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Kondo effect in normal-superconductor quantum dots
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We study the transport properties of a quantum dot coupled to a normal and a superconducting lead. The dot
is represented by a generalized Anderson model. Correlation effects are taken into account by an appropriate
self-energy that interpolates between the limits of weak and strong coupling to the leads. The transport
properties of the system are controlled by the interplay between the Kondo effect and Andreev reflection
processes. We show that, depending on the parameters’ range, the conductance can either be enhanced or
suppressed as compared to the normal case. In particular, by adequately tuning the coupling to the leads one
can reach the maximum value 4e2/h for the conductance.
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The Kondo effect is a prototypical correlation effect
solid state physics. Although it was first analyzed for t
case of magnetic impurities in metals, in the last years th
has been a renewed interest in Kondo physics with its ob
vation in a semiconductor quantum dot~QD!.1,2 Quantum
dots constitute an ideal laboratory for testing the theoret
predictions as they allow to vary the relevant parameter
the problem in a controlled way. This technology also ope
some new possibilities like the exploration of the Kon
effect when the dot is connected to superconducting le
The interesting issue in this case is related to the compet
between the strong Coulomb interaction in the quantum
and the pairing interaction within the leads.

From the theoretical side, the Kondo effect in QD’s h
been mainly analyzed by means of the single-level Ander
model.3,4 The theory predicts an enhancement of the dot c
ductance at low temperatures due to the development o
so-called Kondo resonance. The case when one of the l
is superconducting has been recently analyzed by some
thors using different theoretical methods5–7 assuming a
modified Anderson model in which one of the metallic ele
trodes is substituted by a BCS superconductor. While so
authors have predicted an enhancement of the conduct
due to Andreev reflection at the superconducting lead,6 oth-
ers have predicted the opposite effect.7 In Refs. 5 and 7 the
infinite charging energy limit (U→`) has been assumed
However, in an actual experiment, this assumption may
be completely justified~for instance, in the experiments o
Ref. 1 the ratioU/G, G being the dot tunneling rate, wa
estimated to be around 6.5!. The approach presented in th
paper would allow to analyze this problem for a broad ran
of the different parameters of the model. We will show th
depending on the values of these parameters, one can o
either an enhancement or a reduction of the conducta
with respect to the normal case.

Our approximation scheme is based on the hypothesis
a good approximation to the electron self-energy can
found by interpolating between the limits of weak and stro
coupling to the leads. This interpolative method has b
applied successfully to analyze different strongly correla
electron systems like the equilibrium,8,9 the nonequilibrium,4

and the multilevel10 Anderson models and the Hubba
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model.11,12 In this paper we shall discuss how to extend th
method to the superconducting case.

For describing a N-QD-S system we use an Anderson-
Hamiltonian

Ĥ5ĤN1ĤS1(
s

e0n̂s1Un̂↑n̂↓1ĤT , ~1!

wheren̂s5d̂s
† d̂s , ĤN and ĤS represent the uncoupled no

mal and superconducting leads respectively;ĤT

5(kPN,S;st0,kd̂s
† ĉk,s1H.c. describing the coupling betwee

the dot level and the leads. Within this model the dot
represented by a single-spin degenerate level with a repu
Coulomb interaction described by the U-term in Eq.~1!. We
shall assume that the superconducting lead is well descr
by the BCS theory with a superconducting gapD and the
normal lead is, as usual, characterized by a flat density
states around the Fermi level,rF .

The transport properties of this model can be obtained
means of Green-function techniques. In order to analyze
linear regime the main quantity to be determined is the
retarded Green function, which in a Nambu 232 represen-
tation adopts the form

Ĝr~v!5@v Î 2e0ŝz2Ŝ r~v!2ĜN~v!2ĜS~v!#21, ~2!

whereĜN andĜS are the tunneling rates given byĜN5GLÎ ,

and the superconducting tunneling rateĜS is given by ĜS

5GRĝ, where GL,R5ptL,R
2 rF , g115g2252v/AD22v2,

andg125g215D/AD22v2 ~the chemical potential of the su
perconducting lead is taken as zero!. The self-energyŜ r(v)
takes into account the effect of Coulomb interactions. To
lowest order inU this is given by the Hartree-Fock Bogoliu

bov approximation: Ŝ r5U^n̂&ŝz1Ddŝx , Dd being the
proximity effect induced order parameter in the QD,Dd

5U^d̂↑
†d̂↓

†&. The crucial problem is to find a good approx
mation to include correlation effects beyond this mean-fi
approximation.

