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We present a comprehensive theoretical analysis of the dc transport properties of superconducting point
contacts. We determine the full-counting statistics for these junctions, which allows us to calculate not only the
current or the noise, but all the cumulants of the current distribution. We show how the knowledge of the
statistics of charge transfer provides an unprecedented level of understanding of the different transport prop-
erties for a great variety of situations. We illustrate our results with the analysis of junctions between BCS
superconductors, contacts between superconductors with pair-breaking mechanisms, and short diffusive
bridges. We also discuss the temperature dependence of the different cumulants and show the differences with
normal contacts.
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I. INTRODUCTION

The current-voltage(I-V ) characteristics of superconduct-
ing contacts have been the subject of investigation during the
last four decades. The first experimental analyses were per-
formed in tunnel junctions.1 In this case the current inside the
superconducting gap is suppressed, and the results can be
accurately described with the BCS theory.2 However, very
often a significant current is observed in the subgap region,
which cannot be explained with the simple tunnel theory.
The first anomalies were reported by Taylor and Burstein3

who noticed a small onset in the current when the applied
voltageV was equal to the energy gapD /e, in a tunneling
experiment between two equal superconductors. Relatively
soon afterward it was apparent4,5 that not only is there an
anomaly in the current ateV=D, but, in fact, at all submul-
tiples 2D /n, wheren is an integer. This set of anomalies is
referred to assubharmonic gap structure(SGS), and its tem-
perature and magnetic field dependence were thoroughly
characterized.6–8

The first theoretical attempt to explain the SGS was done
by Schrieffer and Wilkins,9 who noticed that if two electrons
could tunnel simultaneously, this process would become en-
ergetically possible ateV=D and cause the structure in the
I-V observed by Taylor and Burstein.3. Within this multipar-
ticle tunneling theorythe origin of the SGS would be the
occurrence of multiple processes in whichn quasiparticles
simultaneously cross the contact barrier. The original pertur-
bative analysis of this theory has serious problems. In par-
ticular, the current was found to diverge at certain voltage,
which avoids calculation of meaningful I-Vs within this ap-
proach. A second explanation was put forward by
Werthamer,10 who suggested that the SGS could be caused
by a self-detection of the ac Josephson effect. The main
problem with this explanation is that it invokes two different
mechanisms for the odd and even terms, while the experi-
mental current jumps are identical for both series. In 1982
Klapwijk, Blonder, and Tinkham11 introduced the concept of
multiple Andreev reflection(MAR). In this process a quasi-

particle undergoes a cascade of Andreev reflections in the
contact interface. They showed that a MAR in which a qua-
siparticle crosses the interfacen times becomes possible at a
voltage eV=2D /n, which explains naturally the SGS. The
quantitative analysis of the I-Vs was based on a semiclassical
approach, which fails away from perfect transparency.12,13A
few years later, Arnold reported the first fully microscopic
calculation of I-Vs based on a Green’s function approach.14

The theoretical discussion was finally clarified with the
advent of modern mesoscopic theories. Using the scattering
formalism15–17 and the so-called Hamiltonian approach,18

different authors reported a complete analysis of the dc and
ac Josepshon effect in point contacts. These theories clearly
showed that the MARs are responsible of the subgap trans-
port in these systems. They also showed that the multipar-
ticle tunneling of Schrieffer and Wilkins and the MARs are
indeed the same mechanism. The new microscopic theories
have also allowed the calculation of a series of properties,
such as resonant tunneling19,20 shot noise,21,22 and the Sha-
piro steps.23

From the experiment point of view, the main problem has
always been the proper characterization of the interface of
the superconducting contact. Uncertainties in the interfaces
properties often avoid a proper comparison between theory
and experiment. The situation has considerably improved
with the appearance of the metallic atomic-sized contacts,
which can be produced by means of scanning-tunneling-
microscope and break-junction techniques.24–32 These
nanowires have turned out to be ideal systems to test the
modern transport theories in mesoscopic superconductors.
Thus, for instance, Scheer and coworkers28 found a quanti-
tative agreement between the measurements of the current-
voltage characteristics of different atomic contacts and the
predictions of the theory for a single-channel superconduct-
ing contact.16,18These experiments not only helped to clarify
the origin of the SGS, but also showed that the set of the
transmission coefficients in an atomic-size contact is ame-
nable to measurement. This possibility has recently allowed
a set of experiments that confirm the theoretical predictions
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for transport properties, such as supercurrent,31 noise,32 and
even resonant tunneling, in the context of carbon
nanotubes.33 From these combined theoretical and experi-
mental efforts a coherent picture of transport in supercon-
ducting point contacts has emerged with multiple Andreev
reflections as a central concept.

The most recent development in the understanding of the
dc transport in superconducting contacts is the analysis of the
full-counting statistics.34,35Full-counting statistics(FCS) is a
familiar concept in quantum optics(see for instance36),
which has been recently adapted to electron transport in me-
soscopic conductors by Levitov and coworkers.37 FCS gives
the probabilityPsNd that N charge carriers pass through a
conductor in the measuring time. Once these probabilities are
known one can easily compute not only the mean current and
noise, but all the cumulants of the current distribution. Since
the introduction of FCS for electronic systems, the theory
has been sophisticated and applied to many different contexts
(see Ref. 38 for a recent review).

The counting statistics of a one-channel quantum contact
has the surprisingly simple form of abinomial distribution
PsNd= s M

N
dTNs1−TdM−N, where T is the transmission prob-

ability andM ,V is the number of attempts.37,39 The gener-
alization to many contacts and/or finite temperatures is
straightforward, by noting that different energies and chan-
nels have to be added independently. In this way, the count-
ing statistics of diffusive contacts at zero temperature40 and
at finite temperatures41 could be obtained using the universal
distribution of transmission eigenvalues.42,43 It is worth not-
ing that the FCS in the limit of small transparency reduces to
a Poisson distribution, which can also be obtained using
classical arguments and neglecting correlations between the
different transfer events. Interestingly, the Poissonian charac-
ter allows to directly extract the charge of the elementary
event, which can be used to determine, e.g., fractional
charges.44–46A general approach to obtain the counting sta-
tistics of mesoscopic condutors was formulated by Nazarov41

using an extension of the Keldysh-Green’s function method,
which allowed to present the counting statistics of a large
class of quantum contacts in a unified manner.47 In Ref. 34
we have shown, how this method can be used for a time-
dependent transport problem, such as a superconducting con-
tact out of equilibrium.

