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Quasiclassical description of transport through superconducting contacts
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We present a formulation of boundary conditions that mimics interfaces for the quasiclassical theory of
superconductivity and that are suitable for the analysis of transport properties of a great variety of supercon-
ducting contacts. These boundary conditions are based on a description of an interface in terms of a simple
Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a
T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary condi-
tions are then explicitly shown to reproduce results obtained by conventional quasiclassical boundary condi-
tions, or by boundary conditions based on the scattering approach. The presented formalism is well suited for
the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the
current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias
voltage. As a particular implementation of the boundary conditions, we discuss the use of shot noise for the
measurement of charge transferred in a multiple Andreev reflection ind-wave superconductors.
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I. INTRODUCTION

Electron transport through superconducting junctions
one of the more powerful tools to study properties of t
superconducting state in a material. For instance, using
siparticle tunneling one may directly probe the spectrosco
energy gap induced by the pairing of electrons1 or by looking
at the Josephson effects, dc and ac, the macroscopic p
coherence of the superconducting state may be explor2

Methods of electron transport have successfully been car
on to study novel properties of unconventional supercond
ors such as the heavy fermion systems,3–5 the high-Tc
cuprates,6–9 and, lately, Sr2RuO4.10–12 Here the phase sens
tivity of this class of probes has been used to map out
orbital dependence, i.e., the momentum dependence, o
magnitude and the phase of the superconducting o
parameter.6,7,9 Moving over to the field of mesoscopic supe
conductivity, electronic transport through various hyb
structures has been used to study the effects of proxim
induced superconductivity.13–15 As an example, the ac Jo
sephson effect has been used to resolve individual con
tion channels in single-atom contacts.16 Finally, combining
superconducting and magnetic materials a different clas
phenomena is emerging from the competition of two orde
but usually mutually exclusive states of matter.17–22 Most
notable are perhaps the recent experiments showing tha
Josephson coupling of two superconductors can be tune
the magnetic properties of the material making up the bar
separating the two.

In common for the apparently diverse set of experime
above is that a large part in the success of extracting deta
information from measurements is due to the theoretical
derstanding of electron transport through superconduc
contacts. But not only is the correct description of the cont
in itself crucial. Also the superconducting state in the vicin
0163-1829/2001/64~10!/104502~14!/$20.00 64 1045
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of the barrier may be significantly different from the bu
superconducting state and must be properly accounted
This is done by introducing boundary conditions account
for hard surfaces and barriers of variable transparency
the quasiclassical theory of superconductivity.23 This theory
provides a full description of superconducting phenome
ranging from inhomogeneous superconductors to super
ducting phenomena far from equilibrium in the limit of wea
perturbations. Weak in the sense that the external pertu
tions ~magnetic field, variations in the chemical potenti
etc.! should be small compared to the Fermi energyEF of a
long wavelength (q@lF) compared to the the Fermi wave
lengthlF and of low frequency (\v!EF).24 Interfaces and
surfaces are strong perturbations on the quasiclassical s
and must be incorporated into the quasiclassical theory
effective boundary conditions. These are the so-called Z
sev boundary conditions25 with the generalization to mag
netically active interfaces by Millis, Rainer, and Sauls.26 The
boundary conditions provide a formal solution to the pro
lem of a strong perturbation due to interfaces but their hig
nonlinear form is problematic to handle, e.g., these bound
conditions have spurious solutions which require spe
care, in particular in numerical implementations. In a rec
set of papers27–29 the Zaitsev-Millis-Rainer-Sauls boundar
conditions have been explicitly solved by projecting o
these spurious solutions. This is achieved using the p
erful Riccati reparametrization of the quasiclassic
propagators.30,31,27

In this paper we go back a step and generalize
Zaitsev-Millis-Rainer-Sauls boundary conditions to include
wider range of contact types using a Hamiltoni
approach.32–35 In this approach the contact is viewed as
strong local perturbation or as a strong impurity site rat
than as a scattering problem and as such it is incorpor
into the theory via the conventional many-body perturbat
©2001 The American Physical Society02-1
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theory. As it turns out, and this we show explicitly, the r
sulting boundary conditions arrived at reproduce the res
of the Zaitsev-Millis-Rainer-Sauls boundary conditions
the limit of conserved momentum parallel to the interfa
On the other hand, the new boundary conditions are m
general in the sense that the coupling element across
interface is a free parameter constrained only by symme
This allows us to describe disordered junctions or junctio
where several momentum directions interfere in the trans
across the interfaces. Another advantage of the prese
boundary conditions, which we demonstrate by calculati
is their relative simplicity in describing time-dependent ph
nomena such as the current-voltage characteristics and
current noise spectra ofS-I -S junctions. Finally, the bound
ary conditions are stable for numerical computations as t
do not generate spurious solutions. They are also rea
used together with the effective Riccati parametrization
the quasiclassical propagators.

The paper is organized in the following manner: In Sec
we give the energy integration of the Hamiltonian approa
and state the resulting boundary conditions. In Sec. III
show how the current through a contact may be calcula
from the boundaryT matrix. In this section we also calculat
the Josephson current resolved in energy and on trajec
for different types of superconductors and for different typ
of coupling between the two superconductors. In Sec. IV,
discuss the boundary conditions at a finite bias applied
tween two superconductors. This is then applied to the c
of two coupledd-wave superconductors. Finally, in Sec.
we apply the theory to calculate current fluctuations of t
coupledd-wave superconductors.

II. DESCRIPTION OF THE APPROACH

The system of study is two semi-infinite superconduct
electrodes coupled over some type of interface barrier.
approach is to artificially separate the problem into two pa
in order to pose a boundary condition for the interface. T
first part consists of calculating the Green’s function of eith
conductor, extending to6`, respectively, in the presence o
a hard surface atx50. For this part of the problem, th
quasiclassical theory23 is our theory of choice. It has bee
shown that strong perturbations, such as rigid walls, may
included into quasiclassical theory by means of effect
boundary conditions posed for the quasiclassical Gre
function.36,24,37To couple the two electrodes, from now d
noted left~L! and right (R), we assume a phenomenologic
Hamiltonian as follows:34,35

ĤT5(
s

ĉL,s
† vLRĉRs1 ĉRs

† vRLĉLs . ~1!

The potentialsvLR andvRL , with vRL
† 5vLR5v, act as hop-

ping elements connecting the two electrodesL andR. As we
explain in detail below, the couplingv may contain internal
quantum numbers, like momentum or spin, which permit
modeling of different types of interfaces. The perturbati
given by ĤT is short ranged (;lF!jo) and may be strong
(v;EF). The local character ofĤT allows us to view it as a
10450
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single strong impurity in the case of a point contact or a
line of strong impurities in the case of an extended cont
between the two electrodes. Following the work
Thuneberg and co-workers38,39 the single impurity or, in the
case of the line of impurities following the work of Buch
holtz and Rainer,36 this strong perturbation may also be in
corporated into quasiclassical theory via aT-matrix equation.
Anticipating the result for theT matrix, the effect of the
contact between the two electrodes on the physical quasic
sical Keldysh-Nambu matrix Green’s function, or propaga
ǧi , in electrodei 5(L,R) enters as a source term in th
transport equation forǧi(p̂F) along a trajectoryp̂F ,

ivF•¹Rǧi~ p̂F!1@ ě i~ p̂F!2Ď i~ p̂F!,ǧi~ p̂F!# ^

5@ ť i i ~ p̂F ,p̂F!,ǧ`,i~ p̂F!# ^d~R2Rc!. ~2!

