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Mechanical relations between conductive and radiative heat transfer
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We present a general nonequilibrium Green’s function formalism for modeling heat transfer in systems
characterized by linear response that establishes the formal algebraic relationships between phonon and radiative
conduction, and reveals how upper bounds for the former can also be applied to the latter. We also propose
an extension of this formalism to treat systems susceptible to the interplay of conductive and radiative heat
transfer, which becomes relevant in atomic systems and at nanometric and smaller separations where theoretical
descriptions which treat each phenomenon separately may be insufficient. We illustrate the need for such coupled
descriptions by providing predictions for a low-dimensional system of carbyne wires in which the total heat
transfer can differ from the sum of its radiative and conductive contributions. Our framework has ramifications
for understanding heat transfer between large bodies that may approach direct contact with each other or that
may be coupled by atomic, molecular, or interfacial film junctions.

DOI: 10.1103/PhysRevB.102.085404

Characterizing radiative and conductive heat transfer at the
nanoscale is essential to understanding the operation of a wide
variety of systems and technologies, including heat sinks,
thermoelectric devices, thermal microscopy, thermal magnetic
recording devices, coherent thermal sources, optoelectronic
and optomechanical devices, and thermophotovoltaic devices
[1–10]. Much progress has been made toward experimentally
measuring heat conduction by phonons in molecular junctions
and interfaces at contact [11–17], as well as radiative heat
transfer between objects at separations �10 nm [4,18–24].
Most commonly, conduction in the linear response regime
is described atomistically using the nonequilibrium Green’s
function (NEGF) method [2,5–8,25–30], while radiative heat
transfer is modeled through continuum fluctuational electro-
dynamics [4,9,31–34]. However, recent experiments [35–38]
have yielded conflicting accounts of the nature of heat transfer
in the extreme near field (ranging from subnanometric sep-
arations to �10 nm), raising questions about the interplay
between conduction and radiation at such small separations.
Simultaneously, recent theoretical works [8,39–45] have be-
gun to shed light on the connections between the formalisms
of conductive (whether electronic or phononic) and radia-
tive heat transfer, but these have typically been subject to
restrictions including neglect of electromagnetic retardation
and consideration of translationally symmetric systems like
planar sheets or slabs. In this paper we present a unified lin-
ear response formalism that can describe phonon conductive
heat transfer (PCHT) and radiative heat transfer (RHT) for
arbitrary geometries and separations. The approach puts de-
scriptions of both effects on the same algebraic footing, which
is useful for drawing mathematical and physical analogies.
For illustration, we demonstrate that recent analytical upper

limits on PCHT can be applied to RHT, and further show that
our framework can be used to describe situations where both
effects couple and contribute significantly to net heat transfer,
of particular relevance to recent and ongoing experiments at
the nanoscale [4,21,35–38].

Nanoscale PCHT has thus far been treated through atom-
istic theoretical frameworks primarily using one of two classes
of methods. One approach is the so-called NEGF method
[2,5–8,25–30], typically used to model heat transfer between
two large or semi-infinite metallic or polar dielectric leads
across a junction, taken to be either a single atom or molecule
or a thin interfacial film; this method has not been applied
so much to smaller material bodies exchanging heat. The
NEGF method models each material body as being made of
atoms, each of which corresponds to harmonic oscillator de-
grees of freedom along each Cartesian direction representing
chemical bonds between neighboring atoms, whose strengths
are typically computed via density functional theory. This
harmonic model is a frequency domain method, and is valid at
temperatures �500 K, when the spatial dimensions relevant to
energy transport between the bodies under consideration are
smaller than the phonon mean free path in the material, and
when other tunable anharmonicities are negligible [2,8,29]. It
is this NEGF method that we use to treat PCHT in this work,
which is why we consistently use the term PCHT to specifi-
cally refer to coherent thermal phonon transport in the linear
regime under the aforementioned conditions. Another typical
approach for modeling PCHT is based on molecular dynamics
[30,46–49], which is a time domain method that captures
anharmonicity in short- and long-range interactions but fre-
quently requires complicated empirical functional forms for
interaction potentials.
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RHT is typically treated using fluctuational electrodynam-
ics, in which material bodies are modeled to have continuum
susceptibilities that respond to EM fields propagating between
them. Recent analytical and computational formulations in-
clude discrete dipolar and multipolar methods [50–54], scat-
tering matrix methods [1,33,34,55–57], finite-difference time
domain techniques [31,58,59], and surface or volume integral
equation methods [9,32,60]. With the exception of finite-
difference time domain methods, all of the other methods
discussed are frequency domain methods, which require linear
media; however, unlike the case of PCHT, the assumption of
linear response is valid under a much broader range of scenar-
ios (including temperature ranges) of relevance to RHT. These
methods capture long-range EM effects, but their tendency to
use semi-empirical rather than ab initio calculations makes
them best suited for separations �10 nm, and their typical
neglect of nonlocality and boundary effects at the atomic scale
can lead to unphysical predictions as the objects undergoing
RHT approach contact. The fact that current experiments are
beginning to probe smaller systems [35–37] suggests a need
for better understanding of the connections between PCHT
and RHT at nanoscale and smaller separations.

Our paper is organized as follows. In Sec. I we explain the
general NEGF formalism for computing heat transfer in a sys-
tem of massless bosonic excitations exhibiting linear response
in different collections of bosonic degrees of freedom, which
we generically call “components.” We derive Landauer-like
formulas for the spectrum of energy exchange between any
two components, either coupled directly to one another or
by a third, and then derive fully general Landauer bounds
on heat transfer from them, decomposing the spectrum into
transmission channels and bounding the transmission in each
channel above by unity. We then explain the relationship
between the general NEGF formalism and its application to
PCHT and RHT, described in Secs. II and III, respectively.
In Sec. IV we identify the relevant components and their
couplings, and further clarify the analogies between PCHT
and RHT, making it abundantly clear that RHT and PCHT
are simply different manifestations of the same abstract prin-
ciples of energy transport in linear systems. Beyond simply
highlighting the abstract connections between the formalisms,
in Sec. V we apply the general NEGF formalism to consider
PCHT and RHT in a unified manner. We show that far from
overcomplicating matters, such a unification is necessary in
certain regimes. In particular, we consider a model system
consisting of collinear atomically thin wires, and show that
the resulting net heat transfer power does not simply follow
from the sum of the individual radiative and conductive con-
tributions, and may in fact fall below either or both of these
contributions. Such an illustration is made possible by an
extension of the retarded many-body framework of mesoscale
fluctuational EM [61–63], which can account for atom-scale
features of material response. Concluding remarks are given
in Sec. VI.

I. GENERAL LINEAR RESPONSE NEGF FORMALISM
FOR HEAT TRANSFER

Consider a generic system exhibiting generalized displace-
ments labeled x(t ), which may represent electronic wave func-
tions, collective nuclear oscillations giving rise to phonons,

EM fields, or other oscillatory phenomena, and respond lin-
early to generalized forces labeled F (t ). These degrees of
freedom (DOFs) constitute collections which we generically
call “components.” Each component exhibits linear equations
of motion representing its internal dynamics in isolation and
in response to external forces, and each component may
be linearly coupled to other components leading to energy
transport among them. The following sections will make
clear the identities of the components, couplings, generalized
displacements, and generalized forces in different systems of
interest, like PCHT or RHT; this section focuses on deriving
relevant fully general formulas for energy transport among
generic coupled components.

Generically, in the time domain, the power radiated or
absorbed by a component may be written as Ẇ = 〈F (t ) ∂x

∂t 〉.
Here 〈· · · 〉 denotes a time average in the steady state, which
is equivalent to an ensemble average due to ergodicity. As we
have specified that the internal dynamics and couplings are
linear, we may equivalently work in the frequency domain,
making it easier to apply the fluctuation-dissipation theorem
[64] and thereby replace such ensemble averages with deter-
ministic quantities representing the dissipation of the system.

In the frequency domain (where we will generally suppress
dependence on angular frequency ω in the notation) we label
these generalized displacements as |x〉 and the generalized
forces as |F 〉, as these quantities are vectors in a complex
Hilbert space with the standard inner product. One of the
operators relevant to this Hilbert space are the dynamical
operator Ẑ (0), representing the dynamical equations of mo-
tion for each component in isolation, and can equivalently
be seen as a generalized impedance or spring constant; its
inverse Ŷ (0) = Ẑ (0)−1 represents a generalized admittance for
the components in isolation, such that an external force |F (0)〉
on the components in isolation produces a total displacement
|x〉 = Ŷ (0)|F (0)〉. However, energy exchange among compo-
nents is only possible if couplings are present: as will become
clearer later, these couplings may act directly between com-
ponents, or may act through other components whose equa-
tions are eliminated, resulting in effective self-couplings for
the remaining components. These couplings are generically
represented by the linear operator �Ẑ: the force |F 〉 on other
components due to a displacement |x〉 from equilibrium of a
given component can be written as |F 〉 = −�Ẑ|x〉.

