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A microscopic theory of the transport properties of quantum point contacts giving a unified description of
the normal conductor-superconductor (N-S) and superconductor-superconductor (S-S) cases is presented. It is
based on a model Hamiltonian describing charge transfer processes in the contact region and makes use of
nonequilibrium Green function techniques for the calculation of the relevant quantities. It is explicitly shown
that when calculations are performed up to infinite order in the coupling between the electrodes, the theory
contains all known results predicted by the more usual scattering approach forN-S andS-S contacts. For the
latter we introduce a specific formulation for dealing with the nonstationary transport properties. An efficient
algorithm is developed for obtaining the dc and ac current components, which allows a detailed analysis of the
different current-voltage characteristics for all range of parameters. We finally address the less understood
small bias limit, for which some analytical results can be obtained within the present formalism. It is shown
that four different physical regimes can be reached in this limit depending on the values of the inelastic
scattering rate and the contact transmission. The behavior of the system in these regimes is discussed together
with the conditions for their experimental observability.@S0163-1829~96!02034-6#

I. INTRODUCTION

Electronic transport throughN-S andS-S junctions and
weak links has been the object of interest for many years.1,2

Much of the theoretical understanding of these systems has
been obtained by analyzing simple models where a one-
dimensional character is assumed.2,3 These kinds of models
have been very useful for clarifying the microscopic origin
of basic phenomena like the excess current inN-S andS-S
contacts and the subgap structure inS-S and S-insulator-S
~S-I-S! junctions. In particular, the one-dimensional scatter-
ing model introduced by Blonderet al.3 ~hereafter referred to
as BTK! has provided a simple way of analyzing the trans-
port properties in terms of normal electron transmission and
Andreev reflection probabilities.

With the recent advances in the fabrication of nanoscale
devices,4,5 a closer comparison between the predictions of
simple quasi-one-dimensional theories and experimental re-
sults is now at hand. References 4 and 5 provide two differ-
ent examples of the progress made in the experimental
achievement of a superconducting quantum point contact
~SQPC!. This possibility has provoked a renewed interest in
more detailed and quantitative analysis of models involving
a few conducting channels. It turns out that, in spite of its
apparent simplicity, the case of a single-channel SQPC still
contains nontrivial physical behavior at certain regimes.
Single-mode contacts have been analyzed recently by differ-
ent authors6–8who have obtained new quantitative results for
the case of small applied voltage where multiple Andreev
reflections~MAR’s! play a crucial role.

Some of these recent works7,8 illustrate the existence of a
variety of regimes controlled by the contact transmission and
quasiparticle damping in the small bias limit. A full under-
standing of the different regimes, together with the transi-
tions between them remains to be explored. This will be
thoroughly analyzed in this paper.

Traditionally, quantum transport in microelectronic de-
vices has been mainly addressed by two different ap-
proaches: one is based on the scattering picture first intro-
duced by Landauer9 in which the transport properties are
expressed in terms of transmission and reflection scattering
amplitudes. This approach is generally used in a phenomeno-
logical way by replacing the device with a simple scattering
structure. The natural extension of this picture to the super-
conducting case was provided by the already mentioned
BTK model.

A different point of view arises when the problem is ana-
lyzed starting from a microscopic Hamiltonian. We shall
very generally call ‘‘Hamiltonian approach’’ the theories
which take this starting point. The origin of this approach
can be traced back to the work by Bardeen who introduced
the tunnel Hamiltonian approximation for describing a tunnel
junction.10 Most of the calculations based on this tunnel
Hamiltonian were restricted to the lowest order transport pro-
cesses like in the calculation of the Josephson current in a
S-I -S junction.11 Multiparticle tunneling processes~MPT’s!
were first discussed by Schrieffer and Wilkins12 as a possible
explanation for the observed subgap structure in supercon-
ducting tunnel junctions. The contributions of these higher
order processes were found to be divergent, which has led to
the quite extended belief that the Hamiltonian approach is
pathological except for describing the lowest order tunneling
processes.

One of the aims of the present work is to show that start-
ing from a very simple model Hamiltonian describing a
single-channel contact it is possible to obtain results forN-
S and S-S contacts in agreement with those provided by
scattering theory. As will be shown below inclusion of
higher order processes up to infinite order eliminates the pa-
thologies associated with finite order perturbation theory.

On the other hand, the Hamiltonian approach in combina-
tion with nonequilibrium Green function techniques presents
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its own advantages. In recent publications we have shown
how this approach can be generalized for dealing with situ-
ations where self-consistency of the superconducting order
parameter is needed.13 Moreover, the formulation in terms of
Green functions is especially well suited for dealing with
correlation effects when stronge-e interactions are present.14

The paper is organized as follows: In Sec. II the general
model for a superconducting weak link in a local represen-
tation is introduced. In particular, we discuss how this model
can be simplified in order to describe a single-mode contact.
We then introduce the nonequilibrium Green function for-
malism by means of which the total current through the con-
tact can be expressed. In Sec. III we analyze the more simple
N-N andN-S contacts. The study of theN-N case allows us
to define the contact transmission coefficient in terms of the
microscopic parameters of our model. The complete corre-
spondence with the results of the BTK scattering theory is
then established by analyzing theN-S contact. For this last
case we derive an analytical expression for the total current
as a function of the contact transmission. Section IV is de-
voted to theS-S case. We first show how the problem of the
calculation of the ac current components can be reduced to
the evaluation of an algebraic set of linear equations. This
allows us to study in detail the general features of the dc and
ac I -V characteristics for the whole range of voltages and
transmissions. We finally concentrate on the limitV!D
where the more interesting and less understood physics takes
place. Section V is devoted to some concluding remarks.

II. MODEL AND METHOD

In this paper we shall consider ‘‘point-contact-like’’ ge-
ometries consisting very generally of two wide~3D or 2D!
electrodes connected by a narrow constriction. The constric-
tion length,LC , is assumed to be much smaller than the
superconducting coherence length and its width,WC , com-
parable to the Fermi wavelength ,lF . For a sufficiently
short constriction the detailed form of the self-consistent or-
der parameter and electrostatic potential in the region be-
tween the electrodes becomes irrelevant13 allowing us to rep-
resent them by simple step functions. On the other hand, the
conditionWC;lF implies that there is only a reduced num-
ber of quantum transverse channels through the constriction.
One can think of different experimental realizations of such a
physical situation, like for instance the recently developed
atomic size break junctions4 and the split-gate S-2DEG-S
SQPC of Takayanagiet al.5 These two situations are sche-
matically represented in Fig. 1.

