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Quasiclassical description of transport through superconducting contacts
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We present a formulation of boundary conditions that mimics interfaces for the quasiclassical theory of
superconductivity and that are suitable for the analysis of transport properties of a great variety of supercon-
ducting contacts. These boundary conditions are based on a description of an interface in terms of a simple
Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a
T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary condi-
tions are then explicitly shown to reproduce results obtained by conventional quasiclassical boundary condi-
tions, or by boundary conditions based on the scattering approach. The presented formalism is well suited for
the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the
current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias
voltage. As a particular implementation of the boundary conditions, we discuss the use of shot noise for the
measurement of charge transferred in a multiple Andreev reflectidanave superconductors.
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[. INTRODUCTION of the barrier may be significantly different from the bulk
superconducting state and must be properly accounted for.
Electron transport through superconducting junctions isThis is done by introducing boundary conditions accounting
one of the more powerful tools to study properties of thefor hard surfaces and barriers of variable transparency into
superconducting state in a material. For instance, using quahe quasiclassical theory of superconductiéitiLhis theory
siparticle tunneling one may directly probe the spectroscopiprovides a full description of superconducting phenomena
energy gap induced by the pairing of electrbasby looking ~ ranging from inhomogeneous superconductors to supercon-
at the Josephson effects, dc and ac, the macroscopic phasecting phenomena far from equilibrium in the limit of weak
coherence of the superconducting state may be expforedperturbations. Weak in the sense that the external perturba-
Methods of electron transport have successfully been carrieions (magnetic field, variations in the chemical potential,
on to study novel properties of unconventional superconductetc) should be small compared to the Fermi enegyof a
ors such as the heavy fermion systetmsthe highT, long wavelength ¢>\g) compared to the the Fermi wave-
cuprate$® and, lately, SfRuQ,.1°~*?Here the phase sensi- length\¢ and of low frequency £ w<Eg).?* Interfaces and
tivity of this class of probes has been used to map out theurfaces are strong perturbations on the quasiclassical scale
orbital dependence, i.e., the momentum dependence, of tlend must be incorporated into the quasiclassical theory by
magnitude and the phase of the superconducting ordesffective boundary conditions. These are the so-called Zait-
parametef:”® Moving over to the field of mesoscopic super- sev boundary conditioR® with the generalization to mag-
conductivity, electronic transport through various hybrid netically active interfaces by Millis, Rainer, and Satfiighe
structures has been used to study the effects of proximitpoundary conditions provide a formal solution to the prob-
induced superconductivity2° As an example, the ac Jo- lem of a strong perturbation due to interfaces but their highly
sephson effect has been used to resolve individual conduconlinear form is problematic to handle, e.g., these boundary
tion channels in single-atom contaéfsEinally, combining  conditions have spurious solutions which require special
superconducting and magnetic materials a different class afare, in particular in numerical implementations. In a recent
phenomena is emerging from the competition of two orderedset of papers 2°the Zaitsev-Millis-Rainer-Sauls boundary
but usually mutually exclusive states of matté”? Most  conditions have been explicitly solved by projecting out
notable are perhaps the recent experiments showing that tlleese spurious solutions. This is achieved using the pow-
Josephson coupling of two superconductors can be tuned rful Riccati reparametrization of the quasiclassical
the magnetic properties of the material making up the barriepropagators®3-2’
separating the two. In this paper we go back a step and generalize the
In common for the apparently diverse set of experimentZaitsev-Millis-Rainer-Sauls boundary conditions to include a
above is that a large part in the success of extracting detailedider range of contact types using a Hamiltonian
information from measurements is due to the theoretical unapproaci¥?=% In this approach the contact is viewed as a
derstanding of electron transport through superconductingtrong local perturbation or as a strong impurity site rather
contacts. But not only is the correct description of the contacthan as a scattering problem and as such it is incorporated
in itself crucial. Also the superconducting state in the vicinity into the theory via the conventional many-body perturbation
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theory. As it turns out, and this we show explicitly, the re- single strong impurity in the case of a point contact or as a
sulting boundary conditions arrived at reproduce the resultine of strong impurities in the case of an extended contact
of the Zaitsev-Millis-Rainer-Sauls boundary conditions inbetween the two electrodes. Following the work of
the limit of conserved momentum parallel to the interface Thuneberg and co-workéfs*® the single impurity or, in the

On the other hand, the new boundary conditions are morease of the line of impurities following the work of Buch-
general in the sense that the coupling element across th®ltz and Rainet® this strong perturbation may also be in-
interface is a free parameter constrained only by symmetrycorporated into quasiclassical theory vid-matrix equation.
This allows us to describe disordered junctions or junctionsAnticipating the result for thel matrix, the effect of the
where several momentum directions interfere in the transportontact between the two electrodes on the physical quasiclas-
across the interfaces. Another advantage of the presentesital Keldysh-Nambu matrix Green’s function, or propagator
bOtL:]nqafyl Cf”dltl_onsla_ \{\t/h'_CdeG d_etz)morl_stratz by Cg"l{('atr']onéi, in electrodei=(L,R) enters as a source term in the
is their relative simplicity in describing time-dependent phe- : S . -

nomena such as the current-voltage characteristics and trt]réansport equation fogi(pe) along a trajectonpe,
current noise spectra &I-S junctions. Finally, the bound-

ary conditions are stable for numerical computations as they ive- VRgi(Pe) +[ €(Pr) — Ai(Pr).9i(Pe) le

do not generate spurious solutions. They are also readily SN A S(R—R 2

used together with the effective Riccati parametrization of [t (Pr +Pe), G- i (Pe) ] O o) @
the quasiclassical propagators. Here R, is the position of the contact angk is the Fermi

The paper is organized in the following manner: In Sec. Il gocity at pointpe on the Fermi surface. The Green’s func-
we give the energy integration of the Hamiltonian approach. -

and state the resulting boundary conditions. In Sec. Il w 10N g..; IS an intermediate Green's f_u_nctlon obtained by
show how the current through a contact may be calculateaowIng the .hard yvall boun_dary condition .Of the separate
from the boundaryl matrix. In this section we also calculate elgctrodes, € wnhczut taklng the contact. Into accour.n but
the Josephson current resolved in energy and on trajectosing the self-energies andA; evaluated using the physical
for different types of superconductors and for different typespropagatom; , satisfying Eq.(2).