We generally assume this system to be reciprocal, which
physically implies an equivalence between emission of energy
by sources and absorption of energy by receivers; mathemat-
ically, in this complex Hilbert space, Ẑ (0) = Ẑ (0)� and �Ẑ =
�Ẑ� hold, where � denotes the transpose without conjugation
and not the Hermitian adjoint †, and reciprocity of related
operators follows from these relations. Additionally, causality,
which physically implies response functions lag their source
functions in the time domain, is mathematically expressed
in the frequency domain as the condition that Ŷ (0)(−ω�) =
Ŷ (0)�(ω) for any complex frequency ω. Passivity, which physi-
cally implies that the system may conserve or dissipate energy
(as in a lossy medium) but not amplify energy (as in a
gain medium), is mathematically expressed as the condition
that asym(Y (0) ), which represents the dissipative contribution
to the response of the uncoupled components, is Hermitian
positive-definite (in the space of its own support) for any
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real positive frequency ω [33]; we have defined asym(Â) ≡
(Â − Â†)/(2i) for any operator Â.

We now turn to the equations of motion for this system in
the presence of coupling between its different components. In
particular, the total generalized displacement can be written
as the sum of the initial displacement |x(0)〉 and the response
of the components Ŷ (0), in isolation, to the total generalized
force |F 〉; in order to avoid double-counting various contri-
butions, the total generalized force simply arises from the
total displacements through the couplings between different
components �Ẑ , as we assume that no other external forces
contribute to the system dynamics, and these couplings are
the only way for energy to be transmitted among different
components. Mathematically this is written as

|x〉 = |x(0)〉 + Ŷ (0)|F 〉,
(1)

|F 〉 = −�Ẑ|x〉,
and we formally solve this to yield

|x〉 = Ŷ Ẑ (0)|x(0)〉, (2)

where we define the total response Ŷ = Ẑ−1 in terms of
the total equations of motion (generalized impedance) Ẑ =
Ẑ (0) + �Ẑ . We stress that the total response Ŷ satisfies the
same reciprocity, causality, and passivity properties as the
decoupled response Ŷ (0).

At this point we specify that the system can be partitioned
into N components, with each component labeled n specifying
a certain set of DOFs; the operator Ẑ (0) (and also Ŷ (0) by
extension) can be written as a block-diagonal matrix as it
represents the equations of motion of each component in the
absence of coupling between components, so if P̂n is a projec-
tion into the subspace supported by the DOFs of component
n, then each diagonal block of Ẑ (0) is Ẑ (0)

n = P̂nẐ (0)P̂n, and
likewise each diagonal block of Ŷ (0) is Ŷ (0)

n = P̂nŶ (0)P̂n, with
Ŷ (0)

n = Ẑ (0)−1
n . (We note that Ẑ and Ŷ will generally not be

block-diagonal with respect to the different components.)
If each component n is maintained independently at a cor-

responding temperature Tn (uniformly for all of the DOFs con-
stituting that component), then we may write the frequency-
domain fluctuation-dissipation theorem as

P̂m〈|x(0)(ω)〉〈x(0)(ω′)|〉P̂n

= 2�(ω, Tn)

ω
asym

[
Ŷ (0)

n (ω)
]
δmn × 2πδ(ω − ω′), (3)

where 〈· · · 〉 represents the quantum statistical expecta-
tion value; our use of the Planck function �(ω, T ) =
h̄ω
2 coth ( h̄ω

2kBT ) implicitly assumes that all DOFs we consider,
when quantized, obey Bose statistics with no chemical po-
tential, which is appropriate for EM fields and for coupled
mechanical oscillators under consideration. We also point
out that the use of asym(Ŷ (0)

n ), as opposed to asym[(Ẑ (0)
n +

�Ẑnn)−1] if P̂n�ẐP̂n = �Ẑnn �= 0, is valid because the former
includes dissipation only within component n, whereas the
latter may implicitly include dissipation in other coupled
components that have been eliminated. In order to compute
the heat transfer from component m to component n, we
account only for fluctuations in component m, so that |x(0)〉 =
P̂m|x(0)〉 will hold, and compute the work done on component

n according to |F 〉 = −P̂n�Ẑ|x〉 where |x〉 = Ŷ Ẑ (0)P̂m|x(0)〉.
We then write the absorbed power (energy transfer) as Ẇ =∫ ∞
−∞

∫ ∞
−∞ 〈Tr [−iωP̂n|x(ω)〉〈F (ω′)|P̂n] e−i(ω−ω′ )t 〉 dωdω′

(2π )2 . Alge-
braic manipulations involving the definitions of |x〉 and |F 〉,
along with the fluctuation-dissipation theorem in (3) applied
to |x(0)〉 and the causality properties of the relevant response
quantities, yield

Ẇ = 2

π

∫ ∞

0
�(ω, Tm)

× Tr[P̂m asym(Ẑ (0)†)P̂mŶ † asym(P̂n�Ẑ )Ŷ P̂m]dω

as the gross energy transfer from component m at temperature
Tm to component n among a collection of an arbitrary number
of thermalized components. From this we define the NEGF
energy transfer spectrum between components m and n as

	(m)
n = 4 Tr[P̂m asym(Ẑ (0)†)P̂mŶ † asym(P̂n�Ẑ )Ŷ P̂m] (4)

independently of the temperature of each component, while
the integrated net power transfer can be written as

Ẇm→n =
∫ ∞

0
[�(ω, Tm) − �(ω, Tn)]	(m)

n

dω

2π
(5)

in terms of the component temperatures Tm and Tn.
Furthermore, the heat transfer coefficient (thermal
conductance) between two components may be derived
by replacing �(ω, Tm) − �(ω, Tn) in the integrand with
limTm→Tn

�(ω,Tm )−�(ω,Tn )
Tm−Tn

= ∂
∂T �(ω, T ). It is worth noting

that reciprocity, which has not been exploited in these
derivations thus far, is required to show that 	(m)

n = 	(n)
m at

each frequency.
The formula for 	(m)

n in (4) is valid for any num-
ber of components maintained at their own uniform
temperatures, and constitutes a generalization of Lan-
dauer/Caroli formulas often used to describe PCHT and RHT
[2,28,29,31,33,42,43,61,65,66]. The most fruitful analogies
between RHT and PCHT can be extracted from consideration
of heat transfer between two components, through direct
contact or via contact with a third component. In what follows,
we derive formulas for both situations: the first situation is
most relevant to RHT between two bodies or PCHT combined
with RHT between two bodies in direct contact, while the sec-
ond situation is most relevant to PCHT combined with RHT
between two bodies via a third intermediate body (typically a
thin interface or a small atomic or molecular junction), though
it can also be applied to formally deriving expressions for
RHT between two bodies.

A. Two components in direct contact

For two components, labeled 1 or 2, in direct contact
with each other, we may write the operators Ẑ (0) and �Ẑ
describing the equations of motion and couplings among these
components may be written as 2 × 2 block matrices

Ẑ (0) =
[

Ẑ (0)
1 0

0 Ẑ (0)
2

]
, (6)

�Ẑ =
[
�Ẑ1,1 �Ẑ1,2

�Ẑ2,1 �Ẑ2,2

]
, (7)
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which in turn implies that

Ŷ (0) =
[

Ŷ (0)
1 0

0 Ŷ (0)
2

]
(8)

must also hold; the existence of nontrivial diagonal and off-diagonal blocks in �Ẑ typically arises from couplings to other
components that are mathematically eliminated in favor of these two components. Evaluation of the energy transfer spectrum
(4) requires inversion of these block matrices of operators, which is saved for Appendix A for the sake of brevity in this section.
The result is written as

	 = 4 Tr
[

asym
(
Ẑ (0)†

1

)(
Ẑ (0)†

1 + �Ẑ†
1,1

)−1[
1̂ − �Ẑ†

2,1

(
Ẑ (0)†

2 + �Ẑ†
2,2

)−1
�Ẑ†

1,2

(
Ẑ (0)†

1 + �Ẑ†
1,1

)−1]−1

× �Ẑ†
2,1

(
Ẑ (0)†

2 + �Ẑ†
2,2

)−1
asym

(
Ẑ (0)†

2

)(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1

× [
1̂ − (

Ẑ (0)
1 + �Ẑ1,1

)−1
�Ẑ1,2

(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
]−1(

Ẑ (0)
1 + �Ẑ1,1

)−1]
(9)

and as asym (Ẑ (0)†
1 ) and asym(Ẑ (0)†

2 ) are Hermitian positive-semidefinite operators with well-defined Hermitian square roots,
then the energy transfer spectrum is nonnegative. Exploiting this further allows for factorizing asym(Ẑ (0)†

n ) = [asym(Ẑ (0)†
n )1/2]2

for each component n ∈ {1, 2}, and rearranging the trace allows for writing

	(ω) = 4
∥∥ asym

(
Ẑ (0)†

2 )1/2
(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
[
1̂ − (

Ẑ (0)
1 + �Ẑ1,1

)−1
�Ẑ1,2

(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
]−1

× (
Ẑ (0)

1 + �Ẑ1,1
)−1

asym
(
Ẑ (0)†

1

)1/2∥∥2
F, (10)

where ‖Â‖F =
√

Tr[Â†Â] is the Frobenius norm. This is the
general NEGF formula for the energy transfer spectrum be-
tween two components in direct contact, in terms of their
individual and mutual responses.

