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Tunneling processes between Yu-Shiba-Rusinov bound states
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Very recent experiments have reported the tunneling between Yu-Shiba-Rusinov (YSR) bound states at the
atomic scale. These experiments have been realized with the help of a scanning tunneling microscope where a
superconducting tip is functionalized with a magnetic impurity and is used to probe another magnetic impurity
deposited on a superconducting substrate. In this way it has become possible to study for the first time the
spin-dependent transport between individual superconducting bound states. Motivated by these experiments, we
present here a comprehensive theoretical study of the tunneling processes between YSR bound states in a system
in which two magnetic impurities are coupled to superconducting leads. Our theory is based on a combination
of an Anderson model with broken spin degeneracy to describe the impurities and nonequilibrium Green’s
function techniques to compute the current-voltage characteristics. This combination allows us to describe the
spin-dependent transport for an arbitrary strength of the tunnel coupling between the impurities. We first focus on
the tunnel regime and show that our theory naturally explains the experimental observations of the appearance
of current peaks in the subgap region due to both the direct and thermal tunneling between the YSR states
in both impurities. Then, we study in detail the case of junctions with increasing transparency, which has not
been experimentally explored yet, and predict the occurrence of a large variety of (multiple) Andreev reflections
mediated by YSR states that give rise to a very rich structure in the subgap current. In particular, we predict
the occurrence of multiple Andreev reflections that involve YSR states in different impurities. These processes
have no analog in single-impurity junctions, and they are manifested as current peaks with negative differential
conductance for subgap voltages. Overall, our work illustrates the unique physics that emerges when the spin
degree of freedom is added to a system with superconducting bound states.

DOI: 10.1103/PhysRevB.103.155407

I. INTRODUCTION

In recent years, the competition between magnetism and
superconductivity has been extensively studied at the atomic
scale with the help of the scanning tunneling microscope
(STM). With this instrument it is possible to manipulate
individual magnetic atoms and molecules and study the
electronic transport through them when they are deposited
on a superconducting substrate. In these single-impurity
systems, the combination of spin-dependent scattering and
superconductivity leads to the appearance of the so-called Yu-
Shiba-Rusinov (YSR) states [1–3], which are superconducting
bound states with unique properties such as their spin polar-
ization. Many STM-based experiments have demonstrated the
existence of these bound states and, in turn, have elucidated
many of their basic properties [4–23], for a recent review see
Ref. [24]. Part of the interest in the physics of YSR states
lies in the fact that they can be viewed as building blocks to

*These authors contributed equally to this work.

create Majorana states in designer structures such as chains of
magnetic impurities [25–29].

Very recently, it has been experimentally demonstrated
that a superconducting STM tip can be decorated with a
magnetic impurity that then features YSR states [30]. More
importantly, this YSR-STM can, in turn, be used to probe
other magnetic impurities deposited on a superconducting
substrate and that also features YSR states. In this way, the
experiments realized for the first the time the tunneling be-
tween individual superconducting bound states at the atomic
scale, which is the ultimate limit for quantum transport. Ad-
ditionally, it has been shown that the YSR-STM can be used
to measure the intrinsic lifetime of YSR states and that the
tunnel current exhibits peaks in the subgap region due to direct
and thermal tunneling between the YSR in both impurities
[30]. In particular, those current peaks can be used to ex-
tract information about the relative orientation between the
impurity spins [31]. In fact, this system represents an ideal
platform to explore the interplay between spin-dependent
transport and superconductivity, which lies at the heart of the
field of superconducting spintronics [32–34]. On the other
hand, it is obvious that the YSR-STM may have important
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implications for spin-polarized scanning tunneling mi-
croscopy and the study of atomic-scale magnetic structures,
as it has been nicely demonstrated in Ref. [35].

Another exciting possibility that the YSR-STM opens up
is the study of the interplay between superconducting bound
states and (multiple) Andreev reflections in a situation never
explored before and in which the spin degree of freedom plays
a central role. Let us recall that in a junction with at least
one superconducting electrode, an Andreev reflection consists
of a tunneling process in which an electron coming from a
normal metal is reflected as a hole of opposite spin transfer-
ring a Cooper pair into the superconductor. In the absence of
in-gap bound states, this process dominates the subgap trans-
port. If the junction features two superconducting leads, one
can additionally have multiple Andreev reflections (MARs)
in which quasiparticles undergo a cascade of Andreev re-
flections that give rise to a very rich subgap structure in
the current-voltage characteristics. The microscopic theory of
MARs for spin-degenerate quantum point contacts was devel-
oped in the mid-1990s [36,37], and it was first quantitatively
confirmed in the context of superconducting atomic-size con-
tacts with the help of break-junction techniques and the STM
[38,39]. In recent years, different STM experiments in the
context of magnetic impurities on superconducting surfaces
and using superconducting tips have revealed signatures of the
interplay between YSR bound states and Andreev reflections
[8,11,15,16,31]. From the theory side, we have recently put
forward a model to describe this interplay in single-impurity
junctions and have shown how the spin degree of freedom
leads to MAR processes that have no analog in nonmagnetic
systems. The qualitative predictions of this theory have been
experimentally confirmed [31]. The goal of this work is to
extend that theoretical analysis to the two-impurity case in
order to elucidate the different tunneling processes that can
take place between YSR states.

In this work we present a systematic study of the tunneling
processes between YSR bound states in a system comprising
two magnetic impurities that are coupled to their respective
superconducting electrodes; see Fig. 1. Our theory is based
on the use of a mean-field Anderson model with broken spin
symmetry to describe the magnetic impurities, and we em-
ploy the Keldysh formalism to compute the current-voltage
characteristics for arbitrary junction transmission, i.e., to any
order in the tunnel coupling between the two impurities. To
illustrate the power of our model, we first focus on the analysis
of the tunnel regime in which the charge transport is com-
pletely dominated by tunneling of single quasiparticles. In this
regime, we naturally explain the basic observations reported
in Refs. [30,31] concerning the presence of current peaks with
huge negative differential conductance in the gap region. As
explained in Refs. [30,31], those peaks can be attributed to the
direct and thermal tunneling between the YSR states in both
impurities, and their heights contain sufficient information to
extract the relative orientation of the impurity spins. More
importantly, we also study in detail how the transport char-
acteristics change upon increasing the junction transparency
and predict the occurrence of several families of MARs that
give rise to an extremely rich subgap structure in the current
and differential conductance. In particular, we find a series
of MARs that start and end in YSR bound states, which are

FIG. 1. Schematic representation of the system under study. Two
magnetic impurities are respectively coupled to a superconducting
substrate and to an STM tip that is also superconducting. The tun-
neling rates �t and �S measure the strength of the coupling of the
impurity to the tip and substrate, respectively, �t and �S are the
corresponding superconducting gaps, and v is the hopping matrix
element describing the tunnel coupling between the impurities. These
impurities have magnetizations Jt and JS forming angles θt and θS

with the quantization axis (z-axis), and their relative orientation is
denoted by θ = θS − θt .

not possible in the case of single-impurity junctions. The
signature of these YSR-mediated MARs is a series of current
peaks at certain subgap voltages determined by the energy
of the YSR states in both impurities. All the predictions put
forward in this work can, in principle, be verified with the
exact system investigated in Refs. [30,31].