of coupling between the two superconductors. In Sec. IV, we  Our objective is to find the quasiclassiGamatrix t, giv-
discuss the boundary conditions at a finite bias applled ang the source term in the transport Ea) above. The start-
tween two superconductors. This is then applied to the casgg point is a conventional many-body perturbation theory
of two coupledd-wave superconductors. Finally, N Sec. V, for the HamiltonianHT. To proceed we atrtificially enlarge
we apply the theory to calculate current fluctuations of WO, Hilbert space with a “reservoir quantum numbet”, )

coupledd-wave superconductors. and the functions entering are the matrices

Il. DESCRIPTION OF THE APPROACH - éLL éLR ~ -erL -T—LR
The system of study is two semi-infinite superconducting - Gel Grr = Tol Trel
electrodes coupled over some type of interface barrier. Our
approach is to artificially separate the problem into two parts . 0 0
in order to pose a boundary condition for the interface. The é _ Ga 5: ULR
first part consists of calculating the Green’s function of either - 0 (‘;w’R vp. O '

conductor, extending ta: «, respectively, in the presence of

a hard surface ak=0. For this part of the problem, the The matrix elements are the usual Keldysh-Nambu matrices
quasiclassical theofy is our theory of choice. It has been of nonequilibrium superconductivify. Especially, the
shown that strong perturbations, such as rigid walls, may b&reen’s functionss.., andG.. r are the Green’s functions
included into quasiclassical theory by means of effectivefor the uncoupled left and right electrode. The coupling ele-
boundary conditions posed for the quasiclassical Green’ﬁqentslv}mRL betweenL andR are proportional to the unit

function®%*%To couple the two electrodes, from now de- . i in the Keldysh space and in Nambu space adopt
noted left(L) and right R), we assume a phenomenological ha form

Hamiltonian as follows#=®
. ~ v O )
~ ~ ~ ~ ~ U :U = .
Hr=2 ¢/ 1 rCRo+ ChoURLCL, - oy LREFRLT 0 —pf
o
The potentiale, s andv, with U;L:ULR:U’ act as hop- With this, we write theT-matrix equation
ping elements connecting the two electrotlesndR. As we

O
—

<

explain in detail below, the coupling may contain internal T=0+00G,° (©)]
guantum numbers, like momentum or spin, which permit the
modeling of different types of interfaces. The perturbation T T I

=v+v°Gov, (4)

given byI:|T is short ranged £ \<£,) and may be strong
(v~Eg). The local character dfi; allows us to view it as a which together with the Dyson equation
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é=(~v3w+éw°'vl'°éw (5) but may couple different poimﬁ,: and f)’F on the Fermi sur-
faces of the two conductors. The exact form of te ,0r)
=G, +G.o0°G (6)  dependence af g is a degree of freedom in the model that

allows us to consider different types of transport through the

constitutes a closed set of equations that are to be brouglfterface. We can now write down the equations for the qua-
into quasiclassical form. We have given two different ways

of summing the series which correspond either to “dressing”SICI"J‘SSIC";IIt matrix components:
the perturbatiofEgs.(3) and(5)] or to dressing the Green'’s
function [Egs. (4) and (6)]. The two sets of equations are
equivalent and two useful relations,

t, = <5LR®§1@,R®{1RL>;3’F’

+{((VLR® Y ROVRL® goo,L®tLL>r3’F’>l3’F’"

0oG=ToG, and G.oT=Gev, 7 . .. .
, , tRR:<URL®9oc,L®ULR>E>;
follow directly. Here, and above, theproduct is shorthand
for integration or summation over common arguments. Start- +U{0RI O | RV r® o p® Trr) e )n
ing from Eq. (4), using Eq.(6) and the second of the two (VRO Ge L OVLRS G RO trR) )y
relations(7), it is straightforward to get the following closed ©)

set of equations, closed separately for one and each of the tLR:ULR+<<ULR®9w,R®URL®gw,L®tLR>ﬁ’F’>E”F’”
componentsT;; of the T matrix:=*® L L L 5
L trL=VRLT ((VRLO Ger LOULRD Ger RO TRUEL
= oG, R° + oG, r° oG, | ° ,
TR G RVRLE VLR G VR G T where we suppressed the explicit dependence of the func-
Trr=VRL°Gu o0 g+ VR°G.r 190 o G.r o TRR, tions onpe and on time variables. The earlierproduct in
®) Eqg. (8) is replaced by thex product in the quasiclassical
expression. Thex product stands for an integration over a
common time variable together with a normal matrix multi-
plication in the combined Keldysh-Nambu and spin spfce.
A leftover from the¢ integration is the intermediate averag-
The equations above depend only on the Green'’s functioning over position on the Fermi surface as indicated by

G.., andG., g of the two uncoupled systems. Since the full (- - -); = fs: - - dpe. The quasiclassical matrix entering
Green'’s functioréij has been eliminated from tiematrix  into Eq. (2) is the forward scattering limi®

equations there are no Green’s functions with spatial argu- oL

ments in both systems. Together with the short range of ti; =t (Pe,Pe;tit7),

vLRrrL this means that we can directly perform the quasiclasy¢ Eq. (9) and in general it depends on two timetst().

sical ¢ integration on theT-matrix equations and substitute Following Ref. 24, let us summarize the procedure for
the quasiclassical Green's functiogs ; for the full ones calculating the quasiclassical propagators in the presence of
G..;, above. As usual the quasiclassical propagator is dean interface:

T r=VLRT VLR G rROURLGe LT R,

TrL=VRLTURLGw LoV LR G rOTRL -

fined as follows** (i) To find g.., we solve the conventional quasiclassical
1 equations, the Eilenberger equation, or the Usadel equation,
A " P / for the uncoupled electrodes in equilibrium using hard wall
O-.,(Pe L.t") WNFJ dé7sGa (LY, boundary conditions.

where é=v(p—pe) andN¢ is the density of states at the (u) Useg.. to splve the quasiclassica{matrix Eqgs.(9).
Fermi level in the normal state. Notice that, as defined above, (i) Solve the inhomogeneous quasiclassical &.for
the quasiclassical propagators fulfill the normalization conthe physical propagata.

dition g% ;= — 2. In the same way, after the quasiclassical (V) Useg to calculate the “smooth” self-energies and

integration of theT-matrix equation we can replaceandT  A; which enter the quasiclassical equationsgorand forg.
by their Fermi surface limits andf, Finally, all the steps must be repeated until the self-
consistency is achieved.
The whole scheme amounts to a set of linear differential
equations forg.. andg, coupled in a nonlinear way by the
{ij(f)F ,f;'F ,tyt/):WNFTij(p,p/,tyt,);—& t-matrix and the self-energy equations. Substantial simplifi-
cations can be achieved in the case of low transmissive tun-
At the quasiclassical level, the Green’s functionsnel barriers or point contacts. In these cases one can neglect
éx'i(ﬁF 't,t') at the interface in Eq¥8) depend on the po- the influence of the neighboring electrodes in the calculation

sition on the Fermi surfacp: and of two times {;t'). The ~ Of the self-energies and then the equationsgfpand e; and
coupling elements will be assumed to be time independenk; decouple.