Here Rc is the position of the contact andvF is the Fermi
velocity at pointp̂F on the Fermi surface. The Green’s fun
tion ǧ`,i is an intermediate Green’s function obtained
solving the hard wall boundary condition of the separ
electrodes, i.e., without taking the contact into account
using the self-energiesě i andĎ i evaluated using the physica
propagatorǧi , satisfying Eq.~2!.

Our objective is to find the quasiclassicalT matrix ť , giv-
ing the source term in the transport Eq.~2! above. The start-
ing point is a conventional many-body perturbation theo
for the HamiltonianĤT . To proceed we artificially enlarge
our Hilbert space with a ‘‘reservoir quantum number’’ (L,R)
and the functions entering are the matrices

Ǧ
˜

5S ǦLL ǦLR

ǦRL ǦRR
D Ť

˜
5S ŤLL ŤLR

ŤRL ŤRR
D ,

Ǧ
˜

`5S Ǧ`,L 0

0 Ǧ`,R
D v̌

˜
5S 0 v̌LR

v̌RL 0
D .

The matrix elements are the usual Keldysh-Nambu matr
of nonequilibrium superconductivity.24 Especially, the
Green’s functionsǦ`,L and Ǧ`,R are the Green’s functions
for the uncoupled left and right electrode. The coupling e
mentsv̌LR,RL betweenL and R are proportional to the uni
matrix in the Keldysh space and in Nambu space ad
the form

v̂LR5 v̂RL
† 5S v 0

0 2v†D .

With this, we write theT-matrix equation

Ť
˜

5 v̌
˜

1 v̌
˜

+Ǧ
˜

`+Ť
˜

~3!

5 v̌
˜

1 v̌
˜

+Ǧ
˜

+ v̌
˜

, ~4!

which together with the Dyson equation
2-2
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Ǧ
˜

5Ǧ
˜

`1Ǧ
˜

`+Ť
˜

+Ǧ
˜

` ~5!

5Ǧ
˜

`1Ǧ
˜

`+ v̌
˜

+Ǧ
˜

~6!

constitutes a closed set of equations that are to be bro
into quasiclassical form. We have given two different wa
of summing the series which correspond either to ‘‘dressin
the perturbation@Eqs.~3! and~5!# or to dressing the Green’
function @Eqs. ~4! and ~6!#. The two sets of equations ar
equivalent and two useful relations,

v̌
˜

+Ǧ
˜

5Ť
˜

+Ǧ
˜

` and Ǧ
˜

`+Ť
˜

5Ǧ
˜

+ v̌
˜

, ~7!

follow directly. Here, and above, the+ product is shorthand
for integration or summation over common arguments. St
ing from Eq. ~4!, using Eq.~6! and the second of the tw
relations~7!, it is straightforward to get the following close
set of equations, closed separately for one and each o
componentsŤi j of the T matrix:35

ŤLL5 v̌LR+Ǧ`,R+ v̌RL1 v̌LR+Ǧ`,R+ v̌RL+Ǧ`,L+ŤLL ,

ŤRR5 v̌RL+Ǧ`,L+ v̌LR1 v̌RL+Ǧ`,L+ v̌LR+Ǧ`,R+ŤRR,
~8!

ŤLR5 v̌LR1 v̌LR+Ǧ`,R+ v̌RL+Ǧ`,L+ŤLR ,

ŤRL5 v̌RL1 v̌RL+Ǧ`,L+ v̌LR+Ǧ`,R+ŤRL .

The equations above depend only on the Green’s funct
Ǧ`,L andǦ`,R of the two uncoupled systems. Since the f
Green’s functionǦi j has been eliminated from theT-matrix
equations there are no Green’s functions with spatial ar
ments in both systems. Together with the short range

v̌LR,RL this means that we can directly perform the quasicl
sical j integration on theT-matrix equations and substitut
the quasiclassical Green’s functionsǧ`,i for the full ones
Ǧ`,i , above. As usual the quasiclassical propagator is
fined as follows:24

ǧ`,i~ p̂F ,t,t8!5
1

pNF
E djť3Ǧ`,i~p,t,t8!,

wherej5vF(p2pF) and NF is the density of states at th
Fermi level in the normal state. Notice that, as defined abo
the quasiclassical propagators fulfill the normalization c
dition ǧ`,i

2 52p2. In the same way, after the quasiclassic

integration of theT-matrix equation we can replacev̌ andŤ

by their Fermi surface limitsv̌ and ť ,

v̌ i j ~ p̂F ,p̂F8 !5pNFv̌ i j ~p,p8!ť3 ,

ť i j ~ p̂F ,p̂F8 ,t,t8!5pNFŤi j ~p,p8,t,t8!ť3 .

At the quasiclassical level, the Green’s functio
ǧ`,i(p̂F ;t,t8) at the interface in Eqs.~8! depend on the po
sition on the Fermi surfacep̂F and of two times (t,t8). The
coupling elements will be assumed to be time independ
10450
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but may couple different pointsp̂F and p̂F8 on the Fermi sur-

faces of the two conductors. The exact form of the (p̂F ,p̂F8 )

dependence ofv̌LR is a degree of freedom in the model th
allows us to consider different types of transport through
interface. We can now write down the equations for the q
siclassicalť -matrix components:

ť LL5^v̌LR^ ǧ`,R^ v̌RL& p̂
F9

1^^v̌LR^ ǧ`,R^ v̌RL^ ǧ`,L ^ ť LL& p̂
F9
& p̂

F-
,

ť RR5^v̌RL^ ǧ`,L ^ v̌LR& p̂
F9

1^^v̌RL^ ǧ`,L ^ v̌LR^ ǧ`,R^ ť RR& p̂
F9
& p̂

F-
,

~9!
ť LR5 v̌LR1^^v̌LR^ ǧ`,R^ v̌RL^ ǧ`,L ^ ť LR& p̂

F9
& p̂

F-
,

ť RL5 v̌RL1^^v̌RL^ ǧ`,L ^ v̌LR^ ǧ`,R^ ť RL& p̂
F9
& p̂

F-
,

where we suppressed the explicit dependence of the fu
tions on p̂F and on time variables. The earlier+ product in
Eq. ~8! is replaced by thê product in the quasiclassica
expression. Thê product stands for an integration over
common time variable together with a normal matrix mul
plication in the combined Keldysh-Nambu and spin spac24

A leftover from thej integration is the intermediate avera
ing over position on the Fermi surface as indicated

^•••& p̂F
5*FS•••dp̂F . The quasiclassicalť matrix entering

into Eq. ~2! is the forward scattering limit,39

ť i j 5 ť i j ~ p̂F ,p̂F ;t,t8!,

of Eq. ~9! and in general it depends on two times (t,t8).
Following Ref. 24, let us summarize the procedure

calculating the quasiclassical propagators in the presenc
an interface:

~i! To find ǧ` , we solve the conventional quasiclassic
equations, the Eilenberger equation, or the Usadel equa
for the uncoupled electrodes in equilibrium using hard w
boundary conditions.