The analysis of the transport and electronic properties of
such a system would involve, for the most general case
where both electrodes are superconductors, the solution of
the time-dependent Bogoliubov–de Gennes~BdeG!
equations.15 In previous works we have developed an ap-
proach to these kind of problems in which the BdeG equa-
tions are formulated in a site representation.13 This represen-
tation can be viewed either as a tight-binding description of
the electronic states or as a discretization of the BdeG equa-
tions. The first case would be more suitable for describing
systems like an atomic size contact@Fig. 1~a!#, while the
second could be used to represent constrictions involving a
2DEG in semiconducting heterostructures@Fig. 1~b!#. In the

absence of applied fields the mean-field Hamiltonian giving
rise to the BdeG equations would take the form

Ĥ5(
i ,s

~e i2m!cis
† cis1 (

iÞ j ,s
t i j ci

†cj

1(
i

~D i* ci↓
† ci↑

† 1D ici↑ci↓!, ~1!

wherei , j run over the sites used to represent the system. By
appropriately choosing the different parameterse i , t i j , and
D i one can model different junction geometries.

13 In order to
analyze the case of biased contacts it is convenient to sim-
plify this model Hamiltonian taking the steplike behavior of
the order parameter and electrostatic potentials in a point
contact geometry into account. To do this we take the com-
plex order parameter and the chemical potentials as constants
on the left and right electrodes@denoted by (DL ,mL) and
(DR ,mR), respectively#. The case of a single quantum chan-
nel connecting both electrodes can then be described by the
following Hamiltonian:

Ĥ5ĤL1ĤR1(
s

~ tcLs
† cRs1t* cRs

† cLs!2mLN̂L2mRN̂R ,

~2!

where ĤL and ĤR correspond to the uncoupled electrodes
while the hopping term describes the electron transfer pro-
cesses between the outermost sites on both electrodes. We
would like to stress that, although this is a very simple model
Hamiltonian~formally equivalent to a tunnel Hamiltonian!, it
contains the relevant physics of a quantum point contact
which depends essentially on the contact normal transmis-
sion coefficient. In our model this transmission can vary be-
tween;0 ~tunnel limit! and;1 ~ballistic regime! as a func-
tion of the coupling parametert. This will be discussed in
Sec. III.

For the case of a symmetric superconducting contact in
the presence of an applied bias voltageeV5mL2mR it is

FIG. 1. Schematic representations of the two different situations
discussed in Sec. II.
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convenient to perform a gauge transformation16 by means of
which the Hamiltonian ~2! adopts the following time-
dependent form:

Ĥ~t!5ĤL1ĤR1(
s

~ teif~t!/2cLs
† cRs1t* e2 if~t!/2cRs

† cLs!,

~3!

where the superconducting phase difference
f(t)5f012eVt/\ appears as a phase factor in the hop-
ping elements.

Within the previously introduced model, the average total
current through the contact is given by

I ~t!5
ie

\ (
s

@ t^cLs
† ~t!cRs~t!&2t* ^cRs

† ~t!cLs~t!&#,

~4!

where, depending on the gauge choice,t can include a time-
dependent phase like in Eq.~3!. The averaged quantities in
Eq. ~4! can be expressed in terms of the nonequilibrium
Keldysh Green functionsĜ12.17 For the superconducting
state it is convenient to introduce the 232 Nambu represen-
tation in whichĜi , j

12 adopts the form13

Ĝi , j
12~t,t8!5 i S ^cj↑

† ~t8!ci↑~t!& ^cj↓~t8!ci↑~t!&

^cj↑
† ~t8!ci↓

† ~t!& ^cj↓~t8!ci↓
† ~t!&

D . ~5!

In terms of theĜ12, the current is given by

I ~t!5
2e

\
@ t̂ ĜRL

12~t,t!2 t̂* ĜLR
12~t,t!#11, ~6!

wheret̂ is the Nambu representation of the hopping elements

t̂5S t 0

0 2t* D . ~7!

The problem then consists in the determination of these
nonequilibrium Green functionsĜ12. This can be formally
achieved by treating the couplingt̂ as a perturbation. The
unperturbed Green functions correspond to the uncoupled
electrodes in equilibrium. For a symmetric contact, and ne-
glecting finite bandwidth effects, the uncoupled retarded and
advanced Green functions can be expressed as

ĝLL
r ,a~v!5ĝRR

r ,a~v!

5
1

WAD22~v6 ih!2
S 2v6 ih D

D 2v6 ih D ,
~8!

whereW is an energy scale related to the normal density of
states at the Fermi level byr(eF);1/(pW) andh is a small
energy relaxation rate that takes into account the damping of
the quasiparticle states due to inelastic processes inside the
electrodes.18 On the other hand, the unperturbedĝ12(v)
satisfy the relation

ĝ12~v!52p i r̂~v!nF~v!, ~9!

wherer̂(v)5(1/p)Im@ ĝa(v)# andnF(v) is the Fermi func-
tion.

For the coupled system, the functionsĜi , j
12 can be ob-

tained from the retarded and advanced functions by means of
the integral equation

Ĝ12~t,t8!5E dt1dt2@ Îd~t2t1!1Ĝr~t,t1!Ŝ
r~t1!#ĝ

12~t12t2!@ Îd~t22t8!1Ŝa~t2!Ĝ
a~t2 ,t8!#, ~10!

whereĜr ,a can be derived from their corresponding Dyson equations

Ĝr ,a~t,t8!5ĝr ,a~t2t8!1E dt1ĝ
r ,a~t2t1!Ŝ

r ,a~t1!Ĝ
r ,a~t1 ,t8!. ~11!

In the above equations the self-energies take the simple formŜLL
r ,a5ŜRR

r ,a50 andŜLR
r ,a5(ŜRL

r ,a)*5 t̂.
In Secs. III and IV details of the solution of these integral equations are given.

