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Motivated by recent experiments [Nat. Phys. 16, 1227 (2020)], we present here a theoretical study of the DC
Josephson effect in a system comprising two magnetic impurities coupled to their respective superconducting
electrodes and which exhibit Yu-Shiba-Rusinov (YSR) states. We make use of a mean-field Anderson model with
broken spin symmetry to compute the supercurrent in this system for an arbitrary range of parameters (coupling
between the impurities, orientation of the impurity spins, etc.). We predict a variety of physical phenomena
such as (i) the occurrence of multiple 0-π transitions in the regime of weak coupling that can be induced
by changing the energy of the YSR states or the temperature; (ii) the critical current strongly depends on the
relative orientation of the impurity spins and it is maximized when the spins are either parallel or antiparallel,
depending on the ground state of the impurities; and (iii) upon increasing the coupling between impurities, triplet
superconductivity is generated in the system and it is manifested in a highly nonsinusoidal current-phase relation.
In principle, these predictions can be tested experimentally with the existing realization of this system and the
main lessons of this work are of great relevance for the field of superconducting spintronics.
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I. INTRODUCTION

The advent of scanning tunneling microscopy (STM) has
enabled the investigation of the interplay between magnetism
and superconductivity at the atomic scale in the context of
single magnetic impurities on superconducting surfaces [1,2].
One of the most emblematic manifestations of this interplay
is the appearance of in-gap superconducting bound states,
known as Yu-Shiba-Rusinov (YSR) states [3–5]. These bound
states can induce a quantum phase transition in which the
ground state of the impurity system may change between a
singlet state (spin 0) and a double state (spin 1/2) [6–10]. The
change in fermion parity in this transition is accompanied by a
supercurrent reversal in Josephson junctions, often referred to
as 0-π transition. This kind of transition has been reported in
different mesoscopic systems ranging from superconductor-
ferromagnet hybrid junctions [11–16] to single [17–22] and
double [23–32] quantum dots coupled to superconducting
leads. However, in the context of STM-based experiments
with magnetic impurities on superconductor substrates, it has
been very elusive to observe a 0-π transition due to the lack
of phase sensitivity in this type of setup. This was recently
circumvented with the help of the presence of a second chan-
nel in an experiment featuring a single YSR pair of states in a
vanadium-based system [33].
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In this work we focus on a system in which two magnetic
impurities are coupled to their respective superconducting
electrodes such that one can have quantum tunneling between
two individual YSR states, see Fig. 1(a). This system has been
recently realized experimentally in the context of STM and it
constitutes the ultimate limit of quantum tunneling [34]. In
those experiments the authors focused on the current-voltage
characteristics and the results have been understood with the
help of mean-field models that account for the relative ori-
entation between the impurity spins [35–37]. Here, we shall
focus on the DC Josephson effect and employ the mean-field
model to make concrete predictions for the current-phase
relation and the critical current in this two-impurity system.
Our study is motivated by the fact that this system is an ideal
playground to investigate fundamental questions in the field of
superconducting spintronics [38,39]. In particular, we predict
that the supercurrent in this hybrid atomic-scale system ex-
hibits a number of spin-related phenomena among which we
can highlight (i) the occurrence of multiple 0-π transitions in
the tunneling regime (weak coupling between the impurities)
that can be induced by changing the position of the YSR
states or by modifying the temperature; (ii) the critical current
depends drastically on the relative orientation of the impurity
spins and it is maximized either when the impurity spins are
parallel or antiparallel, depending on the ground state of the
impurities; (iii) upon increasing the coupling between the im-
purities, triplet superconductivity is generated and is revealed
in a highly nonsinusoidal current-phase relation. These pre-
dictions could be tested experimentally using the exact system
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FIG. 1. (a) Schematic representation of the system under study.
Two magnetic impurities with exchange fields JS and JT forming
an angle θ are respectively coupled to a superconducting substrate
and to a superconducting STM tip. The tunneling rates �T and
�S measure the strength of the coupling of the impurities to the
tip and substrate, respectively, and t is the hopping matrix element
describing the tunnel coupling between the impurities. (b) The zero-
temperature critical current as a function of the ratios JS/�S and
JT /�T for θ = π/2. In panel (b), we mark (JS/�S = 0.8, JT /�T =
0.8) (blue colored diamond shaped) and (JS/�S = 1.2, JT /�T = 0.8)
(green colored circular shaped) points. (c) The critical current as a
function of the temperature and the angle θ for JS/�S = JT /�T =
0.8. (d) The same quantity as in panel (c), but for JS/�S = 1.2 and
JT /�T = 0.8. For panels (b)–(d) t = �0, �S/T = 100�0, US/T = 0,

