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We address the problem of nonlinear transport through discrete electronic levels in a small quantum dot
coupled to superconducting electrodes. In our approach the low-temperatureI -V characteristics can be calcu-
lated including all multiple quasiparticle and Andreev processes. The limit of very weak coupling to the leads
and large charging energies is briefly analyzed comparing the calculated line shapes of theI -V curves with
recent experimental results. When the coupling to the leads increases and Coulomb blockade effects can be
neglected, the combination of multiple Andreev processes and resonant transmission gives rise to a rich subgap
structure which largely differs from the one found in the more studiedS-N-S systems. We concentrate on this
regime showing how multiple processes can be included within a simple sequential tunneling picture qualita-
tively explaining the subgap structure. We suggest an experimental setup where the predicted effects could be
observed.@S0163-1829~97!51110-6#

Resonant tunneling through small systems characterized
by discrete electronic states weakly coupled to metallic leads
has been the object of extensive studies for nearly a decade.1

This physical situation is, in a sense, common to a large
variety of systems ranging from semiconductor quantum
dots,2 small metallic islands3 or atomic impurities,4 which
can exhibit characteristic phenomena like Coulomb blockade
and the Kondo effect. More recently there has been a grow-
ing interest in the special case in which these systems in-
clude superconducting parts bringing the possibility of ob-
serving new effects associated with the superconducting
state. While a large part of these efforts have been devoted to
understanding the interplay between charging and pairing ef-
fects in ‘‘large’’ mesoscopic superconducting islands with a
mean level spacing much smaller than the energy gap,5 less
attention has been paid to the case where discrete levels can
be resolved.6 In this paper we shall consider this latter situ-
ation for the case where both leads are superconducting.

A system of this kind has been recently investigated ex-
perimentally by Ralphet al., who could resolve individual
electronic states in the tunneling through a nanometer Al
particle weakly coupled to superconducting leads.7 For these
small particle sizes and extremely weak coupling, both the
charging energy,EC , and the single-particle level spacing,
d, are much larger than the gap parameter of the supercon-
ducting leads,D. In this regime the contribution of Andreev
processes can be shown to be negligible and only single
quasi-particle processes need to be considered. On the other
hand, for a system with a larger coupling to the leads and
smaller charging energies, multiple Andreev reflections
~MAR’s! may become very important for determining the
transport properties. One would expect that the combination
of MAR’s with resonant transmission through the discrete
levels would give rise to a rich subgap structure~SGS! in the
I -V characteristics, containing new features when compared
to the more studied case ofS-N-S junctions. An ideal experi-
mental setup for exploring these effects would be one in
which both the resonant level position and the coupling to
the leads could be modified in a controlled way as in a nor-
mal artificial atom.2 This situation is represented schemati-
cally in Fig. 1.

The aim of this paper is to give a theoretical analysis of
the nonlinear dc characteristics for systems of the kind dis-
cussed above. The analysis is nonperturbative in the coupling
to the leads and therefore valid both for the weak and strong
coupling regimes. In the weak coupling case our theory natu-
rally explains the observed line shapes7 without the need to
resort to a phenomenological broadening of the BCS density
of states. We shall mainly concentrate on the case where the
resonant level lies within the energy gap region and the Cou-
lomb blockade can be neglected, for which a novel subgap
structure is predicted to appear.