B. Two components coupled via an intermediate component

We now consider the case of the two components, labeled
1 or 2, which are coupled only to a third intermediate compo-
nent, labeled 3, but not directly to each other. Mathematically,
this means the operators Ẑ (0) and �Ẑ describing the equations
of motion and couplings among these components may be
written as 3 × 3 block matrices

Ẑ (0) =

⎡
⎢⎣

Ẑ (0)
1 0 0

0 Ẑ (0)
2 0

0 0 Ẑ (0)
3

⎤
⎥⎦, (11)

�Ẑ =

⎡
⎢⎣

0 0 �Ẑ1,3

0 0 �Ẑ2,3

�Ẑ3,1 �Ẑ3,2 0

⎤
⎥⎦, (12)

which in turn implies that

Ŷ (0) =

⎡
⎢⎣

Ŷ (0)
1 0 0

0 Ŷ (0)
2 0

0 0 Ŷ (0)
3

⎤
⎥⎦ (13)

must also hold, where the vanishing of the components
�Ẑ1,2 = (�Ẑ2,1)� follows from the assumption that compo-
nents 1 and 2 have no direct coupling to each other; we
also point out that compared to the general two-component
formula, here we do not include couplings between a given
component and itself (i.e., �Ẑ has vanishing diagonal blocks),
as we assume that there are no other components which we

have implicitly eliminated. Once again leaving the details to
Appendix B, and again making use of the fact that asym(Ŷ (0)

1 )
and asym(Ŷ (0)

2 ) are Hermitian positive-semidefinite operators
to factorize the trace expression, we write (4) as

	(ω) = 4
∥∥ asym

(
Ŷ (0)

2

)1/2
�Ẑ2,3

× (
Ẑ (0)

3 − �Ẑ3,1Ŷ
(0)

1 �Ẑ1,3 − �Ẑ3,2Ŷ
(0)

2 �Ẑ2,3
)−1

× �Ẑ3,1 asym
(
Ŷ (0)

1

)1/2∥∥2
F (14)

so that all operator products may be evaluated in the space
of component 3. This is the general NEGF formula for the
energy transfer spectrum between two components in contact
only with a third in terms of their individual responses and
mutual couplings.

In the previous subsection it was noted that for heat trans-
fer between two components that are directly coupled, the
couplings �Ẑmn for m, n ∈ {1, 2} (particularly the diagonal
blocks) often arise from mathematically eliminating another
component to which these two components are coupled, even
if those are the only couplings. At this point we rigorously
prove this equivalence for the specific case where the two
components are physically coupled only to a third component.
We start by rewriting (2) in terms of the degrees of freedom
of the three components and noting that |x(0)〉 = P̂1|x(0)〉 can
be used when considering energy transfer from component 1
to component 2. Explicitly, this means writing

⎡
⎢⎣

Ẑ (0)
1 0 �Ẑ1,3

0 Ẑ (0)
2 �Ẑ2,3

�Ẑ3,1 �Ẑ3,2 Ẑ (0)
3

⎤
⎥⎦

⎡
⎢⎣

|x1〉
|x2〉
|x3〉

⎤
⎥⎦ =

⎡
⎣Ẑ (0)

1

∣∣x(0)
1

〉
0
0

⎤
⎦

and then eliminating |x3〉 = −Ŷ (0)
3 (�Ẑ3,1|x1〉 + �Ẑ3,2|x2〉).

This yields the simpler equation in terms of 2 × 2 block
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matrices[
Ẑ (0)

1 − �Ẑ1,3Ŷ
(0)

3 �Ẑ3,1 −�Ẑ1,3Ŷ
(0)

3 �Ẑ3,2

−�Ẑ2,3Ŷ
(0)

3 �Ẑ3,1 Ẑ (0)
2 − �Ẑ2,3Ŷ

(0)
3 �Ẑ3,2

][|x1〉
|x2〉

]

=
[

Ẑ (0)
1 |x(0)

1 〉
0

]
,

where the replacements

Ẑ (0) →
[

Ẑ (0)
1 0

0 Ẑ (0)
2

]
,

�Ẑ →
[
−�Ẑ1,3Ŷ

(0)
3 �Ẑ3,1 −�Ẑ1,3Ŷ

(0)
3 �Ẑ3,2

−�Ẑ2,3Ŷ
(0)

3 �Ẑ3,1 −�Ẑ2,3Ŷ
(0)

3 �Ẑ3,2

]

may be made. Hence, the remainder of the derivation
of the expression for heat transfer is the same,
as (3) for component 1 and the expression Ẇ =∫ ∞
−∞

∫ ∞
−∞〈Tr[−iωP̂2|x(ω)〉〈F (ω′)|P̂2]e−i(ω−ω′ )t 〉 dωdω′

(2π )2 for
the power transfer are both unchanged, thereby proving the
equivalence between the two expressions [Eqs. (10) and (14)]
for the general NEGF energy transfer spectrum with these
identifications in mind.

Writing the energy transfer spectrum as (14) cannot only
clarify analogies between PCHT and RHT, but it also nat-
urally leads to expressions for upper bounds on the spec-
trum. To derive such bounds, it will be helpful to define the
operators 
̂n = �Ẑ†

n,3 asym(Ŷ (0)
n )�Ẑn,3, being the dissipation

of each component n ∈ {1, 2} multiplied by the correspond-
ing couplings to component 3, and the Green’s function of
component 3

Ŷ3 ≡ (
Ẑ (0)

3 − �Ẑ3,1Ŷ
(0)

1 �Ẑ1,3 − �Ẑ3,2Ŷ
(0)

2 �Ẑ2,3
)−1

, (15)

which is modified from its bare value Ŷ (0)
3 due to couplings

to components 1 and 2. Given this, we will show that the
energy transfer spectrum can be written in the Landauer form
[2,3,8,28] as 	 = ‖t̂‖2

F where t̂ = 2
̂
1/2
2 Ŷ3
̂

1/2
1 . The goal then

will be to place bounds on the eigenvalues of t̂†t̂ at each ω. The
fact that t̂†t̂ is Hermitian positive-semidefinite makes clear
that its eigenvalues, called the transmission eigenvalues (as t̂†t̂
is like a transmission intensity matrix), are all nonnegative,
placing a lower bound on their values. The following will
show how to derive upper bounds of unity on the transmission
eigenvalues.

The derivations thus far have actually not made use of the
reciprocity of the system, namely that Ẑ (0)

3 = Ẑ (0)�
3 , Ẑ (0)

n =
Ẑ (0)�

n , and �Ẑn,3 = �Ẑ�
3,n for n ∈ {1, 2}, but these reciprocity

relations are needed for the upper bounds on the transmis-
sion eigenvalues. Additionally, two further assumptions are
needed, namely that asym(Ẑ (0)

3 ) → 0, and that the block ma-
trices �Ẑn,3 for n ∈ {1, 2} are purely real. These assumptions
will later be justified for the particular cases of PCHT as well
as RHT.

With this, it can be seen that asym(Ŷ3) = Ŷ †
3 asym(Ŷ −1†

3 )Ŷ3.
Expanding the middle term after exploiting asym(Ẑ (0)

3 ) = 0
gives asym(Ŷ −1

3 ) = −
̂1 − 
̂2, as the real-valued and
reciprocal nature of �Ẑn,3 imply �Ẑ3,n asym(Ŷ (0)

n )�Ẑn,3 =
�Ẑ†

n,3 asym(Ŷ (0)
n )�Ẑn,3 for n ∈ {1, 2}. This means

asym(Ŷ −1†
3 ) = − asym(Ŷ −1

3 ) = 
̂1 + 
̂2. Therefore, asym
(Ŷ3) = Ŷ †

3 (
̂1 + 
̂2)Ŷ3. This expression may be rearranged as
Ŷ †

3 
̂1Ŷ3 + Ŷ †
3 
̂2Ŷ3 − asym(Ŷ3) = 0, and as 
̂1 is Hermitian

positive-semidefinite, then 
̂
1/2
1 exists, so this expression

may be multiplied on the left and right by 2
̂
1/2
1 to yield

t̂†t̂ + 4
̂
1/2
1 Ŷ †

3 
̂1Ŷ3
̂
1/2
1 − 2

i (
̂1/2
1 Ŷ3
̂

1/2
1 − 
̂

1/2
1 Ŷ †

3 
̂
1/2
1 ) =

0, where as a reminder, t̂ = 2
̂
1/2
2 Ŷ3
̂

1/2
1 . Finally,

adding the identity operator 1̂ to both sides yields
t̂†t̂ + 4
̂

1/2
1 Ŷ †

3 
̂1Ŷ3
̂
1/2
1 − 2

i (
̂1/2
1 Ŷ3
̂

1/2
1 − 
̂

1/2
1 Ŷ †

3 
̂
1/2
1 ) +

1̂ = 1̂. This expression can be rewritten as t̂†t̂ + (1̂ −
2
i 
̂

1/2
1 Ŷ3
̂

1/2
1 )†(1̂ − 2

i 
̂
1/2
1 Ŷ3
̂

1/2
1 ) = 1̂, showing that t̂†t̂ is

added another Hermitian positive-semidefinite operator to
yield the identity. Therefore, the eigenvalues of t̂†t̂ can never
exceed 1, matching the prior expressions [28,29,66,67].
Additionally, because the operator 1̂ − 2