and γ = 0.003�0. The critical currents with color maps in panels
(b)–(d) are expressed in the units of e�0/h̄.

of Ref. [34] and our main conclusions have important impli-
cations for the whole field of superconducting spintronics.

The rest of the paper is organized as follows. First, in
Sec. II we present our theoretical model to describe the cou-
pling between two YSR states, and provide a prescription to
compute the DC Josephson current between the two states.
Then, in Sec. III we discuss our main results on the 0-π
transitions in the supercurrent for low transmissions, the emer-
gence of triplet superconductivity and how it is reflected in the
supercurrent, and the appearance of higher order harmonics
in the current-phase relation beyond the tunnel regime. We
summarize the main conclusions of this work in Sec. IV.
Some of the technical details related to the supercurrent in
the tunneling regime are reported in Appendix A, while a
discussion of the critical current in the case of nonorthogonal
spin orientations is presented in Appendix B.

II. MODEL

A. System

To study the supercurrent between two YSR states, we
consider the two-impurity system schematically represented
in Fig. 1(a). Here, a magnetic impurity is attached to a su-
perconducting substrate (S) and another impurity decorates

a superconducting STM tip (T ). The system was already
realized in Refs. [34,36]. Because of the strong coupling to
their respective superconducting electrodes, both impurities
exhibit a pair of YSR states. In turn, both impurities are tunnel
coupled, which causes YSR hybridization and the correspond-
ing supercurrent flow when a phase difference is established
across the junction. To describe this system, we make use of
the mean-field model used in Ref. [35], which is summarized
by a Hamiltonian given by ˆ̄H = ˆ̄HS + ˆ̄HT + ˆ̄V . Here, ˆ̄HS,T

describes the subsystem formed by an impurity attached to
the superconductor j = S, T and ˆ̄V describes the coupling
between the magnetic impurities. With respect to the global
spin-quantization axis, defined as the middle angle between
JT and JS , we can choose the basis set for an impurity attached
to the respective superconductor j = S, T given by d̄†

j =
(d̄†

j↑, d̄ j↓, d̄†
j↓,−d̄ j↑). For the superconducting electrodes we

choose a basis set with respect to the global spin-quantization
frame as c̄†

k j = (c̄†
k j↑, c̄k j↓, c̄†

k j↓,−c̄k j↑). The Hamiltonian of
a bare YSR system, i.e., a magnetic impurity plus the corre-
sponding superconductor is expressed in the above basis as
ˆ̄Hj = ˆ̄Helec, j + ˆ̄Himp, j + ˆ̄Hint, j , where

ˆ̄Himp, j = 1

2
d̄†

j H̄imp, j d̄ j, (1)

ˆ̄Helec, j = 1

2

∑
k

c̄†
k j H̄elec,k j c̄k j, (2)

ˆ̄Hint, j = 1

2

∑
k

c̄†
k j H̄int, j d̄ j + H.c. (3)

In Eqs. (1)–(3) the Hamiltonian matrices are given by H̄imp, j =
Uj (σ0τ3)+J j · (στ0), H̄elec,k j =σ0(ξk jτ3+� jeiφ jτ3τ1), and
H̄int, j = v j (σ0τ3). They define the bare magnetic impurity
attached to the respective superconductor j, the corresponding
superconducting electrode j, and the interaction between
them, respectively. These Hamiltonian matrices are expressed
in spin ⊗ Nambu space σiτ j , where σi and τ j denote the Pauli
matrices in the respective space. The superconductors are
described by electronic energy ξk j , pairing potential � j , and
superconducting phase φ j . The bare magnetic impurities are
described by the single-particle energy Uj and the exchange
field J j . An important parameter of this model is the angle θ

describing the relative orientation between the two impurity
spins, i.e., between JS and JT . The strength of the coupling
between an impurity and its corresponding superconductor is
denoted by v j . Due to the hybridization between the two YSR
systems, the tunneling Hamiltonian in the above basis adopts
the form