The counting statistics of a contact between a normal
metal and a superconductor at zero temperature andeV!D
was shown to be again binomial with the important differ-
ence that only even numbers of charges are transferred.48 The
probability of an elementary event is then given by the An-
dreev reflection coefficientRA=T2/ s2−Td2 (Ref. 49). Again,
the generalization of this result to many channel conductors
is obtained by summing over independent channels. For a
diffusive metal the resulting statistics was shown to be an
exact replica of the corresponding statistics for normal diffu-
sive transport, provided the double charge transfer is taken
into account.50 This holds for coherent transporteV!ETh,
whereETh is the inverse diffusion time, as well as in the fully
incoherent regimeeV@ETh (Ref. 51). For intermediate volt-
ages, correlations of transmission eigenvalues at different en-
ergies modify the distribution of transmission eigenvalues,52

which lead to a nonuniversal behavior of the transport statis-
tics, predicted theoretically53 and confirmed
experimentally.54 Here, we note that a doubling of the noise
was experimentally observed in diffusive wires,55 confirming
earlier theoretical predictions.56 However, to trace this back
to a doubling of the elementary charge transfer follows only
from an analysis of the counting statistics. A direct experi-
mental determination of the doubled charge transfer was re-
cently performed in a conductor containing a tunnel
junction.57 Here, the underlying statistics is Poissonian, and
the noise directly gives access to the charge of the elemen-
tary event.58,59

An interesting problem occurs, when one applies the con-
cept of counting statistics to a supercurrent through a quan-
tum contact.47 The resulting statistics cannot be directly re-
lated to a probability distribution because some of the
“probabilities” would be negative. A closer inspection of the
formalism showed that the interpretation of probabilities re-
lies on the proper definition of a quantum measuring
device.60–62 As we will see below, in superconducting con-
tacts out of equilibrium, these problems do not occur and all
probabilities are positive.

Concerning the practical measurement of the FCS, re-
cently Reuletet al.63,64were able to measure for the first time
the third cumulant of current fluctuations produced by a tun-
nel junction. While the result was in agreement with the
theoretical prediction,45 the interpretation had to account for
the effect of the electronmagnetic environment65 or imperfect
voltage bias.66 This experiment has already triggered further
theoretical predictions for various systems,67–70 as well as
new proposals for improved measurement setups.71 Notably,
a recent experiment has been able to measure a fourth-order
correlation of current fluctuations.72 There also exist several
theoretical proposals to directly measure the counting
statistics.39,73

In Ref. 34 we have demonstrated that the charge transport
in superconducting point contacts out of equilibrium can be
described by amultinomial distribution of processes in
which a multiple charge is transferred. More importantly, we
have shown that the calculation of the FCS allows us to
identify the probability of the individual MARs and the
charge transferred in these processes. This information prob-
ably provides the deepest insight into the transport properties
of these systems. In this sense, in this work we present a
comprehensive analysis of the dc transport properties of su-
perconducting point contacts from the point of view of the
FCS. We show that even in the most well-studied situations,
such as a contact with BCS superconductors, the FCS pro-
vides a fresh view. In comparison to Ref. 34, we analyze new
situations, such as superconductors with pair-breaking
mechanisms and SNS diffusive systems, and we also extend
our analysis to finite temperatures.

The paper is organized as follows. In Sec. II, after intro-
ducing some basic concepts of charge statistics, we discuss
the calculation of the cumulant generating functional within
the Keldysh-Green’s function approach. Section III is de-
voted to the calculation of the MAR probabilities at zero
temperature. We present both the results of a toy model and
the full expressions. In Sec. IV, we apply the results of Sec.
III to describe the different transport properties of three dif-
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ferent situations:(i) a contact between BCS superconductors,
(ii ) a contact between superconductor with a modified den-
sity of states due to a pair-breaking mechanisms, and(iii ) a
short diffusive SNS contact. In Sec. V, we analyze the trans-
port at finite temperature, paying special attention to the third
cumulant. Finally, we present our conclusions in Sec. VI.

II. DESCRIPTION OF THE FORMALISM

A. Some basic concepts

Our goal is to calculate the full-counting statistics of a
superconducting contact. This means that the quantity in
which we are interested is the probabilityPt0

sNd that N
charges are transferred through the contact in the time inter-
val t0. Equivalently, we can find thecumulant generating
function (CGF) St0

sxd, which is simply the logarithm of the
characteristic function and is defined by

exp„St0
sxd… = o

N

Pt0
sNdexpsiNxd. s1d

Here,x is the so-called counting field. From the knowledge
of the CGF one easily obtains the different cumulants that
characterize the probability distribution

Cn = Us− idn ]n

]xnSt0
sxdU

x=0
. s2d

Note that the first cumulants are related to the moments of
the distribution as follows:

C1 = N̄ ; o
N

NPt0
sNd, C2 = sN − N̄d2,

C3 = sN − N̄d3, C4 = sN − N̄d4 − 3C2
2, s3d

and so on. It is also important to remark that these cumulants
have a simple relation with the relevant transport properties
that are actually measured. Thus, for instance, the mean cur-
rent is given byI =se/ t0dC1 and the symmetrized zero fre-
quency noise is given bySI =s2e2/ t0dC2 (Ref. 85). For higher
cumulants such relations are not straightforwardly obtained,
but it can be shown that the cumulants defined above corre-
spond to the observable quantities in an electron-counting
experiment.47,60,61Thus, the cumulants represent all informa-
tion, that is available in a measurement of the charge accu-
mulated during the observation periodt0.