Ui (Pe ,PE) = N (P,P) 73,
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We end this section by nOting that USing the Riccati pa-= ;—séR(E)F ;8)’7\'3, we get the energy and trajectory resolved

rametrization the procedure above may be simplified considcyrrent contribution across the contact, evaluated in the left
erably. This follows from that in the Riccati scheme onesyperconductor, as

separates the coherence functions into “scattering in” and
“scattering out” functions?’~?° The intermediate surface
Green’s functions{;w may be constructed by scattering in
functions alone. To compute the initial values for the scatter-

: - : - The lonely first intermediate Green’s functign ;(pg) in Eq.

ing out functions we use the physical propagat@alculated . . JAAFE

f g the interface matrix. | pthy prop hg«’g h (10) explicitly drops out of the current in the angle average
rom the interrace matrix. In this way we have the Neces- gi,eq jt obeys the impenetrable surface boundary condition.

sary information to construct the physical propagajdior So far no reference has been made to the modeling of the
every trajectory. contact and the-matrix elementty . The contact model
depends on the choice of the momentum dependence of the
coupling elements, v}, =v r=v(pPr.Pt). Two extreme

As a first application of the boundary conditions we cal-models for the @F ,,3;) dependence will be considered: a
culate supercurrent through a variety of contacts connecting)ta”y disordered contact; (Pe ﬁfF)zv, i.e., the coupling

two superconducting reservoirs. T_he analysis of this Simpl%cross the contact retains no memory of the momentum di-
transport property will allow us to illustraté€i) the calcula- rection, and a momentum conserving contact with

tion of the current in terms of the-matrix componentsji) v(Pe .PL) =v 8(Pe— pL). Thei-matrix equations for the two

the comparison with well-known results, afid) the flex- . . -
ibility of this formalism for modeling different types of in- types of contact, dropping superfluous indexing, read

terfaces. N P S
A t=v{gr(pPr));.v "+ v{(gr(pPe))s v (pp))st (13
The current contribution from a given trajectquy and at (9r(p >pF (Or(pr >pF (o (b >pF
a given energy may be calculated directly by integrating for the disordered contact and
the transport Eq(2) along the direction given by ¢(pg). o fna o apaaaaa o
This is easily seen as on the considered trajectory away from t(pr) =v0r(Pr)v ' +vdr(PF)V 'OL(PRIt(PE)  (14)

the contact the physical propagatp(pg) coincides with the  for the momentum conserving contact. For either model, the

intermediate propagatag.. i(pr) calculated by the impen-  {-matrix equation above is simple to invert after inserting the

etrable surface condltlgn. In abscvulutAe V|AC|n|Ey ofAthe contact oo rded Green's functiorg(pe) andg, (pe),

only the source term in Eq.2), [t;i(Pr,Pr).0=,i(Pr)]16(R

—R.), contributes and results in a jump in the Green’s func- o IRr(L) frye™ "2

tion. The magnitude of this jump is given by integrating Eq. gPe)ry=| =~ Six2

(2) over the interval ]0.,0,[. Performing the integral results —fry® IR(L)

in the scattered propagator with the phase difference across the junction and the upper

i (lower) signs of the phase refer to the righgft) electrode. In
i+ (Pe)=0i—(Pr) — ——[tii(Pr.Pe).Gi - (PR) ], equilibrium the t-matrix equation is simply an algebraic
VrCOSe; equation in energy space, which can be trivially inverted.
(10 The energy and trajectory resolved current is written

J (Pe) = ImTr{i 5[ 17, ,@E:,L]}]tanr( ﬁ) . 12

Ill. JOSEPHSON CURRENTS

. (19

whereg, is the anglev £(pg) makes with the contact normal.
Note thatg; (pe)=0..i(pr) and to calculatey; , (p;), i.e.,
the propagator along the trajector@:’pb coupled to pg) by
pure surface scattering we must solve t:[;rpj;(f);) along the
path given bva(E)’F). The propagator at the contact, com- t r( e )
Xtan .

iD(frf eX—f fre 1Y)

js(f’F)zlm D o _ ]
Z_D_DgRgL+ E(fRfLeIX_FfoReiIX)

puted in Eq(10), may now be inserted in the current formula 5T (16)
de A A Here we have traded in the coupli tfo -
T — Bl Ko oo\~ pling strengtfor the trans
i eNFj 477iTr<vF(pF)g (Pr32))5 mission coefficienD. The two are simply related ¥s
de - 4|v|?

_ ° /K . —

eNFJ4W| <Je(pF)>pF’ (11) _(1+|U|2)2
with Ng the density of states at the Fermi level in the normal
state. Since the Josephson current is an equilibrium property, A. Josephson current between twa-wave superconductors

the Keldysh Green's-function components @fare in this Assuming that the two electrodes both araave super-
case simply related to the retardéd) and advanced®) ones  conductors, we have the Green’s functions on either side of
as gf=(gR—gMtanhe/2T), and with [gA(pe;e)]"  the contact,

17
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A T € Ae*tixi2 anomalous propagators vanish and therefore the Josephson
9(Pe)r)=— Q| —aeTin2 B , (18 current as wel[see Eq(16)]. In the opposite limit, using the
& momentum-conserving modél4), the Josephson current is

where Q =[A%—¢?]"2 Since thes-wave superconductor is not zero. After inverting thé-matrix equation and evaluating
isotropic it does not matter which model for the coupling,the commutator in Eq(12), we find the energy resolved
Egs.(13) or (14), we choose. Additionally, in the absence of ., rent atEJF,
surface depairing effects it is sufficient to know the bulk
Green’s functiong18) to calculate the current contribution A )
(12). Using Eq.(16) we find the known result that the Jo- Jo(Pr)= tlm[DAbF
sephson current is carried by junction st&té$located at
g;(x,T)=*A(T)[1-Dsirf(x/2)]*2 The total current is
the sum of all contributions and reads

(L tam‘(i) (21
s?—e3(X:Pe) 21)

The sign ofj(pg) is (+) for a mirror and () for a sym-
metric junction. As in the case of thewave junction we
have junction states carrying the Josephson current. The po-

j(T)=eN:D mA(T)siny |-(83(X’T)) (19 sition of these states depends on the type of junction in the
x| 2T following way:
1-Dsirt<
2
. X :

In Eg. (19 it should be noted that a second tempera- sin51, mirror
tureAdeTpendence enters via the the temperature dependent SJ(X;ﬁp)Ii\/Y—?M,SJ (22)
gapA(T). cosy|, symmetric.