ˆ̄V = 1
2 d̄†

T V̄T Sd̄S + 1
2 d̄†

SV̄ST d̄T , (4)

where V̄T S = t (σ0τ3) = V̄ST , and t is the hopping matrix el-
ement that describes the strength tunneling between the two
YSR subsystems. The tunneling Hamiltonian ˆ̄V accounts for
the spin-independent tunneling processes. However, spin-flip
process will effectively take place when the spins are mis-
aligned, as we explain in what follows.

Instead of working with a global spin-quantization frame,
for convenience, we use mixed quantization axes such that
S and T subsystems are spin-quantized along the exchange
fields JS and JT , respectively. For this purpose we make
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use of the rotation matrix for subsystem j = S, T as Rj =
exp(iθ jσ2/2)τ0, where θT/S = ±θ/2 is the relative angle of
the exchange fields JT/S with respect to the global quanti-
zation axis. Upon rotation, we can define the basis along
the respective exchange field directions as d†

j = Rjd̄
†
j ≡

(d†
j↑, d j↓, d†

j↓,−d j↑). Due to the superconductor-impurity
coupling, the dressed retarded/advanced (r/a) Green’s func-
tion matrix of each impurity in the basis d†

j becomes

gr/a
j j (E ) = gr/a

j j↑↑(E ) ⊕ gr/a
j j↓↓(E ) with

gr/a
j jσσ (E ) = 1

Djσ (E )

⎛
⎜⎝

E� j + (E + Uj − Jjσ )
√

�2
j − E2 � j� jeiφ j

� j� je−iφ j E� j + (E − Uj − Jjσ )
√

�2
j − E2

⎞
⎟⎠, (5)

where � j = πN0, jv
2
j (N0, j being the normal density of states

of electrode j), Djσ (E ) = 2� jE (E − Jjσ ) + [(E − Jjσ )2 −
U 2

j − �2
j ]

√
�2

j − E2, and E = E ± iγ (with γ → 0+). Here,

Jj↑ = +Jj and Jj↓ = −Jj . The YSR bound states can be ob-
tained by setting Djσ (E ) = 0 for Jj, � j � � j , and they are
expressed as EYSR, j↑ = −EYSR, j↓ with

EYSR, j↑ = � j

J2
j − �2

j − U 2
j√[

�2
j + (Jj − Uj )2

][
�2

j + (Jj + Uj )2
] . (6)

For Uj = 0 it is easy to show that if Jj/� j ≶ 1, then EYSR, j↑ =
−EYSR, j↓ ≶ 0. Next, to study the supercurrent between the
two impurities we need the tunneling matrices with respect
to the mixed quantization frames. The tunneling matrices are
transformed as VT S = RT V̄T S R†

S and VST = RSV̄ST R†
T . With

this transformation, the coupling matrices acquire nondiago-
nal elements in spin space, which means that effectively we
have a spin-active interface in which there are spin-flip pro-
cesses whose probabilities depend on the relative orientation
of the impurity spins described by the angle θ .

B. Supercurrent

Our goal is to understand the supercurrent in our
two-impurity system. For this purpose, we employ stan-
dard nonequilibrium Green’s function techniques, see, e.g.,
Ref. [35], and express the zero-bias current in terms of
Keldysh-Green’s functions as follows:

Is(ϕ) = e

2h

∫ ∞

−∞
dETr[(σ0τ3)(VST G+−

T S − G+−
ST VT S )], (7)

where ϕ = φT − φS is the superconducting phase difference
across the junction and G+−

ST/T S are Keldysh-Green’s func-
tions, which at zero bias can be expressed as G+−

ST/T S (E ) =
nF(E ) [Ga

ST/T S (E ) − Gr
ST/T S (E )]. Here, nF(E ) is the Fermi-

Dirac distribution at temperature T and for chemical po-
tential set to zero and Ga/r