B. Keldysh-Green’s function approach to FCS

As mentioned above, our system of interest is a voltage-
biased superconducting point contact, i.e., two superconduct-
ing electrodes linked by a constriction, which is much
shorter than the superconducting coherence length. We con-
centrate ourselves on the case of a single channel contact
described by a transmission probabilityT. The main diffi-
culty in the determination of the FCS arises from the ac
Josephson effect. Here, a constant applied bias voltageeV
gives rise to time-dependent currents as a consequence of the
Josephson relations] /]tdfstd=2eV/". In the long-time limit

t0@" /eV, these oscillating currents do not contribute to the
net charge transfer in which we are interested. However, this
intrinsic time dependence is reflected in the CGF, and a little
care has to be taken when the FCS is defined.

To obtain the FCS in a superconducting point contact, we
make use of the Keldysh-Green’s function approach to FCS
introduced by Nazarov41 and Belzig and Nazarov,47 and we
refer the reader to these papers for further details on the basis
of this theoretical approach. In what follows, we concentrate
ourselves on the specific difficulties introduced in the case of
a contact between two superconductors. Our starting point
for the determination of the CGF is to define the relation
between the CGF and the counting current in analogy to
Refs. 41 and 47

]

]x
St0

sxd =
i

e
E

0

t0

dtIsx,td. s4d

This scalar current can be calculated in terms of thematrix
current, which describes the transport properties of the con-
tacts. Nazarov has shown that, in the case of short junctions,
the matrix current(in Keldysh-Nambu space) adopts the fol-
lowing form:74

Ĭsx,t,t8d = −
e2

p
S 2TfĞ1sxd ,̂ Ğ2g

4 + TshĞ1sxd ,̂ Ğ2j − 2d
Dst,t8d. s5d

Here Ğ1s2dst ,t8d denote the matrix Green’s functions on the
left and right of the contact. In our problem these functions
depend on two time arguments, and the products^ appear-
ing in Eq.(5) should be understood as convolutions over the
intermediate time arguments, i.e., sA^ Bdst ,t8d
=edt9Ast ,t9dBst9 ,t8d. It is worthwhile to note that the deri-
vation for the matrix current in Ref. 74 was done for Green’s
functions in the static situation, in which case all Green’s
functions depend only ont− t8. However, the derivation can
be directly taken over to time-dependent problems because
the time-dependent Green’s functions satisfy the normaliza-
tion condition

sĞ ^ Ğdst,t8d = d̆st − t8d. s6d

Finally, the time-dependent scalar current is obtained from
the matrix current by

Isx,td =
1

4e
Trft̆KĬsx,t,tdg, s7d

wheret̆K =ŝ3t̄3 is a matrix in Keldyshsˆd-Nambu s̄ d space.
ŝist̄id are the standard Pauli matrices in Keldysh-Nambu
space.

Let us now describe Green’s functions entering Eq.(5).
The counting fieldx is incorporated into the matrix Green’s
function of the left electrode as follows:

Ğ1sx,t,t8d = e−ixt̆K/2Ğ1st,t8deixt̆K/2. s8d

HereĞ1st ,t8d is the reservoir Green’s function in the absence
of the counting field. We set the chemical potential of the
right electrode to zero and represent the Green’s functions by
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Ğ1st,t8d = eifstdt̄3/2ĞSst − t8de−ifst8dt̄3/2 s9d

and Ğ2st ,t8d=ĞSst− t8d. Here, fstd=f0+s2eV/"dt is the
time-dependent superconducting phase difference, andf0 is

its dc part.ĞS is the Green’s function of a superconducting
reservoir (we consider the case of a symmetric junction),
which reads

ĞSst − t8d =E dEGSsEdeiEst−t8d, s10d

ĞSsEd = S sĀ − R̄df + R̄ sĀ − R̄df

sĀ − R̄ds1 − fd sR̄− Ādf + Ā
D .

Here, R̄sĀdsEd are retarded and advanced Green’s functions
of the leads, andfsEd is the Fermi function. Advanced and

retarded functions in(10) have the Nambu structureR̄sĀd
=gR,At̄3+ fR,At̄1 fulfilling the normalization condition f2

+g2=1. They depend on energy and the superconducting or-
der parameterD.

Using the time dependence of the leads Green’s functions
it is easy to show from Eq.(5) that the scalar current admits
the following Fourier series:

Isx,td = o
n

Insxdeinfstd, s11d

which means that the current oscillates with all the harmon-
ics of the Josephson frequency. It is important to stress that
the componentsInsxd are independent of the dc part of the
superconducting phase. In this work we only consider the dc
part of the CGF. For this purpose, we take the limit of a long
measuring timet0, much larger than the inverse of the Josep-
shon frequency, and, hereafter, we drop the subindext0 in the
expression of the CGF. From Eqs.(4) and (11) it is obvious
that by selecting the dc component, the dc part of the phase
drops the calculation, and the CGF is free of the problems
related to gauge invariance found for the dc Josephson
effect.47,60,75

Keeping in mind the presence of the time integration de-
scribed aboved, and with the help of Eqs.(5)–(7), one can
integrate Eq.(4) to obtain the following expression for the
CGF of superconducting constrictions:47

Ssxd =
t0
h

Tr lnH1 +
T

4
f„Ǧ1sxd,Ǧ2…^ − 2gJ . s12d

The symbol̂ implies that the products of the Green’s func-
tions are convolutions over the internal energy arguments,
i.e.,

sG1 ^ G2dsE,E8d =E dE1G1sE,E1dG2sE1,E8d. s13d

The trace runs not only over the Keldysh-Nambu space, but
also includes a trace in the energy arguments, i.e.,
edEgsE,Ed.