~ii ! Use ǧ` to solve the quasiclassicalť -matrix Eqs.~9!.
~iii ! Solve the inhomogeneous quasiclassical Eq.~2! for

the physical propagatorǧ.
~iv! Use ǧ to calculate the ‘‘smooth’’ self-energiesě i and

Ď i which enter the quasiclassical equations forǧ` and forǧ.
Finally, all the steps must be repeated until the se
consistency is achieved.

The whole scheme amounts to a set of linear differen
equations forǧ` and ǧ, coupled in a nonlinear way by th
ť -matrix and the self-energy equations. Substantial simp
cations can be achieved in the case of low transmissive
nel barriers or point contacts. In these cases one can ne
the influence of the neighboring electrodes in the calculat
of the self-energies and then the equations forǧ` and ě i and
Ď i decouple.
2-3
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We end this section by noting that using the Riccati p
rametrization the procedure above may be simplified con
erably. This follows from that in the Riccati scheme o
separates the coherence functions into ‘‘scattering in’’ a
‘‘scattering out’’ functions.27–29 The intermediate surfac
Green’s functionsǧ` may be constructed by scattering
functions alone. To compute the initial values for the scat
ing out functions we use the physical propagatorǧ calculated
from the interfaceť matrix. In this way we have the nece
sary information to construct the physical propagatorǧ for
every trajectory.

III. JOSEPHSON CURRENTS

As a first application of the boundary conditions we c
culate supercurrent through a variety of contacts connec
two superconducting reservoirs. The analysis of this sim
transport property will allow us to illustrate:~i! the calcula-
tion of the current in terms of theť -matrix components,~ii !
the comparison with well-known results, and~iii ! the flex-
ibility of this formalism for modeling different types of in
terfaces.

The current contribution from a given trajectoryp̂F and at
a given energy« may be calculated directly by integratin
the transport Eq.~2! along the direction given byvF(p̂F).
This is easily seen as on the considered trajectory away f
the contact the physical propagatorǧi(p̂F) coincides with the
intermediate propagatorǧ`,i(p̂F) calculated by the impen
etrable surface condition. In absolute vicinity of the cont
only the source term in Eq.~2!, @ ť i i (p̂F ,p̂F),ǧ`,i(p̂F)#d(R
2Rc), contributes and results in a jump in the Green’s fun
tion. The magnitude of this jump is given by integrating E
~2! over the interval ]02,01@ . Performing the integral result
in the scattered propagator

ǧi 1~ p̂F!5ǧi 2~ p̂F!2
i

vFcosf i
@ ť i i ~ p̂F ,p̂F!,ǧi 2~ p̂F!#,

~10!

wheref i is the anglevF(p̂F) makes with the contact norma
Note thatǧi 2(p̂F)[ǧ`,i(p̂F) and to calculateǧi 1(p̂F8 ), i.e.,

the propagator along the trajectory (p̂F8 ) coupled to (p̂F) by

pure surface scattering we must solve forǧi 1(p̂F8 ) along the

path given byvF(p̂F8 ). The propagator at the contact, com
puted in Eq.~10!, may now be inserted in the current formu

j ~T!5eNFE d«

4p i
Tr^vF~ p̂F!gK~ p̂F ;«!& p̂F

5eNFE d«

4p i
^ j «

K~ p̂F!& p̂F
, ~11!

with NF the density of states at the Fermi level in the norm
state. Since the Josephson current is an equilibrium prop
the Keldysh Green’s-function components ofǧ are in this
case simply related to the retarded~R! and advanced~A! ones
as ĝK5(ĝR2ĝA)tanh(«/2T), and with @ ĝA(p̂F ;«)#†
10450
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5 t̂3ĝR(p̂F ;«) t̂3, we get the energy and trajectory resolv
current contribution across the contact, evaluated in the
superconductor, as

j «
K~ p̂F!5Im@Tr$ i t̂3@ t̂ LL

R ,ĝ`,L
R #%#tanhS «

2TD . ~12!

The lonely first intermediate Green’s functionǧ`,i(p̂F) in Eq.
~10! explicitly drops out of the current in the angle avera
since it obeys the impenetrable surface boundary conditi

So far no reference has been made to the modeling of
contact and thet̂ -matrix elementt̂ LL

R . The contact model
depends on the choice of the momentum dependence o
coupling elements,vRL

† 5vLR5v(p̂F ,p̂F8 ). Two extreme

models for the (p̂F ,p̂F8 ) dependence will be considered:

totally disordered contact,v(p̂F ,p̂F8 )5v, i.e., the coupling
across the contact retains no memory of the momentum
rection, and a momentum conserving contact w

v(p̂F ,p̂F8 )5vd(p̂F2p̂F8 ). The t̂ -matrix equations for the two
types of contact, dropping superfluous indexing, read

t̂5 v̂^ĝR~ p̂F!& p̂F
v̂†1 v̂^ĝR~ p̂F!& p̂F

v̂†^ĝL~ p̂F!& p̂F
t̂ ~13!

for the disordered contact and

t̂~ p̂F!5 v̂ĝR~ p̂F!v̂†1 v̂ĝR~ p̂F!v̂†ĝL~ p̂F! t̂~ p̂F! ~14!

for the momentum conserving contact. For either model,
t̂ -matrix equation above is simple to invert after inserting t
retarded Green’s functionsĝR(p̂F) and ĝL(p̂F),

ĝ~ p̂F!R(L)5S gR(L) f R(L)e
6 ix/2

2 f̃ R(L)e
7 ix/2 2gR(L)

D , ~15!

with the phase differencex across the junction and the upp
~lower! signs of the phase refer to the right~left! electrode. In
equilibrium the t̂ -matrix equation is simply an algebrai
equation in energy space, which can be trivially inverte
The energy and trajectory resolved current is written

j «~ p̂F!5ImS iD~ f Rf̃ Leix2 f L f̃ Re2 ix!

22D2DgRgL1
D
2

~ f Rf̃ Leix1 f L f̃ Re2 ix!D
3tanhS «

2TD . ~16!

Here we have traded in the coupling strengthv for the trans-
mission coefficientD. The two are simply related as34

D5
4uvu2

~11uvu2!2 . ~17!

A. Josephson current between twos-wave superconductors

Assuming that the two electrodes both ares-wave super-
conductors, we have the Green’s functions on either side
the contact,
2-4
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ĝ~ p̂F!R(L)52
p

V S « De6 ix/2

2De7 ix/2 2«
D , ~18!

whereV5@D22«2#1/2. Since thes-wave superconductor i
isotropic it does not matter which model for the couplin
Eqs.~13! or ~14!, we choose. Additionally, in the absence
surface depairing effects it is sufficient to know the bu
Green’s functions~18! to calculate the current contributio
~12!. Using Eq.~16! we find the known result that the Jo
sephson current is carried by junction states40,41 located at
«J(x,T)56D(T)@12D sin2(x/2)#1/2. The total current is
the sum of all contributions and reads

j ~T!5eNFD pD~T!sinx

F12D sin2
x

2G1/2
tanhS «J~x,T!