III. N-N AND N-S CONTACTS

In this section we briefly review theN-N andN-S cases. The analysis of theN-N case permits one to define the normal
transmission coefficient of the contact in terms of the microscopic parameters of the model, which is necessary for making
contact with the scattering approach. The equivalence of both approaches is illustrated by comparing our results for theN-
S contact with those of the BTK model.3

As we shall deal with a stationary situation it is convenient to adopt the time-independent formulation based on the
Hamiltonian~2!. In this case the Green functions depend on the difference of its temporal arguments and integral equations
~10! and ~11! become simple algebraic equations when Fourier transformed. Then we have

Ĝr ,a~v!5ĝr ,a~v!1ĝr ,a~v!Ŝ r ,a~v!Ĝr ,a~v!, ~12!

Ĝ~12 !,~21 !~v!5@ Î1Ĝr~v!Ŝ r~v!#ĝ~12 !,~21 !~v!@ Î1Ŝa~v!Ĝa~v!#, ~13!
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where ĝ21(v)522p i r̂(v)@12nF(v)#. On the other
hand, it is convenient to rewrite expression~6! for the current
as13,19

I5
2e

h
t2E

2`

`

@gLL,11
12 GRR,11

21 ~v!2gLL,11
21 GRR,11

12 ~v!#dv,

~14!

where we have assumed that the left electrode is in the nor-
mal state, while the right one can be either normal or super-
conducting.

Let us first analyze the case where both electrodes are in
the normal state. Details on the calculations of the Green
functions for this case have been given elsewhere.20 As in
the scattering approach, the current can be written as

I5
2e

h E2`

`

T~v,V!@nF~v2eV!2nF~v!#dv, ~15!

whereT(v,V) is an energy-dependent transmission coeffi-
cient which is given by21

T~v,V!5
4p2t2rLL~v2eV!rRR~v!

u12t2gLL~v2eV!gRR~v!u2
. ~16!

Equation ~16! adopts a simpler form in the small bias
limit where the normal system exhibits an Ohmic response.
This regime is valid for a bias voltage range much smaller
than the typical energy scale for the variation of the normal
density of states around the Fermi energy. This condition
certainly holds for the case we are interested in in this paper
(eV;D) and is consistent with the assumptions leading to
Eq. ~8!. In this limit the coefficientT(v,V) becomes a con-
stanta, given by

T~v,V!.
4t2/W2

~11t2/W2!2
[a. ~17!

The normal linear conductance of this single-mode con-
tact is then given by the Landauer formula
GNN5(2e2/h)a. Notice thata can vary between zero and
one as a function oft. The a→0 limit is reached both for
t/W!1 and for t/W@1, while the ballistic limit, i.e.,
a;1, is reached whent/W;1.

In Ref. 21 a detailed discussion on the derivation of Eq.
~17! by a different perturbative formalism and its range of
validity can be found. As stated in this reference, finite order
perturbation in the couplingt/W is only valid for t/W,1,
while for t/W.1 finite order perturbation theory breaks
down together with the appearance of bound states outside
the metallic band. This fact could lead to the conclusion that
Eq. ~17! is not valid for t/W.1. However, being the result
of the summation of the complete infinite series, Eq.~17! is
actually a nonperturbative result valid even for the somewhat
academic caset/W.1. In fact, by comparing this expression
with the normal transmission coefficient of thed-like scat-
tering potential model used by BTK,3 the equivalence of
both models arises by identifyingZ5@12(t/W)2#/(2t/W),
where Z is the parameter controlling the barrier strength.
Thus, one can associate the caset/W,1 with a repulsive
barrier (Z.0), and the caset/W.1 with an attractive
d-like potential (Z,0), which certainly would lead to a
transmission lower than 1 and the presence of bound states.

In theN-S case (DL50, DR5D) starting from Eqs.~12!
and ~13! after some simple algebra we obtain the following
expression for the current as the sum of four different con-
tributions I5I 11I 21I 31I A , where

I 15
8e

h
p2t2E

2`

`

dvu11tGRL,11
r ~v!u2rLL,11~v2eV!rRR,11~v!@nF~v2eV!2nF~v!#,

I 252
16e

h
p2t2E

2`

`

dvRe$tGLR,21
a ~v!@11tGRL,11

r ~v!#%rLL,11~v2eV!rRR,12~v!@nF~v2eV!2nF~v!#,

I 35
8e

h
p2t4E

2`

`

dvuGRL,12~v!u2rLL,11~v2eV!rRR,22~v!@nF~v2eV!2nF~v!#,

I A5
8e

h
p2t4E

2`

`

dvuGRR,12~v!u2rLL,11~v2eV!rLL,22~v1eV!@nF~v2eV!2nF~v1eV!#. ~18!

Written in this form, each contribution has a clear interpre-
tation in terms of elementary processes that can be identified
by inspection of the intervening spectral densities. Although
there is a formal resemblance of the above expressions with
those of tunnel theory22 Eq. ~18! contains all possible pro-
cesses up to infinite order int. Thus,I 1 corresponds to nor-
mal electron transfer between the electrodes, whileI 2 corre-
sponds also to a net transfer of a single electron with creation
or annihilation of pairs as an intermediate state. On the other
hand,I 3 arises from processes where an electron in the nor-

mal electrode is converted into a hole in the superconducting
side, i.e., processes with ‘‘branch crossing’’ in the BTK lan-
guage. Finally,I A arises from Andreev reflection processes
in which an electron@with an associated spectral weight
rLL,11(v2eV)] is transmited from the left to the right elec-
trode with a hole reflecting backwards into the normal elec-
trode @with an associated spectral weightrLL,22(v1eV)#
while a Cooper pair is created in the superconducting side
with a probability proportional touGRR,12(v)u2.

As expected, the only nonzero contribution foreV,D is
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I A , while all processes contribute foreV.D. With the same
simplifying assumptions leading to Eq.~17! the differential
conductance at zero temperature adopts the simple form

GNS~V!5
4e2

h

a2

~22a!224~12a!~eV/D!2
, eV<D,

GNS~V!5
4e2

h

a

a1~22a!A12~D/eV!2
, eV.D.

~19!

This expression can be shown to be equivalent to the one
obtained from the BTK model3 with the correspondence
Z5@12(t/W)2#/(2t/W) commented on above.

It is worth noticing that the differential conductance rises
from (4e2/h)a2/(22a)2 at V50 to the value 4e2/h at
eV5D, this last value being independent of the contact
transmission. This result can never be obtained within any
finite order perturbative approximation int, but requires an
infinite order calculation.23 These sorts of nonperturbative
features are also very important in theS-S case,24 as will be
discussed in the next section.