Within the spirit of the interpolative method commente
above, the self-energy is constructed in such a way a
©2001 The American Physical Society15-1
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interpolate between the limits of weak and strong coupling
the leads for which the exact result is known. Let us fi
analyze the weak coupling oratomic limit. In this case we

havetL,R /U→0 and thusĜN /U, ĜS /U →0. In this limit the
induced order parameter in the QD vanishes faster t
(tR /U)2 and one can neglect the nondiagonal elements in
self-energy matrix. On the other hand, the diagonal elem
can be easily evaluated in this limit using the equation
motion method8 and have the form

S11,22
r →6U^n̂&1

U2^n̂&~12^n̂&!

v7e07U~12^n̂&!
. ~3!

In the opposite limit,U/tL,R→0, one can accurately
evaluate the self-energy using standard perturbation theo
the Coulomb interaction. The different diagrams contribut
to the second-order self-energy are depicted in Fig. 1. In
superconducting case, there appear additional diagram
the one in the normal case@diagram~a!# corresponding to the
interaction of an electron with an electron-hole pair in t
QD; the remaining diagrams contain at least one anoma
propagator and vanish identically in the normal state. As
the normal case,4 the nonperturbed one-electron Ham
tonian, over which the diagrammatic series is constructed
taken as an effective mean field, characterized by an ef
tive dot levelee f f , having the same dot charge as the fu
interacting problem. As shown in Ref. 4 this self-consisten
condition provides in the normal case a good fulfillment
the Friedel sum rule at zero temperature. The extensio
this procedure to the superconducting case requires dres
the propagators in the diagrams of Fig. 2 with the nondia
nal self-energyS12 in order to impose also consistency in th
nondiagonal chargêd̂↑

†d̂↓
†&. Notice that although the interac

tion in the QD is repulsive, there is always some induc
paring potential in the dot due to the proximity effect. T
inclusion of this effect for finiteU turns out to be crucial for
the correct description of the dot electronic and transp
properties.

The original interpolative scheme stems from the obs
vation that the second-order self-energy (S (2)) has a similar
functional form as the atomic self-energy for larg
frequencies8 thus allowing for a smooth interpolation be

FIG. 1. ~a! Schematic representation of a quantum dot coup
to a normal and a superconducting lead.~b! Schematic energy dia
gram of this system, showing the local density of states in the
with the charging states ate0 and e01U and the sharp Kondo
resonance at the Fermi level.
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tween the two limits. In the superconducting case, the di
onal elements of the second order self-energy behave a

S11,22
(2) ;

U2^n̂&~12^n̂&!

v7ee f f
~4!

for large frequencies, while the nondiagonal elements de
faster thanU2/v. This behavior permits to define a Namb
232 interpolative ansatz for the self-energy matrix as

Ŝ~v!5U^n̂&ŝz1Ddŝx1@ Î 2aŜ (2)ŝz#
21Ŝ (2)~v!, ~5!

where

a5
e01~12^n̂&!U2ee f f

U2^n̂&~12^n̂&!
,

and Ŝ (2) is the second order self-energy matrix whose e
ments are given by the diagrams depicted in Fig. 2.

Using this ansatz one recovers the correct behavior of
self-energy both in the weak and strong coupling limi
Moreover, this ansatz satisfies the exact relations betw
the different matrix elements, i.e.,S12(v)5S21(v) and
S11(v)52S22* (2v).