B. Josephson current between twal-wave superconductors These junction states were found by Riedel and Badwell

To emphasize the modeling of thee(,p.) dependence of Using a scattering approach and, independently, by B&rash
the coupling across the junction and the importance of using/Sing the Zaitsev boundary conditiofisPerforming the in-
the correct surface Green's functions, we now study thdegral over the energy we write the trajectory resolved
current-phase relation of twdwave superconductors. A re- current-phase relations
alization of ad-wave order parameter iA,;FZA cos 2@:;,F

— a). The magnitude and sign af,_ depends on the posi- ( \/5|A5F|sin)§(

tion on the Fermi circle and this is measured by the angle cos=tanh, ——

¢p. that the anglep: makes with the crystah axis. The i(ﬁF)ZiZW\/Z—)|AbF|< 2 2T

a_mglea tracks the relative junction-tp-crystalaxis or_ienta- \/5| A fklco%

tion. If == 7/4 and specular quasiparticle scattering at the sin*tan

interface is assumed the order parameter seen along a trajec- L 2 2T

tory changes sign at the surface and an Andreev bound state (23

forms at zero energy for every trajectquy.*” We will stick  for the two junction types, the upper being the mirror and the

with the junction realizatiorn=* /4. To incorporate the |ower the symmetric one. The total current is the trajectory
effect of these surface states into the current-phase relat'og(/erage off (pe) multiplied by eN
F F -

one must use the surface Green's functf6fi The main purpose of this and the preceding section was to

QO isoA- efix?2 show that the quasiclassical version of the point contact cou-
§(he) _m ol R™Pe (20) pling of two electrodes is simple to use and can recover
FROT 6 | isgAp eI -9 ) results known in literature. In case of unconventional super-

conducting electrodes results depend in a crucial way on how
where QﬁFz[Ag —&2]Y2. The factorsg discriminates be- the contact is modeled. This gives the Hamiltonian boundary
- condition an advantage in flexibility to the conventional Zait-
sev boundary conditions which coincides with the momen-
tum conserving contadtl4) introduced above.

tween two types of junctiof®*® sg=—1(ar=a,) is re-
ferred to as a symmetric, argg=1(ag=—a) as a mirror
junction. The convention for signs of the phageare as for
the sswave superconductor. It should be said before proceed-
ing that we are neglecting the pair-breaking effect of the  C. Josephson current through a spin active interface
surfacé® and we assume constant order parameters up to the as another illustration of the flexibility of this method we
interface. This is for the sake of simple_illustration and forextend the discussion to currents through spin active inter-
the comparison of analytical results with other boundaryfaces, i.e., interfaces which flip the spin of the incident elec-
conditions. . trons either by spin-dependent scattering within the interface,
Turning to thet-matrix equations and starting with the or by a difference in spin-orbit coupling on either side of the
diffusive model of the point contact, one immediately findsinterface. The general boundary conditions that connect the
that the Josephson current is zero. This follows from theguasiclassical propagators for superconducting metals across
vanishing average(A,;F),ngo. Due to this property the magnetically active interfaces were introduced by Millis,
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Rainer, and Saul® Recently one of the authdrsderived the contact also for the reflecting surfacen this simple

the explicit solution of these boundary conditions for equi-case of a magnetic barrier the resulting spin-dependent
librium Green functions. In order to compare with this solu- propagators can be written in ax4 block-diagonal form,

tion, as in Ref. 29, we shall analyze in this section the Jo-

sephson current through a contact of two isotropivave - - 9(Pr:0) 0
superconductors connected through a small magnetically ac- Iblock(PF; @)= 0 b —@
tive junction. 9(pr; = 0)

In order to accommodate the spin dependence we enlarge g fqy 0 0
our space in comparison with the two preceding subsections ~ o~
in such a way that every quantity is now &2 matrix in _ LRI 0 0 2
spin space. In particular, the coupling elements are spin de- 1 o 0o g, —f| 27)

pendent and may adopt the following general form: ~ ~
0 0 —f gy
~t v O

S (vt Ul
VIRTVRLT| g 1 where v =

), (24)  where the electron and anomalous partgs;®) in the
Uit ULl

upper left corner ofjyoci(Pr ;@) can be written as

Let us stick to the case @&/F/S junction analyzed in Ref.
29. In this casé stands for a small ferromagnetic particle or _ £"%c0g0/2)—Qsin(0/2)
grain. This ferro_magngtic materigl is treated as a partially g”((a)__WsRsin(®/2)+Qcos(®/2)' (28)
transparent barrier which transmits the two spin projections
differently. For spin-active interfaces the different compo- Ae 1(OF X2
nents of theSmatrix, §; are 2<2 spin matrices. To proceed fi(@)=m " ,
further a specificS matrix was chosen in Ref. 29 to model £"sin(@/2) + () cog0/2)
the magnetic barrier o
~ AdOF072
“s=(sll Sio =<r t )exp(ia3), 25) ) =T R i 72) + 0 co3 072
Sa S/ \t—r

. ) ) . for trajectories with pe-n>0). For trajectories with re-
where o notes the Pauli matrices spanning spin space and