Finally, it is possible to obtain from Eq.~18! an analytical
expression of the total current at zero temperature. For
eV.D this can be written asI5I 11I 2 with

I 15
eD

h

a2

~22a!A12a
lnF11@2A12a/~22a!#

12@2A12a/~22a!#
G ,

I 2~x!5
4e

h
DF a2

4~12a!
1

a

x@a1~22a!A12x2#
2

a~22a!2x

4~12a!@a1~22a!A12x2#

1
a2~22a!

8~12a!3/2
lnS ~x/~11A12x2!11/A12a!~121/A12a!

~x/~11A12x2!21/A12a!~111/A12a!
D G , ~20!

whereI 1 is the gap contribution to the total current,I 2 is the
contribution coming from energies outside the gap and
x5D/eV. This allows one to analyze with detail the ‘‘ex-
cess’’ current, defined asI exc5 limV→`(I NS2I NN), as a func-
tion of the contact transparency. We findI exc5I exc11I exc2

I exc15
eD

h

a2

~22a!A12a
lnF11@2A12a/~22a!#

12@2A12a/~22a!#
G ,

I exc25
eD

h
a2F 1

12a
1

22a

2~12a!3/2
lnS 12A12a

11A12a
D G ,

whereI exc1 andI exc2 are, respectively, the contributions com-
ing from energies inside and outside the gap. As can be
easily checked,I exc1.0 while I exc2,0 the total excess cur-

rent being always positive. Fora51 the well-known
result25,29 for the ballistic contactI exc5(8/3)eD/h is recov-
ered.

IV. THE S-S CONTACT

A. An efficient algorithm for evaluating the ac current

As commented on in Sec. II, for the case of a voltage-
biasedS-S contact it is convenient to start from the Hamil-
tonian ~3! in which the applied bias is taken into account
through a time-dependent phase factor in the hopping ele-
ment, which in a Nambu representation has the form

t̂5S teif~t!/2 0

0 2te2 if~t!/2D , ~21!

wheref5f012eVt/\ is the time-dependent superconduct-
ing phase difference.

This explicit time dependence indicates that all dynamic
quantities can be expanded as a Fourier series in all possible
harmonics of the fundamental frequencyv052eV/\.7 For
instance, the total current can be written as

I ~t!5(
m

Ime
imv0t. ~22!

We shall now show how these Fourier coefficients,I m ,
can be efficiently evaluated within the nonequilibrium Green
function formalism. Let us first notice that the nonequilib-
rium Green functions appearing in Eqs.~10! and~11! do not
depend only on the difference of their temporal arguments,
and have therefore a generalized Fourier expansion of the
form26,27

Ĝ~t,t8!5
1

2p(
n
E dve2 ivtei ~v1nv0/2!t8Ĝ~v,v1nv0/2!.

~23!

Hereafter we shall use the notationĜnm(v)
5Ĝ(v1nv0/2,v1mv0/2). Different Fourier components
Ĝnm are related byĜnm(v)5Ĝn2m,0(v1mv0/2). For the
particular gauge choice adopted here, it is useful to express
all quantities in terms of a renormalized hopping which sat-
isfies its own Dyson equation
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T̂a,r~t,t8!5t̂~t!d~t2t8!1Edt1dt2t̂~t!ĝa,r~t2t1!t̂
†~t1!

3ĝa,r~t12t2!T̂
a,r~t2,t8!. ~24!

This quantity can be viewed as the total hopping ampli-
tude arising from summing up all processes in which one
electron is transferred. Clearly, it is formally equivalent to
use a renormalized hopping instead of renormalized propa-
gators as they are linked by relations like
ĜLL(t,t8) t̂(t8)5*dt1ĝL(t2t1)T̂LR(t1 ,t8). The current
components can now be expressed in terms of the renormal-
ized hopping elementsT̂nm

a,r(v) as

I m5
2e

h E dv(
n

@ T̂0n
r ĝnn

12T̂nm
r† ĝmm

a 2ĝ00
r T̂0n

r ĝnn
12T̂nm

r†

1ĝ00
r T̂0n

a†ĝnn
12T̂nm

a 2T̂0n
a†ĝnn

12T̂nm
a ĝmm

a #11, ~25!

where we have eliminated the site indexesL andR in the
uncoupled Green functions due to the left-right symmetry of
the contact.

The problem is then reduced to that of the evaluation of
the componentsT̂nm . From Eq.~24! it can be shown that the
componentsT̂nm ~both retarded and advanced parts! satisfy a
set of linear equations of the form

T̂nm5 t̂ nm1 ênT̂nm1V̂n,n22T̂n22,m1V̂n,n12T̂n12,m .
~26!

These equations are mathematically equivalent to those
describing the motion of electrons in a tight-binding linear
chain with ‘‘site energies,’’ên , and ‘‘nearest-neighbor cou-
plings,’’ V̂n,n22 and V̂n,n12. The detailed expression ofên
and V̂n,m in terms of the unperturbed Green functions are
given in Appendix A. This analogy allows us to obtain the
Fourier coefficientsT̂nm using standard recursion techniques.
One can show~see Appendix A! that the following recursive
relation holds:

T̂n12,m~v!5 ẑ1@v1~n21!v0#T̂nm~v!, n>1,

T̂n22,m~v!5 ẑ2@v1~n11!v0#T̂nm~v!, n<21,
~27!

where the transfer matrixẑ6 satisfy the equation

ẑ6~v!5@ Î2 ê632V̂63,65ẑ
6~v6v0!#

21. ~28!

Clearly, as the transfer matrixẑ6 connects consecutive
harmonics ofT̂, it can be viewed as a generating function
which introduces the effect of a unitary Andreev reflection
process. The problem has been reduced to the calculation of
only two matrix coefficients like, for instance,T̂1,0 and
T̂21,0 as a starting point for the generating equations~27!
~see Appendix A for details!.

In summary, the basic mathematical difficulty lies in the
evaluation of the transfer matrix functionsẑ6 from Eq. ~28!.
Although Eq. ~28! looks simple, it is nevertheless hard to
solve analytically for arbitrary values ofV. The analytical
results presented in this paper are limited to theeV/D→0

andeV/D→` cases where some simplifying relations hold.
For intermediate voltages, an accurate numerical solution of
Eq. ~28! can be obtained.

