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A microscopic theory of the transport properties of quantum point contacts giving a unified description of
the normal conductor-superconductdi-8) and superconductor-superconductB+S) cases is presented. It is
based on a model Hamiltonian describing charge transfer processes in the contact region and makes use of
nonequilibrium Green function techniques for the calculation of the relevant quantities. It is explicitly shown
that when calculations are performed up to infinite order in the coupling between the electrodes, the theory
contains all known results predicted by the more usual scattering approahS@nd S-S contacts. For the
latter we introduce a specific formulation for dealing with the nonstationary transport properties. An efficient
algorithm is developed for obtaining the dc and ac current components, which allows a detailed analysis of the
different current-voltage characteristics for all range of parameters. We finally address the less understood
small bias limit, for which some analytical results can be obtained within the present formalism. It is shown
that four different physical regimes can be reached in this limit depending on the values of the inelastic
scattering rate and the contact transmission. The behavior of the system in these regimes is discussed together
with the conditions for their experimental observabilit$0163-18206)02034-9

[. INTRODUCTION Traditionally, quantum transport in microelectronic de-
vices has been mainly addressed by two different ap-
Electronic transport through-S and S-S junctions and proaches: one is based on the scattering picture first intro-
weak links has been the object of interest for many y&ars. duced by Landaurin which the transport properties are
Much of the theoretical understanding of these systems hasxpressed in terms of transmission and reflection scattering
been obtained by analyzing simple models where a oneamplitudes. This approach is generally used in a phenomeno-
dimensional character is assunfeThese kinds of models logical way by replacing the device with a simple scattering
have been very useful for clarifying the microscopic origin structure. The natural extension of this picture to the super-
of basic phenomena like the excess currenNi#® andS-S  conducting case was provided by the already mentioned
contacts and the subgap structureSh$ and SinsulatorS  BTK model.
(S-1-9 junctions. In particular, the one-dimensional scatter- A different point of view arises when the problem is ana-
ing model introduced by Blondet al? (hereafter referred to lyzed starting from a microscopic Hamiltonian. We shall
as BTK) has provided a simple way of analyzing the trans-very generally call “Hamiltonian approach” the theories
port properties in terms of normal electron transmission andavhich take this starting point. The origin of this approach
Andreev reflection probabilities. can be traced back to the work by Bardeen who introduced
With the recent advances in the fabrication of nanoscal¢he tunnel Hamiltonian approximation for describing a tunnel
devices*® a closer comparison between the predictions ofunction’® Most of the calculations based on this tunnel
simple quasi-one-dimensional theories and experimental rédamiltonian were restricted to the lowest order transport pro-
sults is now at hand. References 4 and 5 provide two differcesses like in the calculation of the Josephson current in a
ent examples of the progress made in the experimenta-1-S junction!! Multiparticle tunneling processedPT'’s)
achievement of a superconducting quantum point contaavere first discussed by Schrieffer and Wilkifias a possible
(SQPQ. This possibility has provoked a renewed interest inexplanation for the observed subgap structure in supercon-
more detailed and quantitative analysis of models involvingducting tunnel junctions. The contributions of these higher
a few conducting channels. It turns out that, in spite of itsorder processes were found to be divergent, which has led to
apparent simplicity, the case of a single-channel SQPC stillhe quite extended belief that the Hamiltonian approach is
contains nontrivial physical behavior at certain regimespathological except for describing the lowest order tunneling
Single-mode contacts have been analyzed recently by diffeprocesses.
ent author$ 8 who have obtained new quantitative results for  One of the aims of the present work is to show that start-
the case of small applied voltage where multiple Andreeving from a very simple model Hamiltonian describing a
reflections(MAR’s) play a crucial role. single-channel contact it is possible to obtain resultsNer
Some of these recent wori&illustrate the existence of a S and S-S contacts in agreement with those provided by
variety of regimes controlled by the contact transmission andcattering theory. As will be shown below inclusion of
quasiparticle damping in the small bias limit. A full under- higher order processes up to infinite order eliminates the pa-
standing of the different regimes, together with the transithologies associated with finite order perturbation theory.
tions between them remains to be explored. This will be On the other hand, the Hamiltonian approach in combina-
thoroughly analyzed in this paper. tion with nonequilibrium Green function techniques presents
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its own advantages. In recent publications we have shown
how this approach can be generalized for dealing with situ-
ations where self-consistency of the superconducting order
parameter is needéd Moreover, the formulation in terms of
Green functions is especially well suited for dealing with
correlation effects when strorgge interactions are presett.
The paper is organized as follows: In Sec. Il the general
model for a superconducting weak link in a local represen-
tation is introduced. In particular, we discuss how this model
can be simplified in order to describe a single-mode contact.
We then introduce the nonequilibrium Green function for-
malism by means of which the total current through the con-
tact can be expressed. In Sec. Il we analyze the more simple
N-N andN-S contacts. The study of thd-N case allows us
to define the contact transmission coefficient in terms of the
microscopic parameters of our model. The complete corre-
spondence with the results of the BTK scattering theory is
then established by analyzing theS contact. For this last
case we derive an analytical expression for the total current
as a function of the contact transmission. Section IV is de-
voted to theS-S case. We first show how the problem of the  FIG. 1. Schematic representations of the two different situations
calculation of the ac current components can be reduced tdiscussed in Sec. Il.
the evaluation of an algebraic set of linear equations. This
allows us to study in detail the general features of the dc andbsence of applied fields the mean-field Hamiltonian giving
ac |-V characteristics for the whole range of voltages andrise to the BdeG equations would take the form
transmissions. We finally concentrate on the lifitcA
where the more interesting and less understood physics takes N t T
place. Section V is devotgd to some concludingpre)r/narks. H_% (€ M)CiUCiU+i;&Ej,g ticicy