ST/T S (E ) are advanced/retarded
Green’s function (GF) that describes the substrate-tip/tip-
substrate (ST/T S) hybrid system. These GFs can be obtained
via the Dyson equations Gr/a

ST = Gr/a
SS VST gr/a

T T and Gr/a
T S =

gr/a
T T VT SGr/a

SS , where the GFs for the tip/substrate (T T/SS)
are given by Gr/a

T T/SS = [(gr/a
T T/SS )−1 − �

r/a
S/T ]−1 with self-

energies �
r/a
S = VST gr/a

T T VT S and �
r/a
T = VT Sgr/a

SS VST . The
tip/substrate hybridized GFs can be expressed in terms of the
Pauli ⊗ Nambu matrices σmτn as Gr/a

j j = ∑
m,n Gr/a

j j;mnσmτn,

where m, n = 0, 1, 2, and 3. In general, Eq. (7) has to be eval-
uated numerically. For a small tunneling parameter t 
 �S/T

[35], away from the 0–π transition lines, however, the current-
phase relation can be obtained analytically as Is ∼ sin ϕ (see
Appendix A). From a physical point of view, we find that the
supercurrent is always carried by four phase-dependent bound
states that result from the hybridization of the individual YSR
states. Two of these states have negative energies and provide
the dominant contribution to the current at low temperatures.
The other two states have positive energies and start contribut-
ing to the supercurrent flow at higher temperatures.

III. RESULTS AND DISCUSSIONS

In what follows, we illustrate the results for the supercur-
rent for different ranges of parameters and assume that both
superconductors are identical with a gap equal to �S/T (T ) =
�0 tanh(1.74

√
Tc/T − 1) [40]. At T = 0 the superconduc-

tors (S/T ) are characterized by the BCS superconducting
gap �0 = 1.764kBTc with the superconducting critical tem-
perature Tc. For this purpose we define the critical current
as Ic = |Is(ϕmax)|, where |Is| is the maximum at ϕ = ϕmax

such that 0 � ϕmax � π . On the other hand, we characterize
the 0 and π phase of supercurrent as Is(ϕmax)/Ic > 0 and
Is(ϕmax)/Ic < 0, respectively. Let us start by considering first
the limit of low transparency (or weak coupling between the
impurities). In Fig. 1(b) we present the results for the zero-
temperature critical current as a function of the two exchange
fields JS and JT for t = �0, θ = π/2, �S/T = 100�0, and
US/T = 0 [41]. Notice that there are up to four 0 and π

phases separated by boundaries that correspond to the YSR
lying at zero energy (for JS/T /�S/T = 1 while US/T = 0). In
general, for low transparencies and sufficiently low temper-
atures, we find that the system exhibits 0 and π phases if
EY SR,Sσ EY SR,T σ > 0 and EY SR,Sσ EY SR,T σ < 0, respectively. In
this low transparency regime, the supercurrent is sinusoidal,
i.e., Is ∼ sin ϕ, almost for all (JS, JT ) except near the 0-π
transition lines [see Fig. 1(b)], where Is(ϕ) features higher
harmonics, as we shall discuss below. At low temperatures and
for low transparencies, the 0-π features of the supercurrent,
away from the transition lines, are fairly independent of the
value of θ . At low temperatures and for low transparencies,
if US/T = 0, the critical current Ic(JS, JT ) exhibits avoided
crossing of the 0-π transition lines at JS/�S = JT /�T = 1 for
θ 
= π/2 or 3π/2, e.g., θ = 0 and π (see Appendix B). The
avoided crossings become prominent for finite broadening γ .
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FIG. 2. (a) The spectral current (in color maps), (h̄/e)A(E , ϕ),
for t = �0, �S/T = 100�0, US/T = 0, and γ = 0.003�0 at T = 0.
Panels (a)–(c) are for JS/�S = JT /�T = 0.8 [blue colored diamond
shaped point in Fig. 1(b)] and panels (d)–(f) are for JS/�S = 1.2 and
JT /�T = 0.8 [green colored circular shaped point in Fig. 1(b)]. The
exchange fields orientation angle θ is set to 0 (a), (d); π/2 (b), (e);
and π (c), (f). Panel (c) exhibits two degenerate bound states due to
the symmetry of the two bare systems.