The rest of the paper is organized as follows. In Sec. II
we describe the system under study and present the model
and theoretical tools that we have employed to study the elec-
tronic transport in our two-impurity superconducting system.
In Sec. III we focus on the tunnel regime and show how our
theory nicely explains all the basic observations reported in
Refs. [30,31]. Then, in Sec. IV we present a detailed study
of the subgap transport in junctions with a moderate-to-high
transmission and analyze the interplay between MARs and
YSR states. Finally, in Sec. V we summarize our main con-
clusions.

II. SYSTEM UNDER STUDY AND
THEORETICAL APPROACH

The goal of this work is to elucidate the different tunneling
processes that can occur between YSR states. As explained in
the introduction, these bound states appear in single magnetic
impurities (atoms or molecules) coupled to superconducting
electrodes and the tunneling between them is possible via
direct interimpurity coupling. This system has been realized
with the help of an STM, and, in this case, an impurity is
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coupled to the superconducting STM tip, while the other one
is coupled to a superconducting substrate [30], as we show
schematically in Fig. 1. Thus, our technical goal is to compute
the current-voltage characteristics in such a system and this
section is devoted to a detailed description of the model and
theoretical tools employed for this purpose.

We consider the total system shown in Fig. 1 and assume
that the magnetic moments of the impurities form a relative
angle θ , which will be treated as a parameter of the model.
Motivated by the experiments of Ref. [30], we shall assume
that the impurities are strongly coupled to their respective
electrode (STM tip and substrate), which is the regime in
which the YSR states appear. In this sense, in order to describe
the electronic transport in this system, it is natural to divide
it into two subsystems, tip (t) and substrate (S), each one
containing a magnetic impurity which is strongly coupled to
a superconducting electrode. Moreover, we shall assume that
the voltage drops at the interface between the two impurities.
Such a system can be modeled by a generic point-contact
Hamiltonian of the form

H = Ht + HS + V, (1)

where Hj with j ∈ {t, S} describes the corresponding subsys-
tem (i.e., an impurity coupled its superconducting electrode)
and V describes the tunnel coupling between these two sub-
systems. These different parts of the total Hamiltonian will be
specified in the following subsections.

A. Bare Green’s function of a magnetic impurity coupled to a
superconductor and YSR states

The impurities are described with a mean-field Anderson
model with broken spin symmetry that was recently used
to describe the role of the impurity-substrate coupling [22]
and to elucidate the MARs that can take place in the elec-
tronic transport through a single magnetic impurity coupled
to superconducting leads [40]. This model has also been
successfully employed in the past to describe the observa-
tion of Andreev bound states in quantum dots coupled to
superconducting leads, and it has been shown to reproduce
many of the salient features of the superconducting bound
states predicted by more sophisticated many-body approaches
[41,42]. Within this model, we couple the magnetic impu-
rity featuring a single energy level Uj and a magnetization
J j = Jj (cos θ jez + sin θ jex ), where θ j is the angle between
the magnetization and a global quantization axis along the z
direction, to an s-wave superconductor. It is convenient to first
focus on the individual subsystems described by Hj and define
the Hamiltonians and the effective Green’s functions in each
individual diagonal basis pointing along the direction of J j .
The two separate bases are then simply related to the global
quantization z axis by a rotation of the above defined angle θ j

about the y axis in spin space.
First, we define the spinors along the global quantization z

axis as

d̃
†
j = (d†

j↑, d j↓, d†
j↓,−d j↑), (2a)

c̃†
k j = (c†

k j↑, c−k j↓, c†
k j↓,−c−k j↑), (2b)

which consist of annihilation (creation) operators d (†)
jσ and c(†)

k jσ
for electrons on the dot and the superconductor, respectively,
with spin σ ∈ {↑,↓} and quasimomentum k. The Hamiltonian
of subsystem j reads

Hj = Himp, j + Helec, j + Vj, (3)

where Himp, j describes the magnetic impurity in subsystem j,
Helec, j describes the superconducting electrode in subsystem
j, and Vj describes their coupling in subsystem j. As it has
been shown in Ref. [40], by using the spinors in Eq. (2) these
Hamiltonians can be cast into the form

Himp, j = 1

2
d̃

†
j H̃imp, j d̃ j , (4a)

Helec, j = 1

2

∑
k

c̃†
k j H̃elec,k j c̃k j, (4b)

Vj = 1

2

∑
k

c̃†
k jṼj d̃ j + 1

2

∑
k

d̃
†
jṼ

†
j c̃k j, (4c)

with the 4 × 4 matrix Hamiltonians

H̃imp, j = Uj (σ0 ⊗ τ3) + J j · (σ ⊗ τ0), (5a)

H̃elec,k j = σ0 ⊗ (ξk jτ3 + � je
iϕ jτ3τ1), (5b)

Ṽj = v j (σ0 ⊗ τ3). (5c)

Here ξk j is the electronic energy in the superconductor, � j and
ϕ j are the pairing potential and the superconducting phase, re-
spectively, and v j is the tunnel coupling between the impurity
and the superconductor. Furthermore, σα and τα are Pauli ma-
trices (α ∈ {1, 2, 3}) in spin and Nambu space, respectively,
while σ0 and τ0 are the corresponding unit matrices in these
spaces.

To simplify the formalism, it is convenient to transfer the
dependence on θ j and ϕ j to the coupling term V in Eq. (1)
and work with Hamiltonians describing the subsystems in
which the corresponding spin points along its quantization
axis. Therefore, we introduce the combined unitary transfor-
mation Rj = eiθ jσ2/2 ⊗ e−iϕ jτ3/2 in the Hamiltonian defined in
Eq. (4) to rotate the individual bases defined in Eq. (2) to
the quantization axis in subsystem j along J j and to remove
the phase ϕ j . This results in the new bases d̂ j = Rj d̃ j and
ĉk j = Rj c̃k j and the transformed Hamiltonians

Ĥimp, j = RjH̃imp, jR
†
j = Uj (σ0 ⊗ τ3) + Jj (σ3 ⊗ τ0), (6a)

Ĥelec,k j = RjH̃elec,k jR
†
j = σ0 ⊗ (ξk jτ3 + � jτ1). (6b)

The starting point for the calculation of the electronic
transport in the system under study is the calculation of the
bare Green’s function of the impurity coupled to the super-
conductor in each subsystem j. Following the exact same
steps of the calculation presented in Ref. [40], we derive the
block-diagonal bare matrix Green’s function in the new basis
d̂ j , i.e.,

ĝ j j (E ) =
(

ĝ j j,↑↑(E ) 0
0 ĝ j j,↓↓(E )

)
, (7)
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where the two blocks are given by

ĝ j j,σσ (E ) = 1

Djσ (E )

⎛
⎝E � j + (E + Uj − Jjσ )

√
�2

j − E2 � j� j

� j� j E � j + (E − Uj − Jjσ )
√

�2
j − E2

⎞
⎠ (8)

with the denominator

Djσ (E )=2� jE (E − Jjσ )+[
(E − Jjσ )2−U 2

j − �2
j

]√
�2

j−E2.

