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Recent experimental advances probing coherent phonon and electron transport in nanoscale devices at contact
have motivated theoretical channel-based analyses of conduction based on the nonequilibrium Green’s function
formalism. Transmission through each channel is known to be bounded above by unity, yet in practice usually
falls far below this Landauer limit. Building upon recently derived radiative heat transfer limits and a unified
formalism characterizing heat transport for arbitrary bosonic systems in the linear regime, we propose new
bounds on conductive heat transfer. In particular, we demonstrate that our limits are typically far tighter than
the Landauer limits per channel and are close to actual transmission eigenvalues by examining a model of
phonon conduction in a one-dimensional chain. Our limits have ramifications for designing molecular junctions
to optimize conduction.
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I. INTRODUCTION

Tailoring nanoscale devices for conductive heat transfer
(CHT) is relevant to the design of thermoelectric devices,
heat sinks and refrigerators, optoelectronic and optomechan-
ical devices, and for control over chemical reactions at the
nanoscale [1–10]. Recent experiments have accurately mea-
sured thermal conductance through single-atom or molec-
ular junctions [11–14]. Concurrently, phonon and electron
conduction have been theoretically described in the linear
response regime via the nonequilibrium Green’s function
method [1–7,15–22]. Many of these theoretical works have
studied conduction from the perspective of channel-based
transmission contributions at each frequency. The transmis-
sion from each channel is theoretically bounded above by
unity, but in typical systems, the actual transmission falls
far short of these limits, and it has been difficult to produce
general predictive or explanatory insights regarding which
systems may or may not exhibit transmission contributions
close to these bounds [6].

In this paper, building upon an accompanying paper [23]
whose formalism is reviewed in Sec. II, we provide channel-
based upper bounds for heat transfer, including CHT, in
arbitrary linear bosonic systems that are at least as tight as
Landauer limits at each frequency [4–7,18,19], and in practice
are much tighter. First, in Sec. III we prove that for the
typical system corresponding to a junction connecting two
leads, the number of nonzero transmission eigenvalues at each
frequency is bounded above by the rank of the response of the
junction dressed by the two leads, and this in turn is bounded
above by the narrowest bottleneck in the junction. This deriva-
tion serves as an algebraic proof or a prior statement based on
physical albeit heuristic arguments [4–7,15,18,19]. Second, in
Sec. IV we show that a recently derived unified framework for
heat transfer based on the nonequilibrium Green’s function
formalism [23] can be used to generalize recently proposed

bounds on radiative heat transfer (RHT) [24,25] to include
phonon transport; the derivation of these bounds is extremely
technical and complex, but we include it in the main text for
completeness, and point readers to (17) for the main result.
Third, in Sec. V we demonstrate the much greater tightness of
these bounds for phonon CHT (i.e., coherent thermal phonon
transport), relative to the Landauer limits of unity, in a model
one-dimensional (1D) chain. Although we do not explicitly
consider electron CHT, which is fermionic, the analogous
forms of the heat transfer spectrum and analogous properties
of the relevant linear response quantities allow for deriva-
tion of analogous rank-based and channel-based bounds. Our
findings have ramifications for the design of new nanoscale
junctions for efficient CHT.

II. GENERAL SYSTEM FORMULATION

Through this work we consider the system depicted
schematically in Fig. 1, consisting of two arbitrary compo-
nents, labeled 1 and 2, exchanging energy only via cou-
plings to a third body 3. Physical embodiments include RHT
between any two bodies, as well as CHT for two bodies
connected only through a junction [23]. If each component
exhibits linear bosonic response with linear couplings, the net
heat transfer power may be written as

P1→2 =
∫ ∞

0
[�(ω, T2) − �(ω, T1)]�(ω)

dω

2π
, (1)

where �(ω, T ) = h̄ω/(eh̄ω/(kBT ) − 1) is the Planck function,
while �(ω) is the dimensionless spectrum of energy transfer.

The energy transfer spectrum � is written in terms of linear
response quantities in the frequency domain. Using a general
linear response formalism [23], generalized displacements |x〉
in each of the three components may be related to generalized
forces |F 〉 in different components via the equations |x〉 =
|x(0)〉 + Ŷ (0)|F 〉 and |F 〉 = −�Ẑ|x〉. In this, the operator Ẑ (0)

describes the frequency domain equations of motion for the
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FIG. 1. Schematic system. Two components, labeled 1 and 2,
with linear response functions Ẑ (0)

1 and Ẑ (0)
2 and maintained at

temperatures T1 and T2, exchange energy by virtue of coupling to
a third component, labeled 3 with linear response function Ẑ (0)

3 ,
through couplings �Ẑ3,1 and �Ẑ3,2. All relevant response quantities
are assumed to be linear, reciprocal, causal, and passive.

whole system in the absence of couplings, which means it can
be decomposed into operators Ẑ (0)

n for each component n ∈
{1, 2, 3}; the response operator is the inverse Ŷ (0) = Ẑ (0)−1,
and this too can be decomposed per component as Ŷ (0)

n =
Ẑ (0)−1

n . For the general system under consideration, the only
nonzero couplings are those from components n ∈ {1, 2} to
component 3, so �Ẑ can be decomposed blockwise such
that only �Ẑ3,n and �Ẑn,3 are nonzero for n ∈ {1, 2}. Reci-
procity means that at any frequency ω, Ẑ (0)

n = (Ẑ (0)
n )� must

hold, though that may be complex valued, but we assume
�Ẑ3,n = (�Ẑn,3)� to be real valued, as this is most relevant
to the forms of RHT and CHT that we consider. Furthermore,
passivity means that asym(Ŷ (0)

n ) = Im(Ŷ (0)
n ) for n ∈ {1, 2, 3}

are all positive-semidefinite operators, where we have de-
fined asym(Â) = (Â − Â†)/(2i) and Im(Â) = (Â − Â�)/(2i)
for any linear operator Â.

Throughout this paper we assume that if the coupling
induces an effective nonzero �Ẑnn for each n ∈ {1, 2, 3},
that is included in the definition of Ẑ (0)

n . As examples, the
relevant material response functions Ẑ (0)

n for RHT will gener-
ally include the effects of short-range Coulomb interactions,
and the electromagnetic couplings (charges) �Ẑn,3 will only
be for explicitly long-range interactions; for phonon CHT,
the specific example of two 1D harmonic oscillators n ∈
{1, 2} of masses mn coupled to each other with strength
k1,2 and each to a separate fixed wall with strength knn

has equations of motion (k1,1 + k1,2 − ω2m1)x1 − k1,2x2 = F1

and −k1,2x1 + (k2,2 + k1,2 − ω2m2)x2 = F2, so Ẑ (0)
n = knn +

k1,2 − ω2mn. Finally, throughout this paper, we assume that
no degrees of freedom (DOFs) in component 3 are simul-
taneously coupled to components 1 and 2, which is true of
RHT when the material bodies do not overlap, and can be
assumed of CHT by expanding the definition of the central
junction to prohibit such overlaps; we do this for conceptual
and computational simplicity, though the formula for heat
transfer and our bounds can be generalized to incorporate
other scenarios.