To illustrate the θ and T dependencies of critical current for
low transparencies we plot Ic(θ, T ) for EY SR,Sσ EY SR,T σ > 0
and EY SR,Sσ EY SR,T σ < 0 cases in Figs. 1(c) and 1(d), respec-
tively. We see that Ic increases at low T from θ = 0 to π in
Fig. 1(c) and vice versa in Fig. 1(d). Figure 1(c) also illustrates
that 0-π transitions (at a fixed θ ) can be induced by increas-
ing the temperature for 0 � θ < π/2 and 3π/2 < θ � 2π

if EY SR,Sσ EY SR,T σ > 0. On the other hand, a π -0 transition
appears in Fig. 1(d) with increasing T for π/2 < θ < 3π/2 if
EY SR,Sσ EY SR,T σ < 0. We notice that the critical angle θ = θc,
at which a 0-π transition occurs, depends on T . For low trans-
parencies we do not find temperature-induced 0-π transitions
for θ = π/2 or 3π/2, see Figs. 1(c) and 1(d). Physically, upon
increasing the temperature, the positive-energy bound states
start to contribute to the supercurrent. It can be shown that
the total current carried by the two negative-energy states is
in the reverse direction of the total current carried by the two
positive-energy states. The 0-π transitions in Figs. 1(c) and
1(d) are due to the enhanced population of the higher energy
states with increasing temperature. In Figs. 1(c) and 1(d) we
notice that for higher temperatures there are also θ -dependent
0-π transitions.

In what follows, we report spectral current, A(E , ϕ), fea-
tures at low T and for low transparencies while JS/T 
= 0 are
away from the transition lines. In general, the supercurrent can
be expressed as Is(ϕ) = ∫

dE A(E , ϕ). At low temperatures,
only the two negative-energy bound states of the hybrid sys-
tem contribute to the supercurrent [see Figs. 2(a)–2(f)]. We
find in Fig. 2(a) for EY SR,Sσ EY SR,T σ > 0 and θ = 0 that the
two negative-energy states carry the current in opposite direc-
tions. In this case, it can be shown that they together result in a
0 phase,see, e.g., Fig. 1(c) for θ = 0 at low temperatures. For
EY SR,Sσ EY SR,T σ > 0 the magnitude of the relative contribution
to the supercurrent monotonically increases as θ changes from

0 to π [see Figs. 2(a)–2(c)]. In fact, in this case for θ = π the
two negative energy states carry the current in the same direc-
tion [see Fig. 2(c)]. Consequently, for EY SR,S↑EY SR,T ↑ > 0 at
low T the critical current monotonically increases from θ = 0
to π featuring 0 phases [see Fig. 1(c) at low temperatures].
On the other hand, for EY SR,Sσ EY SR,T σ < 0 and θ = π we
find in Fig. 2(f) that the two negative energy states carry the
current in opposite directions. In this case, it can be shown
that they together result in a π -phase, see, e.g., Fig. 1(d) for
θ = π at low temperatures. In this case, the magnitude of
the relative current increases as θ changes from π to 0 [see
Fig. 2(d)–2(f)]. In fact, in this case for θ = 0 the two states
carry current in the same direction [see Fig. 2(c)]. Conse-
quently, for EY SR,S↑EY SR,T ↑ < 0 at low T the critical current
monotonically increases from θ = π to 0 featuring π phases
[see Fig. 1(d) at low temperatures].