(9)
Along the derivation, we defined Jj↑ = +Jj , Jj↓ = −Jj and
the tunneling rates � j = πN0, jv

2
j , where N0, j is the normal

density of states at the Fermi energy in superconductor j.
The current-voltage characteristics of this system will re-

flect the electronic structure of the magnetic impurities and, in
particular, the presence of YSR states [22,40]. From Eqs. (7)
and (8), it follows that the electronic local density of states
(LDOS) projected onto the impurity site j is given by

ρTotal, j (E ) = ρ j↑(E ) + ρ j↓(E ), (10)

with

ρ jσ (E ) = 1

π
Im

{
ĝa

j j,σσ,11(E )
}
, (11)

where retarded (r) and advanced (a) Green’s functions are de-
fined as ĝr,a

j j,σσ,11(E ) = ĝ j j,σσ,11(E ± iη j ) by introducing the
phenomenological Dynes parameter η j which describes the
inelastic broadening of the electronic states in electrode j.
The condition for the appearance of superconducting bound
states is Djσ (E ) = 0. In particular, the spin-induced YSR
states appear in the limit |Jj | � � j , and they also are inside
the gap when � j � � j . In this case, there is a pair of fully
spin-polarized YSR bound states at energies (measured with
respect to the Fermi energy) [22,40]

ε j = ±� j

J2
j − �2

j − U 2
j√[

�2
j + (Jj − Uj )2

][
�2

j + (Jj + Uj )2
] , (12)

which in the electron-hole symmetric case Uj = 0 reduces to

ε j = ±� j

J2
j − �2

j

J2
j + �2

j

. (13)

B. Tunnel coupling between two impurities

The tunnel coupling V in Eq. (1) between the two sub-
systems with the global quantization axis defined by Eq. (2a)
reads

V = 1
2 d̃

†
t ṼtSd̃S + 1

2 d̃
†
SṼStd̃ t , (14)

with ṼSt = v(σ0 ⊗ τ3) = Ṽ †
tS and the tunnel coupling v be-

tween the two impurities [40]. Introducing the aforementioned
basis rotation Rj in subsystem j results in

V = 1
2 d̂

†
t V̂tSd̂S + 1

2 d̂
†
SV̂Std̂ t , (15)

where

V̂tS = RtṼtSR†
S = v(e−iθσ2/2 ⊗ τ3e−iϕ0τ3/2), (16a)

V̂St = RSṼStR
†
t = v(eiθσ2/2 ⊗ τ3eiϕ0τ3/2), (16b)

θ = θS − θt is the relative angle, and ϕ0 = ϕt − ϕS the su-
perconducting phase difference between the two impurities.
In that sense, the coupling between the two subsystems is
effectively represented by a spin-active interface in which
there are spin-flip processes whose probabilities depend
on the relative orientation of the impurity spins described
by θ .

C. Calculation of the current-voltage characteristics

To compute the electronic transport properties in our model
system, we shall assume that the voltage drops at the inter-
face between the two impurities, which is justified by the
fact that usually the impurity-impurity coupling v is much
weaker than the impurity-electrode couplings v j . Under this
assumption, our system effectively reduces to a supercon-
ducting quantum point contact, and we can compute its
transport properties with a generalization of the MAR theory
of Ref. [37] to account for the spin-dependent transport. This
generalization was in fact developed in our previous work
[40], and we simply reproduce the formalism here to make
this paper more self-contained and to emphasize the pecu-
liarities introduced by the spin-flip processes between the two
impurities.

Our goal is to compute the current in our two-impurity
system under an external bias voltage V . As in any super-
conducting contact, the bias voltage induces a time-dependent
superconducting phase difference ϕ(t ) = ϕ0 + 2eV t/h̄ that
varies linearly in time with the bias. This can be sim-
ply included in the formalism by replacing ϕ0 with ϕ(t )
in Eq. (16) such that V̂jk acquires a time dependence
V̂jk (t ). The theory of Ref. [37] is based on nonequilibrium
Green’s function techniques (or Keldysh formalism), and a
central role is played by the lesser 4 × 4 matrix Green’s
functions

Ĝ+−
jk (t, t ′) = −i〈TC{d̂ j (t+) ⊗ d̂

†
k (t ′

−)}〉, (17)

for j, k ∈ {t, S} and where d̂ j and d̂
†
k are the rotated four-

component spinors defined above. In addition, TC is the
time-ordering operator on the Keldysh contour such that any
time in the lower branch (t ′

−) is larger than any time in the up-
per one (t+). The electrical current in our system is defined as
I (t ) = −e〈dNS(t )/dt〉, where NS = ∑

σ d†
Sσ dSσ is the number

operator in subsystem S, and it can be expressed in terms of
Ĝ+−

jk as [40]

I (t )= e

2h̄
Tr{(σ0 ⊗ τ3)[V̂St (t )Ĝ+−

tS (t, t ) − V̂tS(t )Ĝ+−
St (t, t )]},

(18)
where Tr is the trace taken over spin and Nambu degrees of
freedom.

The task is now to compute the dressed Green’s func-
tions G+−

jk appearing in the current formula. For this purpose,
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we follow a perturbative scheme and treat the coupling
term in the Hamiltonian of Eq. (1) as a perturbation. The
unperturbed Green’s functions ĝ j j correspond to the uncou-
pled impurity-electrode subsystems j in equilibrium and are
given by Eq. (7). On the other hand, to solve the problem it
is convenient to express the current in terms of the so-called
T -matrix. The T -matrix associated with the time-dependent

perturbation is defined as

T̂ r,a = V̂ + V̂ ◦ ĝr,a ◦ T̂ r,a, (19)

where the ◦ product is a shorthand for convolution, i.e., for
integration over intermediate time arguments. As shown in
Ref. [37], the exact current to all orders in the tunneling rate
can be written in terms of the T -matrix components as

I (t ) = e

2h̄
Tr

{
(σ0 ⊗ τ3)

[
T̂ r

St ◦ ĝ+−
tt ◦ T̂ a

tS ◦ ĝa
SS − ĝr

SS ◦ T̂ r
St ◦ ĝ+−

tt ◦ T̂ a
tS

+ ĝr
tt ◦ T̂ r

tS ◦ ĝ+−
SS ◦ T̂ a

St − T̂ r
tS ◦ ĝ+−

SS ◦ T̂ a
St ◦ ĝa

tt

]}
. (20)

It is convenient to Fourier transform with respect to the tem-
poral arguments to solve the T -matrix integral equations:

T̂ (t, t ′) = 1

2π

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′e−iEt eiE ′t ′

T̂ (E , E ′). (21)

Because of the time dependence of the coupling matrices, one
can show that T̂ (E , E ′) admits the following general solution:

T̂ (E , E ′) =
∑

n

T̂ (E , E + neV )δ(E − E ′ + neV ). (22)

Thus, it follows that the current exhibits a time dependence in
the form of the Fourier series

I (t ) =
∑

n

Ineinϕ(t ), (23)

where the current amplitudes In can be expressed in terms
of the components T̂nm(E ) = T̂ (E + neV, E + meV ) and
ĝ j j,n(E ) = ĝ j j (E + neV ) as

In = e

2h

∫ ∞

−∞
dE

∑
m

Tr
{
(σ0 ⊗ τ3)

[
T̂ r

St,0mĝ+−
tt,mT̂ a

tS,mnĝa
SS,n − ĝr

SS,0T̂ r
St,0mĝ+−

tt,mT̂ a
tS,mn

+ ĝr
tt,0T̂ r

tS,0mĝ+−
SS,mT̂ a

St,mn − T̂ r
tS,0mĝ+−

SS,mT̂ a
St,mnĝa

tt,n

]}
. (24)