2T D . ~19!

In Eq. ~19! it should be noted that a second tempe
ture dependence enters via the the temperature depen
gapD(T).

B. Josephson current between twod-wave superconductors

To emphasize the modeling of the (p̂F ,p̂F8 ) dependence o
the coupling across the junction and the importance of us
the correct surface Green’s functions, we now study
current-phase relation of twod-wave superconductors. A re
alization of ad-wave order parameter isD p̂F

5D cos 2(fp̂F

2a). The magnitude and sign ofD p̂F
depends on the posi

tion on the Fermi circle and this is measured by the an
f p̂F

that the anglep̂F makes with the crystalâ axis. The

anglea tracks the relative junction-to-crystalâ-axis orienta-
tion. If a56p/4 and specular quasiparticle scattering at
interface is assumed the order parameter seen along a tr
tory changes sign at the surface and an Andreev bound
forms at zero energy for every trajectoryp̂F .42 We will stick
with the junction realizationa56p/4. To incorporate the
effect of these surface states into the current-phase rela
one must use the surface Green’s functions43,44

ĝ~ p̂F!R(L)5
p

« S V p̂F
isRD p̂F

e6 ix/2

isRD p̂F
e7 ix/2 2V p̂F

D , ~20!

where V p̂F
5@D p̂F

2
2«2#1/2. The factorsR discriminates be-

tween two types of junction:43,45 sR521(aR5aL) is re-
ferred to as a symmetric, andsR51(aR52aL) as a mirror
junction. The convention for signs of the phasex are as for
thes-wave superconductor. It should be said before proce
ing that we are neglecting the pair-breaking effect of
surface46 and we assume constant order parameters up to
interface. This is for the sake of simple illustration and f
the comparison of analytical results with other bound
conditions.

Turning to the t̂ -matrix equations and starting with th
diffusive model of the point contact, one immediately fin
that the Josephson current is zero. This follows from
vanishing average,̂D p̂F

& p̂F
50. Due to this property the
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anomalous propagators vanish and therefore the Josep
current as well@see Eq.~16!#. In the opposite limit, using the
momentum-conserving model~14!, the Josephson current i
not zero. After inverting thet̂ -matrix equation and evaluatin
the commutator in Eq.~12!, we find the energy resolved
current atp̂F ,

j «~ p̂F!56ImFDD p̂F

2 S sinx

«22«J
2~x;p̂F!

D G tanhS «

2TD . ~21!

The sign of j «(p̂F) is (1) for a mirror and (2) for a sym-
metric junction. As in the case of thes-wave junction we
have junction states carrying the Josephson current. The
sition of these states depends on the type of junction in
following way:

«J~x;p̂F!56ADuD p̂F
uH Usin

x

2U, mirror

Ucos
x

2U, symmetric.

~22!

These junction states were found by Riedel and Bagwe47

using a scattering approach and, independently, by Bara45

using the Zaitsev boundary conditions.25 Performing the in-
tegral over the energy we write the trajectory resolv
current-phase relations

j ~ p̂F!562pADuD p̂F
u 5 cos

x

2
tanhS ADuD p̂F

usin
x

2

2T
D

sin
x

2
tanhS ADuD p̂F

ucos
x

2

2T
D

~23!

for the two junction types, the upper being the mirror and
lower the symmetric one. The total current is the trajecto
average ofj (p̂F) multiplied by eNF .

The main purpose of this and the preceding section wa
show that the quasiclassical version of the point contact c
pling of two electrodes is simple to use and can reco
results known in literature. In case of unconventional sup
conducting electrodes results depend in a crucial way on h
the contact is modeled. This gives the Hamiltonian bound
condition an advantage in flexibility to the conventional Za
sev boundary conditions which coincides with the mome
tum conserving contact~14! introduced above.

C. Josephson current through a spin active interface

As another illustration of the flexibility of this method w
extend the discussion to currents through spin active in
faces, i.e., interfaces which flip the spin of the incident el
trons either by spin-dependent scattering within the interfa
or by a difference in spin-orbit coupling on either side of t
interface. The general boundary conditions that connect
quasiclassical propagators for superconducting metals ac
magnetically active interfaces were introduced by Mill
2-5
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Rainer, and Sauls.26 Recently one of the authors29 derived
the explicit solution of these boundary conditions for eq
librium Green functions. In order to compare with this so
tion, as in Ref. 29, we shall analyze in this section the
sephson current through a contact of two isotropics-wave
superconductors connected through a small magnetically
tive junction.

In order to accommodate the spin dependence we enl
our space in comparison with the two preceding subsect
in such a way that every quantity is now a 232 matrix in
spin space. In particular, the coupling elements are spin
pendent and may adopt the following general form:

v̂LR5 v̂RL
† 5S v 0

0 v†D where v5S v↑,↑ v↑,↓
v↓,↑ v↓,↓

D . ~24!

Let us stick to the case ofS/F/S junction analyzed in Ref.
29. In this caseF stands for a small ferromagnetic particle
grain. This ferromagnetic material is treated as a partia
transparent barrier which transmits the two spin projecti
differently. For spin-active interfaces the different comp
nents of theSmatrix, Si j are 232 spin matrices. To procee
further a specificS matrix was chosen in Ref. 29 to mod
the magnetic barrier

Ŝ5S S11 S12

S21 S22
D 5S r t

t 2r D exp~ iQs3!, ~25!

wheres j notes the Pauli matrices spanning spin space
parameters (t,r ) are the usual transmission and reflecti
coefficients. TheSmatrix ~25! is one of the simplest choice
that allows a variable degree of spin mixing at the interfa
and the spin mixing is parametrized by the spin-mixing an
Q. By this constructionŜ only violates spin conservation
i.e., it does not commute with the quasiparticle spin opera
s. The angleQ will be considered as a phenomenologic
parameter independent of the trajectory direction~for more
details see Tokuyasuet al.48!. Within the approach presente
in this paper, one can easily model the previousS matrix
with a spin-dependent coupling,

v̂LR5 v̂RL
† 5vS exp~ iQs3! 0

0 exp~2 iQs3!
D . ~26!

Again the quasiclassical surface Green’s functions are
inputs in this approach, i.e., the Green’s functions at the
terface calculated with impenetrable wall boundary con
tions. The spin active boundary conditions must be use
a
s
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the contact also for the reflecting surface.29 In this simple
case of a magnetic barrier the resulting spin-depend
propagators can be written in a 434 block-diagonal form,

ĝblock~ p̂F ;Q!5S ĝ~ p̂F ;Q! 0

0 ĝ~ p̂F ;2Q!
D

5S g↑↑ f ↑↓ 0 0

f̃ ↓↑ g̃↓↓ 0 0

0 0 g↓↓ 2 f ↓↑
0 0 2 f̃ ↑↓ g̃↑↑

D , ~27!

where the electron and anomalous parts ofĝ(p̂F ;Q) in the
upper left corner ofĝblock(p̂F ;Q) can be written as

g↑↑~Q!52p
«Rcos~Q/2!2V sin~Q/2!