The time-dependent Green’s functions of Eq.(8) fulfill
the normalization condition of Eq.(6). This enables us to use
the relation

2 − hǦ1,Ǧ2j^ = sǦ1 − Ǧ2d^

2 s14d

to write the CGF as

Ssxd =
t0
h

Trhln Q̌+ + ln Q̌−j, s15d

whereQ̌± ;1±sÎT/2d(Ǧ1sxd−Ǧ2). One can show that both
logarithms give the same contribution,86 and, therefore, we
concentrate on the analysis of the first one and drop the sub-

index 1. Additionally, we use the relation Tr lnQ̌=ln detQ̌
to write the CGF as

Ssxd =
2t0
h

ln detQ̌sxd. s16d

Thus, at this stage the calculation reduces to the calcula-
tion of the determinant of a infinite matrix. Due to the time
dependence of the lead Green’s functions, their form in en-

ergy space isǦsE,E8d=onǦ0,nsEddsE-E8+neVd, where n

=0, ±2. This implies that the matrixQ̌ also admits the same

type of representation, which, in practice, means thatQ̌ is a
block-tridiagonal matrix of the form

Q̌ =1
� � � 0̌

Q̌−2,−4 Q̌−2,−2 Q̌−2,0 0̌

0̌ Q̌−2,0 Q̌0,0 Q̌0,2 0̌

0̌ Q̌2,0 Q̌2,2 Q̌2,4

0̌ � � �

2 ,

where we have used the notationQ̌n,m=Q̌sE+neV,E+meVd.
Using the definition of the matrixQ̌ and the expressions of
the lead Green functions of Eqs.(8)–(10), it is straightfor-

ward to show that the differents434d matricesQ̌n,m have
the following explicit form in terms of the advanced and
retarded Green’s functionsgR,A and fR,A (remember that we
consider a symmetric junction):

Q̌n,n = 1̌ +
ÎT

2 1
rn+1 − rn + gn+1

R − gn
R − r̃n − fn

R e−ixrn+1 − rn − r̃n

− r̃n − fn
R rn − rn−1gn

R − gn−1
R − r̃n − eixrn−1 + rn

eixdn+1 − dn − d̃n rn − rn+1 + gn+1
A − gn

A − fn
A + r̃n

− d̃n − e−ixdn−1 + dn − fn
A + r̃n rn−1 − rn + gn

A − gn−1
A
2

J. C. CUEVAS AND W. BELZIG PHYSICAL REVIEW B70, 214512(2004)

214512-4



Q̌n,n+2 =
ÎT

2 1
0 e−ixsr̃n+1 + fn+1

R d 0 r̃n+1

0 0 0 0

0 d̃n+1 0 eixsfn+1
A − r̃n+1d

0 0 0 0
2

Q̌n,n−2 =
ÎT

2 1
0 0 0 0

eixsr̃n−1 + fn−1
R d 0 r̃n−1 0

0 0 0 0

d̃n−1 0 e−ixsfn−1
A − r̃n−1d 0

2 , s17d

where we have used the shorthand notationgn
R,A=gR,AsE

+neVd and r=sgA−gRdf, f being the Fermi function,r̃=sfA

− fRdf, d=sgA−gRds1− fd, and d̃=sfA− fRds1− fd.
One can restrict the fundamental energy interval toE-E8

P f0,eVg, and, therefore, the CGF adopts the formSsxd
=s2t0/hde0

eVdE ln detQ̌. From Eq. (17), it is obvious that

detQ̌ can be written as the following Fourier series inx:

detQ̌sxd = o
n=−`

n=`

Pn8sE,Vdeinx, s18d

where the coefficientsPn8sE,Vd have still to be determined.
Keeping in mind the normalizationSs0d=0, it is clear that
one can rewrite the CGF in the following form:

Ssxd =
2t0
h
E

0

eV

dE lnF1 + o
n=−`

`

PnsE,Vdseinx − 1dG ,

s19d

where

PnsE,Vd = Pn8sE,Vd/ o
n=−`

n=`

Pn8sE,Vd. s20d

Equation(19) has the CGF form of a multinomial distribu-
tion in energy space(provided more than onePn is different
from zero). The different terms in the sum in Eq.(19) corre-
spond to transfers of multiple charge quantane at energyE
with the probability PnsE,Vd, which can be seen by the
s2p /nd-periodicity of the accompanyingx-dependent count-
ing factor. This is the main result of our work, and it proves
that the charges are indeed transferred in large quanta. Of
course, we still have to determine the probabilitiesPnsE,Vd,
which is a nontrivial task; it will the goal of Sec. II C.

C. Cumulants

As explained before, from the CGF one can easily calcu-
late the cumulants of the distribution and, in turn, many
transport properties. Of special interest are the first three cu-
mulantsC1, C2, and C3, which correspond to the average,
width, and shape of the distribution of transmitted charge,

respectively. From Eqs.(2) and (19), it follows that these
cumulants can be expressed in terms of the probabilities
PnsE,Vd as follows:

C1 =
2t0
h
E

0

eV

dEo
n

nPn, s21d

C2 =
2t0
h
E

0

eV

dEFo
n

n2Pn − So
n

nPnD2G , s22d

C3 =
2t0
h
E

0

eV

dEFo
n

n3Pn + 2So
n

nPnD3

− 3So
n

nPnDSo
n

n2PnDG . s23d

These expressions are a simple consequence of the fact that
the charge transfer distribution is multinomial in energy
space. At zero temperature the sums overn are restricted to
positive valuessnù1d. We remind the reader that the first
two cumulants are simply related to the dc current,I
=se/ t0dC1, and to the zero-frequency noiseSI =s2e2/ t0dC2.