i 
̂
1/2
1 Ŷ3
̂

1/2
1 is not

the zero operator, its rank must be at least 1, meaning at
least one of its eigenvalues must be strictly positive; in
turn, at least one of the eigenvalues of t̂†t̂ must be strictly
less than 1. We stress that whenever heat transfer between
two components that are directly coupled can be physically
equated to heat transfer between the same two components
with effective couplings only via a third (possibly aggregate)
component, these transmission eigenvalue bounds must hold
for that system. Additionally, we expect that even if �Ẑ
were to have nonzero blocks other than �Ẑn,3 (and their
transposes) for components n ∈ {1, 2}, which could represent
more general heat transfer between a pair of components
among a collection of N components (for any integer N � 3)
by virtue of aggregating the other components into an overall
third intermediate component, similar bounds should hold in
general, though we do not prove that statement; put simply,
Landauer bounds of unity should hold for each channel even
between two components connected via a third where each
of these components could in principle be connected to many
other components in turn.

II. APPLICATIONS TO PCHT

The general NEGF formalism and expression for the en-
ergy transfer spectrum (4) applies to PCHT among a col-
lection of material bodies, modeled as effective harmonic
oscillators connected to each other via harmonic short- or
long-range couplings, each maintained at separate uniform
temperatures . Prior works have typically focused on PCHT
between two large bodies, typically leads acting as thermal
reservoirs, exchanging heat via harmonic coupling through a
third small body in between, typically a molecular junction
or a thin interfacial film; computationally, this has the benefit
of allowing most matrix evaluations to occur in the much
smaller space of the intermediate body as opposed to the
larger space of one of the leads. Given this, in what follows,
we derive the equations of motion for collective atomic os-
cillations effecting phonons from the Lagrangian for three
bodies, each comprising collections of coupled oscillators
with masses mαa, displacements xαai, and spring couplings
Kαai,βb j for body labels α, β ∈ {1, 2, 3}, atomic labels a, b, c
within each body, and Cartesian indices i, j, k ∈ {x, y, z}, with
sources only in body α = 1 denoted x(0)

1ai. Note for comparison
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with previous work that bodies 1 and 2, representing infinite
reservoirs (leads), are typically labeled L and R, while body
3, representing an compact intermediate (central) device, is
typically labeled C. We emphasize that while our derivations
focus on the particular case of two bodies connected to a
third in order to make connections to past work clearer, the
correspondence between abstract linear operators and specific
quantities of interest to PCHT is easily generalized to PCHT
among a collection of coupled bodies.

The Lagrangian for this system is written as

2L =
∑
a,i

m1a
(
ẋ1ai − ẋ(0)

1ai

)2

−
∑

a,i,a′,i′
K1ai,1a′i′

(
x1ai − x(0)

1ai

)(
x1a′i′ − x(0)

1a′i′
)

−
∑

a,i,c,k

(K1ai,3ck + K3ck,1ai )x1aix3ck

+
∑
b, j

m2bẋ2
2b j −

∑
b, j,b′, j′

K2b j,2b′ j′x2b jx2b′ j′

−
∑

b, j,c,k

(K2b j,3ck + K3ck,2b j )x2b jx3ck

+
∑
c,k

m3cẋ2
3ck −

∑
c,k,c′,k′

K3ck,3c′k′x3ckx3c′k′ (16)

and minimization of the action S = ∫ ∞
−∞ Ldt leads to the time

domain classical equations of motion

m1aẍ1ai +
∑
a′,i′

K1ai,1a′i′x1a′i′ +
∑
c,k

K1ai,3ckx3ck

= m1aẍ(0)
1ai +

∑
a′,i′

K1ai,1a′i′x
(0)
1a′i′ ,

m2bẍ2b j +
∑
b′, j′

K2b j,2b′ j′x2b′ j′ +
∑
c,k

K2b j,3ckx3ck = 0,

m3cẍ3ck +
∑
c′,k′

K3ck,3c′k′x3c′k′ +
∑
a,i

K3ck,1aix1ai

+
∑
b, j

K3ck,2b jx2b j = 0 (17)

for these displacements. In the frequency domain these be-
come

− ω2m1ax1ai +
∑
a′,i′

K1ai,1a′i′x1a′i′ +
∑
c,k

K1ai,3ckx3ck

= −ω2m1ax(0)
1ai +

∑
a′,i′

K1ai,1a′i′x
(0)
1a′i′ ,

− ω2m2bx2b j +
∑
b′, j′

K2b j,2b′ j′x2b′ j′ +
∑
c,k

K2b j,3ckx3ck = 0,

− ω2m3cx3ck +
∑
c′,k′

K3ck,3c′k′x3c′k′ +
∑
a,i

K3ck,1aix1ai

+
∑
b, j

K3ck,2b jx2b j = 0 (18)

and these equations can be collected into matrix form with
vectors xα and matrices Kαβ and Mα , upon which the iden-

tifications Ẑ (0)
α → Kαα − ω2Mα and �Ẑαβ → (1 − δαβ )Kαβ

can be made, where Kαβ = K�
βα are real valued, and Mα are

real valued too; we note that the as the matrices K encode
spring constants which multiply differences in atomic posi-
tions (i.e., relative displacements) to yield forces, the diagonal
blocks Kαα entering Ẑ (0)

α should actually include the effects of
couplings to other bodies as are present in the off-diagonal
blocks Kαβ for all β �= α, so that all forces are balanced in
the equations of motion. With these replacements, the energy
transfer spectrum becomes

	 = 4 Tr[K3,1 asym[(K1,1 − ω2M1)−1]K1,3[K3,3 − ω2M3

− K3,1(K1,1 − ω2M1)−1K1,3

− K3,2(K2,2 − ω2M2)−1K2,3]−1†

× K3,2 asym[(K2,2 − ω2M2)−1]K2,3[K3,3 − ω2M3

− K3,1(K1,1 − ω2M1)−1K1,3

− K3,2(K2,2 − ω2M2)−1K2,3]−1], (19)

where the identifications

Ŷ (0)
α → gα = (Kαα − ω2Mα )−1 (20)

as the retarded Green’s function of lead α ∈ {1, 2} (with g†
α

being the advanced Green’s function),

Ŷ3 → G = (K3,3 − ω2M3 − K3,1g1K1,3 − K3,2g2K2,3)−1

(21)

as the retarded Green’s function of the device including con-
nections to the leads (with G† being the advanced Green’s
function), and


α = K3,α asym(gα )Kα,3 (22)

for α ∈ {1, 2} being the dissipation terms at the interface of
the device with each lead can immediately be made. Thus,
this general formalism does reproduce the standard Landauer
formula [2,8,25,28]

	(ω) = 4 Tr[
1G†
2G] (23)

for phonon heat transport between two leads across a device.
Note that while Kαα and Mα are real valued, gα is complex
valued because inversion of an infinite-dimensional matrix
is made finite dimensional by considering propagation of
phonons far from the device interface to be equivalent to
energy loss (so G is also complex valued in turn); alterna-
tively, if the leads are large but finite, dissipation may be
added heuristically by replacing, including in the definitions
of gα , every instance of −ω2Mα with −iωBα − ω2Mα for
α ∈ {1, 2} where the diagonal positive-definite matrices Bα

represent appropriate dissipation coefficients for the oscilla-
tors. Additionally, the assumptions underlying the derivation
of the upper bound on the transmission eigenvalues hold
here, so those derivations remain valid in this context: all
of the K and M matrices are real valued and reciprocal, and
asym(K3,3 − ω2M3) = 0 because the compact device will not
have any channels for dissipation in the absence of coupling to
reservoirs (leads). Thus, the general NEGF formalism for heat
transfer in linear response systems can be exactly mapped to
the specific NEGF formalism for linear PCHT.
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Physically, the harmonic oscillators represent nuclei
dressed by inner-shell electrons, and the couplings represent
chemical bonds between these oscillators, typically com-
puted via density functional theory and often anisotropic. We
again stress that the correspondences Ẑ (0)

α → Kαα − ω2Mα

and �Ẑαβ → (1 − δαβ )Kαβ for PCHT are generally appli-
cable even beyond the specific case of two bodies coupled
only to a third intermediate body, which allows more general
scenarios for PCHT to be treated using (4); moreover, these
derivations do not assume that the material bodies exhibit any
particular geometry or spatial symmetry properties.