T AT
Il. MODEL AND METHOD +2 (Afciicii+Aicic), 1

In this paper we shall consider “point-contact-like” ge- \herei,j run over the sites used to represent the system. By
ometries consisting very generally of two wi¢@D or 2D) appropriately choosing the different parameterst;; , and

electrodes connected by a narrow constriction. The constricy 'gne can model different junction geometridsn ojréer to
I

tion length, L¢, is assumed to be much smaller than thegpa)yze the case of biased contacts it is convenient to sim-
superconducting coherence length and its witltke,, com-  jiry “this model Hamiltonian taking the steplike behavior of

parable to the Fermi wavelengthAg. For a sufficiently e order parameter and electrostatic potentials in a point
short constriction the detailed form of the self-consistent orgntact geometry into account. To do this we take the com-

der parameter and electrostatic potential in the region besjex order parameter and the chemical potentials as constants
tween the electro_des becomes wr_ele%aﬂowmg ustorep- on the left and right electrodgsienoted by 4, ,x,.) and
resent them by simple step functions. On the other hand, thFAR,MR), respectively. The case of a single quantum chan-

conditionWc~ A implies that there is only a reduced num- pe| connecting both electrodes can then be described by the
ber of quantum transverse channels through the constrlctlo%nowing Hamiltonian:

One can think of different experimental realizations of such a
physical situation, like for instance the recently developed . . . + : A -
atomic size break junctiofisand the split-gate S-2DEG-S H=H_+ Hrt 2 (te],Cro+t* ChyClLy) — i NL— urNR,
SQPC of Takayanaggt al® These two situations are sche- 7 ?)
matically represented in Fig. 1. . N

The analysis of the transport and electronic properties ofvhere H, and Hg correspond to the uncoupled electrodes
such a system would involve, for the most general casavhile the hopping term describes the electron transfer pro-
where both electrodes are superconductors, the solution eesses between the outermost sites on both electrodes. We
the time-dependent Bogoliubov—de GenneBdeG  would like to stress that, although this is a very simple model
equations® In previous works we have developed an ap-Hamiltonian(formally equivalent to a tunnel Hamiltonigrit
proach to these kind of problems in which the BdeG equacontains the relevant physics of a quantum point contact
tions are formulated in a site representafidithis represen- which depends essentially on the contact normal transmis-
tation can be viewed either as a tight-binding description ofsion coefficient. In our model this transmission can vary be-
the electronic states or as a discretization of the BdeG equdween~0 (tunnel limit) and~ 1 (ballistic regime as a func-
tions. The first case would be more suitable for describingion of the coupling parametdr This will be discussed in
systems like an atomic size contdétig. 1(a)], while the  Sec. Il.
second could be used to represent constrictions involving a For the case of a symmetric superconducting contact in
2DEG in semiconducting heterostructuf€sg. 1(b)]. In the the presence of an applied bias voltagé=p, — ug it is
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convenient to perform a gauge transformatfdoy means of  wheret is the Nambu representation of the hopping elements
which the Hamiltonian(2) adopts the following time-

dependent form: o t 0
i= .. )
0 -t
H(m)=H_ +Hgt+ > (te'2c] cp +t*e ¢02%] ¢ ), The problem then consists in the determination of these
g

3) nonequilibrium Green function@*j. This can be formally
achieved by treating the couplingas a perturbation. The
where  the  superconducting  phase  differenceunperturbed Green functions correspond to the uncoupled
¢(7)=po+2eVr/h appears as a phase factor in the hop-electrodes in equilibrium. For a symmetric contact, and ne-
ping elements. glecting finite bandwidth effects, the uncoupled retarded and
Within the previously introduced model, the average totaladvanced Green functions can be expressed as

current through the contact is given by Ara Ara
0. (0)=9grR(®)

e t . i
[(1)= -2 [t{e] (1) Cre() ~t*(ch (1)CL ()], B 1 —otip A
(4) WVAZ—(wxip)?| A —wxin)’
where, depending on the gauge choicean include a time- (8)

dependent phase like in E(B). The averaged quantities in \yhereW is an energy scale related to the normal density of
Eq. (4) can be expressed in terms of the nonequilibriumgiates at the Fermi level by(er) ~ /(W) and 7 is a small
Keldysh Green functionss* ~.!" For the superconducting energy relaxation rate that takes into account the damping of
state it is convenient to introduce thex2 Nambu represen- the quasiparticle states due to inelastic processes inside the
tation in whichG;';” adopts the forri? electrodes® On the other hand, the unperturbgd ()

t satisfy the relation
i <CjT(T/)CiT(T)> (cj (7)ciy (7))

G (r,7)=i , , : 9" () =27 p(w)Ne(w), 9)
g (el (+)el (7)) (), (7)ef () i 9 twmempioiee) |
. wherep(w) = (1/7)Im[g%(w)] andng(w) is the Fermi func-
In terms of theG™ ~, the current is given by tion. .
) For the coupled system, the functiofﬂﬁj_ can be ob-
€ .- - ; .
_fE At - tained from the retarded and advanced functions by means of
H(n)= 3 [CrL (1,1 =" G (1,71, © the integral equation

é**(zr')zjdndrz[iau—n)+éf<r,rl>if<n>]§+*<n—rz)[iam—r')+ia<rz)éa<rz,r'>], (10)

whereG' can be derived from their corresponding Dyson equations

ér'a( nm)=9"%r—7")+ f dr,g"3(7— Tl)ir,a( Tl)ér'a( T1,7). (11

In the above equations the self-energies take the simple Eiw S53=0 andS[ 2= (S3)* =t.
In Secs. Il and IV details of the solution of these integral equations are given.

lll. N-N AND N-S CONTACTS

In this section we briefly review thH-N andN-S cases. The analysis of tid&-N case permits one to define the normal
transmission coefficient of the contact in terms of the microscopic parameters of the model, which is necessary for making
contact with the scattering approach. The equivalence of both approaches is illustrated by comparing our resulkg-for the
S contact with those of the BTK mod2l.