One may write the energy transfer spectrum at each ω as
[23]

� = 4Tr
[

asym
(
�Ẑ3,1Ŷ

(0)
1 �Ẑ1,3

)
Ŷ †

3

× asym
(
�Ẑ3,2Ŷ

(0)
2 �Ẑ2,3

)
Ŷ3

]
, (2)

where we define Ŷ3 = (Ẑ (0)
3 − �Ẑ3,1Ŷ

(0)
1 �Ẑ1,3 −

�Ẑ3,2Ŷ
(0)

2 �Ẑ2,3)−1 as the response of component 3 dressed
by its couplings to components 1 and 2. For clarity,
Appendix B gives correspondences between these abstract
operators and concrete linear response quantities in the
context of phonon CHT; as examples, in the context of
phonon CHT between two leads across a junction, Ŷ3 is
the Green’s function of the junction dressed by the leads,
and the operators �Ẑ3,n asym(Ŷ (0)

n )�Ẑn,3 for n ∈ {1, 2} are
the imaginary parts of the self-energies of the leads. In the
accompanying paper [23], it has already been shown that the
energy transfer spectrum at each ω may be written as

� =
∑

μ

τμ, (3)

which is a sum over transmission probabilities τμ ∈ [0, 1]
for different channels μ; this arises because the operators
in the trace in (2) can be cyclically rearranged, so � can
be written as the trace of a Hermitian positive-semidefinite
operator whose eigenvalues all lie in the range [0, 1]. In
Sec. III we derive upper bounds to the number of channels for
which the transmission probabilities may be nonzero, while in
Sec. IV we show how the nonzero transmission probabilities
themselves may have upper bounds that are less than unity.

III. RANK-BASED BOUNDS

In the context of CHT, components 1 and 2 frequently
correspond to large leads, while component 3 corresponds to
a much smaller intermediate junction [4–7,18,19]. In these
prior works, it has been observed, but not rigorously and
conclusively proved, that if the energy transfer spectrum is
written as (3), then the number of channels with nonzero
transmission probabilities is bounded above by the number of
degrees of freedom at the smallest bottleneck in component 3.
In this section we rigorously prove this statement through the
linear algebraic properties of the relevant operators describing
the system response properties.

To start, we note that the transmission probabilities
are the squares of the singular values of the opera-
tor asym(�Ẑ3,2Ŷ

(0)
2 �Ẑ2,3)1/2Ŷ3 asym(�Ẑ3,1Ŷ

(0)
1 �Ẑ1,3)1/2, ly-

ing in the same range [0, 1]. The number of nonzero singular
values is the rank of this operator, which is bounded above by
the rank of the various operators being multiplied together,
namely asym(�Ẑ3,nŶ (0)

n �Ẑn,3)1/2 for n ∈ {1, 2}, along with
P̂3(2)Ŷ3P̂3(1), where P̂3(n) = (P̂3(n) )� is the orthogonal projec-
tion into the subspace of component 3 coupled to component
n ∈ {1, 2}. Therefore, the number of nonzero transmission
eigenvalues is bounded above by the minimum of the number
of DOFs of component 3 coupled to component 1 versus 2,
or the number of DOFs of components 1 or 2 coupled to
component 3 (in case the couplings are not one-to-one per
DOF in each component).

However, even tighter bounds on the number of nonzero
transmission eigenvalues can be derived with the following
observation. Frequently, component 3 has a narrow bottleneck
that has even fewer DOFs than those coupling to components
1 or 2, and if that bottleneck is not directly coupled to
components 1 or 2, then component 3 can be divided into
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subparts A, B, and C, such that subparts A and B couple
directly respectively to components 1 and 2 and also to subpart
C, while subpart C only couples directly to subparts A and
B. This means that P̂3(1) = P̂3A(1) and P̂3(2) = P̂3B(2), while we

define the nonzero blocks of �Ẑ1,3 and �Ẑ2,3 as �Ẑ1,3A and
�Ẑ2,3B, respectively. Writing the operators in the space of
component 3 in block form in terms of the subparts, so that
Ŷ −1

3 is given by

Ẑ (0)
3 − �Ẑ3,1Ŷ

(0)
1 �Ẑ1,3 − �Ẑ3,2Ŷ

(0)
2 �Ẑ2,3 =

⎡
⎣Ẑ (0)

3A − �Ẑ3A,1Ŷ
(0)

1 �Ẑ1,3A 0 �Ẑ3AC

0 Ẑ (0)
3B − �Ẑ3B,2Ŷ

(0)
2 �Ẑ2,3B �Ẑ3BC

�Ẑ3CA �Ẑ3CB Ẑ (0)
3C

⎤
⎦,

then we may perform the inversion blockwise to yield the B-A
off-diagonal subpart block, which is the only relevant nonzero
block for energy exchange in this scenario, as P̂3(2)Ŷ3P̂3(1) =
P̂3B(2)(Ẑ

(0)
3B − �Ẑ3B,2Ŷ

(0)
2 �Ẑ2,3B)−1�Ẑ3BC[Ẑ (0)

3C − �Ẑ3CA(Ẑ (0)
3A

− �Ẑ3A,1Ŷ
(0)

1 �Ẑ1,3A)−1�Ẑ3AC − �Ẑ3CB(Ẑ (0)
3B − �Ẑ3B,2Ŷ

(0)
2 �

Ẑ2,3B)−1�Ẑ3BC]−1�Ẑ3CA(Ẑ (0)
3A − �Ẑ3A,1Ŷ

(0)
1 �Ẑ1,3A)−1P̂3A(1).

In this expression, the middle operator is nonzero only in
the space of subpart C, so if subpart C has the fewest DOFs,
then it is the rank-limiting part. It follows that the number of
nonzero transmission eigenvalues for two leads exchanging
energy via a junction is bounded above by the number of
DOFs in the smallest bottleneck in the junction, validating
prior observations [4–7,15,18,19].

IV. CHANNEL-BASED BOUNDS

In order to derive tighter upper bounds on � (no longer as-
suming any particular division of component 3 into subparts)
from (2), we rewrite � as follows. First, we recognize that
reciprocity of the relevant operators allows replacement of the
Hermitian adjoint † by the complex conjugate �, and in turn
of asym by Im. Second, we assume that for each of the end
components (n ∈ {1, 2}) connected to the middle component
(3), the operator �Ẑ3,nŶ (0)

n �Ẑn,3 for a given n is invertible
within the space of DOFs of component 3 which are coupled
to that component n. This allows for rewriting

Im
(
�Ẑ3,nŶ

(0)
n �Ẑn,3

) = �Ẑ3,nŶ
(0)�

n �Ẑn,3 Im
[(

�Ẑ3,nŶ
(0)�

n

×�Ẑn,3
)−1]

�Ẑ3,nŶ
(0)

n �Ẑn,3.