It is instructive to discuss some consequences of these
expressions. Let us first recall, what happens when only one
process contributes, which has, for example, the ordern. The
first three cumulants are

C1;n = nE
0

eV 2t0dE

h
Pn, s24d

C2;n = n2E
0

eV 2t0dE

h
Pns1 − Pnd, s25d

C3;n = n3E
0

eV 2t0dE

h
Pns1 − Pnds1 − 2Pnd. s26d

We see, that theith cumulant is proportionalni, i.e., theith
power of the charge of the respective elementary event. The
expressions under the integral in Eqs.(24)–(26) have the
same form as for binomial statistics, however, in general the
PnsE,Vd depend on energy in a nontrivial way and the
energy-integrated expressions for the cumulants do not cor-

DC TRANSPORT IN SUPERCONDUCTING POINT… PHYSICAL REVIEW B 70, 214512(2004)

214512-5



respond to binomial statistics. A simple interpretation in
terms of an effective charge transferred is only possible if
PnsE,Vd!1 for all energies, in which case one recovers the
standard result for Poisson statistics,Ci;n=ni−1C1;n. Accord-
ing to Eq.(26), the sign of the spectral third cumulant can be
positive or negative, depending on the size ofPn (positive for
Pn,1/2 and negative forPn.1/2). The overall sign de-
pends on the energy average and is not simple to predict.
Note, however, that the probabilities of MAR processes of
higher orders decrease approximately asTn. We may there-
fore speculate that to obtain a negative third cumulant for
higher order processes we will need more open contacts(a
rough estimate is thus thatT*1/În2 to havePn*1/2 and,
therefore,C3,0).

The general statistics(19) is a multinomial distribution,
and it is therefore interesting to compare withindependent
binomial distributions. This is most easily done by assuming
that only two processes compete. Taking these processes to
be of ordern andm, the first three cumulants read

C1;nm= C1;n + C1;m, s27d

C2;nm= C2;n + C2;m − 2nmE
0

eV 2t0dE

h
PnPm, s28d

C3;nm= C3;n + C3;m − 3nmE
0

eV 2t0dE

h
PnPmfns1 − Pnd

+ ms1 − Pmdg. s29d

We see that the first cumulant is just the sum of the contri-
butions of the different processesn andm, and therefore, we
must look at higher cumulants to gain information on corre-
lations between the processes of different order. In both, the
second and third cumulant, such correlations appear, and it is
evident from Eqs.(28) and(29) that both are reduced below
the value obtained for independent binomials. The correla-
tion terms appear inside the energy integration, and, there-
fore, both processes must be possible at the same energy.

Finally, we note that in order to study correlation between
N different processes one would have to look at theNth order
cumulant. This becomes clear if one notices that only theNth
cumulant contains a term with products ofN probabilities
and, therefore, the possibility to have a product of probabili-
ties of N different processes.

III. MAR PROBABILITIES: ZERO TEMPERATURE

This section is devoted to the calculation of the probabili-
ties PnsE,Vd at zero temperature. First, we discuss a simple

model that nicely illustrates the transmission dependence of
these probabilities, and second, we present the general ex-
pressions.

A. Toy model

To obtain a feeling for the forthcoming calculations we
now study a strongly simplified model of a superconducting
contact. For that purpose, let us assume that we can neglect
the Andreev reflections for energies outside the gap region
and replace the quasiparticle density of states by a constant
for uEu.D. Furthermore, we neglect that energy-dependent
phase shift,acossE/Dd, usually associated with the finite
penetration of excitations close to the gap edge. Mathemati-
cally, this means that we setfR,AsuEu,Dd=1, gRsAdsuEu.Dd
= ±1, and both are equal to zero otherwise. This simplifies

the calculation a lot, since the matrixQ̌ in Eq. (16) now
becomes finite. In particular, for subharmonic voltageeV
=2D /n, the matrix is also energy independent. It is interest-
ing to note that the toy model is also able to describe the
counting statistics of normal and Andreev contacts.

To facilitate the discussion of the matrix structure it is
useful to introduce the 2̂ 2 matrix in the Keldysh subspace

K̂±sxd = 7 t̂3 − 2t̂±e±ix, s30d

where t̂i are Pauli matrices andt̂±=st̂1± i t̂2d /2. In fact, K̂±

correspond to occupied(empty) quasiparticle states(for E
. uDu). The matrix structure for superconducting or normal
terminals is summarized in Table I. The counting statistics
are obtained from the general relation(16).

To calculate the determinant we note thatQ̌ is a band
matrix of width 3 in the energy index. Then the following
reduction formula for the determinant is useful(assuming a
block starts at somen, which we arbitrarily set to zero):

*
Q̌0,0 Q̌0,2 0 0

Q̌2,0 Q̌2,2 Q̌2,4 0

0 Q̌4,2 Q̌4,4 �

0 0 � �

* = uQ̌0,0u*Q̌2,2− Q̌2,0Q̌0,0
−1Q̌0,2 Q̌2,4 0

Q̌4,2 Q̌4,4 �

0 � �

* . s31d

TABLE I. Green’s functions in the toy model. The indicesĝab

denote the respective element in Nambu space.K̂±= 7t̂3−2t̂±e±ix

denotes a matrix in Keldysh space. The table holds for the left and
right terminal, provided the energies and the counting fields are
chosen properly.

super: E.D uDu.E −D.E

normal: E.eV E,eV

ĝ11sxd K̂−sxd 0 K̂+sxd
ĝ22sxd −K̂−s−xd 0 −K̂+s−xd

ĝ12s21dsxd 0 e±ixť3 0
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Another useful property(which holds in the toy model) is the

Nambu structure of theQ̌’s [see Eq.(17) and Table I]: diag-

onal components in energy space, i. e.,Q̌n,n, are always
block-diagonal in Nambu space and the off-diagonal compo-
nents Qn,n±2 are purely off-diagonal in Nambu space and

diagonal in Keldysh space. Consequently,Q̌n−2,n−2
−Qn−2,nQn,n

−1Qn,n−2, appearing in the expansion of the deter-
minant, is block-diagonal again, and the whole calculation of
the determinant(16) boils down to a recursive calculation of
determinants and inversions of 232 matrices. This will be-
come clearer, when we treat the explicit examples below.

