)

FIG. 8. Description of the best configuration found for the 16-
layer problem. (a) Schematic structure of the best state found. A
supercell structure is identified as a yellow shaded region on the
left subsystem. (b) Transmission of evanescent waves as a func-
tion of the frequency (ω) and the parallel wave vector (k) for the
optimal structure shown in panel (a). (c) Comparison between the
spectral HTC between the best state and the baseline of Fig. 2(b)
at room temperature (T = 300 K).

times in the whole system when taking into account the
gap—which is two dielectric layers wide—and both sub-
systems. The baseline configuration exhibits an HTC of
1.37× 105 W/m2K, while the best state found has an HTC
of 1.66× 105 W/m2K, 21% higher.

Figure 8(b) shows the transmission of evanescent waves
as a function of the frequency ω and the parallel wave
vector k for the optimal configuration. The transmission
pattern shows a series of narrow lines of values close
to unity, which, as explained in Sec. III, result from the
hybridization of the SPPs that are formed in the interfaces
between the metallic and dielectric layers, similar to the
baseline case in Fig. 2(b). We can notice some differences
when comparing the two: while in the baseline case the
lines all joined to form the same structure, in the opti-
mal configuration we find a sizeable gap between some
of the lines, likely stemming from the supercell structure
mentioned above. This implies that their radiative heat
transfer behavior is clearly different. In Fig. 8(c) we com-
pare the spectral HTC hω of both the baseline [also shown
in Fig. 2(c)] and the best state found. We can see that both
present the main central resonant peak, but that of the base-
line is higher while the best state has a higher value in
many other frequencies, with a notable secondary maxi-
mum at lower frequencies. The integration of these spectra
over frequency yields the total HTC values mentioned at
the end of the previous paragraph.

So far, we have focused our study on the case of 16
active layers. This case is complex enough for the illus-
tration of RL techniques, while still being small enough
that we only have about 65 000 possible configurations.
Thus, we can directly find out which state has the high-
est HTC by simply analyzing all of them. To show that
the RL methods reported here can also be applied to prob-
lems in which we do not know the solution beforehand,
we consider now the case with 24 active layers, where the
total number of states is about 17× 106. We used the exact
same techniques as before, but taking as the baseline the
perfectly periodic case with 24 layers instead of 16. We
solved this problem using the double DQN algorithm, the
value-based algorithm that showed the highest efficiency
in the previous section, for 20 independent runs and 2500
training steps. The results for the largest HTC are shown
in Fig. 9. They were obtained using the optimal hyper-
parameters found for the 16-layer problem. Compared to
the results discussed above, the RL algorithm surpasses the
random algorithm after a few thousand explored states. In
addition, note that the random algorithm reaches a mean
value of 1.617× 105 W/m2K, while the RL algorithm
yields 1.673× 105 W/m2K, which in turn overcomes the
value of the baseline state (1.623× 105 W/m2K). This
shows again that we can beat the physical intuition with the
proper use of RL, reaching a state with an HTC value of
1.807× 105 W/m2K. Therefore, this analysis shows that
the double DQN algorithm can be successfully applied to
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FIG. 9. Largest HTC discovered as a function of the number of
found states in the problem with 24 active layers obtained with
the double DQN algorithm. We also present the results obtained
with the random algorithm. The solid lines correspond to mean
values and the shaded area to standard deviations, as obtained in
20 independent runs of both algorithms.

a state space for which the computation of the HTC of all
its states is not feasible in a reasonable amount of time.

So, in summary, we have shown in this work how RL
can be used to tackle optimization problems in the con-
text of radiative heat transfer. As an illustration, we have
addressed the maximization of the NFRHT between hyper-
bolic metamaterials made of a combination of metallic
and dielectric layers. This problem is quite generic and
contains the basic ingredients of most optimization prob-
lems in the field of thermal radiation. Our work demon-
strates that these problems can be naturally formulated as
a sequential decision-making problem and, therefore, they
are susceptible to be tackled with RL methods. It is worth
remarking that one could address inverse design prob-
lems in the same way by simply redefining the objective
function.

In the physical problem studied in this work, we have
shown that essentially all RL algorithms are able to find
near optimal solutions, albeit with different efficiencies. In
our case, we have found that the double DQN algorithm

is the most efficient, with the PPO algorithm also provid-
ing high-quality results. While the PPO algorithm finds the
top five HTC values less frequently than the double DQN
algorithm, it explores substantially fewer states and is still
able to find the best ones much more reliably than the ran-
dom algorithm. Therefore, both algorithms present their
pros and cons in the application to our particular problem.
In any case, we have provided a comprehensive guide on
how to utilize in practice most of the key RL algorithms.
Thus, we hope that our work will help other researchers to
employ RL techniques as part of their toolkit for the inves-
tigation of optimization and inverse design problems in the
context of radiative heat transfer and related topics.