For notational convenience, in analogy with electromagnetic
notation, we denote V̂n ≡ �Ẑ3,nŶ (0)

n �Ẑn,3; this denotes the
response of component n ∈ {1, 2} evaluated in the space of
DOFs of component 3 coupled to component n (multiplied by
those coupling quantities), and in the context of CHT, these
are the self-energies of the leads n coupled to the junction
(component 3). This therefore allows for writing

� = 4Tr
[
V̂1 Im

(
V̂ −1�

1

)
V̂ �

1 Ŷ �
3 V̂ �

2 Im
(
V̂ −1�

2

)
V̂2Ŷ3

]
after rearranging the trace. It is also helpful at this point to use
the definition Ŷ3 = (Ẑ (0)

3 − V̂1 − V̂2)−1 to show that V̂2Ŷ3V̂1 =
V̂2[1̂ − (1̂ − Ŷ (0)

3 V̂1)−1Ŷ (0)
3 V̂2]−1Ŷ (0)

3 V̂1(1̂ − Ŷ (0)
3 V̂1)−1, as this

will become useful for the derivations of these bounds.
Having established these operator definitions and relations,

our derivation proceeds following the derivation of the RHT
bounds in Ref. [24]. First, we establish and explain general-
izations of constraints on quantities like “far-field scattering”
relevant to RHT. Second, we apply a lemma by von Neumann

[26] (whose derivation is reproduced in context in Ref. [24]),
showing that the largest real positive value of the trace of
a product of operators arises when those operators share
singular vectors and when the sets of fixed singular values
are arranged in consistent orders, to the maximization of �,
explaining along the way how variation of the singular values
themselves is consistent with the conditions of the lemma. We
conclude the section by restating the bound for �, which we
term �opt, and by discussing its implications.

A. Constraints on nonnegative far-field scattering

In Ref. [23] we established that in the context of RHT, com-
ponent 3 corresponds to the vacuum electromagnetic field,
so Ŷ (0)

3 would be the vacuum Maxwell Green’s function. We
extend this analogy in the other direction to derive constraints
on the linear response quantities relevant to this system of two
components coupled only via a third.

First, we define the relevant general equations of motion
for these operators in order to properly define what is meant
by absorbed, scattered, and extinguished power. In Ref. [23]
we generally showed that they can be written as |x〉 = |x(0)〉 +
Ŷ (0)|F 〉 along with |F 〉 = −�Ẑ|x〉 where there are nonzero
generalized free displacements but no generalized external
forces. Here we do the opposite in order to describe powers
in response to generalized forces, so the relevant equations
of motion are |x〉 = Ŷ (0)|F 〉 and |F 〉 = |F (0)〉 − �Ẑ|x〉; for
this particular derivation, these are effectively related by the
replacement |F (0)〉 ↔ Ẑ (0)|x〉. For this system of two compo-
nents labeled 1 and 2 connected via a third labeled 3, these
quantities may be defined in block form as

|x〉 =
⎡
⎣|x1〉

|x2〉
|x3〉

⎤
⎦, |F 〉 =

⎡
⎣|F1〉

|F2〉
|F3〉

⎤
⎦, |F (0)〉 =

⎡
⎣

∣∣F (0)
1

〉∣∣F (0)
2

〉∣∣F (0)
3

〉
⎤
⎦,

Ẑ (0) =
⎡
⎣Ẑ (0)

1 0 0
0 Ẑ (0)

2 0
0 0 Ẑ (0)

3

⎤
⎦,

�Ẑ =
⎡
⎣ 0 0 �Ẑ1,3

0 0 �Ẑ2,3

�Ẑ3,1 �Ẑ3,2 0

⎤
⎦, (4)

and for further convenience we define the subgroups

|xA〉 =
[|x1〉
|x2〉

]
, |FA〉 =

[|F1〉
|F2〉

]
,

∣∣F (0)
A

〉 =
[∣∣F (0)

1

〉∣∣F (0)
2

〉],

Ẑ (0)
A =

[
Ẑ (0)

1 0
0 Ẑ (0)

2

]
, �ẐA,3 =

[
�Ẑ1,3

�Ẑ2,3

]
, (5)
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where the subscript “A” refers to the “aggregate” of the
components 1 and 2 that are not directly coupled to each other
[and �Ẑ3,A = (�ẐA,3)�].

Next, we define the notions of absorbed, scattered, and
extinguished power in this system. For RHT, it is simple to
see that far-field scattering involves the transfer of energy to
component 3, namely the vacuum electromagnetic field, while
absorption involves the transfer of energy to components 1
or 2 [27]. We generalize this as follows. We assume that all
external forces are only in components 1 or 2, so |F (0)

3 〉 = 0,
but |F (0)

A 〉 	= 0. We also define the orthogonal projection op-
erators P̂n which project onto the subspaces of DOFs of com-
ponent n ∈ {1, 2, 3}; these are orthogonal to each other, so we
also define the aggregate projection P̂A = P̂1 + P̂2. Similarly,
we define the aggregate response operator V̂A = V̂1 + V̂2 =
�Ẑ3,AŶ (0)

A �ẐA,3, but we do not yet assume that the DOFs
of component 3 that couple to each of the other components
exist in orthogonal subspaces. From these definitions, one
finds that absorbed power �abs = ω

2 Im(〈F, P̂Ax〉) refers to the
energy dumped by the external forces into components 1 and
2, extinguished power �ext = ω

2 Im(〈F (0), P̂Ax〉) is the energy
dumped by the external forces into the entire system, and
scattered power �sca = �ext − �abs is simply the difference
of the two.

At this point we may now generally compute these power
quantities for a general external force |F (0)

A 〉. The equations of
motion may be written as

Ẑ (0)
A |xA〉 + �ẐA,3|x3〉 = ∣∣F (0)

A

〉
,

�Ẑ3,A|xA〉 + Ẑ (0)
3 |x3〉 = 0, (6)

whose formal solution may be written as

|xA〉 = Ŷ (0)
A

[
1̂ + �ẐA,3Ŷ

(0)
3

(
1̂ − V̂AŶ (0)

3

)−1
�Ẑ3,AŶ (0)

A

]∣∣F (0)
A

〉
,

|x3〉 = −Ŷ (0)
3

(
1̂ − V̂AŶ (0)

3

)−1
�Ẑ3,AŶ (0)

A

∣∣F (0)
A

〉
(7)

in terms of |F (0)
A 〉. From this we write the absorbed power

�abs = ω
2 Im(〈F, P̂Ax〉) (after relevant operator manipula-

tions) as

2

ω
�abs = 〈

F (0)
A , Ŷ (0)�

A �ẐA,3
(
1̂ − Ŷ (0)�

3 V̂ �
A

)−1
Ŷ (0)�

3

× Im(V̂A)Ŷ (0)
3

(
1̂ − V̂AŶ (0)

3

)−1
�Ẑ3,AŶ (0)

A F (0)
A

〉
(8)

upon using the real-valued nature of �ẐA,3 and its transpose,
and the fact that for operators Â and B̂, asym(Â†B̂Â) =
Â† asym(B̂)Â (with a similar statement holding for reciprocal
operators with the complex conjugate and the imaginary part);
passivity means that Im(V̂n) is positive-semidefinite for n ∈
{1, 2}, and so is Im(V̂A) in turn, guaranteeing that �abs � 0 for
any |F (0)