1. Normal Contact

It is instructive to demonstrate the procedure first for a
normal contact. We restrict the calculation here to the(1,1)
components in Nambu space(see Table. I). There are no
off-diagonal components and the(2,2) components actually
give the same contribution. The Green’s functions are

Ĝ1 =HK̂−sxd, n ù 0

K̂+sxd, n , 0
J, Ĝ2 =HK̂−s0d, n . 0

K̂+s0d, n ø 0
J .

s32d

Note that we have chosen the fundamental energy interval
f−eV/2 ,eV/2g, since then the Green’s functions are constant
inside each interval. Then we find

sQ̂ − 1dn,m

ÎT/2
= dn,m5 t̂+seix − 1d n . 0

t̂3 + t̂+eix − t̂− n = 0

t̂−se−ix − 1d n , 0
6 . s33d

The matrixQ has, thus, a block-diagonal form. The blocks
n.0 andn,0 are tridiagonal, and the determinants are all
equal to 1. The remaining determinant of then=0 block is

detS1 +ÎT ÎTeix

− ÎT 1 −ÎT
D = 1 −T + Teix. s34d

The CGF is, finally, Ssxd=s2eVt0/hdlnf1+Tseix−1dg in
agreement with Levitov and Lesovik.37 Note that a factor of
2 enters the CGF because we get an additional contribution
from the(2,2) components in Nambu space(thus, it is due to
spin).

2. Andreev contact

We now consider a contact in which one of the sides is
superconducting and the other is a normal metal. Again, the
calculation can be done in a similar way. Here we apply a
voltageueVu!D to the normal contact. The Green’s functions
are again diagonal in the energy space, since we assume that
the superconductor is at zero potential. For the normal metal
we find (taking as fundamental energy intervalf−eV,eVg)

sĜ1d11 =HK̂−sxd, n ù 0

K̂+sxd, n , 0
J ,

sĜ1d22 =H− K̂−sxd, n . 0

− K̂+sxd, n ø 0
J , s35d

and for the superconductorsĜ2d12=sĜ2d21= t̂1 and 0 other-
wise. The only nonzero block is then=0 energy block

Ǧ1sxd − Ǧ2 = SK−sxd − 1

− 1 − K+s− xd
D , s36d

which yields for the CGF in the form(12) the determinant of

Q̌ =1 1 −
T

2

T

4
sK̂+ − K̂−d

T

4
sK̂+ − K̂−d 1 −

T

2
2 . s37d

To calculate the determinant we subtract from rows 3 and 4

rows 1 and 2, multiplied withT/4s1−T/2dsK̂+−K̂−d, and

make use of the fact thatsK̂−−K̂+d2=4s1−ei2xd. The matrix is
then tridiagonal, and its determinant is

S1 −
T

2
D2F1 +

T2

s2 − Td2sei2x − 1dG . s38d

The prefactor is canceled because we are operating under the
ln and have to normalize. Note that the evaluation of the
determinant outside the transport window can be done in a
similar way. One obtains for the determinant of one block

s1−T/2d2−T2fK̂−sxd−K̂−s−xdg2=s1−T/2d2, which is inde-
pendent of the counting fieldx and is therefore canceled
after normalization of the CGF. Finally we obtain for the
FCS (collecting all prefactors)48

Ssxd =
2eVt0

h
lnF1 +

T2

s2 − Td2sei2x − 1dG . s39d

The statistics correspond to a binomial distribution of charge
transfers. The Andreev reflection leads to ap periodicity in
x, which shows that only couples of charges can be trans-
ferred and the charge transfer probability for odd-charged
numbers vanishes. The number of attempts, determined by
the prefactor of the ln in(39), remains unchanged in com-
parison to the normal case.

3. Superconducting point contact

We now come to the main subject of this paper, a point
contact between two superconducting banks held at different
chemical potentials. To write down the general matrix struc-
ture of the FCS in the toy model, let us first obtain the con-
dition for energies to be subgap. Here, we restrict ourselves
to subharmonic voltages, which we write, in general, as eV
=2D / sN−1d, where N denotes the order. The dominating
charge transport mechanism we expect is thatN charges are
transferred. In the toy model, it is the only transport mecha-
nism(since Andreev reflections above the gap are neglected).
To obtain single-valued matrix entries, it is favorable to
choose as fundamental energy intervalf0,eVg for even N
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=2M andf−eV/2,eV/2g for oddN=2M −1. For the Nambu
row indices of the Green’s function of the left terminal we
find

Nambu order uEu ø D

upper odd − M ø n ø M − 1

lower odd − M + 1 ø n ø M

upper even − M − 1 ø n ø M − 1

lower even − M ø n ø M

. s40d

The row indices in Nambu space of the right Green’s func-
tions have the energy arguments of upper and lower rows
interchanged.To clarify the matrix structure we have pre-
pared Table II. Each entry in the table denotes the energy for
the structure

Sĝ1i
L ĝ1i

R

ĝ2i
L ĝ2i

R D ,

where the second(Nambu-) index i =1,2 plays no role. The
entries are denoted by1 for E.D, 0 for uEuøD, and2 for
E,−D.

We observe that the matrix structure in all cases is similar.
A block with 0 and1 elements, i.e., connecting the quasi-
particle states above the gap to the subgap region is followed
a number of blocks inside the gap(depending on the applied
voltage and, finally, is connected by a block with 0 and2
elements to quasiparticle states below the gap.

Let us now discuss the caseN=2 seV=2Dd. Here the
relevant 838 matrix is

Q̌ − 1
ÎT/2

=1
K̂−sxd 0 0 − 1

0 K̂−s0d e−ixt̂3 0

0 eixt̂3 − K̂+s0d 0

− 1 0 0 − K̂+s− xd
2 . s41d

We observe, that the matrix decouples into two blocks of 4
34 matrices

Q̌2A = 1 +
ÎT

2 SK̂−sxd − 1

− 1 − K̂+s− xd
D s42d

and

Q̌2B = 1 +
ÎT

2 SK̂−s0d e−ixt̂3

eixt̂3 − K̂+s0d
D . s43d

By comparison with Eq.(36) we see that ln detQ̌2A yields the

counting statistics of usual Andreev reflection.Q̌2B actually
gives the same result. This is most easily seen, if the unitary

transformationǓQ̌2BǓ† with Ǔ=diagseit3x/2,e−it3x/2d is ap-

plied, which transformsQ̌2B into Q̌2A. Note that the signs of
the off-diagonal matrices do not matter because they can be
eliminated by similar unitary transformations. The counting
statistics are therefore given by Eq.(39), the same as for the
Andreev contact.