1 “Versed momentum, i.e., p{-n<0), the phase factor
parameters t(r) are the usual transmission and reflection R ; ~
coefficients. Thes matrix (25) is one of the simplest choices exf +i(®@=x)/2] for functionsf; () andf (@) goes to
that allows a variable degree of spin mixing at the interfaceXH *1(@*x)/2]. Above, as in the earlier examples, the
and the spin mixing is parametrized by the spin-mixing angle?h@se differencey between the two reservoirs is included
By this constructionS only violates spin conservation and the uppeflower) signs refer to the rightieft) reservoir.
S . S . ' The components of the propagator in the lower right corner
i.e., it does not commute with the quasiparticle spin operator - . i
o. The angle® will be considered as a phenomenological ©f 9biock are simply related to those in the upper left corner
parameter independent of the trajectory directitor more DY the replacemer® ——6. .
details see Tokuyaset al*®). Within the approach presented ~ The angle® induces a mixing of the two otherwise sepa-
in this paper, one can easily model the previGimatrix rated spin bands. It is easy to see that the resulting density of

with a spin-dependent coupling, states at the interface has Andreev bound states inside the
gap. These states are locatecgt )=+ A cos@/2), with
. ~ exp(i®os) 0 +(—) for the spin-up(-down) branch. The existence of the
ULRTURLTV 0 ex{—i®as) |’ (26) subgap states alters the Josephson current-phase relation

radically. The contribution to the current from the energy

Again the quasiclassical surface Green’s functions are ththe trajectoryps, and spin band/ (]) may be calculated
inputs in this approach, i.e., the Green’s functions at the indirectly from expression(16). Keeping in mind that the
terface calculated with impenetrable wall boundary condiphase that enters in E(L6) is the phase difference over the
tions. The spin active boundary conditions must be used atontact we write

PO siny
JEvT(pF”X)"m{DAZ([Q cog®/2) + & sin(@/2)]°— DAZSIN(x/2)

tan)‘( 28—_'_) (29

for the current carried by the spin-up band. The current carphase difference, the original two interface Andreev bound
ried by the spin-down band is given simply as states are split up into four current carrying states located

i (Pe30,X)=].1(Pe;—©,x). At a finite superconducting inside the gap at positions
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D=0.4 and ©=0.71

ilic

0 02 04 06 08 1 0 02 04 06 08 1 . . . ‘ . ‘ ‘
¥/n %/ -1 0 1
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FIG. 1. Zero-temperature supercurrent-phase relation for the
SIF/S contact considered in this section. The four different panels FIG. 2. Energy resolved spectral current for ®é/S contact
correspond t@=0.1, 0.4, 0.8, and 1.0. The spin-mixing an@lds ~ Wwith D=0.4 and®=0.77 (see Fig. 1, right upper panelThis
varied from top to bottom from O tar in steps ofr/10. The dashed figure shows the total spectral current, sum of both spin contribu-
lines indicate the first value dd for which the contacts have be- tions, as a function of energy according to ER9), without the
come ar junction. The supercurrent is normalized in units of the thermal factor. The different curves show the evolution of the four
critical current densityj for the corresponding transmission and current-carrying Andreev bound states inside the gap with the su-
zero spin-mixing angle. perconducting phase difference. The curves are shifted vertically for
clarity.

g;=*A[cog(0/2)— D cog O)sir’(x/2)
) ) i 1 current-voltage characteristics and current fluctuations, espe-
+ \Dsin(@)sin(x/2) V1-Dsinf(x/2) "% (30) cially in those situations in which multiple Andreev reflec-

These states give the total contribution to the current andions dominate the electronic transport. In this section we
their positions change from the tunnel regime;=  show how thei-matrix Eq.(9) can be solved in the case of a

= A cos@/2), toe;= = A cod(x=0)/2] at perfect transmis-  yoltage-biased superconducting contact. It is worth remark-
sion. In Fig. 1 we show the current-phase relation for a set ofyg that the solution described below is rather general and
transparencie®=0.1, 0.4, 0.8, and 1.0. In each panel thejncjudes unconventional superconductor as well as spin ac-
spin-mixing angle® is varied from O tor in steps ofa/10. e interfaces. In this sense, this solution constitutes the ba-
As seen, for each value @ there is a rang® >0, where  gis for the analysis of the ac Josephson effect within the

the junctions arer junctions. For smalD, the critical spin- ¢ asjclassical theory in many situations which were tradi-
mixing angle® is close tom and with mcreag_ngD, 0, tionally out of the scope of this approach.
increases towards/2. The magnitude of the critical current —\y."shail restrict the discussion to the case of a constant

i$ for all but the perfegt transmi;sion junction very asymmet—bias voltage. The extension to the case of a time-dependent
ric for O and 7r junctions. In Fig. 2 we show the energy

resolved spectral curreri29) for D=0.4 and®=0.77 at V?Itgge 's rather strz%[[ghtfgrvtvard. Ats a constant béastap— th
different phase differenceg over the junction. At small pf|1e acfgss a Junc Iqlln eW??}n hwo.supercon uctors, h N
phase differences the junction state initiallysg{ x=0)= phase di erence oscl ates with the time accordmg to the
+ A cos@/2) splits into two states carrying current in oppo- JOSEPNSON relation(t) = o+ wot, wherewo=2eVih is the
site directions. This gives a small but positive current as seefl°S€Phson frequency. This means that every Green's function
in the corresponding current-phase relation in Fig. 1. As théndt-matrix component depends on two time arguments. We
phase difference is increased the two states dispersing witthow in this section how the time convolutions in the
phase towardg =0 from either side eventually cross at  t-matrix equation can be handled.

=0. Above this phase difference, both current-carrying As we shall show in the next section the current can be
states at <0 (¢>0) give current in the same direction and expressed, for instance, only in terms of the advanced and

the magnitude of the current increases abruptly. v
To conclude this section, let us stress that these resul{s?tarded components ¢fg. Thus we concentrate on those

reproduce the results obtained in Ref. 29, showing again thgomponents whose equations can be writtefsee Eq(9)]
versatility of the boundary conditions introduced in this

work. Efg‘(t,t')=aLR+f dtlf dt,o, RGRA(t, 1)

IV. SOLVING THE T-MATRIX EQUATION .~ - . ,
AT AN APPLIED VOLTAGE XURGL Aty t) TRE (1, ). (31)

Probably the main advantage of the present approach liddere, we have written explicitly the timeA convolutions for
in the description of time-dependent transport properties likeéhe sake of clarity and we have omitted theintegrations,
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since they do not affect the time convolutions. In this expreswhere 5, ;=0 (1+ 73)/2, 01y 1m=0"(1— 75)/2, and the
sion every quantity is a ¥4 matrix in Nambu and spin : ’
space, and from now to the end of this section we get rid o h
the superscriptR, A, since the equations for these two com-

atrix coefficientst,, andV, ,, can be expressed in terms of
e Green’s functions of the uncoupled electrodes, as

ponents are formally identical. We also drop thesubindex, . VORn+10 G0 UORni0 fLn
since all propagators in E¢31) are propagators of the sepa- En=| 4 ~ + ,
rated electrodes. The electrode Green’s functions entering v Orn-10fLn U ORn-10GLn