B. Analysis of ac and dcI -V characteristics

In this subsection we analyze the general features of the
I -V characteristics of anS-S contact obtained using our for-
malism. Let us start by briefly discussing the dc current,
I 0(V), for different values of the transmission, as shown in
Fig. 2. Although the overall qualitative features of these
curves have been known since the works of Octavioet al.,28

Zaitsev,25 and Arnold,26 more quantitative and detailed
analysis are being reported in recent publications.6,8 The re-
sults of Fig. 2 are in agreement with those reported recently
by Averin and Bardas8 which were obtained using the scat-
tering approach.

Two relevant features of these curves are the subharmonic
gap structure foreV,2D and the excess current for
eV@D. As can be observed, the subgap structure becomes
progressively more pronounced with decreasing transmis-
sion. Eventually, whena!1 the current steps at positions
eV;2D/n can be clearly resolved. In this limit one can iso-
late the elementary processes which give rise to these steps.
It can be shown that in the tunnel limit thenth step can be
calculated as

dI 0
~n!5 lim

eV→2D1/n

8e

h
p2nt2n

3E
D

neV2D

dvF )
i51

n21 Ug12~v2 ieV!U2G
3r11~v!r22~v2neV!. ~29!

By comparison of Eq.~29! with the expression ofI A in
Eq. ~18! it becomes clear that the steps inside the gap are due

FIG. 2. The dc current-voltage characteristic of aS-S contact for
different values of the normal transmission at zero temperature.
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to the opening of a new Andreev reflection channel when-
evereV52D/n. Calculation of the integrals in Eq.~29! leads
to

dI 0
~n!5

eDan

\ S 2n

42n21D S nnn! D
2

, ~30!

in agreement with the recent prediction of Bratuset al.6 On
the other hand, whena→1 the subgap structure is com-
pletely washed out and there appears an excess current even
in the small bias limit.

The other relevant feature of the dc current, namely the
large voltage excess current, can be analytically evaluated
within our model for any transmission value. The main sim-
plification in this limit comes from the fact that only the
lowest order Andreev reflection process gives a significant
contribution to the excess current.28 This implies that one can
truncate the system of equations~26! for harmonic indexes
n.1, the resulting simplified system can then be solved ex-
plicitly for T̂1,0(v) and T̂21,0(v) ~for details see Appendix
B!. As shown in this Appendix the simple resultI exc

SS52I exc
NS

is obtained for any value of the transmission. Although this
is the expected physically sound result, to our knowledge, it
has not been shown explicitly before except for the ballistic
case.25,29 Moreover, some authors have reported the exist-
ence of a negative excess current for low transmissions.30

which seems to be in contradiction with the above result.
However, one should notice that the excess current as de-
fined above is an asymptotic quantity~only valid in the
eV/D→` limit !. When corrections of orderD/eV are taken
into account one actually can have a defect instead of an
excess current for sufficiently low transmission.

The algorithm described in Sec. IV A allows an efficient
evaluation of the higher order ac components of the current.
For the following analysis we decompose the ac current, Eq.
~22!, into its dissipative and nondissipative contributions
given, respectively, by

I D5I 01(
m

Im
Dcos~mv0t! ~31!

and

I S5(
m

Im
Ssin~mv0t!, ~32!

whereI m
D52Re(I m) and I m

S522Im(I m).
The results obtained for the first threeI m

D and I m
S compo-

nents are depicted in Fig. 3 and Fig. 4. As can be observed,
these components become exponentially small for bias volt-
ages larger thanD/n. On the contrary, wheneV,D/n the
decay of the ac components with increasingn becomes
slower. The analysis of the higher order components reveals
a decay foreV,D/n close to an inverse power law. As a
consequence of this slow decay, one is forced to take an
increasing number of ac components into account in order to
adequately describe the behavior at small bias. This will be
the subject of the next subsection.

C. Small bias regime

In this subsection we concentrate on theeV/D→0 case,
which turns out to exhibit a remarkable variety of different
regimes according to the values of the parametersaD and
the inelastic scattering rateh. As it is well known, the main
difficulty for obtaining quantitative results in this limit lies in
the fact that the number of MAR’s contributing to the current
grows with decreasingV as;D/eV.26 Furthermore, the am-
plitudes of these multiple processes do not decay when
(V,h)→0 leading to the appearance of divergencies in the
perturbative expansion in the couplingt̂.7 Again, a complete
summation of the perturbative series is needed in order to
regularize these divergencies. An additional difficulty arises,
as will be discussed below, from the fact that the limits
V→0 andh→0 do not actually commute.

When decreasing the bias voltage two main situations can
be reached depending on the strength of the inelastic scatter-
ing rate at the superconducting electrodes: the case of
eV/D→0 and finiteh has been discussed by the present
authors in recent publications;7 on the other hand, the case of
small V/D and negligibleh has been recently addressed to

FIG. 3. The first three ac components of the dissipative current
for different values of the normal transmission at zero temperature.
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by Averin and Bardas.8 In what follows we summarize the
main results for both regimes and analyze the conditions for
their actual observability in a real SQPC.

Within our formalism, analytical results in the small bias
limit become feasible since the transfer matrixẑ6(v) tends
to a scalar quantity having the form of a simple phase factor
inside the gap region. As shown in Appendix C for
(h,V)→0 we find

ẑ6~v!5z~v!5eiw~v!, DA12a<uvu<D, ~33!

where

w~v!5arcsinS 2

aD2AD22v2Av22~12a!D2D .
As the multiple Andreev processes are generated by suc-

cessive applications ofẑ(v), Eq. ~33! indicates that these
processes do not decay in this limit inside the gap region.
This infinite series of MAR gives rise to the well-known
bound state spectrum of a current-carrying SQPC at zero bias
voltage.31 As shown in Appendix C, the positions of these
bound states are determined by the conditionw(v)5f. The

presence of a small but finiteh or V ~whichever is larger!
introduces an effective damping into the otherwise infinite
series of MAR.