A 〉. Likewise, we write the extinguished power �ext =
ω
2 Im(〈F (0), P̂Ax〉) (after relevant operator manipulations) as

2

ω
�ext = 〈

F (0)
A , Ŷ (0)�

A �ẐA,3 Im
[(

1̂ − Ŷ (0)
3 V̂A

)−1
Ŷ (0)

3

]
×�Ẑ3,AŶ (0)

A F (0)
A

〉
(9)

for which it can be shown that �ext � 0 for all |F (0)
A 〉 as

follows: performing all inverses in the space corresponding to
DOFs of component 3, Im[(1̂ − Ŷ (0)

3 V̂A)−1Ŷ (0)
3 ] = Im[(Ẑ (0)

3 −

V̂A)−1] = (Ẑ (0)
3 − V̂A)−1� Im(Ẑ (0)�

3 −V̂ �
A )(Ẑ (0)

3 −V̂A)−1, so this

is positive-semidefinite if Im(Ẑ (0)�
3 − V̂ �

A ) is positive-
semidefinite, which is true as passivity means each term,
namely Im(Ẑ (0)�

3 ) and − Im(V̂ �
A ), is positive-semidefinite.

In order to show that the difference between the extin-
guished and absorbed powers is properly a scattered power
and is nonnegative, we must show that it is equal to the energy
dumped into component 3. To do this, we may rewrite the
solution to (6) in a fully equivalent way as

|xA〉 = (
1̂ − Ŷ (0)

A �ẐA,3Ŷ
(0)

3 �Ẑ3,A
)−1

Ŷ (0)
A

∣∣F (0)
A

〉
,

|x3〉 = −Ŷ (0)
3 �Ẑ3,A

(
1̂ − Ŷ (0)

A �ẐA,3Ŷ
(0)

3 �Ẑ3,A
)−1

Ŷ (0)
A

∣∣F (0)
A

〉
,

(10)

and then write the absorbed power in component 3 (ignoring
the prefactor ω/2) as Im(〈F, P̂3x〉) = − Im(〈�Ẑ3,AxA, x3〉).
This in turn is written (after relevant operator
manipulations) as

− Im(〈�Ẑ3,AxA, x3〉)

= 〈
F (0)

A , Ŷ (0)�
A �ẐA,3

(
1̂ − Ŷ (0)�

3 V̂ �
A

)−1
Im

(
Ŷ (0)

3

)
× (

1̂ − V̂AŶ (0)
3

)−1
�Ẑ3,AŶ (0)

A F (0)
A

〉
(11)

and this is indeed equal to �ext − �abs, as the equality
(1̂−Ŷ (0)�

3 V̂ �
A )−1 Im(Ŷ (0)

3 )(1̂−V̂AŶ (0)
3 )−1 = Im[(1̂ − Ŷ (0)

3 V̂A)−1

Ŷ (0)
3 ] − (1̂ − Ŷ (0)�

3 V̂ �
A )−1Ŷ (0)�

3 Im(V̂A)Ŷ (0)
3 (1̂ − V̂AŶ (0)

3 )−1

follows from the aforementioned operator identity
Im[(1̂−Ŷ (0)

3 V̂A)−1Ŷ (0)
3 ]= Im[(Ẑ (0)

3 − V̂A)−1]= (Ẑ (0)
3 −V̂A)−1�

Im(Ẑ (0)�
3 − V̂ �

A )(Ẑ (0)
3 − V̂A)−1. Thus, the energy dumped in

component 3 is indeed a scattered power, and passivity,
namely the operator Im(Ŷ (0)

3 ) being positive-semidefinite,
makes it nonnegative. This in turn requires that the
equivalent operator Im[(1̂ − Ŷ (0)

3 V̂A)−1Ŷ (0)
3 ] − (1̂ −

Ŷ (0)�
3 V̂ �

A )−1Ŷ (0)�
3 Im(V̂A)Ŷ (0)

3 (1̂ − V̂AŶ (0)
3 )−1 be positive-

semidefinite. Furthermore, the existence of nontrivial
scattered power requires that Im(Ŷ (0)

3 ) 	= 0, which requires
some form of dissipation in component 3; in RHT, this is
automatically satisfied by far-field radiation encoded in the
vacuum Maxwell Green’s function, but for other forms of heat
transfer, e.g., CHT through an intermediate small junction
(functioning as component 3), dissipation must be explicitly
introduced. This is required for self-consistency, but as will
become clear, Im(Ŷ (0)

3 ) does not appear in other forms of
the constraint requiring nonnegative scattered power, and
ultimately does not affect bounds on (2).

We now explore the consequences of this constraint for
each component n ∈ {1, 2} coupled to component 3, and
particularly wish to cast these constraints in terms of the
DOFs of component 3 that are coupled to each of the other
components, thereby involving the operators V̂n. With this in
mind, we first consider the implications of nonnegative far-
field scattering in the absence of component 2, so component
3 is only coupled to component 1, and compute the absorbed
power in component 3 (i.e., the scattered power) due to the
external force |F (0)

1 〉. The exact same steps as above can be fol-
lowed under the notational replacement A → 1. Starting from
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the condition that Ŷ (0)�
1 �Ẑ1,3(1̂ − Ŷ (0)�

3 V̂ �
1 )−1 Im(Ŷ (0)

3 )(1̂ −
V̂1Ŷ

(0)
3 )−1�Ẑ3,1Ŷ

(0)
1 be positive-semidefinite, we multiply on

the left by �Ẑ3,1 and on the right by �Ẑ1,3, which does
not affect this condition. We then define the operator T̂1 =
(1̂ − V̂1Ŷ

(0)
3 )−1V̂1 (not to be confused with the temperature

T1), which is reciprocal, and assume that it and V̂1 are in-
vertible within the space of the subset of DOFs of compo-
nent 3 coupled to component 1; this operator, known as the
T-operator in the context of electromagnetic scattering theory
(or the T-matrix in the context of electron or phonon scattering
theories), describes the response of the DOFs of component
3 coupled to component 1 dressed by the propagation of
forces through the whole of component 3 in isolation. Using
this, we define the orthogonal projection operator onto that
space as P̂(V̂1) in order to say that P̂(V̂1) Im(Ŷ (0)

3 )P̂(V̂1) =
Im(T̂ −1�

1 − V̂ −1�
1 ). Plugging this projector yields the con-

dition that scattering is nonnegative when the operator
Im(T̂1) − T̂ �

1 Im(V̂ −1�
1 )T̂1 is positive-semidefinite. As this

yields a nonnegative quadratic form for every |F (0)
1 〉, that will

also be true for every |F (0)�
1 〉, so that in conjunction with

reciprocity, one finds that Im(T̂1) − T̂1 Im(V̂ −1�
1 )T̂ �

1 must also
be positive-semidefinite.