Notice that the bare Green’s functions are diagonal in
energy space and the bare lesser Green’s functions are
given by ĝ+−

j j (E ) = [ĝa
j j (E ) − ĝr

j j (E )] f (E ), where f (E ) =
[1 + exp(E/kBT )]−1 is the Fermi function with temperature
T and the Boltzmann constant kB. The previous formula can
be further simplified by using the general relation T̂ r,a

tS,nm(E ) =
(T̂ a,r

St,mn)†(E ), which reduces the calculation of the current to
the determination of the Fourier components T̂ r,a

St,nm fulfilling
the set of linear algebraic equations

T̂ r,a
St,nm = V̂St,nm + Ê r,a

n T̂ r,a
St,nm

+ Ŵ r,a
n,n−2T̂ r,a

St,n−2,m + Ŵ r,a
n,n+2T̂ r,a

St,n+2,m, (25)

where the different matrix coefficients are given in terms of
the unperturbed Green’s functions as

V̂St,nm = v

2
eiθσ2/2 ⊗ [(τ3 + τ0)δn+1,m

+ (τ3 − τ0)δn−1,m], (26a)

V̂tS,nm = v

2
e−iθσ2/2 ⊗ [(τ3 + τ0)δn−1,m

+ (τ3 − τ0)δn+1,m], (26b)

Ê r,a
n = [

V̂St,n,n+1 ĝr,a
tt,n+1 V̂tS,n+1,n

+ V̂St,n,n−1 ĝr,a
tt,n−1 V̂tS,n−1,n

]
ĝr,a

SS,n, (26c)

Ŵ r,a
n,n−2 = V̂St,n,n−1 ĝr,a

tt,n−1 V̂tS,n−1,n−2 ĝr,a
SS,n−2, (26d)

Ŵ r,a
n,n+2 = V̂St,n,n+1 ĝr,a

tt,n+1 V̂tS,n+1,n+2 ĝr,a
SS,n+2. (26e)

In general, these block-tridiagonal systems have to be
solved numerically, and the current can be expressed only
in an analytical form in the tunnel regime, as we discuss
in Sec. III. On the other hand, let us stress that we shall
focus here exclusively on the discussion of the dc current,
i.e., I0 in Eq. (23), and we shall not analyze the (zero-bias)
dc Josephson current (or supercurrent).

D. Normal state conductance

To get insight into the current in our system, it is didactic
to consider the case in which the electrodes are in the normal
state. Moreover, the analysis of this case gives us the chance
to introduce the normal state conductance, GN, which is the
physical parameter that allows us to make contact with the ex-
periment. In the case in which neither the tip nor the substrate
are superconducting, the current formula within our model can
be worked out analytically, and it is given by the following
Landauer type of expression:

Inormal(V, θ ) = e

h

∑
σ,σ ′

∫ ∞

−∞
dE τσ,σ ′ (E ,V, θ )

× [ f (E − eV ) − f (E )], (27)
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where τσ,σ ′ (E ,V, θ ) are the transmission coefficients for electron tunneling processes connecting spins σ and σ ′. In general,
the expressions of these coefficients in terms of the different parameters of the model are extremely cumbersome, and in what
follows, we provide such expressions only in certain limiting cases. First of all, in the tunnel regime, where v � �t,S, we find

τσ,σ (E ,V, θ ) ≈ 4v2�S�t cos2(θ/2)[
(E − eV − US − JSσ )2 + �2

S

][
(E − Ut − Jtσ )2 + �2

t

] , (28a)

τσ,σ̄ (E ,V, θ ) ≈ 4v2�S�t sin2(θ/2)[
(E − eV − US − JSσ )2 + �2

S

][
(E − Ut + Jtσ )2 + �2

t

] , (28b)

where σ̄ = −σ . Notice that, as expected, the coefficient for antiparallel spins vanishes when θ = 0. Moreover, in the limit in
which we are interested, namely, the limit when YSR states appear, one can safely ignore the energy and bias dependence of
these transmission coefficients. On the other hand, and to give an idea about these coefficients beyond the tunnel regime, we
consider the case of parallel spin (θ = 0). In this case (ignoring the bias dependence),

τσ,σ (E , 0, 0) = 4v2�S�t[
(E − US − JSσ )2 + �2

S

][
(E − Ut − Jtσ )2 + �2

t

] − 2v2[(E − US − JSσ )(E − Ut − Jtσ ) − �S�t] + v4
, (29a)

τσ,σ̄ (E , 0, 0) = 0. (29b)

In general, the zero-temperature normal state linear con-
ductance in our system is given by

GN

G0
= 1

2

∑
σ,σ ′

τσ,σ ′ (E = 0,V = 0, θ ), (30)

where G0 = 2e2/h is the quantum of conductance. Moreover,
in this work, |eV | will always be much smaller than �t + �S

such that the differential conductance in the normal state will
be independent of the bias.

III. TUNNEL REGIME

So far, the experiments on the tunneling between YSR
states have been performed in the so-called tunnel regime,
in which the coupling between the impurities is relatively
weak and the only transport process that takes place is single-
quasiparticle tunneling (eventually involving the YSR states)
[30]. This regime has already been addressed in Refs. [30,31],
and we want to expand that discussion in this section in the
light of the model described in the previous section.

Let us recall that the main experimental observation re-
ported in Ref. [30] is the appearance of current peaks inside
the gap region that can be associated with the quasiparticle
tunneling between the YSR states of the two impurities. Let
us now show how this observation can be naturally explained
within our model. In our case, the tunnel regime can be
roughly defined as the limit in which the tunnel coupling
is sufficiently weak such that v2 � �S�t and the only rele-
vant tunneling process is the single-quasiparticle tunneling.
In this limit, we can use the approximation T̂ r,a

St,nm ≈ V̂St,nm in
Eq. (25), and after some straightforward algebra we arrive at
the following expression for the tunneling current at the lowest
order in the tunnel coupling between the impurities:

I (V, θ ) = 4π2ev2

h

∑
σ

∫ ∞

−∞
dE [ f (E − eV ) − f (E )]

×{cos2(θ/2)ρSσ (E − eV )ρtσ (E )

+ sin2(θ/2)ρSσ (E − eV )ρtσ̄ (E )}. (31)

Let us recall that in this expression v is the hopping element
that describes the coupling between the impurities, f (E ) is the
Fermi function, θ is the angle defining the relative orientation
of the impurity spins, and ρ jσ is the LDOS on the impurity
site j = t, S for spin σ (σ̄ stands for the spin antiparallel
to σ ), which is given by Eq. (11). The current formula of
Eq. (31) has the expected structure for a tunnel junction with a
spin-active interface. As usual in those junctions, we have two
types of processes: (1) tunnel events involving parallel spins
[terms weighted by cos2(θ/2)] and (2) tunnel events involving
antiparallel spins [terms weighted by sin2(θ/2)]. When both
electrodes are in the normal states, this result reduces to that
described in Sec. II D for the tunnel regime.

In Fig. 2 we illustrate the results obtained with the tun-
nel formula above for three different values of the angle θ

together with a schematic description of the processes. In
this example, as in all cases discussed in this paper, we as-
sume equal superconducting gaps for the tip and the substrate
�S = �t = � and set �S = �t = 100� (to be in the strong
coupling regime realized in STM experiments in which YSR
states appear). Additionally, we have US = 0 and JS = 90�

for the impurity coupled to the substrate, and Ut = 20� and
Jt = 70� for the impurity coupled to the tip (the large values
of J , comparable to �S,t , are necessary for the YSR states to
be well inside the gap). With these parameter values, the YSR
states in both impurities appear at energies ±εS = ±0.105�

and ±εt = ±0.365� (we assume that εt,S > 0). Finally, we
have assumed a finite temperature of kBT = 0.05�.

