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Kondo effect in normal-superconductor quantum dots
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We study the transport properties of a quantum dot coupled to a normal and a superconducting lead. The dot
is represented by a generalized Anderson model. Correlation effects are taken into account by an appropriate
self-energy that interpolates between the limits of weak and strong coupling to the leads. The transport
properties of the system are controlled by the interplay between the Kondo effect and Andreev reflection
processes. We show that, depending on the parameters’ range, the conductance can either be enhanced or
suppressed as compared to the normal case. In particular, by adequately tuning the coupling to the leads one
can reach the maximum value?h for the conductance.
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The Kondo effect is a prototypical correlation effect in model!*?In this paper we shall discuss how to extend this
solid state physics. Although it was first analyzed for themethod to the superconducting case.
case of magnetic impurities in metals, in the last years there For describing a N-QD-S system we use an Anderson-like
has been a renewed interest in Kondo physics with its obseHamiltonian
vation in a semiconductor quantum d@D).> Quantum
dots constitute an ideal laboratory for testing the theoretical
predictions as they allow to vary the relevant parameters in
the problem in a controlled way. This technology also opens o R
some new possibilities like the exploration of the Kondowheren(,:d;da, Hy andHg represent the uncoupled nor-
effect when the dot is connected to superconducting lead$nal and superconducting leads respectively:i
The interesting issue in this case is related to the CompetlthgEkeN,S;Uto,kaj;-ak,u"_H-C- describing the coupling between
between the strong Coulomb interaction in the quantum dolthe dot level and the leads. Within this model the dot is

and the pairing interaction within the leads. . . . ;
. . . , represented by a single-spin degenerate level with a repulsive
From the theoretical side, the Kondo effect in QD’s hasCoulomb interaction described by the U-term in EH. We

Eneoednelrg‘?llt]r%?r?:l)yri/egr:giQfggseﬁLg]:czlrggelr?t- Igfv tehleAggteéz?]_Qhall assume that the superconducting lead is well described
ductance at low temperatures due to the development of th? the BCS theory with a superconducting gapand the

ormal lead is, as usual, characterized by a flat density of
so-called Kondo resonance. The case when one of the lea S -
States around the Fermi level; .

s superc_onduc_:ting has been recently agaéyzed by_ Some au- 1o transport properties of this model can be obtained by
thors using different theoretical methods assuming a means of Green-function techniques. In order to analyze the

modified Anderson model in which one of the metallic elec-|. . : . . .
trodes is substituted by a BCS superconductor. While Somlénear regime the main quantity to be determined is the dot

. retarded Green function, which in a Nambi 2 represen-
authors have predicted an enhancement of the conductan%e[ion adoots the form
due to Andreev reflection at the superconducting feath- P

ers have predicted the opposite effetn Refs. 5 and 7 the A - -~ o n - .

infinite charging energy limit Y —=) has been assumed. G'(w)=[wl~ o~ 2 () ~T(w) ~Ts(w)]77, (2
However, in an actual experiment, this assumption may not A - ) _ - -

be completely justifiedfor instance, in the experiments of Wherel'y andI's are the tunneling rates given by =T', I,
Ref. 1 the ratioU/T’, T' being the dot tunneling rate, was and the superconducting tunneling rdtg is given byI'g
estimated to be around 6.5The approach presented in this =T'.g, where T g=mt2 ppe, 911= 0= —wlJAZ— w2,
paper would allow to analyze this problem for a broad rangeyndg,,= g,,= A/JAZ= &Z (the chemical potential of the su-
of the d.ifferent parameters of the model. We will show that, erconducting lead is taken as ZerGhe self-energﬁ’(w)
depending on the values of these parameters, one can obt es into account the effect of Coulomb interactions. To the

either an enhancement or a reduction of the conductanggy oot order inU this is given by the Hartree-Fock Bogoliu-
with respect to the normal case.

Our approximation scheme is based on the hypothesis thR0V approximation: X'=U(n)o,+Aqoy, A4 being the
a good approximation to the electron self-energy can b@roximity effect induced order parameter in the QD
found by interpolating between the limits of weak and strong= U(d}rdj). The crucial problem is to find a good approxi-
coupling to the leads. This interpolative method has beemation to include correlation effects beyond this mean-field
applied successfully to analyze different strongly correlatecapproximation.
electron systems like the equilibriuf,the nonequilibriung, Within the spirit of the interpolative method commented
and the multilevé® Anderson models and the Hubbard above, the self-energy is constructed in such a way as to

H:HN+H5+E 6OﬁU+UﬁTﬁL+HTl (1)
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to a normal and a superconducting leén). Schematic energy dia-

gram of this system, showing the local density of states in the dot

with the charging states af; and e;+U and the sharp Kondo G
resonance at the Fermi level. 1