The codes for the different RL algorithms used in this
work are available from GitHub [63].
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APPENDIX: HYPERPARAMETERS

In Tables I–V we summarize the hyperparameters used
in the different algorithms employed in this work. In
particular, we describe their meanings and roles.

TABLE I. Hyperparameters of the SARSA algorithm. SELU stands for scaled exponential linear unit and MAE for mean absolute
error.

Variable name Value Description

hidden layers 4 Number of hidden layers of the neural network
hidden neurons 64 Number of neurons of each one of the hidden layers
activation function SELU Activation function of the neurons
loss function MAE Loss function to evaluate the performance of the neural network
optimizer Adam Optimizer during training
γ 0.99 Discount rate parameter
episode length 64 Number of steps per episode
ε 1 Initial value of the epsilon parameter
ε decay 4× 10−5 Value to reduce epsilon each training step
ε minimum 10−3 Minimum reachable epsilon value
α 10−3 Value of the learning rate parameter
α decay 0 Value to reduce the learning rate each training step
batch size 32 Number of experiences to process each training step
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TABLE II. Hyperparameters of the double DQN algorithm.

Variable name Value Description

hidden layers 4 Number of hidden layers of the neural network
hidden neurons 64 Number of neurons of each one of the hidden layers
activation function SELU Activation function of the neurons
loss function MAE Loss function to evaluate the performance of the neural network
optimizer Adam Optimizer during training
γ 0.99 Discount rate parameter
episode length 64 Number of steps per episode
ε 1 Initial value of the epsilon parameter
ε decay 9× 10−5 Epsilon decay each training step
ε minimum 10−3 Minimum reachable epsilon value
α 10−4 Value of the learning rate parameter
α decay 0 Value to reduce the learning rate each training step
batch size 32 Number of experiences to process each training step
B 4 Number of batches processed each training step
K 104 Memory size, maximum number of experiences stored in memory
h 4 Number of new experiences added each training step
F 5× 103 Number of train steps to update the target network

TABLE III. Hyperparameters of the REINFORCE algorithm.

Variable name Value Description

hidden layers 4 Number of hidden layers of the neural network
hidden neurons 64 Number of neurons of each one of the hidden layers
activation function SELU Activation function of the neurons
optimizer Adam Optimizer during training
α 3× 10−5 Value of the learning rate parameter
γ 0.99 Discount rate parameter
episode length 32 Number of experiences in an episode
n episodes 105 Number of episodes in training

TABLE IV. Hyperparameters of the A2C algorithm.

Variable name Value Description

hidden layers 4 Number of hidden layers of the neural network; same for the actor and critic networks
hidden neurons 100 Number of neurons of each one of the hidden layers; same for the actor and critic networks
activation function SELU Activation function of the neurons
loss function MAE Loss function to evaluate the performance of the critic network
optimizer Adam Optimizer during training
episode length 32 Number of experiences in an episode
n episodes 105 Number of episodes in training
gradient clip True Use of gradient clipping
vf coef 1/2 Constant to weight the value function loss
use rms prop False Use RMSProp instead of Adam
γ 0.946 45 Discount rate parameter
α 3.53× 10−4 Value of the learning rate parameter
λ 0.997 Value of the GAE exponential factor
max grad 1.285 Maximum gradient in the optimization step, gradient clipping
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TABLE V. Hyperparameters of the PPO algorithm.

Variable name Value Description

hidden layers 4 Number of hidden layers of the neural network; same for the actor and critic networks
hidden neurons 100 Number of neurons of each one of the hidden layers; same for the actor and critic networks
activation function SELU Activation function of the neurons
loss function MAE Loss function to evaluate the performance of the critic network
optimizer Adam Optimizer during training
episode length 32 Number of experiences in an episode
n episodes 105 Number of episodes in training
ε 0.2 Clipping range for the importance sampling terms
batch size 32 Batch size for the PPO algorithm training
gradient clip True Use of gradient clipping
vf coef 1/2 Constant to weight the value function loss
γ 0.999 88 Discount rate parameter
α 6.24× 10−5 Value of the learning rate parameter
λ 0.871 Value of the GAE exponential factor
max grad 4.042 Maximum gradient in the optimization step, gradient clipping

TABLE VI. Hyperparameters of the Optuna search algorithm for A2C and PPO.

Variable name Value Description

n configs 100 Number of hyperparameter configurations studied
n steps 105 Number of experiences explored each configuration
sampler TPESampler Sampler chosen to choose the next configuration
pruner Median Method of pruning a configuration choice
n startup 5 Number of configurations before starting the pruner
n warmup 3.33× 104 Experiences before checking for pruning
γ range [0.9, 0.9999] Range of exploration values for the γ parameter
α range [10−6, 10−3] Range of exploration values for the α parameter
λ range [0.0, 1.0] Range of exploration values for the λ parameter
max grad range [0.5, 5.0] Range of exploration values for the max grad parameter
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