The result for parallel spins (θ = 0) is shown in panel
Fig. 2(e). In this case, the most salient feature is the appear-
ance of two current peaks inside the gap region at a bias
eV = ±|εS − εt| = ±0.26�. Since in this case the impurity
spins are parallel, the tunneling between the lower YSR state
in one impurity and the upper state in the other impurity is
forbidden, as we illustrate in Fig. 2(a). Notice that in this
example both impurities have the same type of ground state,
i.e., they are on the same side of the quantum critical point (the
point in parameter space for which the YSR states appear at
zero energy and the spin of the ground state changes). Thus, a
subgap current peak in the tunnel regime for θ = 0 can be due
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FIG. 2. (a) Tunnel process corresponding to direct Shiba-Shiba tunneling that is forbidden in the case of parallel spins. (b) Tunnel process
corresponding to the thermally activated Shiba-Shiba tunneling that is allowed in the case of parallel spins. (c) Direct Shiba-Shiba tunneling
that is allowed in the case of antiparallel spins. (d) Thermal Shiba-Shiba tunneling that is forbidden in the case of antiparellel spins. (e) Current-
voltage characteristics in the tunnel regime for collinear spins (θ = 0), as computed from Eq. (31), and for �S = �t = �, �S = �t = 100�,
US = 0, JS = 90�, Ut = 20�, Jt = 70�, ηS = ηt = 0.01�, v = �, and kBT = 0.05�. (f) The same as in panel (e), but for θ = 0.5π . (g) The
same as in panel (e), but for antiparallel spins (θ = π ). The vertical dotted lines in panels (e)–(g) indicate the expected energies of the current
peaks originating from the direct Shiba-Shiba tunneling (d+ and d−), ±|εS + εt | = ±0.47�, and from the thermal Shiba-Shiba tunneling (t+

and t−), ±|εS − εt | = ±0.26�. Notice that for θ = 0 only the thermal Shiba-Shiba peaks are observed, for θ = π only the direct Shiba-Shiba
peaks show up, and for θ = π/2 both types of current peaks are visible in the subgap region.

only to the tunneling between the two upper (or two lower)
states, which is possible due to the finite temperature and the
corresponding partial occupation of the different states; see
Fig. 2(b). For this reason, we refer to these peaks as thermal
Shiba-Shiba peaks and denote their height as t+ and t− for
positive (+) and negative (−) bias. Notice that in this case
t+ �= t− because of the lack of electron-hole symmetry in the
tip impurity (Ut �= 0).

Let us now discuss the case of antiparallel spins (θ =
π ) shown in Fig. 2(g). In this case, the tunneling between
the lower and upper YSR states is allowed [see Fig. 2(c)],
and this process gives rise to current bias at eV = ±|εS +
εt| = ±0.47�, which explains the subgap structure shown in
Fig. 2(g). We refer to the peaks originating from this tun-
neling process as direct Shiba-Shiba peaks, and we denote
their height as d+ and d− for positive (+) and negative (−)
bias. Again, the fact that d+ �= d− in this example is due
to the electron-hole asymmetry in the tip impurity. In the

case of antiparallel spins (θ = π ), the thermally activated pro-
cesses described in the previous paragraph are forbidden [see
Fig. 2(d)], which explains the absence of the corresponding
peaks at eV = ±|εS − εt| = ±0.26�; see Fig. 2(g).

For an intermediate situation, when the impurity spins
are neither parallel nor antiparallel, both types of processes,
direct and thermal Shiba-Shiba tunneling, are possible, and
both types of current peaks appear simultaneously at a finite
temperature. This is illustrated in Fig. 2(f) where we show the
result for θ = π/2.

Let us recall that in the experiments of Refs. [30,31],
both types of peaks were observed at sufficiently high tem-
peratures, which was interpreted as a sign that the spins
were neither parallel nor antiparallel. Actually, the detailed
analysis presented in Ref. [31] suggested that there was no
magnetic anisotropy fixing the relative spin orientation and
that the spins in that experiment were freely rotating. In that
case, the current measured in practice is an average over all
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possible values of the angle θ , which can be trivially done
from Eq. (31) using 〈cos2(θ/2)〉 = 〈sin2(θ/2)〉 = 1/2, where
〈 · 〉 denotes the angular average. The averaged current turns
out to be equal to the current given by Eq. (31) for θ = π/2.
Thus, the example of Fig. 2(f) describes precisely this aver-
aged current in a situation where θ varies rapidly in time.

An important finding of Ref. [31] was that the relative
orientation between the impurity spins, i.e., the angle θ , can
be extracted from the ratio between the thermal and the direct
Shiba-Shiba peak. This conclusion was drawn with the help of
the classical Shiba model [2], and our goal now is to show that
it can also be derived from the Anderson model used in this
work. To obtain the height of the different current peaks we
first need analytical expressions for the LDOS describing the
YSR states. From Eq. (11), it is easy to show that the spin-
dependent impurity LDOS for energies close to the bound
states adopt a Lorentzian-like form given by

ρ jσ (E ) = 1

π

Ajσ

(E − ε j )2 + η2
j

, (32)

where Ajσ is a positive constant and η j describes the broad-
ening (or inverse lifetime) of the corresponding bound state in
impurity j = t, S. The constants Ajσ depend on the different
parameters of the model, but the corresponding expressions
are not important for our discussion here. Substituting Eq. (32)
into the current formula of Eq. (31), we can compute the
height of the different peaks. Of importance here is the ratio
r = √

t+t−/(d+d−) involving the height of the four different
peaks, thermal and direct for positive and negative bias. It is
straightforward to show that in the limit in which kBT � η j ,
which is almost always the case even for very low tempera-
tures, this ratio is given by

r =
√

t+t−

d+d− = cot2

(
θ

2

)∣∣∣∣ f (εS) − f (εt )

f (εS) − f (−εt )

∣∣∣∣, (33)

which is the result derived in Ref. [31]. Moreover, if kBT �
ε j , which is often the case, the previous formula reduces to

r = cot2

(
θ

2

)
|e−εS/kBT − e−εt/kBT |. (34)

As explained in Ref. [31], the importance of this result is
that the relative orientation between the impurity spins can
be obtained from quantities (the current peak heights and the
temperature) that can be directly measured. Here, we show

that this result is quite universal and it does not depend on the
details of the impurity model, as long as electron correlations
can be ignored.