When this effective damping is due to a finiteh
(eV!h) a linear regime can be defined where the total cur-
rent is given by I S(f)1G(f)V, G(f) being a phase-
dependent linear conductance.25,7 Within this linear regime,
one can identify two different subregimes according to the
ratio h/aD. The caseh/aD!1 corresponds to a situation
where MAR’s are very weakly damped and give the domi-
nant contribution to the current. The physical picture one can
have in mind is that of electrons and holes Andreev-
reflecting between the electrodes for a very long time before
being inelastically scattered.32 In order to illustrate the domi-
nant contribution of the processes inside the gap for the
weakly damped case, we represent in Fig. 5 the current den-

FIG. 4. Same as Fig. 4 for the nondissipative current.
FIG. 5. Current density for the dc componentI 0 within the

linear regime discussed in Sec. IV C.~a!, ~b!, and~c! correspond to
transmission valuesa51, 0.65, and 0.04, respectively. In all cases
the full line corresponds toh/D51/10, the dotted line to
h/D51/25, and the broken line toh/D51/100. The thermal factor
sech2(bv/2) @see Eq.~C8!# has been extracted from the current
density.
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sity corresponding to theI 0 component for three values of
the transmission. Three important features of this linear re-
gime are displayed in this figure: first, the current density
inside the gap increases as;1/h therefore giving the domi-
nant contribution in the weakly damped case; second, there
is a region inside the gap of width 2DA12a in which the
current density vanishes. This is the forbidden energy region
for bound states at a given transmission. Finally, in Fig. 5~c!
one can observe that the contribution of the continuum out-
side the gap becomes important asa,h/D. In the limit
h/aD@1 a second subregime is reached where the contri-
butions of MAR’s are heavily damped and the current is
dominated by single quasiparticle tunneling processes. The
transition between these two subregimes has been analyzed
with detail in Refs. 7.

In order to identify the actual subregime for a real SQPC
an estimation of the order of magnitude ofh is needed. In
Ref. 18h is estimated from the electron-phonon interaction
to be a small fraction of the gap for traditional superconduct-
ors. Thus, our theory predicts that a real SQPC would gen-
erally fall into the weakly damped case except for extremely
low transmissions.

For this subregime the supercurrentI S and the linear con-
ductanceG(f) can be obtained analytically as discussed in
Appendix C. In particular, forG(f) one obtains

G~f!5
2e2

h

p

16h F Dasinf

A12asin2~f/2!
sechS bvS

2 D G 2b,
~34!

wherevS is the position of the bound states inside the gap
and b51/kBT. This expression for large transmission and
small temperatures gives a phase-dependence which is in
qualitative agreement with the few available experimental
results, performed in nonmesoscopic contacts.33 The unusual
phase dependence of Eq.~34! which deviates strongly from
the cos(f) form predicted by the standard tunnel theory may
explain the old controversy between tunnel theory and ex-
periments known as the cos(f) problem.34,35

On the other hand, when the truncation of the infinite
series of MAR’s is caused by a finiteV ~with negligible
h), analytical results have only been obtained in the quasi-
ballistic limit, i.e., a→1. A closer inspection of theI -V
curves in the small bias region and fora;1 reveals that the
supercurrent components decay exponentially from its value
at V50 with a collapsing width;(12a)D. This is illus-
trated in Fig. 6~a! where a blow up of the behavior ofI 1

S for
small bias voltages and quasiballistic transmissions is shown.
In the limit a→1 the supercurrent becomes ad function at
V50. On the contrary, the dissipative components in this
same limit tend to a finite value outside the region of width
;(12a)D. This behavior is shown in Fig. 6~b! whereI 1

D is
plotted in the same magnified scale asI 1

S . The summation of
these dissipative components fora51 and very smallV
yields ~see Appendix C!

I D~f!5
eD

\
usin~f/2!usgnV, ~35!

in agreement with the result recently derived by Averin and
Bardas.8 The existence of a region of decreasing width

V;(12a)D in which this crossover from supercurrent to
dissipative current takes place can be associated with the
collapse of the forbidden region for MAR’s inside the super-
conducting gap taking place whena→1. In this way, when
V is small compared to the width of the forbidden region the
excitation of quasiparticles from states atv,2DA12a
into states atv.DA12a is negligible and there is no ap-
preciable dissipative current; whereas the opposite situation
holds forV.A12aD. Averin and Bardas8 have described
this crossover as a Landau-Zener transition in which the non-
dissipative and the dissipative components scale with
a and V as (12p) and p, respectively, wherep
5exp@2p(12a)D/eV#. The numerical results for sufficiently
smalleV/D and (12a) are well fitted by these scaling laws.
However, a careful analysis reveals that their range of valid-
ity aroundV50 anda51 decreases strongly when increas-
ing the component number.

In summary, in this small bias limit one can identify four
different subregimes depending on the relative values of pa-
rametersh, aD, andeV. The prediction of the actual behav-
ior of a real SQPC in this limit would therefore require a
careful estimation of all these parameters. In this respect, one

FIG. 6. Behavior of the first nondissipative~a! and dissipative
~b! ac components in the very small voltage range close to ballistic
conditions. These results have been obtained for negligibleh.
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should keep in mind that whileeV and a can be varied
experimentally in a rather controlled way, the inelastic scat-
tering rateh is an intrinsic property of the superconducting
electrodes much more difficult to control. The unavoidable
presence of some degree of inelastic scattering can prevent
the actual observability of the crossover from nondissipative
to dissipative behavior described after Eq.~35!. The require-
ment ofeV;(12a)D together with that ofa;1 can actu-
ally imply eV,h which would rather correspond to the lin-
ear regime. Finally, when considering the experimental test
of all these theoretical predictions the relevance of noise in a
real SQPC should be taken into account. Recent theoretical
predictions36,37 suggest that the magnitude of thermal noise
in a single-mode superconducting device can be extremely
large near ballistic conditions.

V. CONCLUDING REMARKS

In the present work we have presented a Hamiltonian ap-
proach for describing the transport properties of single-mode
N-S andS-S contacts.

It has been explicitly demonstrated that this approach is,
with some simplifying assumptions, equivalent to the phe-
nomenological scattering approach. We believe that the
present work can help clarify the somewhat recurrent discus-
sion about the unsuitability of a Hamiltonian approach for
obtaining the transport properties of aN-S or S-S contact:
when performing the calculations up to infinite order in the
coupling t all the unphysical divergences are eliminated and
the results become equivalent to those of scattering theory.

On the other hand, the present approach has been applied
to discuss in detail the dc and acI -V characteristics of a
SQPC. In particular, we have concentrated on the less under-
stood small bias voltage limit where one can identify four
different subregimes depending on the values of the contact
transmission and inelastic scattering rate. Finally, we have
discussed the conditions for the experimental observability
of the theoretical predictions in this limit.