«Rsin~Q/2!1V cos~Q/2!
, ~28!

f ↑↓~Q!5p
De2 i (Q7x)/2

«Rsin~Q/2!1V cos~Q/2!
,

f̃ ↓↑~Q!52p
Dei (Q7x)/2

«Rsin~Q/2!1V cos~Q/2!

for trajectories with (p̂F•n̂.0). For trajectories with re-
versed momentum, i.e., (p̂F•n̂,0), the phase factor
exp@7i(Q7x)/2# for functions f ↑↓(Q) and f̃ ↓↑(Q) goes to
exp@6i(Q6x)/2#. Above, as in the earlier examples, th
phase differencex between the two reservoirs is include
and the upper~lower! signs refer to the right~left! reservoir.
The components of the propagator in the lower right cor
of ĝblock are simply related to those in the upper left corn
by the replacementQ→2Q.

The angleQ induces a mixing of the two otherwise sep
rated spin bands. It is easy to see that the resulting densi
states at the interface has Andreev bound states inside
gap. These states are located at«b,↑(↓)56D cos(Q/2), with
1(2) for the spin-up~-down! branch. The existence of th
subgap states alters the Josephson current-phase re
radically. The contribution to the current from the energy«,
the trajectoryp̂F , and spin band↑(↓) may be calculated
directly from expression~16!. Keeping in mind that the
phase that enters in Eq.~16! is the phase difference over th
contact we write
j «,↑~ p̂F ;Q,x!5ImFDD2S sinx

@V cos~Q/2!1« sin~Q/2!#22DD2sin2~x/2! D G tanhS «

2TD ~29!
nd
ted
for the current carried by the spin-up band. The current c
ried by the spin-down band is given simply a
j «,↓(p̂F ;Q,x)5 j «,↑(p̂F ;2Q,x). At a finite superconducting
r-phase difference, the original two interface Andreev bou
states are split up into four current carrying states loca
inside the gap at positions
2-6
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QUASICLASSICAL DESCRIPTION OF TRANSPORT . . . PHYSICAL REVIEW B 64 104502
«J56D@cos2~Q/2!2D cos~Q!sin2~x/2!

6ADsin~Q!sin~x/2!A12D sin2~x/2!#1/2. ~30!

These states give the total contribution to the current
their positions change from the tunnel regime,«J5
6D cos(Q/2), to «J56D cos@(x6Q)/2# at perfect transmis-
sion. In Fig. 1 we show the current-phase relation for a se
transparenciesD50.1, 0.4, 0.8, and 1.0. In each panel t
spin-mixing angleQ is varied from 0 top in steps ofp/10.
As seen, for each value ofD there is a rangeQ.Qc where
the junctions arep junctions. For smallD, the critical spin-
mixing angleQc is close top and with increasingD, Qc
increases towardsp/2. The magnitude of the critical curren
is for all but the perfect transmission junction very asymm
ric for 0 and p junctions. In Fig. 2 we show the energ
resolved spectral current~29! for D50.4 andQ50.7p at
different phase differencesx over the junction. At small
phase differences the junction state initially at«J(x50)5
6D cos(Q/2) splits into two states carrying current in opp
site directions. This gives a small but positive current as s
in the corresponding current-phase relation in Fig. 1. As
phase difference is increased the two states dispersing
phase towards«50 from either side eventually cross at«
50. Above this phase difference, both current-carry
states at«,0 («.0) give current in the same direction an
the magnitude of the current increases abruptly.

To conclude this section, let us stress that these res
reproduce the results obtained in Ref. 29, showing again
versatility of the boundary conditions introduced in th
work.

IV. SOLVING THE T-MATRIX EQUATION
AT AN APPLIED VOLTAGE

Probably the main advantage of the present approach
in the description of time-dependent transport properties

FIG. 1. Zero-temperature supercurrent-phase relation for
S/F/S contact considered in this section. The four different pan
correspond toD50.1, 0.4, 0.8, and 1.0. The spin-mixing angleQ is
varied from top to bottom from 0 top in steps ofp/10. The dashed
lines indicate the first value ofQ for which the contacts have be
come ap junction. The supercurrent is normalized in units of t
critical current densityj C for the corresponding transmission an
zero spin-mixing angle.
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current-voltage characteristics and current fluctuations, e
cially in those situations in which multiple Andreev refle
tions dominate the electronic transport. In this section
show how theť -matrix Eq.~9! can be solved in the case of
voltage-biased superconducting contact. It is worth rema
ing that the solution described below is rather general
includes unconventional superconductor as well as spin
tive interfaces. In this sense, this solution constitutes the
sis for the analysis of the ac Josephson effect within
quasiclassical theory in many situations which were tra
tionally out of the scope of this approach.

We shall restrict the discussion to the case of a cons
bias voltage. The extension to the case of a time-depen
voltage is rather straightforward. As a constant biasV is ap-
plied across a junction between two superconductors,
phase difference oscillates with the time according to
Josephson relationf(t)5f01v0t, wherev052eV/\ is the
Josephson frequency. This means that every Green’s func
and ť -matrix component depends on two time arguments.
show in this section how the time convolutions in th
ť -matrix equation can be handled.

As we shall show in the next section the current can
expressed, for instance, only in terms of the advanced
retarded components ofť LR . Thus we concentrate on thos
components whose equations can be written as@see Eq.~9!#

t̂ LR
R,A~ t,t8!5 v̂LR1E dt1E dt2v̂LRĝR

R,A~ t,t1!

3 v̂RLĝL
R,A~ t1 ,t2! t̂ LR

R,A~ t2 ,t8!. ~31!

Here, we have written explicitly the time convolutions fo
the sake of clarity and we have omitted thep̂F integrations,

e
s FIG. 2. Energy resolved spectral current for theS/F/S contact
with D50.4 andQ50.7p ~see Fig. 1, right upper panel!. This
figure shows the total spectral current, sum of both spin contri
tions, as a function of energy according to Eq.~29!, without the
thermal factor. The different curves show the evolution of the fo
current-carrying Andreev bound states inside the gap with the
perconducting phase difference. The curves are shifted vertically
clarity.
2-7
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since they do not affect the time convolutions. In this expr
sion every quantity is a 434 matrix in Nambu and spin
space, and from now to the end of this section we get rid
the superscriptsR,A, since the equations for these two com
ponents are formally identical. We also drop the` subindex,
since all propagators in Eq.~31! are propagators of the sep
rated electrodes. The electrode Green’s functions ente
Eq. ~31! take the form ĝ j (t,t8)5Û j

†(t)ĝ j (t2t8)Û j (t8),

where j 5R,L and Û j (t)5exp@ifi(t)t̂3/2#, f j (t) being the
phase of thej th superconductor. In this expression,ĝ j (t)
5* ĝ j (e)exp(2iet)de/2p.