III. APPLICATIONS TO RHT

The general NEGF formalism and expression for the en-
ergy transfer spectrum (4) also applies to RHT among a
collection of linearly polarizable bodies that can radiate EM
fields. Prior works have typically focused on RHT between
two polarizable bodies, whether spatially compact or of infi-
nite extent, in vacuum. The connection to the above general
linear response formalism for heat transfer requires somewhat
more of a conceptual leap compared to the connection for
PCHT. In particular, components 1 and 2 are the polarizable
material bodies in question, while component 3, rather than
representing a material body, is actually the vacuum EM field
pervading all of space. A Lagrangian for this system can
easily be written for the case where the polarizable bodies
are made of atomic harmonic oscillators, with equilibrium
positions rαa for body α ∈ {1, 2} and atom label a, and with
charges qαa that couple to EM fields; the sources are taken to
be in body 1. That said, the results are generalizable to other
linear media whose response functions are more complicated
than those of harmonic oscillators, and to cases with more
than two material bodies present; in particular, the use of
partial bound charges associated with harmonic oscillators
more accurately describes polar dielectric media compared to
metals, but the results are generalizable to metals, semimetals,
and other media with susceptibilities that may be nonlocal,
inhomogeneous, or anisotropic.

The Lagrangian for this system is written as

2L =
∑
a,i

m1a
(
ẋ1ai − ẋ(0)

1ai

)2

−
∑

a,i,a′,i′
K1ai,1a′i′

(
x1ai − x(0)

1ai

)(
x1a′i′ − x(0)

1a′i′
)

+ 2
∑
a,i

q1aẋ1aiAi(r1a) +
∑
b, j

m2bẋ2
2b j

−
∑

b, j,b′, j′
K2b j,2b′ j′x2b jx2b′ j′ + 2

∑
b, j

q2bẋ2b jA j (r2b)

+
∫ [

1

c2

(
∂A
∂t

)2

− (∇ × A)2

]
d3x (24)

introducing the magnetic potential A, working in the Weyl
gauge (vanishing electric potential). Minimizing the action
S = ∫ ∞

0 Ldt leads to the time domain classical equations of

motion

m1aẍ1ai +
∑
a′,i′

K1ai,1a′i′x1a′i′ − q1aEi(r1a)

= m1aẍ(0)
1ai +

∑
a′,i′

K1ai,1a′i′x
(0)
1a′i′ ,

m2bẍ2b j +
∑
b′, j′

K2b j,2b′ j′x2b′ j′ − q2bE j (r2b) = 0,

(
∇ × (∇×) + 1

c2

∂2

∂t2

)
E

= − 1

c2

(∑
a

q1aẍ1aδ
3(x − r1a) +

∑
b

q2bẍ2bδ
3(x − r2b)

)

(25)

for the displacements x1ai and x2b j and electric field E(t, x) =
− 1

c
∂A
∂t , where the magnetic contribution to the Lorentz force

qαa

c ẋαa × B is dropped for each atom as it is a nonlinear
term that has negligible contribution for speeds much less
than the speed of light c (which is generally true for thermal
fluctuations at reasonable temperatures). Although the third
equation should initially be written in terms of A, a partial
time derivative is applied to both sides of the equation to
simplify the equations in terms of E. In the frequency domain,
these equations of motion become

− ω2m1ax1ai +
∑
a′,i′

K1ai,1a′i′x1a′i′ − q1aEi(r1a)

= −ω2m1ax(0)
1ai +

∑
a′,i′

K1ai,1a′i′x
(0)
1a′i′ ,

− ω2m2bx2b j +
∑
b′, j′

K2b j,2b′ j′x2b′ j′ − q2bE j (r2b) = 0,

(
c2

ω2
∇ × (∇×) − 1

)
E

=
(∑

a

q1ax1aδ
3(x − r1a) +

∑
b

q2bx2bδ
3(x − r2b)

)

(26)

and these equations may again be collected into matrix form
and identified with the generic linear response operators. For
polarizable bodies α ∈ {1, 2}, the operators

Ẑ (0)
α → Kαα − ω2Mα (27)

are the equations of motion defining the response. Meanwhile,
E is a field defined throughout all space, so matrix products
correspond to convolution integrals in space: this means the
operators

Ẑ (0)
3 → c2

ω2
∇ × (∇×) − 1, (28)

Ŷ (0)
3 = Ẑ (0)−1

3 → Gvac (29)

correspond to the vacuum Maxwell partial differential opera-
tor and associated Green’s function. Finally, in the first, sec-
ond, and third equations, the coupling to the third component,
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i.e., the vacuum EM field, corresponds to

�Ẑα,3 → −
∑

a

qαaδi jδ
3(x − rαa), (30)

which is the convolution operator representing the charge den-
sity of point dipoles constituting each polarizable body (with
a sign flip due to the convention chosen for the general linear
response formulas): these coupling operators are real-valued
reciprocal operators, as evinced in the equations of motion.
This also means that for α ∈ {1, 2}, the material response
operators may be written in position space as

�Ẑ3,αŶ (0)
α �Ẑα,3 → Vαi j (ω, x, x′)

=
∑
a,a′

qαa[(Kαα − ω2Mα )−1]ai,a′ jqαa′

× δ3(x − rαa)δ3(x′ − rαa′ ), (31)

which is exactly the susceptibility Vα of a collection of point
dipolar harmonic oscillators, while

Ŷ3 → (Gvac−1 − V1 − V2)−1 = G (32)

is exactly the Maxwell Green’s function in the presence of
susceptibilities χ̂α . Thus, the heat transfer between the two
polarizable bodies can be written as

	(ω) = 4 Tr[asym(V1)G† asym(V2)G] (33)

which exactly matches the fluctuational EM expression [65].
Additionally, the assumptions underlying the derivation of the
upper bound on the transmission eigenvalues hold here, so
those derivations remain valid in this context: the coupling
operators representing the negative charge densities and real
valued and reciprocal, and asym(Gvac−1) = 0 comes from
the properties of Maxwell’s equations, while the fact that
asym(Gvac) does not vanish due to free space supporting
outward propagation of EM energy is irrelevant to those
particular derivations. Thus, the general NEGF formalism for
heat transfer in linear response systems can be exactly mapped
to the specific fluctuational EM formalism for linear RHT.

Physically, the harmonic oscillators may represent va-
lence electrons or nuclei dressed by inner-shell electrons,
and the couplings, namely the effective charges, along with
the effective masses and spring constants are again com-
puted via density functional theory. We again stress that the
correspondences �Ẑ3,αŶ (0)

α �Ẑα,3 → Vαi j (ω, x, x′) for RHT
are generally applicable even for more than two polarizable
bodies coupled to the vacuum EM field, which allows more
general scenarios for PCHT to be treated using (4) [9,61].
Furthermore, the derivation of Landauer-like formulas for

RHT (33) is generally applicable for linear media even when
the susceptibilities Vα do not describe harmonic oscillator
response functions; our use of harmonic oscillators was for
convenience in writing a Lagrangian and explaining salient
features through physical intuition. Finally, we emphasize that
unlike previous work which has typically depended on high-
symmetry geometries and the assumption of the EM near-field
regime [39,40,42,43,45], these derivations are applicable to
arbitrary geometries from the near- through far-field regimes.

IV. COMPARISONS BETWEEN PCHT AND RHT

Before proceeding, it is useful to summarize the compar-
isons between PCHT and RHT specifically focusing on the
case of two bodies interacting through a third component
(either a third body for PCHT or the EM field for RHT), an
analogy which is summarized Table I and illustrated schemat-
ically in Fig. 1. While the basic formalisms are essentially
identical and both obey the same upper bounds, in what
follows we emphasize a few of the distinctions.

The typical situation considered for PCHT involves two
semi-infinite leads connected by a much smaller molecular
junction or interfacial region. As a result, when mapping
Ŷ (0)

α → gα for α ∈ {1, 2}, even though the microscopic os-
cillators have no dissipation so asym(g−1

α ) → 0, the fact that
the leads are semi-infinite and act as thermodynamic reser-
voirs means asym(gα ) �= 0: this represents loss of energy
through far-field propagation of phonons into the bulks of the
leads. Meanwhile, when mapping Ŷ (0)

3 → g3 for the junction
or interfacial region, the compactness of that intermediate
body precludes dissipation through far-field propagation of
phonons, so not only is it true that asym(g−1

3 ) → 0 but it
is also true that asym(g3) → 0. Moreover, the smallness of
the intermediate body means that it is typically easier to
evaluate the matrix products and inverses in the space of the
intermediate body through (14). The situation is flipped for
RHT, where typically energy exchange is considered between
two compact bodies via EM fields that propagate through all
of space. As a result, when mapping the response of lossless
oscillators constituting each polarizable body in the map-
ping �Ẑ3,αŶ (0)

α �Ẑα,3 → Vα for compact bodies α ∈ {1, 2},
taking literally the lack of dissipation would strictly imply
that asym(Vα ) → 0, so heat transfer and other fluctuational
EM phenomena would not exist. Realistically, these atomic
oscillators are not perfectly lossless but are subject to losses
through scattering and propagation of energy, which we do
not consider here; this can be accounted for by properly
including reservoir DOFs in the Lagrangian and performing

TABLE I. Comparison of components and relevant linear response quantities between PCHT and RHT within our NEGF heat-transfer
formalism.