Next, we consider the implications of nonnegative far-
field scattering for the full system, in which all three com-
ponents are present with components 1 and 2 only cou-
pled to component 3. At this point, we must impose the
assumption that no DOFs in component 3 are simultaneously
coupled to components 1 and 2. (Relaxation of this assump-
tion and associated computational aspects are covered in
Appendix A.) This means the two operators V̂n are supported
in disjoint (orthogonal) subspaces, so those quantities are in
fact separable. Undoing the replacement A → 1 above means
that we can write T̂A = (1̂ − V̂AŶ (0)

3 )−1V̂A, and analogously
P̂(V̂A) Im(Ŷ (0)

3 )P̂(V̂A) = Im(T̂ −1�
A − V̂ −1�

A ), so the condition
for nonnegative far-field scattering (i.e., energy dumped into
component 3) is that Im(T̂A) − T̂ �

A Im(V̂ −1�
A )T̂A is positive-

semidefinite. This analysis is made more convenient by writ-
ing the relevant operators in block form as

V̂A =
[
V̂1 0
0 V̂2

]
,

T̂ −1
A =

[
V̂ −1

1 − P̂(V̂1)Ŷ (0)
3 P̂(V̂1) −P̂(V̂1)Ŷ (0)

3 P̂(V̂2)

−P̂(V̂2)Ŷ (0)
3 P̂(V̂1) V̂ −1

2 − P̂(V̂2)Ŷ (0)
3 P̂(V̂2)

]
,

(12)

where each block represents a projection onto the space of
the subset of DOFs of component 3 coupled to each of
the other components, and where V̂1 and V̂2 are assumed
to be invertible in those spaces. The lower-right block of
Im(T̂A) − T̂ �

A Im(V̂ −1�
A )T̂A may then be evaluated (upon fur-

ther operator manipulations) as Im(T̂2,2) − T̂ �
2,2[Im(V̂ −1�

2 ) +
Ŷ (0)�

3 T̂ �
1 Im(V̂ −1�

1 )T̂1Ŷ
(0)

3 ]T̂2,2, and this operator must be
positive-semidefinite, having defined T̂2,2 = P̂(V̂2)T̂AP̂(V̂2) =
[V̂ −1

2 − P̂(V̂2)(Ŷ (0)
3 + Ŷ (0)

3 T̂1Ŷ
(0)

3 )P̂(V̂2)]−1 as the effective re-
sponse of the subset of DOFs of component 2 dressed
by the propagation of force through the whole of
component 3 in the presence of component 1. Reci-

procity again means that the transpose, namely Im(T̂2,2) −
T̂2,2[Im(V̂ −1�

2 ) + Ŷ (0)
3 T̂1 Im(V̂ −1�

1 )T̂ �
1 Ŷ (0)�

3 ]T̂ �
2,2, must also be

positive-semidefinite.
To summarize, nonnegative far-field scattering from com-

ponent 1 when component 3 is coupled only to it means that〈
u3,

[
Im(T̂1) − T̂ �

1 Im
(
V̂ −1�

1

)
T̂1

]
u3

〉
� 0 (13)

must hold for any vector |u3〉 in the space of component 3,
and the same must be true of the transpose of the relevant
overall operator. Likewise, nonnegative far-field scattering
from component 2 when component 3 is coupled to both it
and component 1 means that〈

u3,
[

Im(T̂2,2) − T̂ �
2,2

(
Im

(
V̂ −1�

2

)
+ Ŷ (0)�

3 T̂ �
1 Im

(
V̂ −1�

1

)
T̂1Ŷ

(0)
3

)
T̂2,2

]
u3

〉
� 0 (14)

must hold for any vector |u3〉 in the space of component 3,
and the same must be true of the transpose of the overall
operator.

B. Optimization of singular values

In order to optimize �, we must rewrite it in a form
that explicitly depends on T̂1 and T̂2,2. To do this, we
start by returning to the operator identity V̂2Ŷ3V̂1 = V̂2[1̂ −
(1̂ − Ŷ (0)

3 V̂1)−1Ŷ (0)
3 V̂2]−1Ŷ (0)

3 V̂1(1̂ − Ŷ (0)
3 V̂1)−1 presented at the

beginning of this section, and use the definitions of T̂1

and T̂2,2 to show (upon manipulation of relevant opera-
tors) that V̂2Ŷ3V̂1 = T̂2,2Ŷ

(0)
3 T̂1. This allows for immediately

rewriting

� = 4 Tr
[

Im
(
V̂ −1�

1

)
T̂ �

1 Ŷ (0)�
3 T̂ �

2,2 Im
(
V̂ −1�

2

)
T̂2,2Ŷ

(0)
3 T̂1

]
(15)

and it is this form of � that shall be used to derive an
upper bound. In particular, the operators V̂1, V̂2, and Ŷ (0)

3
effectively describing the response of each component in
isolation will be taken to be fixed, while singular value
decompositions of T̂1 and T̂2,2 will be performed in order to
optimize the singular values to produce a bound on �. To do
this, we further rewrite � = 4Tr[ÂB̂�

2B̂2] upon defining B̂2 =
Im(V̂ −1�

2 )1/2T̂2,2 Im(V̂ −1�
2 )1/2 and the Hermitian operator Â =

Im(V̂ −1�
2 )−1/2Ŷ (0)

3 T̂1 Im(V̂ −1�
1 )T̂ �

1 Ŷ (0)�
3 Im(V̂ −1�

2 )−1/2.
This definition is convenient for the following reason. We

wish to vary the singular values of T̂1 and T̂2,2 to find an upper
bound for �, yet the lemma by von Neumann [26], which
states that the trace of a product of operators has a maximum
real nonnegative value when the singular vectors among the
operators are shared, requires the singular values to be fixed
in a consistent order; in our case, the constraints on the various
operators may depend on different mixtures of singular values
and singular vectors. However, our derivations are consistent
with this lemma thanks to the definitions of the operators
Â and B̂2 above: in the definition of Â, only the singular
values of T̂1 may be varied, but the constraints on those
singular values are independent of constraints on the singular
values and vectors of other relevant operators. In particular,
we may use the reciprocity of T̂1 to write the singular value
decomposition T̂1 = ∑

μ τ(1)μ|aμ〉〈a�
μ|, where 〈aμ, aν〉 = δμν .

Thus, if the singular values τ1(μ) are appropriately set, the
derivations are consistent with the lemma [26]. We choose
to write the singular value decomposition Â = ∑

ν αν |bν〉〈bν |,
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given that Â is a Hermitian positive-semidefinite operator, and
the constraint in (14) in transposed form is that Im(B̂2) −
B̂2(1̂ + Â)B̂�

2 must be positive-semidefinite, so we bound
� = 4Tr[B̂2ÂB̂�

2] � 4Tr[Im(B̂2) − B̂2B̂�
2]. From this, we can

immediately see that the right-hand side is maximized if
B̂2 = i Im(B̂2) is purely anti-Hermitian [and still reciprocal,
as Im(V̂ −1�

2 )1/2 is not only Hermitian for a passive system but
is real-symmetric due to reciprocity], as any nontrivial Hermi-
tian part increases the magnitude of the negative contribution
on the right-hand side relative to the positive contribution.
Moreover, while the right-hand side is basis independent, it
can be evaluated in the basis of singular vectors {|bν〉} of Â, so
the overall sum (trace) is guaranteed to be maximized when
each individual contribution is maximized. The constraint
that Im(B̂2) − B̂2(1̂ + Â)B̂�

2 must be positive-semidefinite can
be evaluated for a particular |bμ〉 as

∑
ν αν |〈bν, T̂2,2bμ〉|2 �

〈bμ, Im(T̂2,2)bμ〉 − ∑
ν |〈bν, T̂2,2bμ〉|2, and so the right-hand

side is maximized for each channel μ if T̂2,2 has {|bν〉} as its
right singular vectors. Thus, the lemma by von Neumann [26]
is indeed applicable, and reciprocity allows us to write the sin-
gular value decomposition T̂2,2 = ∑

ν τ(2,2)ν |b�
ν〉〈bν |, where

〈bμ, bν〉 = δμν and 〈bν, b�
ν〉 = i for each channel ν. In this

basis of singular vectors, we may write � � 4
∑

ν αντ
2
(2,2)ν ,

and the constraint can be written as τ(2,2)ν − τ 2
(2,2)ν (1 + αν ) �

0, so τ(2,2)ν � (1 + αν )−1. For each αν , the bound is saturated
when the inequality on τ(2,2)ν is saturated, so we may write
� � 4

∑
ν αν/(1 + αν )2 and then optimize each αν to maxi-

mize that bound.
At this point we further rewrite Â = Im(V̂ −1�

2 )−1/2

Ŷ (0)
3 Im(V̂ −1�

1 )−1/2B̂1 × B̂�
1 Im(V̂ −1�

1 )−1/2 Ŷ (0)�
3 Im (V̂ −1�

2 )−1/2

in terms of B̂1 = Im(V̂ −1�
1 )1/2T̂1 Im(V̂ −1�

1 )1/2. Because T̂1

has singular values that may be freely chosen subject to
constraints on nonnegative scattering that are independent
of the singular vectors, the largest range of singular values
αν of Â allowing for the largest possible maximal value of
the upper bound is thus made available when B̂1 shares
singular vectors with Im(V̂ −1�

2 )−1/2Ŷ (0)
3 Im(V̂ −1�

1 )−1/2,
and the structure of Â would then imply that
Im(V̂ −1�

2 )−1/2Ŷ (0)
3 Im(V̂ −1�

1 )−1/2 has {〈bν |} as its left
singular vectors too, while Im(V̂ −1�

2 )−1/2Ŷ (0)
3 Im(V̂ −1�

1 )−1/2

would have {|aμ〉} as its right singular vectors. Thus, we
rewrite αμ = (κμημ)2, where κμ are the (fixed) singular
values of Im(V̂ −1�

2 )−1/2Ŷ (0)
3 Im(V̂ −1�

1 )−1/2 while ημ are
the (variable) singular values of B̂1. We thus rewrite
� � 4

∑
μ(κμημ)2/[1 + (κμημ)2]2. The contribution for

each channel μ is maximized at κμημ = 1, recovering the
Landauer transmission bound of unity per channel for those
channels. However, this must be consistent with the constraint
in (13) in its transposed form, which can be written as the
constraint that Im(B̂1) − B̂1B̂�

1 be positive-semidefinite. Using
similar arguments as above, the optimal B̂1 should be purely
anti-Hermitian for the constraints on the singular values ημ to
be loosest, so this is equivalent to the constraint that ημ � 1
for each channel μ. Therefore, if κμ � 1 for a given channel
μ, then we choose ημ = 1/κμ and recover the Landauer
transmission bound of unity for that channel. Otherwise, if
κμ < 1, we must use the saturation condition ημ = 1, for

which the contribution to channel μ is
4κ2

μ

(1+κ2
μ )2 .

This bound can be succinctly written as

� �
∑

μ

[
�(κμ − 1) + 4κ2

μ(
1 + κ2

μ

)2 �(1 − κμ)

]
(16)

using the Heaviside step function �, where there is implicitly
no double counting at exactly κμ = 1. This bound depends
on the singular values κμ of Im(V̂ −1�

2 )−1/2Ŷ (0)
3 Im(V̂ −1�

1 )−1/2,
which combines information about dissipation in components
1 and 2 from Im(V̂ −1�

n )−1/2 for n ∈ {1, 2} with information
about propagation of forces through component 3 in Ŷ (0)

3 . This
bound may be more general if these contributions, primarily
involving the material response for the former two operators
and geometric effects for the latter operator (which is certainly
true of RHT [24,25]), could be separated. Such a separation is
made possible [28] by the inequality σi(M̂N̂ ) � ‖M̂‖2σi(N̂ )
for any operators M̂ and N̂ , where σi(Ô) refers to the ith singu-
lar value of operator Ô arranged in a consistent (either nonin-
creasing or nondecreasing) order, and ‖Ô‖2 is the subordinate
2-norm, namely the largest singular value, of the operator
Ô; the inequality σi(M̂N̂ ) � σi(M̂ )‖N̂‖2 follows by replacing
M̂N̂ with its Hermitian adjoint, which does not affect the
singular values of that product or its factors. Applying this
repeatedly gives the inequality κ2

μ � ζ1ζ2g2
μ, where gμ is the

corresponding singular value of the operator P̂(V̂2)Ŷ (0)
3 P̂(V̂1),

while ζn = ‖ Im(V̂ −1�
n )−1‖2 for n ∈ {1, 2}. The above bound

is monotonically nondecreasing for each κμ, so plugging in
larger values, namely

√
ζ1ζ2gμ, in place of κμ can only loosen

the bound.

C. Generality of singular-value bounds

To summarize, while the Landauer bound �L = ∑
μ 1

assumes saturation of the transmission probability for each
channel, our bound shows that this is generally not possible,
with � � �opt � �L at each frequency; our bound shows
not only how many channels may contribute, but also what
the maximum transmission probability for each channel may
be that is even tighter than the prior upper limit of unity.
Specifically, we find that

�opt =
∑

μ

[
�

(
ζ1ζ2g2

μ−1
) + 4ζ1ζ2g2

μ(
1 + ζ1ζ2g2

μ

)2 �
(
1 − ζ1ζ2g2

μ

)]

(17)

depends on the “material response factors” ζn =
‖ Im(V̂ −1�

n )−1‖2 for n ∈ {1, 2}, and the “transmissive
efficacies” gμ defined as the singular values of the operator
P̂(V̂2)Ŷ (0)

3 P̂(V̂1); there is implicitly no double counting
at exactly ζ1ζ2g2

μ = 1, and a “recipe” explaining how to
practically compute these bounds for CHT is provided in
Appendix B. Thus, our bounds capture, per channel, the
interplay between the material response of components 1 and
2 with the transmission properties of component 3 in isolation
between its subparts coupled to each of the other components.
The contribution to each channel μ is at least as tight
as the per-channel Landauer limit of unity, and only
approaches the Landauer limit if the material response
factors, representing a combination of the inverse dissipation
of components 1 or 2 and the coupling of that component to
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FIG. 2. 1D chain. Above: System schematic. Below: Plots of the bound on τ1 (a), as well as the actual values of τ1 (b) and g1 (c),
as functions of E and kc. In (a) and (b) the color bars are shared. (d)–(f) Same as (a)–(c), respectively, zoomed in for smaller kc. In all
plots, the same vertical axis (for E ) is used, and the dashed black lines are E = √

k1 (lower, horizontal) and E = √
k1 + 2kc (upper, curved),

corresponding, respectively, to the upper and lower frequency eigenvalues of the uncoupled junction where g1 diverges and therefore where the
bound on τ1 is guaranteed to reach unity. Additionally, the red contours denote where τ1,bound = 0.99, as identified from (a) or (d), and thereby
indicate where τ1,bound < 1.