Although in the present work we have restricted the dis-
cussion to the simplest single-mode case with an energy-
independent transmission coefficient, the general model in-
troduced in Sec. II can describe more complex situations
which may be relevant for a closer comparison with recent
experiments.5 Work along this line is under progress.
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APPENDIX A

In this appendix we describe the algorithm for evaluating
the ac current components in aS-S biased contact. As has
been pointed out in Sec. IV, we can express the current in
terms of the retarded and advanced Fourier components of
the renormalized hoppingT̂nm(v) satisfying Eq.~26!

T̂nm5 t̂ nm1 ênT̂nm1V̂n,n22T̂n22,m1V̂n,n12T̂n12,m ,
~A1!

where the matrix coefficientsên andV̂nm can be expressed in
terms of the uncoupled Green functions as

ên5t2S gn11gn gn11f n

gn21f n gn21gn
D , ~A2!

V̂n,n1252t2f n11S f n12 gn12

0 0 D , ~A3!

V̂n,n2252t2f n21S 0 0

gn22 f n22
D , ~A4!

where f (v)[g12(v)5g21(v) and g(v)[g11(v)5g22(v)
due to electron-hole symmetry. In the above equations the
shorthand notationgn5g(v1nv0/2) is used. Moreover, the
site indexes in the Green functions have been omitted since
we are considering a symmetric contact.

As commented on in Sec. IV, the linear equations~A1!
are analogous to those describing a tight-binding chain with
nearest-neighbor hopping parametersV̂n,n12 and V̂n,n22. A
solution can then be obtained by standard recursive tech-
niques. It is straightforward to show that the following recur-
sive relations between the coefficientsT̂nm hold:

T̂n12,m~v!5 ẑ1@v1~n21!v0#T̂nm~v!, n>1,

T̂n22,m~v!5 ẑ2@v1~n11!v0#T̂nm~v!, n<21,
~A5!

where the transfer matrixẑ6(v) satisfies the equation

ẑ6~v!5@ Î2 ê632V̂63,65ẑ
6~v6v0!#

21. ~A6!

One can see from Eq.~A6! that ẑ1(v) andẑ2(v) are related
by ẑ2(v,V)5ŝxẑ

2(v,2V)ŝx , whereŝx is the correspond-
ing Pauli matrix.

By virtue of the relationT̂nm(v)5T̂n2m,0(v1mv0/2),
one can write the current components given by Eq.~25! in
terms of T̂n0(v)[T̂n . Using recursive relations~A5! the
calculation can be reduced to a closed system for coefficients
T̂1 and T̂21:

@ Î2 ê12V̂13ẑ
1~v!#T̂15 t̂101V̂1,21T̂21 ,

@ Î2 ê212V̂21,23ẑ
2~v!#T̂215 t̂2101V̂21,1T̂1 . ~A7!

The remaining task is the calculation of the transfer ma-
trix ẑ1(v). It can be shown that the solution of Eq.~A6! is a
diagonal matrix whose elements can be expressed in terms of
a scalar functionl1(v)

ẑ1~v!52t2S f 2f 3 d0
1d1

1

l0
1l1

1 0

0 f 1f 2
d21

1 d0
1

l0
1l1

1

D , ~A8!

where ln
15l1(v1nv0/2) and dn

15(ln
12gn12)/t

2f n12
2

The functionl1(v) satisfies the following equation

l0
15a1bl0

11cl2
11dl0

1l2
1 , ~A9!
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where, taking into account Eq.~17!, the coefficients
can be written as a5g21(t2/W2)g3, b5t2g2g3,
c52t2@g2g32(t2/W4)#, and d5t2@g31(t2/W2)g2#. For
an arbitrary bias voltage, Eq.~A9! can only be solved nu-
merically. However, as we show in Appendices B and C it is
possible to obtain analytical solutions in the two special
casesv0→0 andv0→`.

Once ẑ1(v) has been determined one can calculate the
coefficientsT̂1 and T̂21 from Eq. ~A7!

T̂15
2t

12t2l2
2l21

1 S t4f 0f 1d22d21
1 t2f 1d21

1

t2f 0d2
2 1

D , ~A10!

T̂21~v,V!52ŝxT̂1~v,2V!ŝx , ~A11!

where ln
2(v,V)5ln

1(v,2V) and dn
2(v,V)5dn

1(v,2V).
The rest of the coefficientsT̂n can be calculated from Eqs.
~A5!:

T̂2n115F)
i51

n

ẑ1@v1~ i21!v0#G T̂1 , n.0

T̂2n52ŝxT̂n~v,2V!ŝx , n.0. ~A12!

Finally, the current components, separated into dissipative
and nondissipative parts@Eqs. ~31! and ~32!#, can be calcu-
lated from the expressions

I 052
4e

h E2`

`

dv (
n5odd

Re$Tr@ŝzT̂n
†~v!ĝn

12T̂n~v!ĝ0
a#%,

~A13!

I m
D52

4e

h E2`

`

dv (
n5odd

Re„Tr$ŝz@ T̂n1m
† ~v2mv0/2!

1T̂n2m
† ~v1mv0/2!ĝn

12T̂n~v!ĝ0
a
…, ~A14!

I m
S5

4e

h E2`

`

dv (
n5odd

Im„Tr$ŝz@ T̂n1m
† ~v2mv0/2!

2T̂n2m
† ~v1mv0/2!ĝn

12T̂n~v!ĝ0
a
…. ~A15!

APPENDIX B

In this appendix we give details on the evaluation of the
excess current forS-S contacts. In the limiteV/D→` only

the dc current componentI 0 survives. The infinite summa-
tion over n in Eq. ~A13! can be truncated in this case ne-
glecting then.1 terms. This is justified as the products
f nf n11 are negligible in this limit leading to a vanishing
transfer matrixẑ6(v). Physically, this is equivalent to ne-
glecting multiple Andreev processes foreV/D@1. Then, Eq.
~A13! reduces to

I 0;

2
4e

h E2`

`

dv (
n521,1

Re$Tr@ŝzT̂n
†~v!ĝn

12~v!T̂n~v!ĝ0
a#%,

~B1!

with

T̂1;
2t

12t2l2
2l21

1 S 0 t2f 1d21
1

t2f 0d2
2 1

D ,
T̂21~v,V!52ŝxT̂1~v,2V!ŝx .

On the other hand, when neglecting contributions of order
D/eV Eq. ~A9! simply yields
ln

1;(gn121 i t 2/W3)/(12 i t 2gn12 /W). We then obtain
from Eq. ~B1! the simple resultI exc

SS52I exc
NN for the excess

current at zero temperature and any value of the transmission
coefficient.