As we shall deal with a stationary situation it is convenient to adopt the time-independent formulation based on the
Hamiltonian(2). In this case the Green functions depend on the difference of its temporal arguments and integral equations
(10) and (11) become simple algebraic equations when Fourier transformed. Then we have

G () =0"(w)+§"X(©)2 )G w), (12

G (@) =[1+G ()2 () 1§ " H(0)[1+2% )G w)], (13)
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where g " (w)=—2mip(w)[1—-ng(w)]. On the other At2/ W2
hand, it is convenient to rewrite expressi@n for the current T(ow,V)= Z—Fmmr=a. (17)
ad3.19 (1+t5/W9)

2e » o 3 _ The normal linear conductance of this single-mode con-
I=—t*| [0/ 1:Grr11(®) ~ 91 1:Grr11(®)]d - -
R Y 9uPrrul@) T O 1iPRR1@) 10, tact is then given by the Landauer formula
(14) Gnn=(2€?/h)a. Notice thata can vary between zero and

o one as a function of. The «—0 limit is reached both for
where we have assumed that the left electrode is in the nogj\w<1 and for t/W>1, while the ballistic limit, i.e.,

mal state, while the right one can be either normal or super;, 1 is reached whet/W~1.

conducting. _In Ref. 21 a detailed discussion on the derivation of Eq.
Let us first analyze t_he case where bot_h electrodes are iN7) by a different perturbative formalism and its range of
the normal state. Details on the calculations of the GreeR,jigity can be found. As stated in this reference, finite order
functions for this case have been given elsewRers in perturbation in the coupling/W is only valid for t/W<1,
the scattering approach, the current can be written as while for t/W>1 finite order perturbation theory breaks
2e (= down together with the appearance of bound states outside
| = _f T(w,V)[Ne(w—eV)—ne(w)]dw, (15 the metallic band. This fact could lead to the conclusion that
hJ-u Eqg. (17) is not valid fort/W>1. However, being the result
of the summation of the complete infinite series, E) is
actually a nonperturbative result valid even for the somewhat
academic casgW>1. In fact, by comparing this expression
47%%p (0 —eV)pre(®) with the normal transmission coefficient of tiéelike scat-
T(w,V)= [1-t2g, (0—eV)grr( @) (16)  tering potential model used by BTKthe equivalence of
t R both models arises by identifying=[1— (t/W)2]/(2t/W),
Equation (16) adopts a simpler form in the small bias where Z is the parameter controlling the barrier strength.
limit where the normal system exhibits an Ohmic responseThus, one can associate the caf8®/<1 with a repulsive
This regime is valid for a bias voltage range much smalletbarrier Z>0), and the casd/W>1 with an attractive
than the typical energy scale for the variation of the normald-like potential €<0), which certainly would lead to a
density of states around the Fermi energy. This conditiofransmission lower than 1 and the presence of bound states.
certainly holds for the case we are interested in in this paper In the N-S case A =0, Ag=A) starting from Eqs(12)
(eV~A) and is consistent with the assumptions leading toand (13) after some simple algebra we obtain the following
Eq. (8). In this limit the coefficienflT(w,V) becomes a con- expression for the current as the sum of four different con-

where T(w,V) is an energy-dependent transmission coeffi-
cient which is given b

stanta, given by tributionsl=1,+1,+13+1,, where
8e ,,(~ r 2
|1:F7Tt - do|1+tGg 13(w)]*pLL 1@ —eV)prris(@)[Ne(w—eV) —ng(w)],
16e 242 * a r
o=~ T t - dwREtGg (@) [ 1+tGR 15(@) I} pLL 11( 0 —€V) prrid @)[Ne(w—eV) —Ne(w)],

8e @
|3:F 772t4j7xdw|GRL,12(w)|2pLL,11(w_ eV)prroAd ©)[Ne(w—eV)—nNe(w)],

8e *
|A:FW2t4J,wd’”|GRR12(w)|2PLL,11(w—EV)PLL,22(G)+eV)[nF(w_eV)_nF(w"‘eV)]- (18)

Written in this form, each contribution has a clear interpre-mal electrode is converted into a hole in the superconducting
tation in terms of elementary processes that can be identifieside, i.e., processes with “branch crossing” in the BTK lan-
by inspection of the intervening spectral densities. Althoughguage. Finally| 5 arises from Andreev reflection processes
there is a formal resemblance of the above expressions witim which an electronfwith an associated spectral weight
those of tunnel theofy Eq. (18) contains all possible pro- pLL1(w—eV)] is transmited from the left to the right elec-
cesses up to infinite order in Thus,|, corresponds to nor- trode with a hole reflecting backwards into the normal elec-
mal electron transfer between the electrodes, wihileorre-  trode [with an associated spectral weight, ,{w+eV)]
sponds also to a net transfer of a single electron with creatiowhile a Cooper pair is created in the superconducting side
or annihilation of pairs as an intermediate state. On the othewith a probability proportional tdGrg 1A ®)|?.

hand,|; arises from processes where an electron in the nor- As expected, the only nonzero contribution BWV<A is
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I o, while all processes contribute felv>A. With the same This expression can be shown to be equivalent to the one
simplifying assumptions leading to E(L7) the differential  obtained from the BTK mod&lwith the correspondence
conductance at zero temperature adopts the simple form Z=[1—(t/W)?]/(2t/W) commented on above.
It is worth noticing that the differential conductance rises
from (4€?/h)a?/(2—a)? at V=0 to the value 4°/h at
4e? a? eV=A, this last value being independent of the contact
h (2—a)’—4(1—a)(eVIA)?’ ev<A, transmission. This result can never be obtained within any
finite order perturbative approximation tn but requires an
infinite order calculatiod® These sorts of nonperturbative
features are also very important in tBeS case®* as will be
4e2 a discussed in the next section.
Cns(V) =~ . eV>A, Finally, it is possible to obtain from E¢18) an analytical
at(2-a)yl-(AleV) expression of the total current at zero temperature. For