component 3, are large enough compared to the transmissive
efficacies gμ for each channel μ. For the particular case of
RHT [24,25], as Ŷ (0)

3 represents the known vacuum Maxwell
Green’s function in all of space, broader statements can be
made with respect to domain monotonicity, generality with
respect to geometry, and so on, but for other forms of heat
transfer, component 3 may have specific material properties
and shapes that preclude broader statements along those lines.
In any case, these bounds are guaranteed to be at least as
tight as the Landauer bounds, and can in principle be much
tighter, as we demonstrate for the case of phonon CHT in a
representative system in the following section.

V. PHONON HEAT TRANSFER ACROSS A 1D CHAIN

In this section we apply our limits to the simple but
representative system depicted in Fig. 2(a). Specifically, we
consider phonon transport in the longitudinal direction in a
one-dimensional (1D) chain, comparing the channel transmis-

sion probability limit τ1,bound from (17) directly to results for
the actual transmission probability τ1 in work by Klöckner
et al. [19], using the same conventions that h̄ = m = 1, and
that the central junction is made of two atoms coupled at
strength kc to each other and at strength k1 to the respective
leads (which have uniform internal couplings k1). Our unit
convention means that ω is in units of meV, so we equivalently
denote it as the energy E , while kc and k1 are in units of meV2;
in particular, consistent with that work, we set k1 = 100 meV2

for ease of comparison. The analysis in that prior work
shows that dissipation vanishes for E � 2

√
k1 and E = 0, and

so we restrict consideration to E ∈ (0, 2
√

k1); additionally,
straightforward algebraic manipulations yield the figures of

merit, ζ1 = ζ2 = 2k2
1

E
√

4k1−E2
and g1 = kc

|[E2−(kc+k1 )]2−k2
c | , from

which we calculate an upper limit to the channel transmission
probability τ1,bound = ζ1ζ2g2

1.
It can be seen in Figs. 2(a)–2(c) that for kc = k1, perfect

transmission is possible in actuality, and the bounds reflect
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this. Such a rate-matching condition corresponds to the “de-
fect” in the central junction no longer behaving distinctly from
the leads, so the infinite 1D chain is uniform, and phonons
can be perfectly transmitted at any frequency. For kc > k1,
although the transmissive efficacy g1 need not be particularly
large for such combinations of (E , kc), the material response
factors ζ are large enough for the bound to essentially saturate
the Landauer limit of unity. With respect to the actual heat
transfer, in this regime, the central spring is much stiffer than
those of the leads, so low-frequency excitations E �

√
k1

perfectly transmit across the rigid central spring, while high-
frequency excitations E >

√
k1 largely reflect from the defect,

so the actual transmission nearly saturate the bounds too.
Meanwhile, for kc < k1 as seen in Figs. 2(d)–2(f), for

which decreasing kc may be physically interpreted as in-
creasing the distance between the two leads (associating the
closer atom to each lead in the junction with that lead), for
most combinations of (E , kc), the actual transmission, despite
being quite close to zero, nearly saturates our bound. This is
because for such small kc, most frequencies will lie far from
the resonant modes of the junction in isolation, so the response
of the junction is quite small. Only for E close to the values
{√k1,

√
k1 + 2kc} does our bound come close to the Landauer

limit of unity while the actual transmission does not: this is
because these are the resonant frequencies of the junction
in isolation, whereas the actual transmission depends on the
response of the junction dressed by the two leads and their
dissipations, though the range of frequencies over which this
deviation occurs narrows as kc decreases further.

From this, it can be concluded that the only points where
our bounds deviate significantly from the actual transmission
are near resonances of the junction in isolation, as that is
where the transmissive efficacy diverges, whereas the actual
transmission depends on the response in the presence of
the leads. Otherwise, our bounds come much closer to the
actual transmission than the Landauer limits of unity at most
combinations of (E , kc).

VI. CONCLUDING REMARKS

We have derived new bounds for heat transfer in arbitrary
systems with linear bosonic response, and showed that for
particular molecular junction geometries of interest to phonon
CHT in the linear regime, these per-channel bounds can not
only be much tighter than the per-channel Landauer limits
of unity across many frequencies but can actually approach
the true transmission eigenvalues. As the only points where
our bounds approach the Landauer limits but the actual
transmission eigenvalues do not are those corresponding to
resonances of the junction in isolation (where dressing by
the dissipation of the leads matters more), this suggests that
in general, our bounds may be tight when the density of
states is relatively low, and that sum rules on the density
of states could therefore lead to sum rules for heat transfer
integrated over all frequencies, a subject for future work.
Additionally, as a particular junction structure defines the
transmissive efficacies gμ while the leads with the couplings
to the junction define the material response factors ζ , it should
be possible at each frequency to determine for a given junction
what ζ allows for saturation of the bounds, and then explore

junction designs to arrive at transmissive efficacies gμ at each
frequency able to come close to saturating the Landauer limits
of unity (subject to the aforementioned sum rules), though
we leave this to future work too. Finally, we point out that
as the accompanying paper [23] made clear how the general
linear response formalism of bosonic heat transfer can, with
appropriate changes and assumptions, be applied to reproduce
formulas for mesoscale electron CHT, those correspondences
mean the bounds presented in this paper can be applied to
electron CHT as well, though further discussion is beyond the
scope of this paper.
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APPENDIX A: DERIVATION OF ALTERNATIVE BOUNDS

In this Appendix we derive alternative bounds to heat trans-
fer that do not rely on any assumptions about the couplings of
component 3 to components 1 and 2. As discussed in [23], the
energy transfer spectrum can be written as

� = 4
∥∥ Im

(
Ẑ (0)�

2

)1/2
Ŷ2,2�Ẑ2,1Ŷ1 Im

(
Ẑ (0)�

1

)1/2∥∥2
F (A1)

in terms of the Frobenius norm squared ‖Ô‖2
F = Tr[Ô†Ô],

having defined the operators �Ẑmn ≡ −�Ẑm,3Ŷ
(0)

3 �Ẑ3,n for
m, n ∈ {1, 2}, and in terms of these the operators Ŷ1 ≡ (Ẑ (0)

1 +
�Ẑ1,1)−1 and Ŷ2,2 ≡ (Ẑ (0)

2 + �Ẑ2,2 − �Ẑ2,1Ŷ1�Ẑ1,2)−1; we
point out that although the operators �Ẑ3,n (and its transpose)
are real valued for n ∈ {1, 2}, the operators �Ẑmn defined
above for m, n ∈ {1, 2} may in general be complex valued due
to the dependence on Ŷ (0)