As mentioned above, a small quantum dot connected to
superconducting leads is characterized by the interplay of
many different energy scales. In order to analyze in detail the
basic phenomena that can be observed in the case of large
mean level spacing (d@D), we shall restrict the present
theoretical discussion to the simplest case where transport
takes place through a single resonant level. For describing
this physical situation we use the following model Hamil-
tonian:
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FIG. 1. Schematical representation of a quantum dot defined in
a 2D electron gas and coupled to superconducting leads.
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whereĤL andĤR are BCS Hamiltonians describing the left
and right superconducting leads, characterized by gap pa-
rametersDL5DR5D; e0 is the bare resonant-level position,
tn with n5L,R are hopping parameters which connect the
level to the left and right leads, and theU term describes the
intralevel Coulomb repulsion. This parameter is basically the
dot charging energy,EC , and is related to the total dot ca-
pacitanceC, byU;e2/2C.8 For the case of superconducting
leads it is convenient to choose a gauge in which an applied
bias voltage is introduced through time-dependent phase fac-
tors modulating the hopping parameters9 as
tn→tnexp(ieVnt/\), whereVn are the voltage drops between
the leads and the central region. Hamiltonian~1! is nothing
but an Anderson model which has been extensively used for
studying the case of a small dot coupled to normal leads.10

For the subsequent discussion it is convenient to introduce
the normal elastic tunneling ratesGn5putnu2rn(m), where
rn(m) are the normal spectral densities of the leads at the
Fermi level.

There are two different regimes in which correlation ef-
fects associated with theU term in Hamiltonian~1! can ei-
ther be neglected or taken into account in a simple way, and
yet lead to a nontrivial behavior. The first regime corre-
sponds to a case where the couplings to the leads are not
extremely small and the dot capacitance is large enough to
smear out the Coulomb blockade effect (GL,R;U). In this
case the system behaves as if there were a single spin-
degenerate resonant level ate.e01U^n0&, i.e., a restricted
Hartree approximation on theU term would be reasonable.
When this effective level lies within the superconducting gap
both single quasiparticle and Andreev processes give an im-
portant contribution to the subgapI -V structure. The second
regime would correspond to the experimental conditions of
Ref. 7 in which U@D@GL,R . Double occupancy of the
resonant level becomes then very unlikely, Andreev pro-
cesses are strongly suppressed and thus only single-
quasiparticle processes have to be considered. This situation
can be simply simulated by replacing the isolated dot Hamil-
tonian by a single nondegenerate effective level. The analy-
sis of other regimes, where correlations effects could play a
relevant role~like for instance in the Kondo effect! would be
given in a forthcoming publication.

The transport properties of this model can be obtained
using the same approach as in Ref. 9 which is based on
nonequilibrium Green-function techniques. As discussed in
these references, this method is based on an expansion of the
relevant Green functions in terms of the hopping elements
coupling the dot to the leads. When both electrodes are su-
perconducting, due to the presence of MAR’s, this expansion
leads to an infinite set of algebraic equations for the Green
functions, which can be solved using recursive techniques as
discussed in detail in Ref. 9. As a consequence of this infinite
series of MAR’s, the average current,I (t), contains all har-
monics of the Josephson frequencyv052eV/\, i.e., the cur-
rent can be written asI (t)5(nI nexp(inv0t). We shall con-
centrate here on its dc partI 0. Further details of this
formalism, as applied to the present case, will be given else-
where.

Let us first analyze the simplest caseU@D@G. As men-
tioned above the theory is then greatly simplifyed by sup-

pression of Andreev reflections. The dc current is then given
by the resonant-tunneling-like expression
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where the superconducting tunneling ratesGL,R
S are defined

asGL,R
S (v)5GL,Rr̃S(v6eV/2), r̃S being the corresponding

dimensionless BCS spectral density given by
r̃S5uvu/Av22D2, and nF(v) is the Fermi distribution
function. In this expressione is the effective resonant level
position in which the charging effects have been included.

In Fig. 2 I 0(V) is shown for decreasing coupling to the
leads. Notice that the line shape progressively resembles a
BCS spectral density in agreement with the experimental
observations.7 In Ref. 7 special attention was given to the
behavior of theI -V characteristics near the threshold voltage,
in particular, to the broadening and reduced amplitude with
respect to a simple BCS spectral density. In fact, our theory
predicts a finite height and width of these resonances without
having to resort to the introduction of any phenomenological
broadening parameter. This is a simple consequence of hav-
ing a small but finite coupling to the leads. Equation~2! in
the limit of vanishing coupling reduces to
I 0(V);GL

S(e)GR
S(e)/@GL

S(e)1GR
S(e)#, which coincides with

the result one would expect from a sequential tunneling
picture.11 The coherent processes taken into account in Eq.
~2! are responsible for the rounding off of the resonant peaks,
as illustrated in Fig. 2. We have estimated that the experi-
mental situation in Ref. 7 would approximately correspond
to the case plotted as a full line in Fig. 2.