We use the transformation generated byÛ j (t) to transfer
the time dependence from the Green’s functions to the h
ping elements

t̂ LR~ t,t8!5 v̂LR~ t !d~ t2t8!1E dt1E dt2v̂LR~ t !ĝR~ t

2t1!v̂RL~ t1!ĝL~ t12t2! t̂ LR~ t2 ,t8!, ~32!

where v̂LR(t)5ÛL(t) v̂LRÛR
†(t)5 v̂RL

† (t)5vexp@if(t)t̂3/2#.
One can easily show that all physical properties of the s
tem are invariant under this gauge transformation. Thus
shall usually consider thet̂ -matrix equation in this gauge
i.e., in which the hopping elements are time dependent
the electrode Green’s functions only depend on the time
ference.

In order to solve Eq.~32! it is more convenient to work in
energy space where it becomes an algebraic equation.
we Fourier transform thet̂ matrix with respect to the tempo
ral arguments

t̂ LR~ t,t8!5
1

2pE deE de8e2 i etei e8t8 t̂ LR~e,e8!. ~33!

It is easy to convince oneself that, due to the special t
dependence of the coupling elements, thet̂ matrix admits a
Fourier expansion of the form

t̂ LR~ t,t8!5(
n

einf(t8)/2E de

2p
e2 i e(t2t8) t̂ LR~e,e1neV!.

~34!

In other words, Fourier transforming Eq.~32! one can show
that t̂ LR(e,e8) satisfies the following relation:

t̂ LR~e,e8!5(
n

t̂ LR~e,e1neV!d~e2e81neV!. ~35!

As we show below, the problem of the calculation of t
current can be reduced to the evaluation of the Fourier c
ponentst̂ nm(e)[ t̂ LR(e1neV,e1meV). As can be seen by
Fourier transforming Eq.~32!, these components fulfill the
following set of algebraic linear equations:

t̂ nm5 v̂nmdn,m611 Ênnt̂ nm1V̂n,n22 t̂ n22,m1V̂n,n12 t̂ n12,m ,
~36!
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where v̂m21,m5v(1̂1 t̂3)/2, v̂m11,m5v†(1̂2 t̂3)/2, and the
matrix coefficientsÊnn andV̂n,m can be expressed in terms o
the Green’s functions of the uncoupled electrodes, as

Ênn5S vgR,n11v†gL,n vgR,n11v†f L,n

v†gR,n21v f̃ L,n v†gR,n21vgL,n
D ,

V̂n,n1252v f R,n11vS f̃ L,n12 gL,n12

0 0
D , ~37!

V̂n,n2252v† f̃ R,n21v†S 0 0

gL,n22 f L,n22
D .

In these equations the shorthand notationgi ,n5gi(e1neV)
for the 232 spin-dependent propagators has been used.
tice that the set of linear Eqs.~36! are analogous to thos
describing a tight-binding chain with nearest-neighbor ho
ping parametersV̂n,n12 and V̂n,n22. A solution can then be
obtained by standard recursive techniques~see Ref. 35 for
details!.

Finally, thep̂F dependence of the Green’s function in E
~36! depends on our choice of the contact model. Thus,
instance, for the disordered case, the Green’s functions
pearing in Eq.~36! are the angle averaged ones, while for t
case of a momentum conserving contact we must include
trajectory dependent Green’s functions@see Eqs.~13! and
~14!#.

Current at finite voltage

As commented in a previous section, the current con
bution from a given trajectory may be calculated directly
integrating the transport Eq.~2! along the trajectory over the
discontinuity given by the source term. Thus the tim
dependent current reads as

j ~ t !5eNF^ j ~ p̂F ,t !& p̂F
, ~38!

where the contribution of a given trajectory with momentu
p̂F can be written as

j ~ p̂F ,t !5Tr$t̂3@ ť LL ,ǧ`,L# ^

K %. ~39!

This expression can be greatly simplified as follows. Fir
the Keldysh components of theť matrix can be eliminated in
favor of the advanced and retarded components using
relation t̃ K5 t̃ R

^ g̃`
K

^ t̃ A. On the other hand, the four ele
ments of the enlarged space are not independent. Fo
stance, it is easy to show the following relations:ť LR5(1
1 ť LL ^ ǧ`,L) ^ v̌LR and ť RL5 v̌RL^ (11ǧ`,L ^ ť LL). Using
these relations it is rather straightforward to show that
current can be written as35

j ~ p̂F ,t !5Tr@ t̂3~ t̂ LR
R

^ ĝR
K

^ t̂ RL
A

^ ĝL
A2ĝL

R
^ t̂ LR

R
^ ĝR

K
^ t̂ RL

A

1ĝR
R

^ t̂ RL
R

^ ĝL
K

^ t̂ LR
A 2 t̂ RL

R
^ ĝL

K
^ t̂ LR

A
^ ĝR

A!#,

~40!
2-8
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where we have dropped the symbol`, since from now on in
this section the only Green functions which will appear a
the surface Green functions.

Taking into account the Fourier expansion of thet̂ matrix
@see Eq.~34!#, the current in a voltage-biased supercondu
ing contact adopts finally the form

j ~ p̂F ,t !5 (
m52`

`

j m~ p̂F!eimf(t), ~41!

where the different Fourier current components can be
pressed in terms of the Fourier components of the harmo
t̂ nm(e)[ t̂ (e1neV,e1meV) as follows:

j m~ p̂F!5E de(
n

Tr@ t̂3~ t̂ LR,0n
R ĝR,n

K t̂RL,nm
A ĝL,m

A

2ĝL,0
R t̂ LR,0n

R ĝR,n
K t̂RL,nm

A 1ĝR,0
R t̂RL,0n

R ĝL,n
K t̂ LR,nm

A

2 t̂ RL,0n
R ĝL,n

K t̂ LR,nm
A ĝR,m

A !#. ~42!

Finally, one can further simplify the expression of th
current harmonicsj m , making use of the general relatio
t̂ RL,nm
A,R (e)5 t̂3 t̂ LR,mn

R,A† (e) t̂3, which can be deduced from th

equations of thet̂ -matrix components. Thus we can expre
the current just in terms of harmonicst̂ LR,nm

R,A , whose calcu-
lation was detailed above. Equations~41! and ~42! are the
basis of the description of the ac Josephson effect i
voltage-biased superconducting contact, covering uncon
tional superconductors and spin active interfaces.