Now we come to the slightly more complicated caseN
=3 seV=2D /2d. Here we encounter the matrix

1
K̂−sxd 0 0 − 1 0 0

0 K̂−s0d e−ixt̂3 0 0 0

0 eixt̂3 0 0 0 − 1

− 1 0 0 0 e−ixt3 0

0 0 0 eixt̂3 − K̂+s0d 0

0 0 − 1 0 0 − K̂+s− xd

2 .

s44d

Once again, the matrix decouples into two blocks(rows 1,4,5
and rows 2,3,6). The first block is

Q̌3A = 1 +
ÎT

2 1K̂−sxd − 1 0

− 1 0 e−ixt̂3

0 eixt̂3 K̂+s0d
2 . s45d

It is already evident that we will encounter a three-particle

process if we apply the transformation Ǔ
=diagsexpsixt̂3d ,expsixt̂3d ,1d. This yields

ǓQ̌3AǓ† = 1 +
ÎT

2 1K̂−s3xd − 1 0

− 1 0 1

0 1 K̂+s0d
2 . s46d

Evaluating the determinant we obtain the counting statistics
(including the other block, see below)

Ssxd =
2eVt0

h
lnF1 +

T3

s4 − 3Td2se−i3x − 1dG . s47d

Evidently, this corresponds to the binomial transfer of pack-
ages of three charges, where the probability of a third-order
process isP3=T3/ s4−3Td2. A similar procedure may be ap-

plied to the second blockQ̌3B. The result is the same. Physi-
cally, the two blocks correspond to two independent pro-
cesses, which differ by the spin.

TABLE II. Matrix structure of the Green functions for the toy
model of a superconducting point contact.

n N=2 N=3 N=4 N=5 N=6

2 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 1 0 1 0 1

1 1 1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

−1 0 2 0 2 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 0

−2 2 2 2 2 0 2 0 2 0 0

2 2 2 2 2 0 2 0 0 0

−3 2 2 2 2 2 2 2 2 0 2

2 2 2 2 2 2 2 2 2 0
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For higher-order processes the calculation goes in com-
plete analogy. The property of a decoupling into two inde-
pendent blocks remains. Furthermore, it is possible to the
shift the entirex dependence to the uppermost(or the low-
est) block. This is achieved by a series of unitary operations
of the type f1, . . . ,1 ,expsinxt̂3d ,1 , . . . ,1g. One can easily
convince oneself that for a process of orderN this gives, for

example, the upper-left blockK̂−sNxd, and the remaining ma-
trix is now independent ofx. For example a fifth-order pro-
cess yields

1 +
ÎT

2 1
K̂−s5xd 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 K̂+s0d
2 . s48d

Additionally, the signs of the off-diagonal element may be
removed by unitary transformations. Evaluating the determi-
nant we findSsxd=s2eVt0/hdlnf1+P5seinx−1dg, where P5

=T5/ s16−20T+5T2d2. This expression describes binomial
transfers of five charges with probabilityP5.

Using the above scheme, it is also possible to derive re-
cursion relations for the probabilities. We find the probability
for a process of orderN

PN =
1

1 +
FS1 +

ÎT

2
DaN−1

+ −
T

4
GFS1 −

ÎT

2
DaN−1

− −
T

4
G

ÎT
T

4
gN−1

.

s49d

The factorsa± andg are determined from the recursion re-
lations

an
± = 1 −

T

4an−1
± , gn =

T

4

gn−1

an−1
+ an−1

− , s50d

with the initial conditions

g1 = ÎT, a1
± = 1 ±

ÎT

2
. s51d

For general subharmonic voltages 2D / sN−1d, we find the
counting statistics

Ssxd =
2eVt0

h
lnf1 + PNseiNx − 1dg, s52d

where the probabilities are given by

P2 =
T2

s2 − Td2 , s53d

P3 =
T3

s4 − 3Td2 ,

P4 =
T4

s8 − 8T + T2d2 ,

P5 =
T5

s16 − 20T + 5T2d2 ,

P6 =
T6

s2 − Td2s16 − 16T + T2d2 ,

P7 =
T7

s64 − 112T + 56T2 − 7T3d2 ,

P8 =
T8

sT4 − 32T3 + 160T2 − 256T + 128d2 .

Note the limiting cases of these probabilitiesPN,TN/4N−1

for T!1 andPN=1 for T=1.
We can draw several conclusions from the toy model.

First, we obtain simple expressions for the probabilities of
multiple chargePN, which are not simple products of An-
dreev reflection probabilities and quasiparticle transmissions,
see Eq.(53). Furthermore, it is interesting to note that by
virtue of the unitary transformations we can interpret the
charge transfer as simultaneous transmission ofN quasipar-
ticles. This explanation does not invoke any kind of com-
bined transfer of Cooper pairs and quasiparticle.

B. Full expressions

Let us now discuss the full expression of the probabilities

PnsE,Vd at zero temperature. SinceQ̌ has a block-tridiagonal
form, in order to calculate its determinant we can use the a
recursion technique similar to the one described for the toy
model. We define the following 434 matrices:

F̌±n = Q̌±n,±n − Q̌±n,±n±2F̌±n±2
−1 Q̌±n±2,±n;n ù 2

F̌0 = Q̌0,0− Q̌0,−2F̌−2
−1Q̌−2,0− Q̌0,2F̌2

−1Q̌2,0, s54d

With these definitions, detQ̌ is simply given by detQ̌

=p j=−`
` detF̌2j. In practice, detF̌n=1 if unu@D / ueVu. This re-

duces the problem to the calculation of the determinants of
434 matrices.