Let us remind that usually Is ∼ sin ϕ for low transparen-
cies, except near the 0-π transition lines in the Ic(JS, JT )
diagram [see, e.g., Fig. 1(b)]. We now show that at low
temperatures higher harmonics in Is(ϕ) can appear near the
0-π transition lines. Figure 3(a) shows such higher harmon-
ics at the intersection of the transition lines in Fig. 1(b),
i.e., for θ = π/2 and for EYSR,Sσ = EYSR,T σ = 0. The ap-
pearance of higher harmonics indicates that there can be
supercurrent due to pure (equal spins) triplet pairing. In this
case, and despite the fact that t 
 �S/T , we find that the
higher powers of tunneling parameters, beyond t2, signifi-
cantly contribute to supercurrent. In particular, with the set
of parameters in Fig. 3(a), for which EYSR,Sσ = EYSR,T σ = 0
and θ = π/2, we observe that Is(ϕ) features a pure second
harmonic. At this point, we always find that Is(ϕ) features a
pure second harmonic at low temperatures and for arbitrarily
low transparencies. Higher harmonic features for EYSR,Sσ =
EYSR,T σ = 0 diminish as θ changes from orthogonal to paral-
lel/antiparallel orientations. Figure 3(a) also shows that Is(ϕ)
for θ = 0 and π when EYSR,Sσ = EYSR,T σ = 0, which exhibits
features of π and 0 phases for θ = 0 and π , respectively.
These suggest that for θ = 0 two diagonal π -phase blocks,
associated with EY SR,Sσ EY SR,T σ < 0, and for θ = π two diag-
onal 0-phase blocks, associated with EY SR,Sσ EY SR,T σ > 0, in
Ic(JS, JT ) diagram would be continuously joined at JS/�S =
JT /�T = 1 while US/T = 0. Consequently, Ic(JS, JT ) would
exhibit avoided crossing of 0-π transition lines for θ = 0 and
π (see Appendix B).

Comparing Figs. 3(b) and 3(d) for θ = π/2 and EYSR,Sσ =
EYSR,T σ = 0, we observe that the bound state crossing in
the density of states LDOS = Im(Tr[Ga

SS + Ga
T T ])/16π is

responsible for the onset of pure triplet pairing. The pure
triplet pairing amplitude for the substrate in terms of the
hybridized GF’s components is obtained as TS;↑↑ = |(Ga

SS;11 −
Ga

SS;22) − i(Ga
SS;12 + Ga

SS;21)|. The appearance of pure triplet
superconductivity makes Is(ϕ) nonsinusoidal. Figures 3(b),
3(c), and 3(d) show the LDOS, the substrate’s mixed (different
spins) triplet pairing amplitude, and the substrate’s pure triplet
pairing amplitude, respectively, for θ = π/2. The substrate’s
mixed triplet pairing amplitude is obtained in terms of the
hybridized GF’s components as TS;↑↓ = |(Ga

SS;31 − iGa
SS;32)|.

In Figs. 3(e)–2(g) we display θ and ϕ dependencies on zero-
energy modes of substrate’s singlet pairing, mixed triplet
pairing, and pure triplet pairing amplitudes for relatively weak
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FIG. 3. (a) Current-phase relation Is(ϕ) for different θ (indicated in the plot), t = �0, JS/�S = JT /�T = 1, �S/T = 100�0, and US/T = 0
at T = 0. (b) Local density of states (LDOS), (c) mixed-triplet pairing amplitude, and (d) pure-triplet pairing amplitude for the parameters
of the red curve in panel (a). The zero-energy modes of (e) singlet pairing, (f) mixed triplet pairing, and (g) pure triplet pairing amplitudes
for t = �0, JS/�S = JT /�T = 1, �S/T = 100�0, and US/T = 0 at T = 0. In all panels γ = 0.003�0. The quantities with color maps in panels
(b)–(g) are expressed in the units of �−1

0 .

coupling between the impurities, t = �0, setting JS/�S =
JT /�T = 1, and US/T = 0. The substrate’s singlet pairing
amplitude in terms of the hybridized GF’s components is
obtained as SS;↑↓ = |(Ga

SS;01 − iGa
SS;02)|. We see maximum

pure triplet pairing amplitude for θ = π/2 and ϕ = π/2. This
features a pure second harmonic in IS (ϕ) for orthogonal ori-
entation when EYSR,Sσ = EYSR,T σ = 0. Higher harmonics and
pure triplet features become important for arbitrary JS/T and
for all θ when the tunneling parameter t is large.