In order to illustrate our approach in the case of a volta
biased contact, we consider here a junction between
d-wave superconductors. Let us analyze in particular
symmetric junction mentioned in Sec. III B, whose descr
tion is based on the Green’s functions of Eq.~20!. Again, we
neglect pair breaking effects and assume a constant o
parameter up to the interface. The proper self-consis
treatment of these junctions will be the subject of a for
coming publication. In this contact geometry the zero-ene
bound states in each side of the interface strongly affect
transport through this system. Of course, the results for
current depend on the contact model used. Let us first c
sider the case of a disordered contact. In this case, the pr
gators which enter in the current formula are the angle a
aged ones. This implies that the anomalous propaga
vanish, which means that the current is only due to sing
quasiparticle processes. Thus the current formula reduce

j ~V!5eNFE
2`

`

deT~e,V!@ f FD~e2eV!2 f FD~e!#,

~43!

whereT(e,V) is an energy and voltage dependent transm
sion coefficient given by

T~e,V!5
4p2uvu2^rL~e2eV!& p̂F

^rR~e!& p̂F

u12uvu2^gL~e2eV!& p̂F
^gR~e!& p̂F

u2
, ~44!
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where^r i(e)& p̂F
( i 5L,R) is the local density of states at th

interface.
In Fig. 3 we show the current-voltage characteristics a

differential conductance for different values of the norm
transmission coefficientD for this disordered model. The
only abrupt feature exhibited by the current inside the g
occurs in the tunnel regime. The resonant tunneling thro
the zero-energy bound states leads to a zero-bias ano
and the subsequent negative differential conductance. A
well known, the position and the height of the peak in t
conductance depends on intrinsic width of zero-ene
states.49–52 It is known that the elastic scattering with bu
impurities53 or a diffusive surface layer54 provide an intrinsic
broadening, which for the case of Born scatterers is}AGD,
whereG51/2t is the effective pair breaking parameter l
cally at the surface. In Fig. 3 we have introduced a sm
phenomenological broadening of 1022D to mimic this intrin-
sic effect.

Let us now consider the case of a momentum conserv
contact, which is the usual assumption in the Zaitsev bou
ary conditions. To gain some insight into the final result,
Fig. 4 we show the contribution of an individual trajecto
p̂F . The current and voltage are normalized in units of t
gap seen by this trajectory. As can be observed, the cur
exhibits a pronounced subgap structure at voltageseV
5Dp /n, where n is an integer number, together with th
appearance of negative differential conductance~this can be
seen better in the lower panel of this figure!. These features
are a simple consequence of the resonant tunneling ac
the zero-energy bound states. Indeed, this type ofI -V has

FIG. 3. Zero-temperatureI -V characteristics~upper panel! and
differential conductance for different transmissions~lower panel! of
a disordered contact between twod-wave superconductors. Th
misorientations area5p/4. The conductance is normalized by th
normal-state conductance and the voltage is expressed in uni
the maximum gapD.
2-9
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FIG. 4. ~a! Trajectory resolved zero-temperatureI -V curves for thed-wave contact with a momentum conserving interface. The differ
curves correspond to different values of normal transmission coefficient. In order to see these curves in the same scale the
normalized by the normal-state conductanceGN which includes the transmission coefficient. Moreover, the current and the voltag
normalized in units of the momentum-dependent gap.~b! Differential conductance for a transmissionD50.6. The vertical lines indicate the
positionseVn5Dp /n, n52, . . . ,10 as aguide for the eye.
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been previously obtained in the context of a junction b
tween two conventional superconductors coupled by me
of a resonant transmission~see Refs. 55 and 56!. Notice also
the presence of a zero-bias peak, specially clear for
transparencies, and which is a consequence of the s
broadening introduced in the calculation. The total curren
obtained by averaging over the different trajectories. Th
the final result depends on the model for the angular dep
dence of the normal transmission coefficient. With any r
sonable model most of the features of the trajectory reso
current disappear. In particular, the subharmonic gap st
10450
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w
all
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d

c-

ture is washed out, and it only remains a peak in the cond
tance ateV'D.49

V. CURRENT FLUCTUATIONS

During the last years it has become progressively clea
that a deep understanding of the electronic transport in
soscopic systems requires the analysis of quantities w
goes beyond the straightforward measurement of the curr
voltage characteristics. In this sense the noise or tim
dependent current fluctuations has emerged as a very u
2-10
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tool which provides new information on the time correlatio
of the current, information about channel distributions, s
tistics, and charge of the carriers.57 In the case of supercon
ducting contacts, most of the activity has been restricted
the case ofs-wave superconductors.58–61 In the case of un-
conventional superconductors there are only a few theo
cal works in the context of hybrid structures like norma
metal/d-wave superconductors.62,63 We believe that in the
near future the measurement of current fluctuations will
an important tool for a deeper understanding of the sym
try of the order parameter and origin of the superconductiv
in general in the case of high-temperature superconduc
materials. For this reason in this section we describe
calculation of the noise spectrum within our approach.

The noise is characterized by its spectral density or po
spectrumS(v), which is simply the Fourier transform a
frequencyv of the current-current correlation function,

S~v!5E d~ t82t !eiv(t82t)^d Ĵ~ t8!d Ĵ~ t !1d Ĵ~ t !d Ĵ~ t8!&

[E d~ t82t !eiv(t82t)K~ t,t8!, ~45!

whered Ĵ(t)5 Ĵ(t)2^ Ĵ(t)& are the fluctuations in the curren
In order to obtain the expression of the current-current c
relator, we need an expression for the current opera
Within our model this operator evaluated at the interface
be written as follows:

Ĵ~ t !5 ie(
s

$vLR,sĉL,s
† ~ t !ĉR,s~ t !2vRL,sĉR,s

† ~ t !ĉL,s~ t !%.

~46!

This expression is a simple consequence of the contin
equation for the current.33

In order to calculate the noise we need in principle
evaluate correlators of four field operators. However, we
working in the framework of a mean-field theory, whic
means that we can decouple these correlators in term
one-particle Green’s functions using Wick’s theorem. W
this in mind, it is straightforward to show that the kern
K(t,t8) can be expressed in terms of the interface Keld
Green’s functions as follows:

K~ t,t8!5e2$Tr@ v̂RLĜLL
, ~ t,t8!v̂LRĜRR

. ~ t8,t !

1 v̂LRĜRR
, ~ t,t8!v̂RLĜLL

. ~ t8,t !

2 v̂RLĜLR
, ~ t,t8!v̂RLĜLR

. ~ t8,t !

2 v̂LRĜRL
, ~ t,t8!v̂LRĜRL

. ~ t8,t !#

1~ t→t8!%, ~47!

where the functionsĜ, and Ĝ. are related to the usua
advanced, retarded, and Keldysh functions in the follow
way:
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Ĝ,5~ĜK2ĜR1ĜA!/2,
~48!

Ĝ.5~ĜK1ĜR2ĜA!/2.

In order to compactify the notation, we introduce the tra
Tr and the matrixt̃3 which act in the ‘‘reservoir’’ space.
Then, the noise kernel reads

K~ t,t8!52e2Tr̃@ ṽG̃,~ t,t8!t̃3ṽG̃.~ t8,t !

1 ṽG̃.~ t,t8!t̃3ṽG̃,~ t8,t !#. ~49!

Now, in order to eliminate the Green’s functions in fav
of the T-matrix elements, we use the relation

G̃,,.5~ 1̃1G̃R+ ṽ !+G̃`
,,.+~ 1̃1 ṽ+G̃A!, ~50!

where G̃`
,(e)5@G̃`

A(e)2G̃`
R(e)# f FD(e) and G̃`

.(e)

5@G̃`
A(e)2G̃`

R(e)#( f FD(e)21). Making use of Eqs.~3!–
~7! it is easy to show that the following relation holds:

ṽ+G̃,,.5T̃R+G̃`
,,.+~ 1̃1T̃A+G̃`

A!. ~51!