In order to test the accuracy of our approximation we fi
study a simple toy model, not intended to represent a real
situation but which can be solved exactly. This is a two-si
model, described by the following Hamiltonian:

Ĥ5(
s

e0n̂s1t~ d̂s
† ĉs1H.c.!1Un̂↑n̂↓1~D ĉ↓ĉ↑1H.c.!,

~6!

d

ot

FIG. 2. Second-order self-energy diagrams.
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KONDO EFFECT IN NORMAL-SUPERCONDUCTOR . . . PHYSICAL REVIEW B 63 094515
where we replace the superconducting electrode by a si
site with a paring potentialD. The exact ground state i
obtained combining all possible configurations with a diffe
ent number of electrons.

Figure 3 shows the behavior of the charge and the indu
order parameter at the dot site as a function ofU for e0
50, D50.1, andt50.4. As can be observed, the interpol
tive approach improves substantially the results given by
first order ~Hartree-Fock Bogoliubov! and the second-orde
calculations, following closely the exact result. It is rema
able how the interpolative self-energy eliminates some
thologies of the second-order approximation like the incre
of the dot charge for intermediates values ofU. This good
agreement with the exact results is also found regardles
the position of the dot level and the ratiot/D. Only for the
limit t!D one finds a somewhat larger discrepancy in
dot charge. We should point out that, although this mode
only introduced as a test of the approximation, it provid
nevertheless a rough description of the behavior of
charge and the induced pairing potential in a model wit
continuous density of states for the superconducting e
trode.

Let us analyze now the continuous model given by E
~1!. Due to the presence of an additional energy scale fi
by D, the number of different physical regimes is larger th
in the normal case. We will mainly consider the more int
esting physical regimeG5GL1GR;D.13 In Fig. 4~a! we
show the dot spectral density~LDOS! for a symmetric case
(e052U/2) with GL5GR5D and increasing values ofU.
As can be observed, whenU<D the LDOS exhibits a double
peak around the Fermi energy that is due to the influenc
the superconducting electrode by the proximity effect. Ho
ever, asU increases, the double peak is replaced by a sin
narrow Kondo resonance as in the normal case. The com

FIG. 3. Diagonal and nondiagonal charge for the toy-mo
two-level system discussed in the text as a function ofU/t: exact
solution ~full line!, interpolated self-energy~dashed!, second-order
self-energy~dotted! and first-order approximation~dashed-dotted!.
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son with the normal case reveals that the Kondo resona
gets narrower in the superconducting case and its heigh
creases withU above the normal value. In the limitU→`,
this height approaches the value 2/(pG), which is twice the
value in the normal case at zero temperature, as fixed by
Friedel sum rule. The narrowing of the Kondo resonan
gives rise to a lowering of the Kondo temperature with
spect to the normal case.

For energies larger thanD the differences between th
normal and the superconducting LDOS become negligib
with the usual broad resonances ate0 and e01U that be-
come more pronounced for increasingU.

By varying the dot level positione0 one can study the
transition from the Kondo to the mixed valence regime. T
evolution of the dot LDOS is illustrated in Fig. 4~b!. When
approaching the mixed valence regime (ue0u,G or ue01Uu
,G) the Kondo resonance is replaced by an asymme
broad resonance close to the Fermi energy as in the no
case. In the superconducting case, however, the LDOS
velops an additional structure associated with the BCS div
gencies at the gap edges.7

As in any NS contact, transport at low voltages is possi
due to Andreev reflection processes. At finite temperatu
the linear conductance is given by the expression14

G5
16e2

h
GLE

2`

`

dE Im~G12
r G11

a !~GR2ReS12!S 2
] f

]ED ,

~7!

l

FIG. 4. ~a! Dot spectral density in the symmetric case (e0

52U/2 andGL5GR) with G5D for different values ofU/G. The
inset shows a blowup of the region around the Fermi energy.~b!
Dot spectral density for different values ofe0 with U510G and
G5D.
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where f (E) is the Fermi function. At zero temperatur

Im Ŝ(0)50, and Eq.~7! reduces to

G5
4e2

h

4GL
2G̃R

2

@ ẽ21GL
21G̃R

2 #2
, ~8!