Let us next consider the case whereU;GL,R , which, as
discussed above, can be described by a single spin-
degenerate effective level. In contrast to the previous case,
now the effect of MAR’s becomes crucial and the full for-

FIG. 2. Zero-temperatureI -V characteristics corresponding to
the case of large charging energy and extremely small coupling.
Full line for GL5531023D, dashed line forGL51023D and dotted
line for GL5231024D. In all casesGR54GL ande55D.
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malism is needed for the calculation of the current. The im-
portance of MAR’s in this case is clearly displayed in the
subgap structure exhibited in theI -V curves shown in Fig. 3.
This figure corresponds to a symmetric case where the level
position e, is fixed at e50, while G5GL5GR varies be-
tweenG@D and G,D. As can be observed, in the limit
G@D SGS is absent, the relevant feature being a saturation
of the current atI 0;4eD/h for V→0. This feature is com-
monly referred to as a ‘‘foot’’ in the context ofS-N-S
structures.12 In this regime we recover the result for a ballis-
tic single-mode superconducting quantum point contact as
obtained recently by different authors.9,13The departure from
the S-N-S behavior becomes more apparent for decreasing
G, where a progressively pronounced SGS appears. Notice
that, in contrast to what is found inS-N-S structures with a
continuum of states in the central region, in the present case
the I 0(V) curve itself exhibits oscillations with the concomi-
tant appearance of negative differential conductance.

The particular SGS found in this system is related to the
influence of resonant tunneling on the MAR processes. In
fact, in the limit ofG!D the position and shape of the sub-
gap current peaks can be understood by means of the follow-
ing simple picture. WheneV,2D, current between the su-
perconducting leads can flow due to MAR processes. As in
the case ofS-S or S-N-S junctions, there appear jumps in
the subgapI -V characteristics at voltages corresponding to
the opening of a new Andreev channel. However, the ampli-
tude of these subgap processes is greatly modified by the
presence of a resonant level between the leads, in such a way
that only those MAR ‘‘trajectories’’ that connect the reso-
nant level to the leads spectral densities give a significant
contribution to the current. The inset in Fig. 4~a! illustrates
the second order Andreev trajectory which gives the domi-
nant contribution to the current when 2D/3,eV,2D. As
eV decreases towards 2D/3, the energies of the initial and
final states on this trajectory approach the gap edges, which
results in a BCS density-of-states-like shape of the current
peak ateV52D/3 @see Fig. 4~a!#.

This simple picture enables us to evaluate the SGS at
G!D analytically. The first step is to identify thegeneral-
ized tunneling ratesGn

( in)(v) andGn
(out)(v) associated with

the nth order Andreev process connecting the dot to the
leads. Here theGn

( in)’s give the probability of an electron or
a hole to get into the dot as an electron, while theGn

(out)’s
correspond to the complementary processes where one elec-
tron leaves the dot and reaches the leads as an electron or as
a hole. A simple analysis yields, for the symmetric case
G5GL5GR , the following expressions:

Gn
~out,in !~v!5G2n11r̃S

„v6~2n11!eV/2…

3)
j51

n U f „v6~2 j21!eV/2…

v2~21! je6 jeV U2, ~3!

where f (v) is the dimensionless BCS pairing amplitude of
the uncoupled leads defined asf (v)5D/pAD22v2. Notice
that G2u f (v)u2 is the Andreev reflection probability at the
lowest order inG, while the denominator in Eq.~3! is related
to the transmission probability through the dot. The total
current can then be computed as the sum of the contributions

FIG. 3. Zero-temperatureI -V characteristics corresponding to
the case where Coulomb blockade is absent for different values of
G5GL5GR . The effective resonant level ise50.