This expression allows us to write the noise kernel as
lows:

K~ t,t8!52e2Tr̃$@ T̃R+G̃`
,+~ 1̃1T̃A+G̃`

A!#~ t,t8!t̃3

3@ T̃R+G̃`
.+~ 1̃1T̃A+G̃`

A!#~ t8,t !1~ t→t8!%.

~52!

As explained in Sec. II, once we have eliminated the f
Green’s functions in the noise kernel, we can perform
quasiclassicalj integration and then replace the Green
functions andT matrix by their quasiclassical limits. Thu
the noise kernel can be finally expressed as

K~ t,t8!52e2Tr̃$@ t̃ R
^ g̃`

,
^ ~ 1̃1 t̃ A

^ g̃`
A!#~ t,t8!t̃3

3@ t̃ R
^ g̃`

.
^ ~ 1̃1 t̃ A

^ g̃`
A!#~ t8,t !1~ t→t8!%.

~53!

Let us stick with the case of a constant bias voltage
plied across the interface. In this case, for both contact m
els considered in Sec. III, we can resolve the current fluct
tions in trajectories as follows:

S~v,t !5e2NF^S~ p̂F ,v,t !& p̂F
, ~54!

where the time-dependent contribution of given trajecto
with momentump̂F can be written as

S~ p̂F ,v,t !5 (
m52`

`

Sm~ p̂F ,v!eimf(t), ~55!

where the different ac components of the noise can be
pressed in terms of the Fourier component of thet̂ -matrix
elements in the following way:
2-11
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Sm~ p̂F ,v!52E de (
n,k,l

Tr̃$ t̃ 0n
R ~e!g̃n

,~e!

3@ 1̃dnk1 t̃ nk
A ~e!g̃k

A~e!#t̃3 t̃ k,l
R ~e1v!g̃l

.~e1v!

3@ 1̃d lm1 t̃ lm
A ~e1v!g̃m

A~e1v!#1~e↔e1v!%,

~56!

where again we have dropped the subindex` in the surface
Green’s functions. Notice that in the case of a junction
tween two superconductors, the noise, as the current, o
lates in time with all the harmonics of the Josephson f
quency. Notice also that we have reduced the calculatio
this quantity to the determination of the different Four
components of theť -matrix elements, which has been d
tailed in Sec. IV.

In order to illustrate the calculation of the current fluctu
tions, we consider the contact betweend-wave superconduct
ors analyzed in the previous section. In particular, we pres
results for the zero-frequency noise at zero temperaturS,
i.e., the zero-frequency shot noise. At this point, it is wo
remarking that by zero-frequency noise we mean noise
frequency lower than any relevant energy scale in our pr
lem, gap for instance, and high enough to neglect 1/f noise.65

Again, the final result depends on the type of contact mo
under investigation. Let us start discussing the shot noise
the disordered contact. In this case, due to the vanishin
the anomalous Green’s functions, the whole calculation
duces to the determination of the quasiparticle contributi
which in terms of the transmission coefficient of Eq.~44! can
be written as

S5e2NFE
0

eV

deT~e,V!@12T~e,V!#. ~57!

This is simply the result that one obtains for a normal cont
with an energy and voltage dependent transmiss
coefficient.57 In Fig. 5 we show the result of Eq.~57! for

FIG. 5. Zero-frequency shot noise for the disordered con
considered in Fig. 3. The inset shows the low bias limit of the cu
in the tunneling regime (D50.01).
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different normal transmissions. In the tunneling regime
shot noise isS(V)'2e j(V) and the most remarkable featu
is the zero-bias anomaly~see inset of Fig. 5!. In the case of
perfect transmission there is a nonzero noise due to the
that the transmission coefficientT(e,V) is less than one in
the gap region. For voltages much greater than the maxim
gap, T(e@D,D51.0)→1, which makes the noise atD
51.0 saturate in the high voltage regime.

More interesting is the case of the momentum conserv
interface. In Fig. 6 we show the contribution of a trajecto
of momentump̂F . As in the case of the current, the sh
noise exhibits a rich subharmonic gap structure, which p
sists almost up to perfect transmission. The shape of
different curves can be understood in the same terms as
BCS case~see Ref. 60!, with the additional ingredient of the
resonant tunneling through the zero energy states. Of cou
as in the case of the current, most of these features disap
after performing the angular average.

In the case of conventional superconductors, the s
noise has been proposed as a tool for measuring the mul
charge quanta transferred by the multiple Andre
reflections.60 Obviously we can pose here the same quest
in the case of unconventional superconductors. Indeed
noise experiment has been recently proposed by Auerb
and Altman64 to discriminate between two possible explan
tions of the pronounced subharmonic gap structure obse
in YBCO edge junctions,66 namely, usual multiple Andreev

ct
e

FIG. 6. The upper panel shows the trajectory resolved ze
frequency shot noise for the momentum conserving case consid
in Fig. 4. The shot noise and voltage are normalized by
trajectory-dependent gapDp . In the lower panel one can see th
effective charge defined asQ* 5S/2e j as a function of voltage for
a transmissionD50.6. The vertical lines indicate the position of th
voltageseVn5Dp /n, n52, . . .,10.
2-12
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reflections in ad-wave superconductor and magnon pair c
ation in the context of the SO~5! theory. In this latter case th
observed charge should beQ* 52ne, wheren51,2, . . . , at
a voltageeVn5D/n. This result has to be compared wi
Q* 5ne expected in the traditional view of MAR. In order t
contribute to the solution of this puzzle, we show in Fig.
~lower panel! the effective charge,Q* 5S/2e j, for a trans-
missionD50.6. This result confirms the traditional interpr
tation that in the MAR process of ordern a chargene is
transferred. Usually, in order to observe a clear quantiza
of the charge one should go to the tunneling regime,60 but in
this case this is not necessary due to the resonant tunn
through the zero energy states. Notice again that this is
contribution of a single trajectory and after angle averag
this clear quantization of the charge with voltage disappe
The exhaustive analysis of the shot noise ind-wave contacts
will be presented in a forthcoming publication.

VI. CONCLUSIONS

We have shown how a Hamiltonian approach and the q
siclassical theory of superconductivity can be combined
give a powerful tool for the analysis of electronic and tran
port properties of superconducting junctions. In particu
we have demonstrated that a simple Hamiltonian descrip
of an interface can be used to model a great variety of c
tacts. This Hamiltonian description can be brought into q
-
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el,

.

G

.

,
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siclassical theory via aT-matrix equation, resulting in a dif-
ferent formulation of boundary conditions. These bound
conditions do not contain any spurious solutions and can
efficiently solved to compute any transport property. T
broad applicability of this formulation covers cases rang
from conventional superconductors to unconventional on
clean systems, and diffusive ones. Moreover, it can be
plied to spin active interfaces and it is well suited for t
description of time-dependent phenomena like theI -V char-
acteristics and the noise properties of junctions with arbitr
transmission and bias voltage. We have illustrated this
proach with the calculation of Josephson current in a gr
variety of situations. The calculation ofI -V characteristics
and the noise has been exemplified with the analysis o
contact between twod-wave superconductors. In particula
we have briefly discussed the use of shot noise as a pos
tool for measuring the charge of the Andreev reflections
unconventional superconductors.
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