where G̃R5GR2ReS12(0) and ẽ5e01ReS11(0). Notice
that Eq.~8! coincides atU50 with the well known nonin-
teracting result.15

One would expect that for a dot symmetrically coupled
the leads~i.e.,GL5GR) and in the case of electron-hole sym
metry (e052U/2), the conductance should reach its ma
mum value 4e2/h6. However, the actual situation is mor
complex due to the reduction of the induced paring am
tude in the dot arising from the repulsive Coulomb intera
tion. As a consequence the conductance decreases fo
creasingU even in this case. This decrease is illustrated
Fig. 5~a! where we plot the conductance as a function ofU in
the symmetric case for different values ofG/D. For large
U/G we find that the conductance decreases roughly
(G/U)4. This behavior can be understood as follows: in
der to have a vanishing pairing amplitude in theU/G→`
limit, the nondiagonal self-energyS12 should tend to cance

the nondiagonal tunneling rate (ĜS)12. By analyzing the ex-
pression of diagram~d! in Fig. 2, this requires thatG12 de-
cays as (G/U)2 and therefore the conductance given by E
~7! in our approximation should decay roughly as (G/U)4.
This decay is probably less pronounced than in the ex
solution where one would rather expect an exponential
havior in the Kondo regime.

Although the previous analysis shows that the maxim
value for the conductance 4e2/h can never be reached in th
symmetric case for finiteU, this is not necessarily the cas
for an asymmetric situation withGLÞGR . In fact, if the
coupling to the electrodes could be tuned in order to re

the conditionG̃R5GL then Eq.~7! predicts a maximum in
the value ofG. As shown in Fig. 5~b!, this condition can be
reached by increasing the coupling to the superconduc
electrode. The ratio betweenGR and GL at the maximum
becomes larger for increasingU. In a situation with electron-

FIG. 5. ~a! Conductance at zero temperature for the symme
case as a function ofU/G and for different values ofG/D. From
bottom to topG/D5 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0.~b!
Same as~a! for asymmetric coupling to the leads as a function
GR /GL and different values ofU/GL .
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hole symmetry, like the one depicted in Fig. 5~b!, the con-
ductance at zero temperature reaches its maximum pos
value 4e2/h.

In normal quantum dots a signature of the Kondo effec
given by an anomalous temperature dependence in the li
conductance,1 which exhibits a continuous transition from
maximum conductance in the Kondo regime to well-resolv
conductance peaks associated with Coulomb blocka
When one of the electrodes is superconducting, there is
a decrease of conductance with temperature in the Ko
regime. However, as depicted in Fig. 6, the conductance
ready exhibits a double-peaked structure at zero tempera
whenGL5GR . The reduction of conductance with temper
ture is in this case much faster than in the normal case
shown in Fig. 6~inset!. This difference is a consequence
the lowering of the Kondo temperature due to the prese
of the superconducting electrode.

In conclusion, we have analyzed the electronic transp
properties of a quantum dot coupled to a normal and a
perconducting lead. For this purpose we have introduced
electron self-energy that interpolates between the limits
weak and strong coupling to the leads, an approach that
been previously used for normal systems.4,8–12This approxi-
mation allows to describe a broad range of parameters
cluding the relevant one for an actual experiment. On
other hand, we have shown that for finite charging energy
dot conductance can either be enhanced or suppressed
respect to the normal case. While in a symmetrically coup
dot (GL5GR) an increasing charging energy tends to redu
the conductance, in the asymmetric case it is always poss
to reach a maximum in the conductance by fine tuning
coupling to the superconducting electrode. In the case
electron-hole symmetry this maximum reaches the va
4e2/h at zero temperature. The predictions presented in
work could be tested experimentally using similar techno
gies to those currently used for normal quantum dots.1,2,16

c

f

FIG. 6. Conductance for different temperature values:U
510G, D5G/2 andT/U5 0.0, 0.0005, 0.001, 0.0025, 0.005, 0.0
Inset: normalized conductance as a function of temperature
N-dot-S ~full line! and N-dot-N~dashed line! at EF5U/2.
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