Gns(V)=

(19) eV>A this can be written ak=1,+1, with
|
| eA a? | 1+[2V1—al(2—a)]
= — n ,
Y h 2-a)1-a [1-[2V1-al(2-a)]
4e o? a a(2—a)’x
|2(X) = _A + -
h ™ 4(l1-a) xa+(2-a)V1-x7] 4(1-a)a+(2—a)y1—x?]
, 2- ((x/(1+ \/l—X2)+1/\/1—a)(l—l/\/l—a)) 20
n 1
8(1- )% (x/(1+ V1—x®) - 11— a)(1+ 11— a)
|
wherel ; is the gap contribution to the total currehy,is the _ [telenr 0
contribution coming from energies outside the gap and t=( 0 i¢(7),2), (21
x=A/eV. This allows one to analyze with detail the “ex- “te

cess” current, defined dg,.=limy_..(Ins—Inn), @S afunc-  whereg= ¢o+ 2eVr/# is the time-dependent superconduct-
tion of the contact transparency. We firlgc=lexcl+lex02 ing phase difference.

This explicit time dependence indicates that all dynamic
quantities can be expanded as a Fourier series in all possible
harmonics of the fundamental frequeney=2eV/%.” For
instance, the total current can be written as

eA a?

|8 n 1+[2V1-al/(2—a)]
@~ h 2-a)Vl—«a

1-[2V1-al/(2—a)]

[(7)=D, | gm0, (22)
LoeA 1, 2ma 1—\/1—a> (D=2 1n
exe,” | & — ——3pin )
h 1-a 2(1-a) 1tVl-«a We shall now show how these Fourier coefficierits,

can be efficiently evaluated within the nonequilibrium Green
wherel ¢, andl ey, are, respectively, the contributions com- function formalism. Let us first notice that the nonequilib-

ing from energies inside and outside the gap. As can b&Um Green functions appearing in E4$0) and(11) do not

easily checkedl e, >0 while |, <0 the total excess cur- depend only on the difference of their temporal arguments,
rent being always positive. For=1 the well-known and have therefore a generalized Fourier expansion of the

26,27
result>?% for the ballistic contact .= (8/3)eA/h is recov- form

ered. R 1 o o
G(r,7')= Ezn: J dwe 07 (@ T2 G4, w+nwy/2).

IV. THE S-S CONTACT (23)

A. An efficient algorithm for evaluating the ac current J—Iereafter we shall use the notatiorf}nm(w)

As commented on in Sec. II, for the case of a voltage-= G(w+Nwe/2,w+Mwy/2). Different Fourier components
biasedS-S contact it is convenient to start from the Hamil- G, are related byG,n(w)=Gp_now+Mwy/2). For the
tonian (3) in which the applied bias is taken into account particular gauge choice adopted here, it is useful to express
through a time-dependent phase factor in the hopping eleall quantities in terms of a renormalized hopping which sat-
ment, which in a Nambu representation has the form isfies its own Dyson equation
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-”ra,r( 7)) =D T—7)+ f drd Tzf( g (17— Tl)ET( )
XG (1= ) T (7, 7). (24)

This quantity can be viewed as the total hopping ampli-
tude arising from summing up all processes in which one
electron is transferred. Clearly, it is formally equivalent to
use a renormalized hopping instead of renormalized propa-
gators as they are linked by relations like
G (r ™)) =[d70, (7= )T r(71,7"). The current
components can now be expressed in terms of the renormal-
ized hopping elemenf§}(») as

1,/(2ea/h)

2e A Al Ap A oAs_n
Im:FJ’ dw}n: [Tgng:\rn Tmng%m_ gE)OTBnngn T:rrn

0 T T | T |
Ap Dmtag A NoatAal_Dg A 0.0 05 1.0 1.5 2.0 25 X
+ 350 Ton0mn Tam= Tordmn TamQomli1, (29 30

nm

v/

where we have eliminated the site indexesandR in the

uncoupled Green functions due to the left-right symmetry of FIG. 2. The dc current-voltage characteristic && contact for

the contact. different values of the normal transmission at zero temperature.
The problem is then reduced to that of the evaluation of

the component3,,. From Eq.(24) it can be shown that the andeV/A— o cases where some simplifying relations hold.
componentd ., (both retarded and advanced pagatisfy a  For intermediate voltages, an accurate numerical solution of
set of linear equations of the form Eq. (28) can be obtained.
Tam=tam® €nTam™ Von-2Tn-2m*Von2Tneom: (26) B. Analysis of ac and dcl -V characteristics
In this subsection we analyze the general features of the
These equations are mathematically equivalent to thospV characteristics of a8-S contact obtained using our for-
describing the motion of electrons in a tight-binding linearmalism. Let us start by briefly discussing the dc current,
chain with “site energies,”,, and “nearest-neighbor cou- |(V), for different values of the transmission, as shown in
plings,” Vhn—2 andV, »». The detailed expression @, Fig. 2. Although the overall qualitative features of these
and V, , in terms of the unperturbed Green functions arecurves have been known since the works of Octatial.,?®
given in Appendix A. This analogy allows us to obtain the Zaitse\_/,zs and Arnold,zf’ more quantitative and detailed
Fourier coefficientd, using standard recursion techniques. analysis are being reported in recent publicatibhShe re-
One can showsee Appendix Athat the following recursive Sults of Fig. 2 are in agreement with those reported recently

relation holds: by Averin and Barddswhich were obtained using the scat-
tering approach.
Toiom(@) =2 [o+(N—1)we] Ty(w), n=1, Two relevant features of these curves are the subharmonic
’ gap structure foreV<2A and the excess current for

T (0)=2[o+(n+1)o ]1‘- (), n=-1 eV>A. As can be observed, the subgap structure becomes
n-2m 04T nmt i ’(27) progressively more pronounced with decreasing transmis-
sion. Eventually, wherv<<1 the current steps at positions

where the transfer matrix™ satisfy the equation eV~2A/n can be clearly resolved. In this limit one can iso-
R . - R late the elementary processes which give rise to these steps.
72" (w)=[l—€+3=Vi3:52 (0xwo)]"*.  (28) It can be shown that in the tunnel limit tireh step can be