Heat transfer mechanism Phonons Photons

Components 1, 2 Infinite reservoirs (leads) Polarizable bodies
Component 3 Compact central device Vacuum EM field (all space)
Ŷ (0)

α : α ∈ {1, 2} Uncoupled lead mechanical Green’s function Susceptibilities Vα

�Ẑα,3: α ∈ {1, 2} Interface lead/device harmonic couplings All atom charges
Ŷ3 Coupled device mechanical Green’s function Maxwell Green’s function (Gvac−1 − V1 − V2)−1
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FIG. 1. Photon radiation. (a) Radiation of energy in free space
between compact polarizable bodies. (b) Analogous situation for
conduction: Compact phononic devices are coupled at each atom to
an infinite lattice supporting propagation of phonons infinitely far
away.

some renormalization like decimation as in the phonon case
for a physically motivated reservoir, or more typically by
phenomenologically adding an appropriate small imaginary
part to some part of Vα .

Meanwhile, when mapping Ŷ (0)
3 → Gvac through all of

space, while it is true that asym(Gvac−1) → 0 allows the
same Landauer bounds to hold for RHT as for PCHT, the
ability of free space to support outward propagation of EM
energy also means asym(Gvac) �= 0. Moreover, the fact that
the polarizable bodies occupy compact regions in space (as
opposed to all of space) means that it is typically easier to
evaluate the matrix products and inverses in the spaces of
the polarizable bodies through (10). In particular, by using
the operator correspondences from the previous section and
linking (14) to a special case of (10) as above, it can be shown
that (10) exactly reproduces the T-operator formula for RHT
[33]. Along these lines we finally note that in PCHT, the
off-diagonal block of the Green’s function of component 3
in isolation connecting the respective atoms coupled to each
of the other components, which may be denoted P3(2)g3P3(1),
has a size, and therefore a maximum rank, that scales as the
surface areas of component 3 coupled with each of the other
components. For the case of RHT, the analogous quantity is
P2GvacP1, where Pα is the projection operator onto the vol-

ume of body α: this seems to contrast with the dependence on
surface area for PCHT. However, the EM surface equivalence
theorem [31,32,68–71] shows that the fields radiated by any
volumetric polarization distribution to the exterior of some
fictitious bounding surface can be exactly reproduced in that
exterior region by an equivalent surface current distribution,
which therefore suggests that the rank of P2GvacP1 actually
scales with the surface of each body, thereby producing
a similar result as for mechanical waves. The underlying
physical reasons are a little different: the general boundary
conditions of EM fields at material interfaces for radiation
contrast with the specific form of coupling of nearest-neighbor
atoms for phonon propagation. That said, the similarities can
be intuitively understood as arising from the similar physics
governing mechanical wave propagation through homoge-
neous media as EM wave propagation through vacuum or
homogeneous media: the spring constant matrix K governing
mechanical wave propagation through a medium is essentially
a discrete-space analog of the ∇ × (∇×) operator governing
EM wave propagation, and both of these operators are then
equated to double time derivatives of the corresponding field
quantities. Finally, we note that in the concluding remarks,
we connect this paper to an accompanying paper [72] that
leverages this generic NEGF formalism to generalize recent
bounds on RHT [73,74] to include PCHT: we point out that
these bounds rely heavily on the singular values of the off-
diagonal blocks P2GvacP1 in the case of RHT, or P3(2)g3P3(1)

in the case of PCHT.

V. UNIFYING PCHT AND RHT

At nanometric and smaller separations, we expect that both
PCHT and RHT could exhibit comparable contributions to
overall heat transfer between two material bodies, whether
through approach to direct contact or through contact with an
intermediate junction [14,15,23,35–37]. Thus motivated, we
use this section to present a method for unifying both forms of
heat transfer in both of these scenarios. This method is based
on the retarded many-body (RMB) framework of mesoscale
fluctuational EM [61–63], allowing for accurate modeling of
fluctuational EM phenomena, including RHT, in atom-scale
systems.

Each body α ∈ {1, 2, 3} comprises Nα atoms labeled
a, b, c. Each atom is centered at an equilibrium position rαa

and has an effective nuclear oscillator of mass mIαa which
couples to other nuclear oscillators within the same body and
which may couple to nuclear oscillators in other bodies at
interfaces: these couplings are encoded in the matrices KIαα

within the same body and KIαβ between different bodies,
where the former has dimension 3Nα × 3Nα while the latter
has dimension 3Nα × 3Nβ . The effective nuclear oscillator in
each atom is also coupled to an effective valence electronic
oscillator of mass meαa through an isotropic spring constant
keαa. The valence electronic oscillators couple as point charges
to the vacuum EM field via the charge qeαa; these electrons
along with the inner electrons screen the nuclei, so we model
the nuclear oscillators as having no direct coupling to the EM
field. The displacements of the effective valence electronic
oscillators are labeled xeαai, while those of the nuclear oscilla-
tors are labeled xIαai, for Cartesian direction i. We collect the
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displacements into 3Nα-dimensional vectors xeα and xIα , and
the masses, charges, and valence electronic spring couplings
into diagonal 3Nα × 3Nα matrices Meα , MIα , Qeα , and Keα .
Additionally, the electric field in vacuum must be evaluated
at each equilibrium position rαa when entering the equations
of motion for the effective valence electronic oscillators, so
we collect the Nα Cartesian vectors E(rαa) into the 3Nα-
dimensional vector eeα .

For two bodies coming into direct conductive contact (with
no third intermediate material body present) and interacting
via the vacuum EM field, we may use the above matrix
notation to write the equations of motion as

(Keα − ω2Meα )xeα − KeαxIα − Qeαeeα

= [(Keα − ω2Meα )xeα − KeαxIα]δα,1,

(Keα − ω2MIα )xIα +
∑

β

KIαβxIβ − Keαxeα = 0,

(
c2

ω2
∇ × (∇×) − 1

)
E =

∑
α,a

qeαaxeαaδ
3(x − rαa) (34)

for each α, β ∈ {1, 2}, a ∈ {1, . . . , Nα}, and i ∈ {x, y, z}, for
sources in body 1. We may then formally solve the final
equation and eliminate eeα in favor of xeα and xIα , yielding
the equations of motion

(Keα − ω2Meα )xeα − KeαxIα −
∑

β

QeαGvac
αβ Qeβxeβ

= [
(Keα − ω2Meα )x(0)

eα − Keαx(0)
Iα

]
δα,1,

(Keα − ω2MIα )xIα +
∑

β

KIα,βxIβ − Keαxeα = 0, (35)

where Gvac
αβ is the 3Nα × 3Nβ matrix whose elements are

Gvac
i j (ω, rαa, rβb) for each pair of atomic coordinates. Hence,

we identify the relevant operators as 2 × 2 block matrices

Ẑ (0)
α →

[
Keα − ω2Meα −Keα

−Keα Keα + KIαα − ω2MIα

]
,

�Ẑαβ →
[−QeαGvac

αβ Qeβ 0

0 KIαβ (1 − δαβ )

]
,

(36)

where the top row and left column blocks represent the
effective valence electronic DOFs, while the bottom row and
right column blocks represent the effective nuclear degrees
of freedom. Strictly speaking, the matrices −ω2Meα and
−ω2MIα should respectively be replaced by −iωBeα − ω2Meα

and −iωBIα − ω2MIα in order to account for nonzero dis-
sipation, though the dissipation matrices Beα and BIα may
be taken to be infinitesimal; also, once again, the diagonal
blocks KIαα entering Ẑ (0)

α should actually include the effects of
couplings to nuclear oscillators in other bodies as are present
in the off-diagonal blocks KIαβ for all β �= α. With details
explained in [61,63], the RMB oscillator matrix parameters
Qeα , Meα , MIα , Keα , and KIαα (the latter initially excluding
couplings to nuclear oscillators in other bodies) along with the
equilibrium atomic positions are all computed using density
functional theory (DFT) for each body in isolation, while the
matrices Beα and BIα are assigned phenomenological values.
These 2 × 2 block matrices can then be used in place of Ẑ (0)

α

and �Ẑαβ in the formula for two components with general
couplings (10) to find the combined heat transfer including
PCHT and RHT: the couplings among valence electronic and
nuclear DOFs through EM fields means that PCHT and RHT
contributions are not separable, but in fact affect each other
[8,42,43].