Another interesting observation reported in Ref. [30] is the
fact that the height of the peaks (and their area) undergoes
a crossover between a linear regime at very low transmis-
sion (or normal state conductance) and a sublinear regime at
higher transmission when the STM tip with its impurity was
brought closer to the impurity on the substrate. Obviously,
the tunnel approximation of Eq. (31) can explain only the
linear regime in which the current, including the current peak
heights, is proportional to v2 and, in turn, to the normal state
conductance. This perturbative result must fail at some point
upon increasing the tunnel coupling, or reducing the bound
state broadening, because v2 times the product of density of
states is no longer a small parameter. This has nothing to
do with the occurrence of MARs, which were negligible in
the experiments of Ref. [30]. Thus, in order to describe the
crossover to a sublinear regime, we must take into account
the multiple normal reflections that may take place in the
resonant electron tunneling between two sharp bound states
(as in any resonant tunneling situation). In our case, this can be
achieved by neglecting the anomalous Green’s function in the
T -matrix equations, which amounts to ignoring the Andreev
reflections, and solving them to infinite order in the tunnel
coupling. Technically speaking, this is done by approximating
Eq. (25) by

T̂ r,a
St,nm = [

1̂ − Ê r,a
n

]−1
V̂St,nm, (35)

where, in addition, the anomalous Green’s functions (off-
diagonal components in Nambu space) are set to zero in the
expression of Ê r,a

n . Then, the solution of this equation can be
introduced in the current formula of Eq. (24). Finally, after
some algebra and retaining only the lowest order terms in v

in the numerator, we arrive at the following improved formula
for the tunneling current:

I (V, θ ) = 4π2ev2

h

∑
σ

∫ ∞

−∞
dE

[ f (E − eV ) − f (E )]

|D̃(E )|2

×{cos2(θ/2)ρSσ (E − eV )ρtσ (E )

+ sin2(θ/2)ρSσ (E − eV )ρtσ̄ (E )}, (36)

with

D̃(E ) = [1 − v2gSS,↑↑,11(E − eV ){gtt,↑↑,11(E ) cos2(θ/2) + gtt,↓↓,11(E ) sin2(θ/2)}]
× [1 − v2gSS,↓↓,11(E − eV ){gtt,↑↑,11(E ) sin2(θ/2) + gtt,↓↓,11(E ) cos2(θ/2)}]
− v4 cos2(θ/2) sin2(θ/2)gSS,↑↑,11(E − eV )gSS,↓↓,11(E − eV ){gtt,↑↑,11(E ) − gtt,↓↓,11(E )}. (37)

where the expressions of the different bare Green’s functions
appearing here can be found in Eq. (8). Notice that this
modified tunneling formula is very similar to the original
one [see Eq. (31)], the only difference being the presence
of the denominator |D̃(E )|2. This denominator takes into
account the possible normal reflections in the tunneling be-

tween the bound states and renormalizes things to ensure that
the transmission is bounded by 1. In Fig. 3 we illustrate that
this formula qualitatively captures the crossover mentioned
above. In this figure we show the evolution with the normal
state conductance GN of the height of the direct Shiba-Shiba
peak for positive bias, d+, for the set of parameters specified
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FIG. 3. Height of the direct Shiba-Shiba peak for positive bias,
d+, as a function of the normal state conductance GN, normalized by
the quantum of conductance G0 = 2e2/h. The corresponding values
of the tunnel coupling v are also shown in the upper horizontal
axis. The values of the different model parameters are �S = �t =
�, �S = �t = 100�, US = 60�, Ut = 0, JS = Jt = 60�, kBT = 0,
ηt = ηS = 0.01�, and θ = π . The dotted-dashed line corresponds
to the tunnel approximation of Eq. (31), the dashed line to the
approximation of Eq. (36), and the solid line to the exact result.

in the caption. The normal state conductance was varied by
changing the tunnel coupling v and GN was computed by
evaluating the slope of the current for eV � 2�. As one can
see in Fig. 3 (see dashed line), Eq. (36) describes the crossover
to a sublinear behavior for a sufficiently high normal state con-
ductance, while it reproduces the linear behavior in the deep
tunnel regime. For completeness, we have also included in
Fig. 3 the exact result computed with the full formalism of the
previous section. Notice that the result of Eq. (36) reproduces
the exact results for values of GN as high as 10−3G0. This
demonstrates that the crossover in this example is all about
single-quasiparticle processes and Andreev reflections, some
of which are actually possible in this voltage range (see next
section), play no essential role in the height of the current peak
for the range of GN values explored in that figure.

IV. YSR STATES AND MULTIPLE
ANDREEV REFLECTIONS

In this section we shall discuss the current-voltage charac-
teristics beyond the tunnel regime with the goal to elucidate
the different types of MARs that can take place in this system
and to provide simple guidelines on how to identify the sig-
natures of these processes. In Fig. 4 we illustrate the results
for the differential conductance, G = dI/dV , for parameter
values similar to those of Fig. 3 and for a value of the hopping
matrix element v = 10�. Moreover, we shall focus on the
case of zero temperature to simplify the discussion. The two
panels correspond to the two limiting cases of parallel spins
(θ = 0) [Fig. 4(a)] and antiparallel spins (θ = π ) [Fig. 4(b)].
With the parameters chosen for this figure, the YSR bound
states have energies ±εS = ±0.64� and ±εt = ±0.48�. For

FIG. 4. Differential conductance G as a function of the bias
voltage V for parallel, panel (a), and antiparallel spins, panel (b), nor-
malized by the quantum of conductance G0 = 2e2/h. The values of
the different model parameters are �S = �t = �, �S = �t = 100�,
US = 60�, Ut = 0, JS = Jt = 60�, kBT = 0, ηS = ηt = η = 0.01�,
and v = 10�. With the parameters, the YSR bound states have
energies ±εS = ±0.64� and ±εt = ±0.48�, as calculated from
Eq. (12). The vertical lines indicate the values of several relevant
energies. The lines labeled with triangles pointing up and trian-
gles pointing down correspond to processes that involve just one
YSR state in the impurity S and t, respectively, and have threshold
voltages equal to eV = ±(εS + �)/n and eV = ±(εt + �)/n with
n = 1, 2, . . . . The processes for n = 1 are single-quasiparticle tun-
neling, and those for n � 2 correspond to Andreev reflections of
order n. The lines labeled with squares and diamonds correspond
to processes that start (or end) at an YSR state and end (or start)
inside the gap region due to residual DOS because of finite η. The
threshold voltages are eV = ±εS/n (squares) and eV = ±εt/n with
n = 1, 2, . . . (diamonds), depending on whether the YSR state is in
the substrate (S) or in the tip (t). The lines labeled with circles in
panel (b) correspond to processes involving the YSR states of both
impurities and occurring at voltages eV = ±(εt + εS)/(2n + 1) with
n = 0, 1, 2, . . . The processes for n = 0 correspond to the direct
Shiba-Shiba tunneling, while those for n � 1 correspond to MARs
of order 2n + 1. In all cases, the number inside the symbol indicates
the order of the corresponding process in the tunneling probability.

the parallel case of Fig. 4(a), we see the appearance of a rich
structure, where the most pronounced conductance peaks ap-
pear at eV = ±(εS + �) = ±1.64� and eV = ±(εt + �) =
±1.48�. Obviously, these conductance peaks arise from
single-quasiparticle tunneling connecting the YSR states of
the tip and the substrate and the corresponding continuum
density of states (DOS) outside the gap in the opposite
electrode. These are first-order (in v2) tunneling events that
give the main contribution to the transport for parallel spins
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and low temperatures [they were already present in the ex-
ample of Fig. 2(e)]. Notice that the height of these peaks is
different for positive and negative bias, which is due to the
lack of electron-hole symmetry in this example. In the sub-
gap region (eV < �), there is a series of conductance peaks.
In particular, we observe peaks at eV = ±(εS + �)/2 =
±0.82� and eV = ±(εt + �)/2 = ±0.74�. This strongly
suggests that these conductance peaks are due to second-
order (v4) Andreev reflections that involve a YSR state of
one of the electrodes and the continuum DOS of the same
lead. These processes also take place in the case of single-
impurity junctions and, as it is known, they lead to peaks that
depend on the bias polarity when there is no electron-hole
symmetry; see Ref. [40] and references therein. Additionally,
one can also see several conductance peaks at eV = ±εS/n
and eV = ±εt/n with n = 1, 2. We attribute these peaks to
processes that start or end in a YSR state and end or start at
the residual DOS inside the gap due to the finite broadening
parameters (ηS,t). The peaks for n = 1 correspond to single-
quasiparticle tunneling, while those for n = 2 correspond to
the lowest-order Andreev reflection. This type of processes
was discussed in Ref. [40] in the context of single-impurity
junctions and we shall not pay much attention to it in this
work. It is also worth remarking that there is no negative
differential conductance (NDC) in this case, i.e., there are no
current peaks. Let us also clarify that thermal Shiba-Shiba
tunneling discussed in the previous section does not show up
in Fig. 4(a) because we are assuming zero temperature.