. ~ calculated as
Clearly, as the transfer matrix~ connects consecutive

harmonics ofT, it can be viewed as a generating function

which introduces the effect of a unitary Andreev reflection Sl g‘): lim %WZ‘mZn
process. The problem has been reduced to the calculation of eV2A*/n
only two matrix coefficients like, for instancel;, and A n—1
T_,0 as a starting point for the generating equati¢2®) XJneV dw{H gl w—ieV)|2
(see Appendix A for detai)s A i=1
In summary, the basic mathematical difficulty lies in the
evaluation of the transfer matrix functioa$ from Eq.(28). X p1a(@)pzw=nev). (29)
Although Eqg.(28) looks simple, it is nevertheless hard to
solve analytically for arbitrary values of. The analytical By comparison of Eq(29) with the expression of, in

results presented in this paper are limited to WA —0 Eq. (18) it becomes clear that the steps inside the gap are due
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to the opening of a new Andreev reflection channel when-
evereV=2A/n. Calculation of the integrals in E¢R9) leads

to o2
(m_8Aa"( 2n \/n" 2 SM'
Slo"=—7—| 2z 1)\ 51 (30) T s
N
. . - 6 08
in agreement with the recent prediction of Brattsal.” On o7
the other hand, whem—1 the subgap structure is com- -1
pletely washed out and there appears an excess current even
in the small bias limit. 12

The other relevant feature of the dc current, namely the
large voltage excess current, can be analytically evaluated
within our model for any transmission value. The main sim-
plification in this limit comes from the fact that only the
lowest order Andreev reflection process gives a significant
contribution to the excess curréfitThis implies that one can
truncate the system of equatiof6) for harmonic indexes
n>1, the resulting simplified system can then be solved ex-
plicitly for T, (w) andT_; o(w) (for details see Append|x
B). As shown in this Appendix the simple resuf=21%% 11
is obtained for any value of the transmission. Although this
is the expected physically sound result, to our knowledge, it
has not been shown explicitly before except for the ballistic {
case”>?° Moreover, some authors have reported the exist-g s
ence of a negative excess current for low transmissions.
which seems to be in contradiction with the above result. ¢ -0
However, one should notice that the excess current as de
fined above is an asymptotic quantifgnly valid in the o =015
eV/IA—x limit). When corrections of ordek/eV are taken 5
into account one actually can have a defect instead of an
excess current for sufficiently low transmission. o] U

The algorithm described in Sec. IV A allows an efficient ; o A M A X A
evaluation of the higher order ac components of the current. ' ' ' V/A ' ' )

For the following analysis we decompose the ac current, Eq.

(22), into its dissipative and nondissipative contributions

given, respectively, by FIG. 3. The first three ac components of the dissipative current
for different values of the normal transmission at zero temperature.

0.3

0.2+

e
Il

I”z/(2eA/h)

-024

|D:|O+E |chos(mwo7_) (3 C. Small bias regime
m In this subsection we concentrate on #&/A—0 case,
which turns out to exhibit a remarkable variety of different
and regimes according to the values of the parameteksand
the inelastic scattering rate. As it is well known, the main
difficulty for obtaining quantitative results in this limit lies in
ls=>, | >sin(MwoT), (32  the fact that the number of MAR’s contributing to the current
m grows with decreasiny as~ A/eV.?® Furthermore, the am-
plitudes of these multiple processes do not decay when
wherel,?]=2Re(| m andlﬁ= —2Im(l ). (V,n)—0 leading to the appearance of divergencies in the
The results obtained for the first thre and13, compo-  perturbative expansion in the couplibg Again, a complete
nents are depicted in Fig. 3 and Fig. 4. As can be observegummation of the perturbative series is needed in order to
these components become exponentially small for bias voltregularize these divergencies. An additional difficulty arises,
ages larger thah/n. On the contrary, wheeV<<A/n the as will be discussed below, from the fact that the limits
decay of the ac components with increasingbecomes V—0 and»—0 do not actually commute.
slower. The analysis of the higher order components reveals When decreasing the bias voltage two main situations can
a decay foreV<A/n close to an inverse power law. As a be reached depending on the strength of the inelastic scatter-
consequence of this slow decay, one is forced to take aimg rate at the superconducting electrodes: the case of
increasing number of ac components into account in order teV/A—0 and finite  has been discussed by the present
adequately describe the behavior at small bias. This will bauthors in recent publicatiodsyn the other hand, the case of
the subject of the next subsection. small V/A and negligibler has been recently addressed to
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FIG. 4. Same as Fig. 4 for the nondissipative current. FIG. 5. Current density for the dc componelt within the

. . linear regime discussed in Sec. IV @), (b), and(c) correspond to
by Averin and BardaS.In what follows we summarize the transmission valuea=1, 0.65, and 0.04, respectively. In all cases

main results for both regimes and analyze the conditions fofe i line corresponds tos/A=1/10, the dotted line to

their actual observability in a real SQPC. _ ylA=1/25, and the broken line tg/A=1/100. The thermal factor
Within our formalism, analytical results in the small bias secfi(gw/2) [see Eq.(C8)] has been extracted from the current

limit become feasible since the transfer mazix(w) tends density.