For two bodies whose nuclear coordinates are coupled only
to a third intermediate body, which also has nuclear and va-
lence electronic DOFs, in which all electronic coordinates are
coupled to the EM field, the formalism is similar to above. In
particular, the formulas in (34) still hold for all bodies α, β ∈
{1, 2, 3}, although KI1,3 and KI2,3 and their transposes are the
only nonzero off-diagonal blocks of KI. With that caveat in
mind, this further means that (35) and the correspondences
in (36) holds as well for all bodies α, β ∈ {1, 2, 3}. That said,
the fact that �Ẑαβ has nonzero blocks for all (α, β ) means that
(14) cannot be used. Instead, the more general formula (4) for
the energy transfer spectrum must be used, plugging the 2 × 2
block matrices in (36) into the overall 3 × 3 block matrices

Ẑ (0) =

⎡
⎢⎣

Ẑ (0)
1 0 0

0 Ẑ (0)
2 0

0 0 Ẑ (0)
3

⎤
⎥⎦, (37)

�Ẑ =

⎡
⎢⎣

�Ẑ1,1 �Ẑ1,2 �Ẑ1,3

�Ẑ2,1 �Ẑ2,2 �Ẑ2,3

�Ẑ3,1 �Ẑ3,2 �Ẑ3,3

⎤
⎥⎦ (38)

to evaluate (4).
These formulas for the energy transfer spectrum and as-

sociated linear response operators are thus the application of
the general NEGF formalism for combined PCHT and RHT.
In contrast to the derivations of pure RHT which ultimately
do not depend on the form of the susceptibilities Vα as long
as it is linear, these particular derivations do depend on the
harmonicity of the material models, though they may be
generalizable through a more complicated formalism. How-
ever, beyond that approximation as well as the assumptions
regarding material dissipation, these formulas are independent
of specific geometries and material properties, and can be
evaluated in the EM near- or far-field regimes. Additionally,
we point out that unlike previous works which have cast
formulas for combined electronic conduction and RHT in a
more complicated (Meir-Wingreen) form rather than the typi-
cal Landauer/Caroli form [42,43,45] as electrons and photons
obey different quantum statistics, no such complication arises
here because phonons and photons obey the same statistics.

We apply this unified formalism to an illustrative model of
heat transfer between two collinear 250 atom-long atomically
thin wires, taken to be made of carbon (i.e., carbyne wires),
and particularly compute the heat transfer coefficient ∂P

∂T at
room temperature (T = 300 K). Specifically, we compute the
heat transfer coefficient ∂Pboth

∂T by calculating the Landauer
energy transfer spectrum 	both arising from plugging (36)
as written into (4), ∂Prad

∂T by computing 	rad arising from
plugging (36) with KIαβ = 0 for β �= α (so KIαα refers only
to the spring constant matrices among nuclei for each body
in isolation) into (4), and ∂Pcond

∂T by computing 	cond arising
from plugging (36) with Gvac = 0 for all pairs of electronic
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FIG. 2. Conduction and radiation between collinear wires. (a) Heat transfer coefficient ∂P
∂T at room temperature (T = 300 K) between two

collinear 250 atom-long carbyne wires in vacuum, comparing the cases when heat transfer is due purely to radiation (blue) or conduction (red)
versus both together (green). (b) Same as (a) zoomed in for d ∈ [0.1 nm, 1 nm]. (c) Landauer energy transfer spectrum 	 (independent of T )
for d = 0.281 nm, clearly demonstrating the existence of nontrivial resonances.

oscillators into (4); in all cases, 	 refers to 	
(1)
2 . Within each

body, as described above, the charges, masses, and spring
constants are all taken from DFT evaluated for each body
in isolation, the matrix elements of the Maxwell Green’s
function Gvac are evaluated in a Gaussian basis to mitigate
short-range EM divergences [61,62,75], and the dissipation
matrices are chosen such that Be = γeMe and BI = γIMI hold
with γe = 1011 s−1 and γI = 1013 s−1; the damping rates
are chosen phenomenologically to be large enough to allow
reasonably coarse frequency sampling, but small compared
to the characteristic frequencies of the relevant polaritons.
For computational simplicity, these properties are not recom-
puted as functions of the separation between the bodies, but
while we expect such recomputation to yield significantly
different results due to the greater probability of supporting
longer-wavelength collective electronic and phononic waves
when the wires are in proximity, such recomputation could in
principle be performed consistently with this formalism. Like-
wise, for computational simplicity, the off-diagonal blocks
of KI for each body (including both electronic and nuclear
oscillator coordinates) have only the couplings between each
end atom nearest to the other molecule be nonzero, and
these are modeled via the Morse potential, but this could
be further generalized in future work. The Morse potential
spring constant for a bond of length r compared to equi-
librium length a0 is computed as k(r) = − 1

r−a0

∂UMorse
∂r , where

the potential energy UMorse(r) = Umin(1 − e−√
k0/(2Umin )(r−a0 ) )2

exhibits a harmonic well of depth Umin and curvature de-
fined by the equilibrium spring constant k(a0) = k0, all of
which are empirical parameters, and exponentially decays
as r � a0.

As can be seen in Figs. 2(a) and 2(b), many interesting
features arise from the coupling of conductive and radiative
processes. The exponential decay of the Morse potential with
distance means that for d > 0.4 nm, conduction ceases to have
any meaningful effect on the heat transfer, and the total heat
transfer aligns with that of pure radiation. However, for de-
creasing d � 0.4 nm, not only does conduction become more
significant, but the total heat transfer including both radiative
and conductive processes falls below the corresponding indi-
vidual cases, and only rises above both for d < 0.2 nm before
all three powers saturate. Therefore, this unified formalism is

clearly necessary for subnanometric separations, as the total
power including both PCHT and RHT is not simply the sum
of the individual contributions (as has been found in related
systems involving electronic conduction [42]), but behaves in
a much more complicated way.

In Fig. 2(c) the Landauer energy transfer spectra 	 make
clear that for small enough d where conduction is nontrivial
(plotted for d = 0.281 nm), the conduction spectrum only has
nontrivial contributions at lower frequencies ω < 1014 rad/s.
Meanwhile, the total spectrum rises above the radiation spec-
trum for larger ω but falls below for smaller ω: the latter is
more relevant given the exponential decay of ∂�(ω,T )

∂T with ω,
leading to Pboth < Prad there. Ultimately, this occurs due to the
confluence of EM screening as captured by the Gaussian basis
functions along with shifts in the response due to conductive
coupling between nuclei of the two different wires: not only
does this shift the frequencies of resonances in the Landauer
energy transfer spectra, but it can also suppress the resulting
amplitudes. This therefore makes clear that the existence of
situations where Pboth (or its derivative with respect to T )
falls between or below Pcond or Prad is not simply a fluke
arising from a particular choice of T : 	 is independent of
T , yet the spectrum 	both, far from being a simple case
of superimposing 	rad on 	cond, shows a delicate interplay
among radiative and conductive effects in creating new hybrid
resonances. Our calculations are meant to be qualitatively
illustrative of the complexities of heat transfer when both
conduction and radiation contribute: they are not meant to
be quantitatively predictive given the practical limitations in
recomputing relevant oscillator parameters at each separation,
but we stress that these limitations are not fundamental to the
formalism we have presented.

VI. CONCLUDING REMARKS

We have demonstrated a general NEGF formulation of heat
transfer applicable to a wide variety of bosonic systems. This
NEGF framework is general enough to explain the salient
features of PCHT and RHT separately, show how upper
bounds on PCHT can be generalized and then applied to RHT,
and demonstrate how to unify PCHT and RHT in situations
when both are strongly coupled and relevant. The latter is
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particularly relevant at atomistic scales or separations, when
continuum material models begin to fail and the net heat
transfer is no longer simply the sum of individual radiative
or phononic contributions. We stress that our approach is gen-
eral enough to treat semiclassical heat transfer through other
massless bosonic excitations, not just photons or phonons.
Moreover, while our analysis of combined PCHT and RHT
focused on effective valence electronic and nuclear response
as being represented by coupled harmonic oscillators, more
complicated linear response models could be considered as
well, which we leave for future work. We expect this frame-
work to pave the way for future works investigating the
conjunction of PCHT and RHT in complex geometries, partic-
ularly at separations where each is relevant and where recent
experiments have raised questions about where each form of
heat transfer is dominant [35–37,41]. We further point out in
Appendix C that this general formalism can, with appropriate
changes, be applied to electron CHT (ECHT) by itself, but
unifying ECHT with PCHT or RHT is theoretically much
more challenging, so we leave that for future work.

In an accompanying paper [72] we generalize bounds
previously derived for RHT [73,74] using the generic NEGF
formalism for heat transfer in linear systems presented in this
paper. We particularly apply such bounds to PCHT, showing
that channel-based bounds on PCHT can be much tighter than
the Landauer limits of unity [7,8,28].
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APPENDIX A: BLOCK MATRIX INVERSION FOR TWO
COMPONENTS COUPLED DIRECTLY

To derive (10) from (4), the two block matrices of interest
are Ŷ P̂1 and asym(P̂2�Ẑ ), of which the first requires inversion
of a block matrix. In particular, we can immediately evaluate

asym(P̂2�Ẑ ) =
[

0 − 1
2i �Ẑ�

1,2
1
2i �Ẑ2,1 Im(�Ẑ2,2)

]
(A1)

in block form. Meanwhile, standard formulas for inversion of
a block matrix yield

Ŷ P̂1 =
[ [

1̂ − (
Ẑ (0)

1 + �Ẑ1,1
)−1

�Ẑ1,2
(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
]−1(

Ẑ (0)
1 + �Ẑ1,1

)−1

−(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
[
1̂ − (

Ẑ (0)
1 + �Ẑ1,1

)−1
�Ẑ1,2

(
Ẑ (0)

2 + �Ẑ2,2
)−1

�Ẑ2,1
]−1(

Ẑ (0)
1 + �Ẑ1,1

)−1

]
, (A2)

where multiplication on the right by P̂1 allows for picking out only the left column block. Putting everything together at this
stage yields the result in the main text.