Eq. (31 take the form g;(t,t')=0f(t)g;(t—t")U;(t"),

where =R,L and U;(t) =exfi,()75/2], ¢;(t) being the )}n,n”:_va’nHU(va“” gL*”“), 37)
phase of thejth superconductor. In this expressiagy(t) 0 0

= [9;(e)exp(-iet)del2. 0 0
We use the transformation generatedl]bb(t) to transfer f}n,n—2= —v*?R,n_lvT( ¢ )
the time dependence from the Green’s functions to the hop- 9un-2 Tin-2
ping elements In these equations the shorthand notatipp=g;(e+neV)
for the 2X 2 spin-dependent propagators has been used. No-
2 N / A A tice that the set of linear Eq$36) are analogous to those
tr(tt) =vip(t) ot~ HJ dtlf dtzv R(DGR( describing a tight-binding cr?aﬁn 2Nith neares%—neighbor hop-

. A ) ping parameters, ,,, and V, ,_,. A solution can then be
Rt 9L (i~ )t R(t2, 1), B2 obtained by standard recursive techniqiese Ref. 35 for

where 5.a(t)= 0L (00 UMD =0k () =vexdig)ry2). B2 -

One can easily show that all physical properties of the sys- Finally, thepe dependence of the Green's function in Eq.
tem are invariant under this gauge transformation. Thus wé&36) depends on our choice of the contact m(,)del. Thus, for
shall usually consider the-matrix equation in this gauge, instance, for the disordered case, the Green'’s functions ap-

> : . : earing in Eq(36) are the angle averaged ones, while for the
i.e., in which the hopping elements are time dependent anQ ) .
Case of a momentum conserving contact we must include the

]Egtrae(rallce;trode Green'’s functions only depend on the time d'ffrajectory dependent Green's functiofsee Eqs(13) and
In order to solve Eq(32) it is more convenient to work in (14)].
energy space where it becomes an algebraic equation. Thus
we Fourier transform the matrix with respect to the tempo-
ral arguments As commented in a previous section, the current contri-
bution from a given trajectory may be calculated directly by
. 1 o integrating the transport EqR) along the trajectory over the
tr(tit’)= Zf dff de'e''e'“ Ut r(e,€’). (33 discontinuity given by the source term. Thus the time-
dependent current reads as
It is easy to convince oneself that, due to the special time _ A
dependence of the coupling elements, theatrix admits a J(t)=eNe(j (e 1)), (38)
Fourier expansion of the form

Current at finite voltage

where the contribution of a given trajectory with momentum
. ) ()12 de iettot'y? pr can be written as
tLR(t1t ):; e Ee tLR(6,6+ne\/).

(34) (P ) =Tr{7a[ T Q. 15} (39
This expression can be greatly simplified as follows. First,

the Keldysh components of tiematrix can be eliminated in
favor of the advanced and retarded components using the
. A relation t“=tR@gX®@tA. On the other hand, the four ele-
tir(e,€)=2 tir(e,e+neV)d(e—e'+neV). (35  ments of the enlarged space are not independent. For in-
" stance, it is easy to show the following relationgz= (1
As we show below, the problem of the calculation of the+fLL®é@,L)®{)LR and ERL=5RL®(1+QW,L®ELL). Using
current can be reduced to the evaluation of the Fourier comthese relations it is rather straightforward to show that the

ponentst,,(e) =1, x(e-+neV,e+meV). As can be seen by current can be written &%
Fourier transforming Eq(32), these components fulfill the A I NN Ay Ao A A
following set of algebraic linear equations: j(pe ) =Tr ma(ilr@0r® R © L~ Or @ RO RSB TR

In other words, Fourier transforming E(2) one can show
thathR(e,e’) satisfies the following relation:

. A an e o +gRetR @gfeti—tR oglketi.0gl)],
tnm:l)rwmfsn,mtl_"‘S‘nntnm"'Vn,n—ztn—Z,m"'Vn,n-%—ztn+2,mv REIRLEILEURT IRLOOLO LR TR
(36) (40
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where we have dropped the symbal since from now on in
this section the only Green functions which will appear are
the surface Green functions.

Taking into account the Fourier expansion of thenatrix

[see Eq(34)], the current in a voltage-biased superconduct- §
ing contact adopts finally the form =
i(Pe = 2 jm(Pr)e™, (41)
where the different Fourier current components can be ex-
pressed in terms of the Fourier components of the harmonics
tam(€)=t(e+neV,e+me\) as follows:
(DZ
jm(pF):f de% T 73(tFronOR ntRLAmIE m o)
_gﬁ,otfR,Ongé,ntéL,nm"‘gs,otsL,OngE,ntﬁR,nm /
_ESL,OnéE,nEﬁR,nméé,m)]- (42) -0.5 0 I Il ' : I 3

eV/A

Finally, one can further simplify the expression of the
current harmonicg,,, making use of the general relation  FIG. 3. Zero-temperatureV characteristicsupper paneland
FAR (6):; FRAT (6); which can be deduced from the dlffe_rentlal conductance for different transmissiglwver panel of
RL,nm 3'LR,mn 3 a disordered contact between twibwave superconductors. The
equations of the-matrix components. Thus we can expressmisorientations arer= /4. The conductance is normalized by the
the current just in terms of harmoniﬁgh’fnm, whose calcu- normal-state conductance and the voltage is expressed in units of
lation was detailed above. Equatiof&l) and (42) are the the maximum gap.
basis of the description of the ac Josephson effect in a
voltage-biased superconducting contact, covering unconverfY

tional superconductors and spin active interfaces. interface. o

biased contact, we consider here a junction between twéifferential conductance for different values of the normal
d-wave superconductors. Let us analyze in particular théransmission coefficienD for this disordered model. The
symmetric junction mentioned in Sec. Il B, whose descrip-Only abrupt feature exhibited by the current inside the gap
tion is based on the Green’s functions of E20). Again, we  Occurs in the tunnel regime. The resonant tunnel!ng through
neglect pair breaking effects and assume a constant ordée zero-energy bound states leads to a zero-bias anomaly
parameter up to the interface. The proper self-consisterind the subsequent negative differential conductance. As is
treatment of these junctions will be the subject of a forth-Well known, the position and the height of the peak in the
coming publication. In this contact geometry the zero-energyonductance depends on intrinsic width of zero-energy
bound states in each side of the interface strongly affect thetates.>~ Jt is known that the elastic scattering with bulk
transport through this system. Of course, the results for thémpurities® or a diffusive surface lay&t provide an intrinsic
current depend on the contact model used. Let us first corproadening, which for the case of Born scatterers {§°A,
sider the case of a disordered contact. In this case, the prop@here'=1/27 is the effective pair breaking parameter lo-
gators which enter in the current formula are the angle avercally at the surface. In Fig. 3 we have introduced a small
aged ones. This implies that the anomalous propagatofghenomenological broadening of 1\ to mimic this intrin-
vanish, which means that the current is only due to singlesic effect.