Finally, we illustrate the contribution of the higher harmon-
ics of Is(ϕ) in Fig. 4(a) for a higher transparency t = 70�0

and various θ values. The results of Fig. 4(a) were obtained
for JS/�S = JT /�T = 0.8, which is set away from the 0-π
transition lines in Ic(JS, JT ). We observe that higher harmonics
are more prominent for θ = π/2. In general, supercurrent

FIG. 4. (a) Zero-temperature current-phase relation for different
θ (indicated in the plot), t = 70�0, �S/T = 100�0, US/T = 0, and
γ = 0.003�0, and JS/�S = JT /�T = 0.8. (b) The first (dotted blue)
and second (dashed red) harmonics of the current-phase relation for
θ = π/2 as a function of the hopping t , as well as the critical current
Ic (solid green curve). The rest of the parameters are the same as in
panel (a).

can be expressed in terms of higher harmonics as Is(ϕ) =∑
n In sin(nϕ) with positive integers n. Figure 4(b) shows how

the first and second harmonics vary with increasing trans-
parencies t . We clearly see that the second harmonic first
enhances with increasing t from low transparencies. For mod-
erate transparencies, the second harmonic plays a significant
role in Is(ϕ). In this case, pure triplet also has a significant
contribution to the supercurrent.

IV. CONCLUSIONS

Inspired by recent STM-based experiments, we have pre-
sented a theoretical investigation of the DC Josephson effect
between two magnetic impurities coupled to superconductors
such that they host YSR states. We have shown that the super-
current in this system exhibits a very rich phenomenology. For
instance, for weak coupling between the magnetic impurities,
the current-phase relation is sinusoidal, but exhibits various
types of 0-π transitions due to changes in the YSR ener-
gies, temperature, and orientation of the impurity magnetic
moments. Upon increasing the coupling, the current-phase re-
lation becomes nonsinusoidal due to the appearance of (pure)
triplet superconductivity. Our results can be tested experi-
mentally in the context of STM and magnetic impurities on
superconducting surfaces [34,36].
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APPENDIX A: SUPERCURRENT
IN THE TUNNEL REGIME

In the Appendix we elaborate on the analysis of the super-
current in the tunneling regime and, in particular, we provide
some analytical insight into the current-phase relation and the
critical current in this regime.

The tip/substrate (T T/SS) bare GFs can be decomposed in
the spin ⊗ Nambu space as follows:

ga
j j =

∑
l=0,3

∑
m=0,3

ga
j j;lmσlτm +

∑
l=0,3

∑
m=+,−

ga
j j;lmσlτm, (A1)

with τ± = (τ1 ± iτ2)/2 and ga
j j;l± = f a

j j;l+e±iφ j . The first and
second terms in Eq. (A1) represent the normal and anomalous
components of the GF, respectively. In the anomalous part,
f a

j j;0+ and f a
j j;3+ are for the singlet and mixed-triplet contri-

butions, respectively. Using Eq. (7) we can now express the
supercurrent for low transparencies as

Is(ϕ) = 8t2 e

h
sin ϕ

∫ ∞

−∞
dEnF (E )Im

[
f a
SS;0+ f a

T T ;0+

+ f a
SS;3+ f a

T T ;3+ cos θ
]
. (A2)

We see that the current-phase relation is sinusoidal Is ∼ sin ϕ

in this limit. Furthermore, we can consider Jj, � j � |EY SR, j↑|
and approximate the denominator of the bare Green’s func-
tions as follows

Djσ (E ) ≈ −sign(Jjσ )ψ j (E − sign(Jjσ )EY SR, j↑), (A3)

where

ψ j = 1

2� jJ j

[(
J2

j − U 2
j − �2

j

)2 + 4�2
j J

2
j

]
. (A4)

With this approximation, we can obtain the approximate ana-
lytical expression of supercurrent for low transparencies as

Is(ϕ) =
(

8et2�S�T �S�T

hψSψT E+
Y SRE−

Y SR

)
[E+

Y SRρ−
Y SR cos2(θ/2)

+ E−
Y SR(1 − ρ+

Y SR) sin2(θ/2)] sin ϕ, (A5)

where E±
Y SR = EY SR,S↑ ± EY SR,T ↑ and ρ±

Y SR = nF(EY SR,S↑) ±
nF(EY SR,T ↑). This formula qualitatively captures T and θ

dependencies of the supercurrent. At low T , this analytical
formula gives a vanishing supercurrent for θ = 0 and θ = π

when EY SR,S↑EY SR,T ↑ > 0 and EY SR,S↑EY SR,T ↑ < 0, respec-
tively. This is not correct due to the approximation of Djσ .
The situation is more complicated if EY SR,Sσ EY SR,T σ = 0.