3 .
Using the definitions in the main text of the relevant

quantities |xn〉, |Fn〉, and |F (0)
n 〉 for n ∈ {1, 2, 3}, as well

as the definitions of absorption, scattering, and extinction
in the main text, it can be seen that for a general external
force |F (0)

1 〉 on component 1 in the presence of component
3 but not component 2, the scattered power is �sca =
ω
2 〈F (0)

1 , [Im(Ŷ1) − Ŷ �
1 Im(Ẑ (0)�

1 )Ŷ1]F (0)
1 〉. Similarly, for a

general external force |F (0)
A 〉 on the aggregate of components

1 and 2, the far-field scattering from component 2
(i.e., into component 3) is �sca = ω

2 〈F (0)
2 , {Im(Ŷ2,2) −

Ŷ �
2,2[Im(Ẑ (0)�

2 ) + �Ẑ�
2,1Ŷ

�
1 Im(Ẑ (0)�

1 )Ŷ1�Ẑ1,2]Ŷ2,2}F (0)
2 〉. This

does not require any further assumptions about the
couplings to component 3 because all of these quantities
are cast in terms of response functions of components
1 and 2, which are assumed to be disjoint, as opposed
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to the response functions of the subsets of DOFs of
component 3 coupled to each of the other components
(which might not be). Thus, the relevant operators which
must be positive-semidefinite are Im(Ŷ1) − Ŷ �

1 Im(Ẑ (0)�
1 )Ŷ1,

Im(Ŷ2,2) − Ŷ �
2,2[Im(Ẑ (0)�

2 ) + �Ẑ�
2,1Ŷ

�
1 Im(Ẑ (0)�

1 )Ŷ1�Ẑ1,2]Ŷ2,2,
and their respective transposes due to reciprocity.

The remainder of the derivation follows exactly
analogously to the main text, with the replacements
B̂1 → Im(Ẑ (0)�

1 )1/2Ŷ1 Im(Ẑ (0)�
1 )1/2, B̂2 → Im(Ẑ (0)�

2 )1/2Ŷ2,2

Im(Ẑ (0)�
2 )1/2, and Â → Im(Ẑ (0)�

2 )1/2�Ẑ2,1 Im(Ẑ (0)�
1 )1/2B̂1 ×

B̂�
1 Im(Ẑ (0)�

1 )1/2�Ẑ�
1,2 Im(Ẑ (0)�

2 )1/2; these follow all of the
same requisite properties as their counterparts in the
main text. Therefore, the bound can again be written as
� � �opt � �L with �opt given in (17), redefining notation
regarding the singular values for these operators such that
ζn = ‖ Im(Ẑ (0)�

n )−1‖2 and gμ are now the singular values
of �Ẑ2,1 = −�Ẑ2,3Ŷ

(0)
3 �Ẑ3,1. Once again, this form of our

bound has the benefit of being evaluable even if some DOFs
of component 3 are simultaneously coupled to components
1 and 2. Additionally, the material response factors ζn

depend only on the properties of components 1 and 2 in
isolation, without any reference to couplings. However, there
are two points that may be practical drawbacks. The first
is that the transmissive efficacies gμ depend on both the
coupling strengths and the properties of component 3 in
isolation, though these effects can be disentangled by further
bounding gμ � ‖�Ẑ2,3‖2‖�Ẑ3,1‖2σμ[P̂(V̂2)Ŷ (0)

3 P̂(V̂1)] as
an extension of the steps in the derivation in the main
text. The second is that particularly in phonon CHT, a
system of broad interest takes components 1 and 2 to be
semi-infinite leads, with component 3 being a small junction.
This means that the procedure in the main text yields
material response factors ζn that can be easily computed
from small matrices, as the matrices �Ẑ3,nŶ (0)

n �Ẑn,3 can
be computed through decimation or similar procedures;
by contrast, the procedure in this Appendix requires the
full matrices Im(Ẑ (0)�

n ) for n ∈ {1, 2}, which are large
and might technically vanish unless dissipation is added
by hand.

APPENDIX B: GLOSSARY OF RELEVANT QUANTITIES
FOR BOUNDS ON CHT

As the quantities discussed in this paper are quite general,
it is useful to draw specific correspondences to operators
common to nonequilibrium Green’s function analyses of CHT
in order to more clearly explain how to compute these bounds
to CHT in practice. For reference, the notation we use is
generally consistent with notation for phonon CHT in several

prior works [4–7,18,19]; analogous bounds can be applied to
electron CHT with appropriate replacements of operators. The
following is a set of steps that can be used as a recipe for
computing the bounds on CHT developed in this paper.

(i) Ensure that all quantities have consistent units. For
instance, for consistency with prior works [4–7,18,19] on
phonon CHT, it will be assumed that all spring constants
are normalized by the atomic masses and by h̄, such that
Kai,b j = h̄2

mamb

∂2E
∂xai∂xb j

, and that the angular frequency ω will be
replaced by the energy E = h̄ω as the argument of frequency
domain response quantities. Furthermore, the components 1
and 2 will be referred to as leads n ∈ {L, R}, while component
3 will be referred to as the central junction C.

(ii) At each E , compute �r
n = KCnd r

nnKnC, where d r
nn =

[(E + iη)1nn − Knn]−1 is given in terms of an infinitesimal
real parameter η to yield a finite dissipation in each lead n.

(iii) With this, compute ζn = ‖ asym(�r†−1
n )−1‖2. That is,

compute the standard Hermitian adjoint of the matrix �r
n, then

take the inverse of that within the subspace of DOFs of the
junction C that are coupled to the given lead n, then compute
the anti-Hermitian part asym(�r†−1

n ) (though note that the
anti-Hermitian part is by definition a Hermitian operator),
then compute the smallest singular value in that subspace, and
set ζn equal to the reciprocal of that smallest singular value.
This requires nontrivial dissipation, so asym(�r

n) should not
vanish.

(iv) At each E , compute d r
CC = [(E + iη)1CC − KCC]−1;

note that this is the response of the uncoupled junction, which
is not the same as Dr

CC.
(v) Construct the off-diagonal block PC(R)d

r
CCPC(L). That

is, extract the off-diagonal block of d r
CC where the rows

correspond to atoms in the central junction C with nonzero
couplings to the right lead R, and the columns correspond to
atoms in the central junction C with nonzero couplings to the
left lead L. Note that this assumes that no atoms in the central
junction couple simultaneously to both leads, so single-atom
junctions cannot be treated as single atoms per se (i.e., the
junction needs to be artificially increased in size to include
more atoms in the leads until those overlaps disappear).

(vi) Find the singular values gμ of this off-diagonal block
PC(R)d

r
CCPC(L); the label μ is said to denote the channel.

Note that this off-diagonal block is generally not square (i.e.,
it might not be the case that the numbers of atoms in the
junction coupling to each of the leads are the same), but
the singular value decomposition (SVD) will always exist
and should always yield real nonnegative values (barring
unexpected numerical problems).

(vii) At this E , plug the quantities ζn and gμ into (17) for
each channel μ to yield the bound �opt; note the change in
labels n ∈ {1, 2} → {L, R}.
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