quasiparticle processes. Thus the current formula reduces to Let us now consider the case of a momentum conserving
contact, which is the usual assumption in the Zaitsev bound-

) ol ary conditions. To gain some insight into the final result, in
l(V)=eNFf_xdf7(5’V)[fFD(f_ev)_fFD(E)]’ Fig. 4 we show the contribution of an individual trajectory
(43 E)F. The current and voltage are normalized in units of the
. _ gap seen by this trajectory. As can be observed, the current
where7(e,V) is an energy and voltage dependent transmisexhibits a pronounced subgap structure at voltagas

here(p;(e€))p. (i=L,R) is the local density of states at the

sion coefficient given by =Ap/n, wheren is an integer number, together with the
appearance of negative differential conductaftbes can be
47%v|*(pL(e—eV))p(pr(€))p, seen better in the lower panel of this figur€hese features
T(e,V)= > X 2 (44) are a simple consequence of the resonant tunneling across
[1=[vl(gLle—eV))p(grle))s the zero-energy bound states. Indeed, this typé-df has
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10 IR |
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eV/Ap

FIG. 4. (a) Trajectory resolved zero-temperatur® curves for thed-wave contact with a momentum conserving interface. The different
curves correspond to different values of normal transmission coefficient. In order to see these curves in the same scale the current is
normalized by the normal-state conductarigg which includes the transmission coefficient. Moreover, the current and the voltage are
normalized in units of the momentum-dependent gbpDifferential conductance for a transmissify=0.6. The vertical lines indicate the
positionseV,=A,/n, n=2,...,10 as auide for the eye.

been previously obtained in the context of a junction be-ture is washed out, and it only remains a peak in the conduc-
tween two conventional superconductors coupled by meansnce ateV~A.*°

of a resonant transmissideee Refs. 55 and 56Notice also

the presence of a zero-bias peak, specially clear for low
transparencies, and which is a consequence of the small
broadening introduced in the calculation. The total current is During the last years it has become progressively clearer

obtained by averaging over the different trajectories. Thushat a deep understanding of the electronic transport in me-
the final result depends on the model for the angular depersoscopic systems requires the analysis of quantities which
dence of the normal transmission coefficient. With any reagoes beyond the straightforward measurement of the current-
sonable model most of the features of the trajectory resolvedoltage characteristics. In this sense the noise or time-

current disappear. In particular, the subharmonic gap struaependent current fluctuations has emerged as a very useful

V. CURRENT FLUCTUATIONS
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tool which provides new information on the time correlations G==(BK—GR+BA)/2,
of the current, information about channel distributions, sta-
tistics, and charge of the carrie¥sin the case of supercon-
ducting contacts, most of the activity has been restricted to
the case ob-wave superconductor=®!In the case of un-
conventional superconductors there are only a few theoret'Li_
cal works in the context of hybrid structures like normal- r
metald-wave superconductofé®® We believe that in the
near future the measurement of current fluctuations will be ~ ~
an important tool for a deeper understanding of the symme- K(t,t')=—eToG~(t,t) 70 G (t',1)

try of the order parameter and origin of the superconductivity 48T (L) T G (t )] (49)

in general in the case of high-temperature superconducting ' 8 e

materials. For this reason in this section we describe the Now, in order to eliminate the Green’s functions in favor

i o (48)
G~ =(GK+GR-G)/2.

In order to compactify the notation, we introduce the trace

and the matrixr; which act in the “reservoir” space.
Then, the noise kernel reads

calculation of the noise spectrum within our approach. of the T-matrix elements. we use the relation
The noise is characterized by its spectral density or power ’
spectrumS(w), which is simply the Fourier transform at B> =(1+BRT) B 7o(1+70GA) (50)

frequencyw of the current-current correlation function,
where G (€)=[G2(e)~GE(e)]frp(e) and GZ(e)
~A ~R :
_ F a0t =)/ Ssry o ey ore =[GL(e)—G2(€)[(frp(€) —1). Making use of Eqs(3)-
() f d(t'~tye (") o5(D) + 841) 1(1')) (7) it is easy to show that the following relation holds:

_ j d(t'— e VK (t.t'), (45 TG =TRG S T o(1+ TAGA). (51)

This expression allows us to write the noise kernel as fol-
where sy(t)=J(t) —(J(t)) are the fluctuations in the current. lOWs:
In order to obtain the expression of the current-current cor- g R e v A %A -
relator, we need an expression for the current operator. K(t,t")=—eTrH{[T oG o(1+T%G)](t,t")73
Within our model this operator evaluated at the interface can

be written as follows: X[TRGZo(T+ TG (') + (t—t")}.
(52)
ty=ie> {vLR,,,f:[,,,(t)f:R,U(t)—vRL‘UE:LYU(t)(A:L'U(t)}. As explained in Sec. Il, once we have eliminated the full
7 46) Green’s functions in the noise kernel, we can perform the

quasiclassical¢ integration and then replace the Green'’s

. L . .. functions andT matrix by their quasiclassical limits. Thus
This expression is a simple consequence of the contmur%e noise kernel can be finally expressed as
equation for the current y exp

In order to calculate the noise we need in principle to
evaluate correlators of four field operators. However, we are
working in the framework of a mean-field theory, which
means that we can decouple these correlators in terms of
one-particle Green's functions using Wick’s theorem. With (53
this in mind, it is straightforward to show that the kernel

K(t,t') can be expressed in terms of the interface Keldysh Let us stick with the case of a constant bias voltage ap-
Green’s functions as follows: plied across the interface. In this case, for both contact mod-

els considered in Sec. lll, we can resolve the current fluctua-
tions in trajectories as follows:

K(t,t")=—eTri[1Reg @ (1+ A0 g 1(t,t") s

X[TReg- @ (1+TA0gh) 1t t) + (t—t")}.