to a scalar quantity having the form of a simple phase factor

inside the gap region. As shown in Appendix C for

(7.V)—0 we find presence of a small but finitg or V (whichever is larger

introduces an effective damping into the otherwise infinite
LT — aio(o) M || < series of MAR.
Z(@)=Zw)=e7,  AVl-as|ol<A, (33 When this effective damping is due to a finitg
where (eV< ) a linear regime can be defined where the total cur-
) rent is given byls(¢)+G%éV, G(¢) being a phase-
. dependent linear conductance. Within this linear regime,
go(w)=al’CSIF(m\/Az—wz\/wz—(l—a)Az : one can identify two different subregimes according to the
ratio n/aA. The casen/aA<<1 corresponds to a situation
As the multiple Andreev processes are generated by suevhere MAR's are very weakly damped and give the domi-
cessive applications df(w), Eq. (33) indicates that these nant contribution to the current. The physical picture one can
processes do not decay in this limit inside the gap regionhave in mind is that of electrons and holes Andreev-
This infinite series of MAR gives rise to the well-known reflecting between the electrodes for a very long time before
bound state spectrum of a current-carrying SQPC at zero bidseing inelastically scattered.In order to illustrate the domi-
voltage3! As shown in Appendix C, the positions of these nant contribution of the processes inside the gap for the
bound states are determined by the conditidw)=¢. The  weakly damped case, we represent in Fig. 5 the current den-
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sity corresponding to thé, component for three values of

the transmission. Three important features of this linear re- 95
gime are displayed in this figure: first, the current density
inside the gap increases asl/x therefore giving the domi-
nant contribution in the weakly damped case; second, there 204
is a region inside the gap of widthA2/1— « in which the 2
current density vanishes. This is the forbidden energy region ~
for bound states at a given transmission. Finally, in Fig) 5 g 159
one can observe that the contribution of the continuum out- N
side the gap becomes important as<7/A. In the limit N
nlaA>1 a second subregime is reached where the contri- o 107
butions of MAR’s are heavily damped and the current is
dominated by single quasiparticle tunneling processes. The 05
transition between these two subregimes has been analyzed ’
with detail in Refs. 7.

In order to identify the actual subregime for a real SQPC 00 | | | |
an estimation of the order of magnitude gfis needed. In 0.0-
Ref. 18 » is estimated from the electron-phonon interaction
to be a small fraction of the gap for traditional superconduct- -02
ors. Thus, our theory predicts that a real SQPC would gen-
erally fall into the weakly damped case except for extremely © 041
low transmissions. N

For this subregime the supercurrégtand the linear con- 3—0.6—
ductanceG(¢) can be obtained analytically as discussed in X
Appendix C. In particular, folG(¢) one obtains 08

2 i 2 ~
()= Zi o Aasing sec Bws 8 ~1.04
h 167| J1— asir?(4/2) 2 ’ 10
(34) -1.21

where wg is the position of the bound states inside the gap -14 , I , ,
and B=1/kgT. This expression for large transmission and 0.0 0.02 0.04 0.06 0.08 0.1
small temperatures gives a phase-dependence which is in v/A

qualitative agreement with the few available experimental
results, performed in nonmesoscopic contdtfhe unusual

phase dependence of E@4) which deviates strongly from (b) ac components in the very small voltage range close to ballistic

the cc_)s(b) form predicted by the standard tunne| theory mayconditions. These results have been obtained for negligible
explain the old controversy between tunnel theory and ex-

periments known as the cas)(problem3*3®
On the other hand, when the truncation of the infiniteV~(1—a)A in which this crossover from supercurrent to
series of MAR's is caused by a finit¢ (with negligible dissipative current takes place can be associated with the
7), analytical results have only been obtained in the quasicollapse of the forbidden region for MAR's inside the super-
ballistic limit, i.e., «—1. A closer inspection of thé-v ~ conducting gap taking place when—1. In this way, when
curves in the small bias region and fer- 1 reveals that the V is small compared to the width of the forbidden region the
supercurrent components decay exponentially from its valuéxcitation of quasiparticles from states at<—A1—a
at V=0 with a collapsing width~(1—«a)A. This is illus-  into states aww>A y1— « is negligible and there is no ap-
trated in Fig. 6a) where a blow up of the behavior d)f for preciable dissipative current; whereas the opposite situation
small bias voltages and quasiballistic transmissions is showtolds for V>1—aA. Averin and Barddshave described
In the limit «— 1 the supercurrent becomessdunction at  this crossover as a Landau-Zener transition in which the non-
V=0. On the contrary, the dissipative components in thigdissipative and the dissipative components scale with
same limit tend to a finite value outside the region of widtha and V as (1-p) and p, respectively, wherep
~(1—a)A. This behavior is shown in Fig.(6) wherel? is ~ =exf —m(1—-a)A/eV]. The numerical results for sufficiently
plotted in the same magnified scalelgs The summation of SmalleV/A and (1— «) are well fitted by these scaling laws.
these dissipative components far=1 and very smally ~ However, a careful analysis reveals that their range of valid-
yields (see Appendix € ity aroundV=0 anda=1 decreases strongly when increas-
ing the component number.
eA In summary, in this small bias limit one can identify four
In(¢)= 7|sin( #12)[sgrv, (35  different subregimes depending on the relative values of pa-
rametersy, aA, andeV. The prediction of the actual behav-
in agreement with the result recently derived by Averin andior of a real SQPC in this limit would therefore require a
Bardas® The existence of a region of decreasing widthcareful estimation of all these parameters. In this respect, one

FIG. 6. Behavior of the first nondissipatie) and dissipative



54 HAMILTONIAN APPROACH TO THE TRANSPORT ... 7375

should keep in mind that whileV and a can be varied where the matrix coefficients, andV,,,, can be expressed in
experimentally in a rather controlled way, the inelastic scatterms of the uncoupled Green functions as
tering rate is an intrinsic property of the superconducting

electrodes much more difficult to control. The unavoidable ~ o[ 9n+10n On+1fn

presence of some degree of inelastic scattering can prevent €n= O 1fn Gn_19n)’ (A2)
the actual observability of the crossover from nondissipative n-iin Snmidh

to dissipative behavior described after E85). The require- R frro Onss

ment ofeV~(1—a)A together with that olx~1 can actu- Vint2= —tzan( ) (A3)
ally imply eV< % which would rather correspond to the lin- 0 0

ear regime. Finally, when considering the experimental test

of all these theoretical predictions the relevance of noise in a v = _t2f 0 0 (A4)
real SQPC should be taken into account. Recent theoretical nn-2 “Ngns oo/
predictiong®®’ suggest that the magnitude of thermal noise

in a single-mode superconducting device can be extremel here f(w)=giw) =gz(w) and g(w)=g1s(w)=Ga(w)
large near ballistic conditions. ue to electron-hole symmetry. In the above equations the

shorthand notatiog,=g(w+ nwy/2) is used. Moreover, the
site indexes in the Green functions have been omitted since
V. CONCLUDING REMARKS we are considering a symmetric contact.