In the case of antiparallel spins [see Fig. 4(b)], the new
characteristics, compared to the parallel case, that appear
in the differential conductance are NDC features at eV =
±(εS + εt ) = ±1.12� and at eV = ±(εS + εt )/3 = ±0.37�,
which correspond to peaks in the current at those voltages.
The first features are nothing else than the signature of the di-
rect Shiba-Shiba tunneling discussed in the previous section,
which are due to single-quasiparticle processes between the
YSR states in both impurities. The values of the bias at which
the second features appear strongly suggest that they originate
from Andreev reflections (of third order in the tunneling prob-
ability) that start and end in YSR states in a different impurity.
As we shall discuss in more detail below, these processes are
forbidden in this example for θ = 0 because of the full spin
polarization of the YSR states, but they are allowed for any
θ �= 0 and its probability is maximized for θ = π . This type
of MAR processes, which we shall refer to as Shiba-Shiba
MARs, has no analog in the case of single-impurity junctions
[40]. Notice, in particular, that the NDC associated with these
processes is a natural consequence of their resonant character.
Notice also that in this case the features for positive and
negative bias are different, which again can be traced back
to the lack of electron-hole symmetry in this example.

To get further insight into the origin of the subgap features,
we present in Fig. 5 a systematic study of the evolution of
the differential conductance as a function of the normal state
conductance GN for the same parameters as in Fig. 4 (apart
from the tunnel coupling), including also the results for an
intermediate angle θ = π/2. Notice that for convenience we
are plotting here the absolute value of the conductance in
a logarithmic scale. With this choice, the NDC appears as
a rapid alternation of bright and dark regions. The normal

FIG. 5. Differential conductance as a function of bias voltage
and the normal state conductance, GN, normalized by the conduc-
tance quantum, G0. The different panels correspond to (a) θ = 0,
(b) θ = π/2, and (c) θ = π . The rest of the parameters of the model
are �S = �t = �, �S = �t = 100�, US = 60�, Ut = 0, JS = Jt =
60�, kBT = 0, and ηS = ηt = η = 0.01�.

state conductance GN was varied in this case by changing the
hopping v and keeping fixed all the other parameters. In this
figure, we can see the evolution of the conductance spectra
as the junction transmission increases for different values of
θ from the tunnel regime, where only single-quasiparticle
tunneling processes contribute to the transport, to the case
of relatively transparent junctions where MAR processes also
contribute giving rise to a very rich subgap structure. To
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FIG. 6. The results of panels (a) and (c) of Fig. 5 for θ = 0 and
θ = π , respectively, focusing on positive voltages. The vertical lines
indicate the values of several relevant energies, and the labeling of
those lines follows the convention of Fig. 4.

better understand these spectra, we have reproduced the re-
sults for θ = 0 and θ = π in Fig. 6 focusing on positive bias
and we have included different vertical lines indicating the
relevant energies discussed in the previous paragraphs. The
labeling of these lines follows the convention explained in
the caption of Fig. 4. The most important observation is the
appearance for θ �= 0 of several NDC features (corresponding
to current peaks) at voltages eV = ±(εS + εt )/(2n + 1) with
n = 1, 2, . . . , which become more and more prominent as the
normal state conductance increases. As explained above, the
natural explanation for these features is the occurrence of a
special type of MARs starting and ending in YSR states of
a different impurity. On the other hand, irrespective of the
value of θ , there is also a series of conductance peaks at eV =
±(εS + �)/n and eV = ±(εt + �)/n that can be attributed to
MARs that involve a YSR in only one of the impurities.

To further confirm our interpretation of the origin of the
different subgap features, it is convenient to analyze how
they shift when the energy of the YSR states is modified,
for instance, by changing the exchange energy. This is what
we illustrate in Fig. 7 where we show the evolution of the
differential conductance with the exchange energy for the
two extreme cases of θ = 0 and θ = π and for v = 5�. To
simplify the analysis we have assumed that both impurities
have the same value of the exchange energy JS = Jt = J ,
which is changed simultaneously. Notice that we focus in
this figure on positive voltages simply to make the different
features clearly visible. As one can see, there are different

FIG. 7. Differential conductance as a function of the bias voltage
and the exchange energy (JS = Jt = J) for parallel (a) and antipar-
allel spins (b). The rest of the parameters of the model are �S =
�t = �, �S = �t = 100�, US = 60�, Ut = 0, kBT = 0, ηS = ηt =
0.01�, and v = 5�. The lines indicate the values of several relevant
energies and we follow the labeling convention described in Fig. 4.

running lines in these spectra whose dispersion with the ex-
change energy can be nicely described taken into account
the J-dependence of the energy of the YSR states in both
impurities; see Eq. (12). This is illustrated in Fig. 7 with
the inclusion of different dotted and dashed lines marking
the relevant energies of these features. Thus, for instance,
we have lines, labeled with circles, that indicate the values
of the voltages eV = ±(εS + εt )/(2n + 1) with n = 1, 2, . . . ,
which corresponds to the expected features of the Shiba-Shiba
MARs. It may look surprising that some of the features ap-
pearing for θ = 0 have been assigned to these Shiba-Shiba
MARs; see circles in Fig. 7(a). However, notice that in those
regions, and because of the different values of U , the spin
of the ground state is different for both impurities and then
the Shiba-Shiba MARs are allowed even for θ = 0. The rest
of the features in these spectra that can be attributed to ei-
ther the MARs involving a single YSR state in one of the
impurities or to the processes involving the residual DOS
inside the gap region. This nicely confirms our interpretations
above. Something else that is worth mentioning is the absence,
also in the previous figures, of the standard subharmonic gap
structure at eV = 2�/n with n ∈ N. This structure is due to
conventional MARs that do not involve YSR states and take
place between the continua of states in the leads [37,40]. In
regular situations with no impurities, these MARs give rise
to the subharmonic gap structure, consisting of conductance
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FIG. 8. Relevant tunneling processes in our two-impurity system. In the different energy diagrams, the left electrode is the impurity coupled
to the substrate and the right one is the impurity coupled to the tip and their respective density of states are shifted by the bias voltage. The red
lines correspond to electron-like quasiparticles and the blue ones to quasiholes. In all cases, we indicate the threshold voltage at which they
start to contribute to the current. (a) Single-quasiparticle processes that may involve two YSR states (right), one YSR state (center), or none
(left). The right one is allowed only when the spins of the two impurities are antiparallel. (b) Standard MARs that do not involve any YSR state.
(c) MARs that start or end in a YSR state. They give rise to conductance peaks at eV = ±(� j + ε j )/n with j = t, S when n > 1 is even or at
eV = ±(� j + ε j̄ )/n when n > 1 is odd, where j̄ stands for the electrode different from j. (d) MARs that start at a YSR state of one impurity
and end in a YSR state of the other impurity. They give rise to the subgap structure at eV = ±(εS + εt )/n where n > 1 is odd. (e) MARs that
start at a YSR state of one impurity and end in a YSR state of the same impurity. They are forbidden due to the full spin polarization of the
YSR states.

peaks at eV = 2�/n, because of the BCS singularities at the
gap edges. In our system, those MARs also take place, but
the gap edge singularities are not present in the DOS of the
impurities, which explains the absence of this conventional
structure. In an actual experiment, one may have additional,
nonmagnetic channels for tunneling (see, e.g., Ref. [22]), and
then this standard subgap structure can coexist with the one
we are describing in this work.