. - . 2)

interpolate between the limits of weak and strong couplingto ¥ ~ = G,, G. + G
the leads for which the exact result is known. Let us first ~ ' 12 12
analyze the weak coupling @tomic limit. In this case we

FIG. 1. (8) Schematic representation of a quantum dot coupled (a) % (b)
% (d)

havet, g/U—0 and thud’y/U, I's/U — 0. In this limit the G,
induced order parameter in the QD vanishes faster than (c)

(tr/U)? and one can neglect the nondiagonal elements in the

self-energy matrix. On the other hand, the diagonal elements FIG. 2. Second-order self-energy diagrams.

can be easily evaluated in this limit using the equation of

motion methofland have the form tween the two limits. In the superconducting case, the diag-

onal elements of the second order self-energy behave as
U%(n)(1—(n)) .
—. 25 a e
o+ e+ U(1-(n)) Egi)zzww (4

W+ €Eoff

1127 u(ny+

In the opposite limit,U/t, z—0, one can accurately . . .
evaluate the self-energy using standard perturbation theory ifor large frequenme;, while t'he nond!agonal glements decay
faster thanU?/w. This behavior permits to define a Nambu

the Coulomb interaction. The different diagrams contributing . X )

to the second-order self-energy are depicted in Fig. 1. In th@><2 interpolative ansatz for the sel-energy matrix as

superconducting case, there appear additional diagrams to

the one in the normal cagdiagram(a)] corresponding to the S(0)=U(M o+ Agoy+[1— a2 Pa,] 15 (w), (5)

interaction of an electron with an electron-hole pair in the

QD; the remaining diagrams contain at least one anomaloughere

propagator and vanish identically in the normal state. As in

the normal cas&,the nonperturbed one-electron Hamil- -

tonian, over which the diagrammatic series is constructed, is o= €0t (1 —(N)U —eer

taken as an effective mean field, characterized by an effec- U2<ﬁ>(1_<ﬁ>)

tive dot leveleqfs, having the same dot charge as the fully

interacting problem. As shown in Ref. 4 this self-consistency_ &9 - .

condition provides in the normal case a good fulfillment ofandz(Z) IS t_he seconhd or'der self-energy matrix whose ele-

the Friedel sum rule at zero temperature. The extension eStS. arehglven by the diagrams dﬁp'Cted n E'gh' 2'. fth

this procedure to the superconducting case requires dressinglf_Slng t |sbar;sa_tz ?r?e recoxers; etcorrect € I_awolr_ O.tt €

the propagators in the diagrams of Fig. 2 with the nondiago:C’ energy both In the weak and strong coupiing iimits.

nal self-energys 1, in order to impose also consistency in the Moreover, this ansatz satisfies the exact relations between
) ~tat : _ the different matrix elements, i.e3(w)=35(w) and

nondiagonal chargédd ). Notice that although the interac- (0)=—S5(— o)

tion in the QD is repulsive, there is always some induced211 22 '

paring potential in the dot due to the proximity effect. The

inclusion of this effect for finiteJ turns out to be crucial for

the correct description of the dot electronic and transpor

properties.

The original interpolative scheme stems from the obser-
vation that the second-order self-ener@/?) has a similar
functional form as the atomic self-energy for large
frequencie® thus allowing for a smooth interpolation be- (6)

In order to test the accuracy of our approximation we first
study a simple toy model, not intended to represent a realistic
situation but which can be solved exactly. This is a two-sites
Fnodel, described by the following Hamiltonian:

H=2 en,+t(d c,+H.c)+Unn +(Ac,C;+H.c),
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FIG. 3. Diagonal and nondiagonal charge for the toy-model F
two-level system discussed in the text as a functiotJéf: exact —125 -
solution (full line), interpolated self-energ§dashed, second-order 0—8 _6 _‘4 ' 2 0 LZL 4 6 ‘ 3
self-energy(dotted and first-order approximatiofdashed-dotted (E-E.)T
F

V\(here.we replape the superconducting electrode by a s!ngle FIG. 4. (8 Dot spectral density in the symmetric case, (
site _W'th a paring pOtent'aA' The gxact _grOU”F‘ State_ IS =—ur2 andI’ =T'g) with I'=A for different values olU/T". The
obtained combining all possible configurations with a differ-set shows a blowup of the region around the Fermi ene(tgy.

ent number of electrons. _ Dot spectral density for different values ef with U=10I" and
Figure 3 shows the behavior of the charge and the inducef= A .