APPENDIX B: BLOCK MATRIX INVERSION FOR TWO
COMPONENTS COUPLED ONLY TO A THIRD

To derive (14) from (4), the two block matrices of interest
are Ŷ P̂1 and asym(P̂2�Ẑ ), of which the first requires inversion
of a block matrix. To invert the 3 × 3 block matrices, we
exploit the fact that there are no couplings directly between
components 1 and 2. This allows for defining subblocks such
that

Ẑ (0) =
[

Ẑ (0)
A 0

0 Ẑ (0)
3

]
, (B1)

�Ẑ =
[

0 �ẐA,3

�Ẑ3,A 0

]
, (B2)

where aggregate operators for bodies 1 and 2 are defined as

Ẑ (0)
A =

[
Ẑ (0)

1 0

0 Ẑ (0)
2

]
, (B3)

�ẐA,3 =
[
�Ẑ1,3

�Ẑ2,3

]
, (B4)

�Ẑ3,A = �Ẑ�
A,3 (B5)

for this system. Because components 1 and 2 lie in the
top row and left column blocks of these new 2 × 2
block matrices, and because Ẑ (0) is block-diagonal
in this 2-by-2 aggregate block representation as well,
then Ẑ (0)P̂1 = P̂1Ẑ (0)P̂1, so the energy transfer spectrum
	 = 4Tr[P̂1 asym(Ŷ (0) )P̂1Ẑ (0)†Ŷ † asym(P̂2�Ẑ )Ŷ Ẑ (0)P̂1] can
be computed by computing Ŷ P̂1, which is the left block
column of Ŷ , and asym(P̂2�Ẑ (0)†). In particular, if

Ŷ =
[

Ẑ (0)
A �ẐA,3

�Ẑ3,A Ẑ (0)
3

]−1

, (B6)

then

Ŷ P̂1 =
[

Ŷ (0)
A P̂1 + Ŷ (0)

A �ẐA,3
(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

−(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

]
, (B7)
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where Ŷ (0)
A = Ẑ (0)−1

A , while

asym(P̂2�Ẑ ) = 1

2i

[
0 P̂2�ẐA,3

−�Ẑ†
A,3P̂2 0

]
(B8)

is the expression in the block basis. Carrying out the operator product yields the complicated expression

P̂1Ŷ
† asym(P̂2�Ẑ )Ŷ P̂1

= 1

2i

(−P̂1Ŷ
(0)†

A P̂2�ẐA,3
(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

− P̂1Ŷ
(0)†

A �Ẑ†
A,3

(
Ẑ (0)†

3 − �Ẑ†
A,3Ŷ

(0)†
A �Ẑ†

3,A

)−1
�Ẑ†

A,3Ŷ
(0)†

A P̂2�ẐA,3
(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

+ P̂1Ŷ
(0)†

A �Ẑ†
A,3

(
Ẑ (0)†

3 − �Ẑ†
A,3Ŷ

(0)†
A �Ẑ†

3,A

)−1
�Ẑ†

A,3P̂2Ŷ
(0)

A �ẐA,3
(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

+ P̂1Ŷ
(0)†

A �Ẑ†
A,3

(
Ẑ (0)†

3 − �Ẑ†
A,3Ŷ

(0)†
A �Ẑ†

3,A

)−1
�Ẑ†

A,3P̂2Ŷ
(0)

A P̂1
)
, (B9)

but this can be simplified as follows. The term P̂2Ŷ
(0)

A P̂1 = 0 (and the same is true of its Hermitian adjoint) because Ŷ (0)
A is

block-diagonal, with no correlations between objects 1 and 2. This therefore simplifies the expression above to

P̂1Ŷ
(0)†

A �Ẑ†
A,3

(
Ẑ (0)†

3 − �Ẑ†
A,3Ŷ

(0)†
A �Ẑ†

3,A

)−1
�Ẑ†

A,3 asym
(
P̂2Ŷ

(0)
A

)
�ẐA,3

(
Ẑ (0)

3 − �Ẑ3,AŶ (0)
A �ẐA,3

)−1
�Ẑ3,AŶ (0)

A P̂1

for which the block-diagonality of Ŷ (0)
A once again allows for

writing asym(P̂2Ŷ
(0)

A ) = P̂2 asym(Ŷ (0)
2 )P̂2. Additionally, per-

forming the block vector-matrix-vector products within the in-
verses involving Ẑ (0)

3 gives Ẑ (0)
3 − �Ẑ3,AŶ (0)

A �ẐA,3 = Ẑ (0),3 −
�Ẑ3,1Ŷ

(0)
1 �Ẑ1,3 − �Ẑ3,2Ŷ

(0)
2 �Ẑ2,3. The terms on the outside,

namely Ŷ (0)
A P̂1 and its Hermitian adjoint, can be commuted to

yield P̂1Ŷ
(0)

1 due to the block-diagonal structure, and in the
trace expression this is then multiplied on the right by Ẑ (0)P̂1,
the result of which is simply P̂1 as Ŷ (0)

1 = Ẑ (0)−1
1 ; this acts

to the right of �Ẑ3,A to yield �Ẑ3,1. Putting this all together
yields the result in the main text.

APPENDIX C: ELECTRON CHT

In the main text we did not discuss electron CHT (ECHT)
because electrons, being fermions, exhibit fundamentally dif-
ferent statistics from photons or phonons. Simultaneous treat-
ment of ECHT with RHT or PCHT is therefore significantly
more challenging than unifying RHT with PCHT. However, if
ECHT is considered alone or in conjunction with heat transfer
through other fermionic quasiparticles, the general formalism
in this paper can, under similar approximations, be applied to
such forms of heat transfer. We briefly discuss this for the case
of ECHT alone.

Typically, mesoscale ECHT is described in terms of a
tight-binding Hamiltonian [67], which can be expressed in
terms of its blocks Ĥmn for m, n ∈ {1, 2, 3}; the diagonal
blocks Ĥnn describe the tight-binding properties of each
component n in isolation, while the off-diagonal blocks Ĥmn,
for which it may be assumed that only Ĥn,3 = (Ĥ3,n)† are
nonzero, describe the tight-binding couplings of the central
component, labeled 3, to the other components, labeled 1

and 2. From this, the following correspondences may be
observed; we note that in the context of ECHT, it is more
common to use the energy E = h̄ω instead of the angular
frequency ω. We identify Ŷ (0)

n → ĝn = (Ĥnn − E 1̂n)−1 as the
electronic Green’s function of each component n ∈ {1, 2, 3}
in isolation. Furthermore, we identify �Ẑ3,n → Ĥ3,n for
n ∈ {1, 2}; the basis of atomic sites is analogous to
real space, and in the basis, it is typically true that the
matrix elements of Ĥ3,n are all real valued, so in this
basis, the assumptions �Ẑ3,n = (�Ẑ3,n)� = (�Ẑn,3)�
remain valid. Finally, when considering (14), the terms
asym(Ŷ (0)

n ) → asym(ĝn) for n ∈ {1, 2}, which correspond to
the electronic densities of states for each lead, do not vanish
even though Ĥnn is Hermitian for each n because the leads
are large enough that irreversible outward propagation of
electron wave functions must be considered, while the terms
�Ẑ2,3(Ẑ (0)

3 − �Ẑ3,1Ŷ
(0)

1 �Ẑ1,3 − �Ẑ3,2Ŷ
(0)

2 �Ẑ2,3)−1�Ẑ3,1 →
Ĥ2,3Ĝ3Ĥ3,1, having defined the full electronic Green’s
function Ĝ3 = (Ĥ3,3 − E 1̂3 − Ĥ3,1ĝ1Ĥ1,3 − Ĥ3,2ĝ2Ĥ2,3)−1

which is related to the density of states in the presence of
the leads, correspond to the tight-binding couplings of the
junction to the leads dressed by Fabry-Pérot-like multiple
scattering terms within the junction accounting for the
interfaces with the leads.

As a reminder, applying the equations expressing the total
(frequency-integrated) heat transfer power Ẇ to ECHT re-
quires replacing the Planck function �(ω, T ) with the Fermi-
Dirac energy distribution function (E − μ)nFD(E , T ) = (E −
μ)/{exp[(E − μ)/(kBT )] + 1} which depends on the chem-
ical potential μ. This can also be applied to the unification
of ECHT with heat transfer from other fermionic particles or
quasiparticles.
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