In the present work we have presented a Hamiltonian ap- AS commented on in Sec. 1V, the linear equatidAd)
proach for describing the transport properties of single-mod&'€ analogous to those describing a tight-binding chain with
N-S and S-S contacts. nearest-neighbor hopping paramet®s,,, andV, ,_,. A

It has been explicitly demonstrated that this approach is$olution can then be obtained by standard recursive tech-
with some simplifying assumptions, equivalent to the pheXigques. Itis straightforward to show that the following recur-
nomenological scattering approach. We believe that theive relations between the coefficiefltg,, hold:
present work can help clarify the somewhat recurrent discus- . R -
sion about the unsuitability of a Hamiltonian approach for Thiom(@)=Z"To+(N—1)w]Tyn(®), n=1,
obtaining the transport properties ofN&S or S-S contact: . .
when performing the calculations up to infinite order in the Thoam(®@)=Z [0+ (N+1)oo] Tym(w), ns=-1,
couplingt all the unphysical divergences are eliminated and (AB)
the results become equivalent to those of scattering theor o~ - .

On the other hand,qthe oresent approach has be?an appﬁgv(yere the transfer matrix~ (w) satisfies the equation
to discuss in detail the dc and &eVv characteristics of a PR Y 5+ -1
SQPC. In particular, we have concentrated on the less under- 27 (@) =1 = €xgmVagasZ (0 wo) ] (AB)
stood small bias voltage limit where one can identify fourOne can see from E¢A6) thatz* (w) andz™ (w) are related
different subregimes depending on the values of the contatty 2~ (w,V) =0,z (w,— V) oy, Wherea, is the correspond-
transmission and inelastic scattering rate. Finally, we havéng Pauli matrix.
discussed the conditions for the experimental observability By virtue of the fe|ati0n%nm(w)=%n7m,o(w+ Mwg/2),
of the theoretical predictions in this limit. _ ~one can write the current components given by &%) in

Although in the present work we have restricted the diStormgs of :rno(w)E:rn- Using recursive relationgA5) the

cussion to the simplest single-mode case with an energysy|cylation can be reduced to a closed system for coefficients
independent transmission coefficient, the general model inz andT .
71.

troduced in Sec. Il can describe more complex situations *
which may be relevant for a closer comparison with recent l—e =V, 5+ = -

, T —e—V Ti=t1ptV1_1T_1,
experiments. Work along this line is under progress. [ 17 Vi (@) Ti=tot Va1

[1—e_1-V_1-32 (0)]T_1=t_10+V_11T;. (A7)
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The remaining task is the calculation of the transfer ma-
trix 2" (w). It can be shown that the solution of E&\6) is a
diagonal matrix whose elements can be expressed in terms of
a scalar function * ()

APPENDIX A e 8 01 0
23+
In this appendix we describe the algorithm for evaluating 5+ ()= —t? Ao Ay (A8)
the ac current components inSS biased contact. As has 5f15g ’
been pointed out in Sec. IV, we can express the current in 0 flfzw
terms of the retarded and advanced Fourier components of 071
the renormalized hoppind,,(w) satisfying Eq.(26) where A =\AT(w+nwy/2) and 8=\ —gns2)/t?f2,,

The function\ * (w) satisfies the following equation

Tom=tnm+ €nTnmt Vane2Tne2m+ Vans 2 Tns 2m
nm~— thm nlnm nn—-2'n-2m nn+2!n+2m (A]_) )\g:a—l—b)\ar-l-C)\;—Fd)\ar)\;, (A9)
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where, taking into account Eq(17), the coefficients the dc current componemt survives. The infinite summa-
can be written as a=g,+(t¥W?)gs, b=t?g,g;,  tion overn in Eq. (A13) can be truncated in this case ne-
c=—17[g,05— (t¥W*], and d=t?[gs+ (t%W?)g,]. For glecting then>1 terms. This is justified as the products
an arbitrary bias voltage, EGA9) can only be solved nu- f.f,,; are negligible in this limit leading to a vanishing
merically. However, as we show in Appendices B and C it istransfer matrixz*(w). Physically, this is equivalent to ne-
possible to obtain analytical solutions in the two specialglecting multiple Andreev processes f¥/A>1. Then, Eg.
caseswg—0 andwy—°. (A13) reduces to
Oncei*(Aw) has been determined one can calculate the

coefficientsT, and'AI',l from Eq. (A7)

lo

. —t (t4f0f1526+1 t2f15+1)
Ti=———— _ , (A10) de (= .2 Ay 2 n
1=Bhaho | thod; 1 — ) de X RET,Ti ()3 (0)To(@)EE]),
T (0,V)=—0,T1(0,—V)ay, (A11) (B1)
where X\ (o,V)=\, (,—V) and &, (,V)= 6, (0,—V). _
The rest of the coefficient$, can be calculated from Eqgs. with
(A5):
n . N —t 0 tzflétl
T2n+1=h:[l 2+[w+(i_1)w0]}r11 n>0 T~ 1-t2A; N\ 1265, 1)
~ .2 . T (0 V)=—6,T1(w,~V)&y.
T ,=—6T(w0,~V)&,, n>0. (A12) @ V)==0,Ti(e, = Vo
Finally, the current components, separated into dissipative o, the other hand, when neglecting contributions of order
and nondissipative par{Eqs.(Sl) and(32], can be calcu-  p/ey Eq. (A9) simply yields
lated from the expressions N~ (Gns o+ it2/WR)/(1—it2g,,,/W). We then obtain
de [ . A from Eq. (B1) the simple resuliSo=2I5x for the excess
lo=— Y dw 2 Re{Tr[&ZTE(w)@rT’Tn(w)@jg]}, current at zero temperature and any value of the transmission
—» n=od coefficient.
(A13)
p__4e( ~at APPENDIX C
In=—1 | do > ReTHo[T!, (0—mMwy/2)
—%  n=odd
. e A In this appendix we give the main steps in the analytical
+T;7m(w+ mwo/z)g;*Tn(w)gg), (A14) calculation of the current components in the limit
eVIA—0.
s_4de(~ ~ ot
Im:F 7wdwn=§;dd IM(Tr{o T4 m(®—Mawe/2)