order parameter at the dot site as a functionUofor ¢,

=0, A=0.1, andt=0.4. As can be observed, the interpola- son with the normal case reveals that the Kondo resonance
tive approach improves substantially the results given by thgets narrower in the superconducting case and its height in-
first order (Hartree-Fock Bogoliubgvand the second-order creases withJ above the normal value. In the limit— oo,
calculations, following closely the exact result. It is remark-this height approaches the value 2I(), which is twice the
able how the interpolative self-energy eliminates some pavalue in the normal case at zero temperature, as fixed by the
thologies of the second-order approximation like the increas€riedel sum rule. The narrowing of the Kondo resonance
of the dot charge for intermediates valueslbf This good  gives rise to a lowering of the Kondo temperature with re-
agreement with the exact results is also found regardless spect to the normal case.

the position of the dot level and the ratitA. Only for the For energies larger thaa the differences between the
limit t<A one finds a somewhat larger discrepancy in thenormal and the superconducting LDOS become negligible,
dot charge. We should point out that, although this model isvith the usual broad resonancesegtand e,+U that be-
only introduced as a test of the approximation, it providescome more pronounced for increasiog

nevertheless a rough description of the behavior of the By varying the dot level positiore, one can study the
charge and the induced pairing potential in a model with aransition from the Kondo to the mixed valence regime. The
continuous density of states for the superconducting elecevolution of the dot LDOS is illustrated in Fig(k). When
trode. approaching the mixed valence regimeq(<T" or |ey+ U]

Let us analyze now the continuous model given by Eq.<I') the Kondo resonance is replaced by an asymmetric
(1). Due to the presence of an additional energy scale fixetiroad resonance close to the Fermi energy as in the normal
by A, the number of different physical regimes is larger thancase. In the superconducting case, however, the LDOS de-
in the normal case. We will mainly consider the more inter-velops an additional structure associated with the BCS diver-
esting physical regimd =T, +T'r~A.*% In Fig. 4a we gencies at the gap edgeés.
show the dot spectral densitDOS) for a symmetric case As in any NS contact, transport at low voltages is possible
(ep=—U/2) with ' =T'k=A and increasing values ¢f.  due to Andreev reflection processes. At finite temperature,
As can be observed, whéh<A the LDOS exhibits a double the linear conductance is given by the expreséion
peak around the Fermi energy that is due to the influence of 1662 y
the superconducting electrode by the proximity effect. How- il ” r ~a _ _9
ever, asU increases, the double peak is replaced by a single ~  h FLJ'%dEIm(GHGM)(FR Re212)< aE)’
narrow Kondo resonance as in the normal case. The compari- 7
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FIG. 5. (a) Conductance at zero temperature for the symmetric
case as a function df/T" and for different values of /A. From
bottom to topI'/A= 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8(B)
Same aga) for asymmetric coupling to the leads as a function of
I'g/T", and different values of)/T"| .
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where f(E) is the Fermi function. At zero temperature,
S . FIG. 6. Conductance for different temperature valués:
Im%(0)=0, and Eq.(7) reduces to =100, A=T'/2 andT/U= 0.0, 0.0005, 0.001, 0.0025, 0.005, 0.01.
Inset: normalized conductance as a function of temperature for
4e2 4[‘5% N-dot-S (full line) and N-dot-N(dashed lingat E=U/2.

C=— == (8
h [e+12+T3)2

hole symmetry, like the one depicted in Fighh the con-

- ~ ductance at zero temperature reaches its maximum possible

where I'g=Tr—ReX;5,(0) and e=¢;+ReX,(0). Notice  value 4e2/h.

that Eq.(8) coincides atJ=0 with the well known nonin- In normal quantum dots a signature of the Kondo effect is

teracting result® given by an anomalous temperature dependence in the linear
One would expect that for a dot symmetrically coupled toconductancé,which exhibits a continuous transition from a

the leaddi.e.,I' =I'g) and in the case of electron-hole sym- maximum conductance in the Kondo regime to well-resolved

metry (eo=—U/2), the conductance should reach its maxi-conductance peaks associated with Coulomb blockade.

2/n6 g

mum value £°/h”. However, the actual situation is more \yhen one of the electrodes is superconducting, there is also
complex due to the reduction of the induced paring ampli-y jecrease of conductance with temperature in the Kondo
tude in the dot arising from the repulsive Coulomb 'nterac'regime However, as depicted in Fig. 6, the conductance al-
tion. As a consequence the conductance decreases for i . f L

creasingU even in this case. This decrease is illustrated inPeady exhibits a double-peaked structure at zero temperature