APPENDIX C

In this appendix we give the main steps in the analytical
calculation of the current components in the limit
eV/D→0.

1. Linear regime „h@eV…

The small voltage response can be straightforwardly de-
rived from Eqs.~A13!–~A15! by expanding the Fermi func-
tions appearing in ĝ12 up to first order in eV:
nF(v1nv0/2);nF(v)2(b/8)nv0sech

2(bv/2) and evalu-
ating the rest of these expressions ateV50. The current
components can be then written as

I 05
2e2

h
bVE

2`

`

dv sech2S bv

2 D (
n5odd.0

n Re$Tr@ŝzT̂n
†~ ĝ0

a2ĝ0
r !T̂nĝ0

a#%, ~C1!

I m
D5

2e2

h
bVE

2`

`

dv sech2S bv

2 D (
n5odd.0

n Re„Tr$ŝz@ T̂n1m
† 1T̂n2m

† #~ ĝ0
a2ĝ0

r !T̂nĝ0
a%…, ~C2!

I m
S5

8e

h E2`

`

dv nF~v! (
n5odd.0

Im„Tr$ŝz@ T̂n1m
† 2T̂n2m

† #~ ĝ0
a2ĝ0

r !T̂nĝ0
a%…. ~C3!
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Thus, the dissipative contribution,I D , goes to zero asI D(f);G(f)V, G(f) being the phase-dependent linear conduc-
tance, while the supercurrent part,I S(f), tends to a finite value atV50.

In the zero-voltage limit the coefficientsT̂n adopt a simple form. The transfer matrixẑ6(v) becomes a scalar function:
ẑ1(v)5 ẑ2(v)[z(v) Î ; with z(v)52t2fd2/l2, wherel1(v)5l2(v)[l(v) satisfies the simple quadratic equation

t2g~v!l2~v!2S 12
t2

W2Dl~w!1g~v!50. ~C4!

Finally, the coefficientsT̂n adopt the form

T̂1~v!5
2t

12t2l2 S t4f 2d2 t2fd

t2fd 1 D , ~C5!

T̂2n11~v!5zn~v!T̂1~v!, n>0. ~C6!

Due to these simple recursive relations, the series appearing in the current components become geometrical series, which
can be summed up without difficulty. In the weakly damped case,h/aD!1, these summations lead to analytical expressions
for the dissipative and nondissipative parts of the current. By solving Eq.~C4! up to corrections of orderh/aD one obtains

z~v!5eiw~v!2
4vh

aD2 $ i1cotg@w~v!#%, DA12a<uvu<D, ~C7!

where

w~v!5arcsinS 2

aD2AD22v2Av22~12a!D2D .
The summation of the geometrical series yields

I 05
2e2

h
bVE

2`

`

dv sech2S bv

2 DRe$A~v!%
11uzu2

~12uzu2!2
, ~C8!

I m
D5

2e2

h
bVE

2`

`

dv sech2S bv

2 DReHA~v!F @zm1~z* !m#
11uzu2

~12uzu2!2
1

2mzm

12uzu2G J , ~C9!

I m
S5

8e

h E2`

`

dv nF~v!Im HA~v!
~z* !m2zm

12uzu2 J , ~C10!

whereA(v)[Tr@ŝzT̂1
†(ĝa2ĝr)T̂1ĝ

a#. It can be noticed that in this weakly damped limit the integrands goes like 1/h and the
energy intervalDA12a<uvu<D give the main contribution to the current.

Finally, when summing up all ac components to obtain the total dissipative and nondissipative parts, the current densities
become singular at the conditionw(v)5f. This condition is satisfied forv5vS56DA12asin2(f/2) ~i.e., at the bound-state
energy levels! leading to

I D~f!5
e2a2D4

8hh
bVE

2`

`

dv sech2S bv

2 D sin2w~v!

v
ImH 1

~v2uvSu2 ih!~v1uvSu2 ih! J , ~C11!

I S~f!52
2e

h
aD2sinfE

2`

`

dv nF~v!ImH 1

~v2uvSu2 ih!~v1uvSu2 ih! J . ~C12!

These integrals can be straightforwardly evaluated. Equation~C11! gives the expression for the phase-dependent linear
conductance given in Sec. IV@Eq. ~34!#, while Eq. ~C12! yields the well-known expression for the supercurrent in a single-
mode SQPC.13,38
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I S~f!5
eD2a

2\

sin~f!

uvS~f!u
tanhS buvS~f!u

2 D . ~C13!

2. Nonlinear regime „h!eV…

We first rewrite Eqs.~A13!–~A15! for the current components as

I 05
4e

h E2`

`

dv tanhS bv

2 D (
n5odd.0

Re$Tr@ŝzT̂n
†~ĝ0

a2ĝ0
r !T̂nĝ2n

a #%,

Im
D5

4e

h
E

2`

`

dv tanhS bv

2 D (
n5odd.0

Re„Tr$ŝz@ T̂n1m
† T̂n2m

† #~ ĝ0
a2ĝ0

r !T̂nĝ2n
a %…,

I m
S52

4e

h E2`

`

dv tanhS bv

2 D (
n5odd.0

Im„Tr$ŝz@ T̂n1m
† 2T̂n2m

† #~ ĝ0
a2ĝ0

r !T̂nĝ2n
a %…, ~C14!

where a rigid shift ofnv0/2 in the energy arguments of the
different T̂n with respect to the ones appearing in Eqs.
~A13!–~A15! has been introduced.

In the limit eV→0, the solution of Eq. ~A9! is
ln

15l@v1(n12)v0/2#, wherel(v) satisfies the quadratic
equation~C4!. The coefficientsT̂n (n.0) can then be gen-
erated starting fromT̂1 and using the transfer matrix
ẑ1(v). These quantities are obtained from Eqs.~A8! and
~A10! making use of theeV→0 solution forln

1

The resulting expressions simplify considerably in the

ballistic limit whereln
15 i /t. For energies inside the gap one

obtains

T̂n~v!52
t

2)j51

n21

eia jS ei ~a01an! eian

eia0 1 D , ~C15!

where an5arccos@(v1neV)/D#. As discussed in Ref. 8,
when written as in Eq.~C14!, the main contribution to the
current in this limit comes from a small energy range around
the gap edges. Evaluation of these integrals leads directly to
Eq. ~35!.
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