After the analysis of the previous results, we are now in
position to summarize all the relevant tunneling processes
that occur in our system, which are schematically shown in
Fig. 8. In this figure, the diagrams display the DOS of the
substrate and tip impurities featuring YSR states and we as-
sume a positive bias. Notice, in particular, the absence of gap
edge singularities, as discussed above. The first class of pro-
cesses are the single-quasiparticle events shown in Fig. 8(a),
which dominate the charge transport in the tunnel regime.
We have three types within this class: (1) tunneling processes
between the continua of states in both leads (left diagram)
with a threshold voltage equal to |eV | = �S + �t , (2) tun-
neling processes between a YSR state of one impurity and
the continuum of states of the other electrode (middle dia-
gram) with a threshold voltage equal to |eV | = �S,t + εt,S,
and (3) the direct Shiba-Shiba tunneling (right diagram) with a
resonant voltage equal to eV = ±(εS + εt ). The first type does
not produce any abrupt feature (because of the absence of gap
edge singularities), the second one gives rise to a conductance

peak at its threshold voltage, and the third one is responsible
for the direct Shiba-Shiba current peak (with NDC) at its
resonant bias. Of course, these processes have their thermal
counterparts at sufficiently high temperature, and, in particu-
lar, one can have thermally activated tunneling between the
YSR at eV = ±(εS − εt ), as we discussed in Sec. III.

The second type of tunneling processes are the conven-
tional MARs shown in Fig. 8(b) that do not involve any YSR
state. As discussed above, these processes usually give rise
to a series of conductance peaks at subharmonics of com-
binations of the gaps [43], but in our case those features
are not visible due to the absence of gap edge singularities.
However, these MARs can give resonant contributions, where
their probability is greatly enhanced, when during the cascade
of reflections a quasiparticle hits the energy of a YSR state
in one of the impurities. Thus, for instance, the probability
of the second-order Andreev reflection in Fig. 8(b) is reso-
nantly enhanced when eV = ±(�S + εt ). Thus, this Andreev
reflection competes with the single-quasiparticle process con-
necting the continuum of states in the substrate impurity and
the YSR state in the tip impurity, and it eventually dom-
inates the conductance peak height at this bias when the
junction transmission is sufficiently high. These resonant An-
dreev reflections take also place in the case of single-impurity
junctions where the competition just mentioned has been dis-
cussed in great detail both experimentally and theoretically
[8,40].
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FIG. 9. Differential conductance in linear scale as a function of
the bias voltage and normal state conductance (left vertical scale)
or hopping matrix element (right vertical scale). The parameters of
the model are �S = �t = �, �S = �t = 100�, US = 60�, Ut = 0,
JS = Jt = 60�, kBT = 0, ηS = ηt = 0.01�, and θ = π . The vertical
lines indicate the values of several relevant energies corresponding to
Shiba-Shiba multiple Andreev reflections. The energies of the YSR
states are assumed to the ones of the uncoupled impurities given by
Eq. (12).

A more interesting family of MARs is that described in
Fig. 8(c) in which the process starts or ends in a YSR state
of one of the impurities. Depending on whether the order
of the MAR, n, is even or odd, one can have two types of
threshold voltages [44]: (1) eV = ±(� j + ε j )/n with j = t, S
when n > 1 is even and (2) eV = ±(� j + ε j̄ )/n when n > 1
is odd, where j̄ stands for the electrode different from j.
The even processes start and end in the same electrode, as
in the left diagram in Fig. 8(c), while the odd processes start
and end in the different electrodes, as in the right diagram in
Fig. 8(c). These MARs mediated by a YSR state give rise to
conductance peaks (with no NDC) at those threshold voltages,
as we have illustrated above for the case of a junction with
equal superconducting gaps.

Probably the most interesting processes are the MARs that
start and end in the YSR states of the different impurities; see
Fig. 8(d). These Shiba-Shiba MARs occur at voltages given by
eV = ±(εS + εt )/(2n + 1) with n = 1, 2, . . . and give rise to
current peaks (with NDC) at those voltages. Obviously, as in
the case of the direct Shiba-Shiba tunneling, the width of the
current peaks depends on the broadening of the involved YSR
states. To illustrate once more the signature of these peculiar
processes, we show in Fig. 9 the differential conductance in
linear scale (and no absolute value) for one of the examples
that we have discussed above, but focusing on low bias and
relatively high normal state conductance values. In this case,
we have used a different color code for the conductance map
to highlight the NDC. As one can see, there is a series of
NDC features associated with these Shiba-Shiba MARs. It is
also interesting to notice that those features (corresponding to
current peaks) tend to shift to higher voltages as the normal
transmission of the junction is increased. We attribute this to
the fact that for those normal state conductance values the
electronic coupling between the impurities is strong enough to

renormalize the energies of the bound states. In other words,
those shifts are a signature of the hybridization of the YSR
states in the two impurities. This is an interesting issue that
we shall address in detail in a forthcoming paper.

Finally, we want to mention the MARs shown in Fig. 8(e),
which would start and end in a YSR bound state of the
same impurity. In principle, these processes are energeti-
cally allowed, and they could give rise to current peaks at
eV = ±ε j/n ( j = t, S) with n � 1. However, as discussed in
Ref. [40], the fact that the YSR states are fully polarized
makes them forbidden. Such MARs would require a bound
state to have a finite DOS of both spin species, which is not
the case for YSR states.

V. CONCLUSIONS

In summary, motivated by the very recent experimental
realization of the tunneling between YSR states, we have
presented in this work a comprehensive theoretical study of
the tunneling processes that can take place in a system com-
posed of two magnetic impurities coupled to their respective
superconducting electrodes. Our analysis is based on the use
of a mean-field Anderson model to describe the magnetic
impurities and the Keldysh formalism to compute the current-
voltage characteristics. First, we have shown that our model
naturally explains all the basic experimental observations re-
ported so far [30], which concerns the tunnel regime. In this
regime, the subgap current exhibits current peaks with very
large negative differential conductance that are the result of di-
rect and thermally activated tunneling of single quasiparticles
between the YSR states in both impurities. More importantly,
we have predicted that upon increasing the junction transmis-
sion, the current can exhibit an extremely rich structure in
the gap region due to the occurrence of several families of
multiple Andreev reflections. Most notably, we have shown
that one can have Andreev reflections connecting the YSR
bound states in different impurities and that they give rise to
a series of current peaks at subgap voltages. These processes
have no analog in single-impurity junctions and they illustrate
the new physics that appears when there are superconducting
bound states with broken spin symmetry. In principle, the
experimental system of Ref. [30] is ideally suited to test the
different predictions put forward in this work.
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