K(t,t")=eXTror G (t,t" )0 rGra(t’.t)

— a2 . .
+o RGRrr(LE )URLGLL (T 1) Sl = Ne(S(pe @ D) >4

Bt )P B () where the time-dependent contribution of given trajectory
VRLGR(LE)URLGR(L, with momentumpe can be written as
— v RGRU(tLE )V RGR(t", )] o
F(t—t), (47) 8P 0,0= 2 Sn(pr,w)e™ 0, (55)
where the functions< and G~ are related to the usual Where the different ac components of the noise can be ex-

advanced, retarded, and Keldysh functions in the followingpressed in terms of the Fourier component of thmatrix
way: elements in the following way:
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FIG. 5. Zero-frequency shot noise for the disordered contact = A NS 5 N
considered in Fig. 3. The inset shows the low bias limit of the curve o4
in the tunneling regime?=0.01). 2
o T = 0.1 0.2 0.3 0.4 0.5 0.6
S(Pr @)= — f de >, TH{TG(€)35 (€) eV/A,
X[ 1ot th€)gr(e) T3t R (e+ ) 0] (e+ o) FIG. 6. The upper panel shows the trajectory resolved zero-
" ' frequency shot noise for the momentum conserving case considered
><[15|m+'fﬁn(e+w)aﬁ](s+w)]+(e<—>s+w)}, in Fig. 4. The shot noise and voltage are normalized by the

trajectory-dependent gafp,. In the lower panel one can see the
(56) effective charge defined &3* =S/2ej as a function of voltage for

where again we have dropped the subindein the surface a transmissiorD= 0.6. The vertical lines indicate the position of the
Green’s functions. Notice that in the case of a junction beYoltageseVa=4,/n, n=2,....10.

tween two superconductors, the noise, as the current, oscil- . . .
lates in time with all the harmonics of the Josephson fre different normal transmissions. In the tunneling regime the

quency. Notice also that we have reduced the calculation othot noise isS(V)~2ej(V) and the most remarkable feature
this quantity to the determination of the different Fourier S the zero-bias anomaligee inset of Fig. b In the case of

v . . perfect transmission there is a nonzero noise due to the fact
components of thé-matrix elements, which has been de- hat th S fici is | h )
tailed in Sec. IV. that the transmission coefficiefi{e,V) is less than one in

In order to illustrate the calculation of the current quctua-the gap region. For voltages much greater than the maximum

tions, we consider the contact betwakwave superconduct- iaf bjs(aetiriéé); 1th(v)a)_h)|1h \%Ttlgher?:ki(rar?e the noise b
ors analyzed in the previous section. In particular, we present X 1 the hig ge regime. .
More interesting is the case of the momentum conserving

results for the zero-frequency noise at zero temperadire . ; A :
i.e., the zero-frequency shot noise. At this point, it is Worthmterface. In Fig. 6 we show the contribution of a trajectory

remarking that by zero-frequency noise we mean noise at & momentumpe. As in the case of the current, the shot
frequency lower than any relevant energy scale in our probf0IS€ exhibits a rich subharmonic gap structure, which per-
lem, gap for instance, and high enough to negletnbise® sists almost up to perfect transmission. The shape of the
Again, the final result depends on the type of contact modeflifferent curves can be understood in the same terms as the
under investigation. Let us start discussing the shot noise fd?CS casésee Ref. 60 with the additional ingredient of the

the disordered contact. In this case, due to the vanishing dgsonant tunneling through the zero energy states. Of course,
the anomalous Green’s functions, the whole calculation re@S in the case of the current, most of these features disappear
duces to the determination of the quasiparticle contribution@ftér performing the angular average.

which in terms of the transmission coefficient of E¢4) can In the case of conventional superconductors, the shot
be written as noise has been proposed as a tool for measuring the multiple

charge quanta transferred by the multiple Andreev
) ev reflections®® Obviously we can pose here the same question
S=e NFL deT(e,V)[1-T(e,V)]. (57 in the case of unconventional superconductors. Indeed, a
noise experiment has been recently proposed by Auerbach
This is simply the result that one obtains for a normal contacand Altmart* to discriminate between two possible explana-
with an energy and voltage dependent transmissiotions of the pronounced subharmonic gap structure observed
coefficient®” In Fig. 5 we show the result of Eq57) for  in YBCO edge junction&® namely, usual multiple Andreev
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reflections in ad-wave superconductor and magnon pair cre-siclassical theory via d&-matrix equation, resulting in a dif-
ation in the context of the S®) theory. In this latter case the ferent formulation of boundary conditions. These boundary
observed charge should K& =2ne, wheren=1,2,..., at conditions do not contain any spurious solutions and can be
a voltageeV,=A/n. This result has to be compared with efficiently solved to compute any transport property. The
Q* =neexpected in the traditional view of MAR. In order to broad applicability of this formulation covers cases ranging
contribute to the solution of this puzzle, we show in Fig. 6from conventional superconductors to unconventional ones,
(lower panel the effective chargeQ* =S/2ej, for a trans- clean systems, and diffusive ones. Moreover, it can be ap-
missionD= 0.6. This result confirms the traditional interpre- plied to spin active interfaces and it is well suited for the
tation that in the MAR process of order a chargene is  description of time-dependent phenomena like [thé char-
transferred. Usually, in order to observe a clear quantizatioacteristics and the noise properties of junctions with arbitrary
of the charge one should go to the tunneling regffieyt in ~ transmission and bias voltage. We have illustrated this ap-
this case this is not necessary due to the resonant tunnelifoach with the calculation of Josephson current in a great
through the zero energy states. Notice again that this is theariety of situations. The calculation ¢fV characteristics
contribution of a single trajectory and after angle averagingand the noise has been exemplified with the analysis of a
this clear quantization of the charge with voltage disappears:ontact between twd-wave superconductors. In particular,
The exhaustive analysis of the shot noiseliwave contacts we have briefly discussed the use of shot noise as a possible
will be presented in a forthcoming publication. tool for measuring the charge of the Andreev reflections in
unconventional superconductors.

VI. CONCLUSIONS
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