In Fig. 5 we present the results for the critical current Ic =
|Is(ϕmax)| computed with Eq. (7) (solid lines) and Eq. (A5)
(dashed lines) as a function of the relative orientation θ of
the two magnetic impurities at various temperatures. We note

FIG. 5. Ic(θ ) for (a) JS/T /�S/T = 0.8, and (b) JS/�S = 0.8 and
JT /�T = 1.2. For all panels �S = �T , �S/T = 100�0, t = �0,
US/T = 0, and γ = 0.003�0. The solid lines were obtained with
Eq. (7) (the exact numerical approach) and the dashed lines corre-
spond to the results obtained with the analytical formula of Eq. (A5).

that |Is(ϕ)| is maximum at ϕ = ϕmax. For the set of param-
eters in Fig. 5(a) we find a 0 → π phase shift for 0 � θ <

π/2 and 3π/2 < θ � 2π with increasing temperatures for
EY SR,Sσ EY SR,T σ > 0. For the set of parameters in Fig. 5(b) we
find a π → 0 phase shift for π/2 < θ < π with increasing
temperature for EY SR,Sσ EY SR,T σ > 0. The analytical formula
in Eq. (A5) works well for JS/T values away from the 0-π
transition lines in the Ic(JS, JT ) diagram.

APPENDIX B: CRITICAL CURRENT FOR
NONORTHOGONAL ORIENTATIONS

We now consider the behavior of the critical current as a
function of the exchange energies Ic(JT , JS ), for nonorthogo-
nal configurations (θ 
= π/2) at zero temperature and for low
coupling t 
 �S/T . In Figs. 6(a) and 6(b) we present Ic(JS, JT )
for t = �0, �S/T = 100�0, US/T = 0, and for θ = 0 and π ,
respectively. Usually, for low transparencies and low enough
temperatures, we find that the system exhibits 0 and π phases
for all θ if EY SR,Sσ EY SR,T σ > 0 and EY SR,Sσ EY SR,T σ < 0, re-
spectively. However, very close to the 0-π transition lines
in Ic(JT , JS ) the supercurrent features vary with θ [compare
Figs. 1(b), 6(a), and 6(b)]. We see that Ic(JT , JS ) shows dis-

FIG. 6. The zero temperature critical current as a function of
JT and JS for θ values (a) 0 and (b) π , respectively. For all pan-
els �S = �T , �S/T = 100�0, t = �0, US/T = 0, γ = 0.003�0, and
T = 0. The critical currents with color maps in panels (a) and (b) are
expressed in the units of e�0/h̄.
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tinct avoided crossing of 0-π transition lines for θ = 0 and
π in Figs. 6(a) and 6(b), respectively. This avoided crossing
becomes more prominent for finite spectral broadening, γ .
In contrast, no avoided crossing happens between the 0-π
transition lines for θ = π/2 [see Fig. 1(b)]. The magnitude
of the current strongly depends on the spin of the hybridized
YSR states. For θ = 0 transport through parallel oriented
negative energy, YSR states are suppressed due to the spin
polarization: Electrons with opposite spins have to virtually

occupy states with very high energy. For θ = 0, the two
negative energy YSR states have parallel spins in the 0 phase,
where EY SR,Sσ EY SR,T σ > 0. In contrast, the two negative en-
ergy YSR states have opposite spin in the π phase, where
EY SR,Sσ EY SR,T σ < 0, which makes the critical current in the
π phase larger than in the 0 one, see Fig. 6(a). The situation is
reversed for θ = π , as illustrated in Fig. 6(a). In the interme-
diate situation (θ = π/2) critical currents for 0 and π phases
are identical.
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