FIG. 4. Detail of the subgap structure forG5531022D with
e50 ~a! and e50.2D ~b!. Full line: complete numerical calcula-
tion; dotted line: sequential approximation discussed in the text.
The inset represents a typical resonant ‘‘trajectory’’ mediated by
two Andreev reflections. The arrows indicate the position of the
first resonances fore50.2D.
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due to all possible combinations ofin and out processes.
Every contribution must be weighted by the total charge
which is transferred in the combined process. For instance,
the process depicted as an inset in Fig. 4~a! is a combination
of two processes of the first order and has an associated
charge of 3e. The resulting expression for the current is

I 0~V!5
8ep

h (
n,m

~n1m11!
Gn

~ in !~e !Gm
~out!~e !

Gn
~ in !~e !1Gm

~out!~e !
. ~4!

Figure 4 illustrates in further detail the SGS of theI -V
curves forG!D. For comparison the results given by Eq.~4!
are also shown. As can be observed, this simple approxima-
tion fairly reproduces the exact numerical results in this
small G limit. The rounding off of the peaks which is ob-
served for increasingG ~see Fig. 3! is due to off-resonant
processes as discussed for the case of large charging energy.
In the limit G;D the sequential tunneling picture breaks
down due to the interference among the different multiple
processes.

For the general case witheÞ0, the SGS becomes more
complex due to the appearance of additional resonances.
This is illustrated in Fig. 4~b! for the casee50.2D and
G5531022D. As can be deduced from the sequential for-
mulae of Eq. ~4!, resonances appear both at
eVn

152(D1e)/(2n11) andeVn
252(D2e)/(2n11) cor-

responding to processes in which the inital or final states are
at the gap edges. The sequential picture also predicts the
appearance of resonances atjeV52e due to resonant cou-
pling between electron and hole states. In the exact numeri-
cal results the resonances are somewhat shifted with respect
to these predictions and some of them are difficult to resolve.
Nevertheless, it should be stressed that the main qualitative
features of the exact SGS are already contained in Eq.~4!.

As has been already mentioned, an ideal experimental
setup to study the interplay between resonant tunneling and
MAR’s would be an ‘‘artificial atom’’ with superconducting

leads as represented in Fig. 1. In this type of structure, for a
quantum dot area of;(100 nm! 2, the mean level spacing
would be around 2.7 meV,8 which is much larger than the
superconducting gap on the leads if these were made of Al
(DAl;0.18 meV!. On the other hand, the coupling to the
leads could be given any desired value by varying the con-
ductance of the two point contacts, and the charging energy
could also in principle be changed by varying the different
capacitances between the dot and the surrounding metallic
leads and gates. Thus, the conditions for observing the
G;U,D regime could be attainable. In fact, a system of
these characteristics would not be very different from the
superconducting quantum point contact developed by
Takayanagiet al.14

In conclusion, we have presented model calculations for
the transport through discrete resonant levels coupled to su-
perconducting leads. We have briefly analyzed the case cor-
responding to a large charging energy and an extremely
weak coupling, finding good agreement with the experimen-
tal results of Ref. 7. The main part of this work has been
concentrated in the study of the caseU;G,D, where Cou-
lomb blockade effects can be neglected. For this regime we
have shown how the interplay between resonant tunneling
and multiple Andreev reflection processes give rise to a
novel subgap structure in theI -V curves, which could be in
principle detected if the adequate conditions are met in the
experiments. We have shown how the effects of MAR’s can
be taken into account in a sequential tunneling picture by the
introduction of generalized tunneling rates. This opens the
possibility of analyzing more complex situations in which
the mean level spacing is comparable to the superconducting
gap and multiple resonances are involved. Work along these
lines is under progress.
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