1. Linear regime (p>eV)

—ﬂ_m(w+ mwo/z)g:“]'n(w)gg _ (A15) The small voltage response can be straightforwardly de-
rived from Eqgs.(A13)—(A15) by expanding the Fermi func-
tions appearing ing*~ up to first order in eV:
Ne(w+ Nwe/2)~Nnp(w) — (BI8)nwyseck(Bw/2) and evalu-

In this appendix we give details on the evaluation of theating the rest of these expressionseAt=0. The current
excess current fo-S contacts. In the limieV/A—« only =~ components can be then written as

APPENDIX B

2e? > S Ttaa_anT A
|0=T,8Vf_mdw secﬁ(%)ngtbo n Re(TI{ 6, TH(33— 35 Ta331}, (CY)
o_2¢° (" (i“’) LTt Th (83— 85) T2
Im_TBVf—oodw SeCH 2 nz%{:bo n Re(Tr{U'z[Tn+m+Tnfm](g0 gO)TngO})a (CZ)

8e (= A - na Ar L oA
Iﬁsﬂ done(o) > IMTGdTo =T ml(85- 80 Td5H- (C3y
- n=odd>0
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Thus, the dissipative contributiohy , goes to zero aby(¢)~G(4)V, G(¢) being the phase-dependent linear conduc-
tance, while the supercurrent parg( ¢), tends to a finite value at=0.

In the zero-voltage limit the coefficients, adopt a simple form. The transfer matix (w) becomes a scalar function:
Z7(0)=7"(w)=2z(w)|; with z(w)= —12f 52/\?, wherer " (w) =\ " (w)=\(w) satisfies the simple quadratic equation

2
tzg(w))\z(w)—(l—Vtv))\(w)—kg(w):O. (CY

Finally, the coefficients'i’n adopt the form

. —t  [t*25% t%fs
@)= —me| s 1 ) (€9
Toni1(®)=2"(0)Ty(w), n=0. (C6)

Due to these simple recursive relations, the series appearing in the current components become geometrical series, which
can be summed up without difficulty. In the weakly damped cageA <1, these summations lead to analytical expressions
for the dissipative and nondissipative parts of the current. By solving &4). up to corrections of orde;/ A one obtains

z<w>=e‘“’<‘°>—%Z{Hcotq@(w)]}, AVI-a<|o|<A, €7

where

so(w)=arcsir{%w2— 0\ w?—(1— a)AZ) .

The summation of the geometrical series yields

2
=—[>’Vj do secl"r(ﬁ )Re{A w)}ﬁ: (C8)
D 262 *° ,8 m m |Z|2 2mz"
=5V | o sech| 5 |Re Aw)| 27+ 2" T | )
Ia:%f:dw Ne(w)lm {A(w)(zli—|z_|zz], (C10

whereA(w)=Tr[ &Zﬂ(ga—gf)%lga]. It can be noticed that in this weakly damped limit the integrands goes likarid the
energy intervald y1— a<|w|<A give the main contribution to the current.
Finally, when summing up all ac components to obtain the total dissipative and nondissipative parts, the current densities

become singular at the conditia{w) = ¢. This condition is satisfied fap = ws= = A1 — asir?(¢/2) (i.e., at the bound-state
energy levelsleading to

e2a2A4 o Slnzgo(w) [ 1 ]
o= "gn ﬁVJ do SECH( 2) o Mo Ted i@ tled—in]’ (€19

| B 2e AZsi foo d [ ! €12
s(@)==adising | done(w)im (0—|og—in)(w+|od—in) | .

These integrals can be straightforwardly evaluated. Equa@dr) gives the expression for the phase-dependent linear

conductance given in Sec. INEQ. (34)], while Eq.(C12) yields the well-known expression for the supercurrent in a single-
mode SQPG338
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eA2a sin(¢) I_(Blws(¢)|) (C13

'SD= 25 Tog ™M 2

2. Nonlinear regime (p<<eV)

We first rewrite Eqs(A13)—(A15) for the current components as

de (=
I0=—f do tanl‘('g—w) >
hJ_« 2 | n=%dd>0

de [ Bo o s A
|r|13"|:Ff_mdw tanl‘(T)n%cbo RdTr{o—z[Tz+mTrﬁ—m](gg_gE))Tngin})y

4e (= Bw
S_—_ —
= fxdwtam'( 5 )n_Z

odd>

Re[Tro,TH(@8— 0y To0° o1},

LM TR = Th- ] (83— 85 TG ), (C14

where a rigid shift ofnwy/2 in the energy arguments of the ballistic limit where\, =i/t. For energies inside the gap one
different T,, with respect to the ones appearing in Egs.obtains
(A13)—(A15) has been introduced.

S i . tnil ei(a0+an) eian
In the limit eV—0, the solution of Eq.(A9) is 'AI'(w)=——H eiaj< _ ) (C15
A =Moo+ (N+2)w/2], where\ (w) satisfies the quadratic " 2j51 e'®o 1)’

equation(C4). The coefficientsT, (n>0) can then be gen-
erated starting fromT,; and using the transfer matrix
z*(w). These quantities are obtained from E@48) and
(A10) making use of theV—0 solution for\

where a,=arcco(w+neV)/A]. As discussed in Ref. 8,
when written as in Eq(C14), the main contribution to the
current in this limit comes from a small energy range around
the gap edges. Evaluation of these integrals leads directly to

The resulting expressions simplify considerably in theEq. (35).
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