Fig. 5(a) where we plot the conductance as a functiotJoh When.F.L:F.R' The reduction of conduptance with tempera-
the symmetric case for different values BfA. For large ture 1s n th's case much_ fas_ter than n the normal case, as
U/T we find that the conductance decreases roughly a hown |n_F|g. 6(insed. This difference is a consequence of
(I'/U)*. This behavior can be understood as follows: in or-1'€ lowering of the Kondo temperature due to the presence
der to have a vanishing pairing amplitude in thél' o  Of the superconducting electrode. _

limit, the nondiagonal self-energy,, should tend to cancel In conclusion, we have analyzed the electronic transport

. i - ) properties of a quantum dot coupled to a normal and a su-
the nondiagonal tunneling raté'§),. By analyzing the ex-  perconducting lead. For this purpose we have introduced an
pression of diagranfd) in Fig. 2, this requires thaB,, de-

5 ’ electron self-energy that interpolates between the limits of
cays as [/U)“ and therefore the conductance given b‘%/ Ed-weak and strong coupling to the leads, an approach that has
(7) in our approximation should decay roughly ds/|J)*.

been previously used for normal systehis12This approxi-

This decay is probably less pronounced than in the exaghation allows to describe a broad range of parameters in-
solution where one would rather expect an exponential be(:luding the relevant one for an actual experiment. On the

havior in the Kondo regime. _other hand, we have shown that for finite charging energy the
Although the previous analysis shows that the maximumys; conductance can either be enhanced or suppressed with
value for the conductancee?/h can never be reached in the respect to the normal case. While in a symmetrically coupled
symmetric case f_or f|_r1|td=.J_, this is not necessarily t_he case (ot (I', =T'g) an increasing charging energy tends to reduce
for an asymmetric situation with', #I'g. In fact, if the  the conductance, in the asymmetric case it is always possible
coupling to trle electrodes could be tuned in order to reacky reach a maximum in the conductance by fine tuning the
the condition'r=1", then Eq.(7) predicts a maximum in coupling to the superconducting electrode. In the case of
the value ofG. As shown in Fig. ), this condition can be electron-hole symmetry this maximum reaches the value
reached by increasing the coupling to the superconductinge® h at zero temperature. The predictions presented in this
electrode. The ratio betwedhy and I'| at the maximum work could be tested experimentally using similar technolo-
becomes larger for increasitdy In a situation with electron- gies to those currently used for normal quantum dét$

094515-4



KONDO EFFECT IN NORMAL-SUPERCONDUCTR. .. PHYSICAL REVIEW B 63 094515

We thank Jan von Delft, Hans Kroha, Gerd Schand 0044 and by the SFB 195 of the German Science Founda-
Andrei Zaikin for fruitful discussions. This work was sup- tion. J.C. Cuevas acknowledges the European Community
ported by the Spanish CICYT under Contract No. PB97-for funding under Contract HPMF-CT-1999-00165.

1D. Goldhaber-Gordoret al, Nature (London) 391 156 (1998; 8A. Martin-Roderoet al, Solid State Commuri4, 911(1982.

Phys. Rev. Lett81, 5225(1998. 90. Takagi and T. Sasso, J. Phys. Soc. §&.2894(1999.
S.M. Cronenwetet al, Science281, 540 (1998. 10A. Levy Yeyati, F. Flores, and A. Mart+tRodero, Phys. Rev.
SL.I. Glazman and M.E. Raikh, Pis’'ma ZhKk&p. Teor.47, 378 Lett. 83, 600(1999.

(1988 [J. Exp. Theor. Physt7, 452(1988; S. Hershfield, J.H. 1A, Martin-Roderoet al,, Phys. Rev. B33, 1814(1986.
Davis, and J.W. Wilkins, Phys. Rev. Le&7, 3720(1992); Y. 12y, Kajueter and G. Kotliar, Phys. Rev. Le#t7, 131(1996.

Meir, N.S. Wingreen, and P.A. Leéid. 70, 2601(1993. 13 Moreover, this could be the case of an actual experimental set up
4A. Levy Yeyati, A. Marfn-Rodero, and F. Flores, Phys. Rev. obtained by combining the semiconducting quantum dots used
Lett. 71, 2991(1993. in Ref. 1, wherd" was estimated to be of the order of 0.1 meV,
SR. Fazio and R. Raimondi, Phys. Rev. L&®, 2913(1998; 82, with superconducting leads. Notice that the energy gap in a tra-

4950(1999. ditional superconductor like Al would be of the same order.
K. Kang, Phys. Rev. B8, 9641(1998. 14p. schwab and R. Raimondi, Phys. Rev5® 1637(1999.
"A.A. Clerk, V. Ambegaokar, and S. Hershfield, Phys. Re\6B  '°C.W.J. Beenakker, Phys. Rev.45, 12 841(1992.

3555(2000. 18 H. Takayanagiprivate communication

094515-5