In the zero-temperature limit one can work out this idea
analytically, and after very lengthy but straightforward alge-
bra, we obtain the following expressions forPn8sE,Vd:

Pn8sE,Vd = o
l=0

n−1

J−n+lF p
k=−n+l+1

l−1

sT/4dufk
Au2GJl ; n ù 1

P08sE,Vd = KHZ0
RF1 +

ÎT

2
sg0

R − g−1
A d −

T

4
sf−1

A d2B−2
A G −

T

4
sf0

Rd2J
3fR↔ Ag. s55d

Here, we have used again the shorthandgn
A,RsEd;gA,RsE

+neVd and defined
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Z±n
a = 1 ±

ÎT

2
fg±sn+1d

a − g±n
a g −

T

4
ff±sn+1d

a g2B±sn+2d
a ;n ù 0,

s56d

where a=R,A, K=sp j=1
` detF̌−2jdsp j=1

` detF̌2jd and the dif-
ferent functions can be expressed as followssnù0d:

sB±n
a d−1 = 1 ±

ÎT

2
fg±n

a − g±sn−1d
a g −

T

4
sf±n

a d2/Z±n
a , s57d

detF̌±n = p
a=A,R

SZ±n
a H1 ±

ÎT

2
fg±n

a − g±sn−1d
a gJ −

T

4
sf±n

a d2D ,

J±n = Sp
j=1

`

detF̌±sn+2jdDFÎT

2
sg±n

A − g±n
R dSZ±n

R Z±n
A

−
T

4
uf±n

A u2D 7
T

4
sf±n

A − f±n
R dsf±n

R Z±n
A + f±n

A Z±n
R dG .

Note that, since at zero temperature the charge only flows
in one direction, only thePn with nù0 survive. It is worth
stressing that the full information about the transport proper-
ties of superconducting point contacts is encoded in these
probabilities. Let us also remark thatPnsE,Vd are positive
numbers bounded between 0 and 1, and fulfill the normaliza-
tion conditiononPnsE,Vd=1. Thus, we see that for the finite
bias dc transport, where the superconducting phase does not
play any role, there is no problem with the typical interpre-
tation of Pn as probabilities.47 Moreover, although at a first
glance the expressions of Eqs.(55)–(57) look complicated,
they can be easily computed and provide the most efficient
way to calculate the transport properties of these contacts. In

practice, to determine the functionsBn
A,R and detF̌n, one can

use the boundary conditionBn
A,R=detF̌n=1 for unu@D / ueVu.

In view of Eqs.(55)–(57) the probabilitiesPn can be in-
terpreted in the following way.Pn is the probability of a
MAR of order n, where a quasiparticle in an occupied state
at energyE is transmitted to an empty state at energyE
+neV. The typical structure of the expression for this prob-
ability consists of the product of three terms. First,J0 gives
the probability to inject the incoming quasiparticle at energy
E. The termpk=1

n−1sT/4dufk
Au2 describes the cascade ofn−1

Andreev reflections, in which an electron is reflected as a
hole and vice versa, gaining an energy eV in each reflection.
Finally, Jn gives the probability to inject a quasiparticle in an
empty state at energyE+neV. This interpretation is illus-
trated in Fig. 1 of Ref. 34. The product of the determinants in
the expression ofJn [see Eq.(57)] describes the possibility
that a quasiparticle makes an excursion to energies belowE
or aboveE+neV. In the tunnel regime this possibility is very
unlikely and at perfect transparency is forbidden. For this
reason the expressions of the MAR probabilities simplify a
lot in these two limits, as we discuss in the next paragraphs.

In the tunnel regime a perturbative calculation yieldssn
ù1d

PnsT ! 1d =
Tn

4n−1r0rnp
k=1

n−1

ufk
Au2, s58d

wherersEd is the reservoir density of states. If we use this
result in the current expression(see below), we recover ex-
actly the result of the multiparticle tunneling theory of Schri-
effer and Wilkins.9 As we mentioned in the introduction, the
expression above leads to divergences in the current, which
shows that this problem is non-perturbative in the transmis-
sion. Thus, even at low transparencies one has to use the full
expression of Eqs.(55)–(57), where the mentioned diver-
gences are regularized in a natural manner.

For perfect transparencysT=1d, the absence of normal
backscattering makes the expressions of the probabilities
PnsE,Vd much simpler, and one can show that they can be
written assnù1d

PnsT = 1d = o
l=0

n−1

s1 − ua−n+lu2dS p
k=−n+l+1

l−1

uaku2Ds1 − ualu2d,

s59d

whereasEd is the Andreev reflection coefficient defined as
asEd=−i f RsEd / f1+gRsEdg and an=asE+neVd. As can be
seen in Eq.(59), a quasiparticle can only move upward in
energy due to the absence of normal reflection. If we use this
expression in the current formula, then we recover the result
obtain by Klapwijk, Blonder, and Tinkham11 for T=1.

IV. APPLICATION TO DIFFERENT SITUATIONS

As explained in Sec. III, with the expression of the MAR
probabilities we can easily describe many different transport
properties. Moreover, not that so far we have not made any
assumption about the lead Green’s functionsgA,R and fA,R

entering in the expressions ofPnsE,Vd. Therefore, these ex-
pressions allow us to address a great variety of situations. In
this section we analyze the zero-temperature transport prop-
erties of three different situations:(i) a contact between BCS
superconductors,(ii ) a contact between superconductor un-
der the influence of pair-breaking mechanisms, and(iii ) a
short diffusive SNS contact, where N is a normal disordered
region shorter than the superconducting coherence length.

A. BCS superconductors

Let us start analyzing the most standard situation, namely,
a contact between two BCS superconductors with a gapD. In
this casefA,R= iD /ÎsE7 ihd2−D2, whereh=0+, andgA,R fol-
lows from normalization. As mentioned in the introduction
the current and noise of such a contact have been thoroughly
studied both theoretically15–18,21,22and experimentally.28–32

Our goal here is to show how the knowledge of the FCS
provides a different and deeper insight into the different
transport properties.

In Fig. 1 we show the first three cumulants of the charge
transfer distribution: current, shot noise, and third cumulant.
Let us discuss their most remarkable features.(i) The current
exhibits the so-called subharmonic gap structure, as dis-
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cussed in the introduction. This subgap structure evolves
from a steplike behavior for low transmission to its disap-
pearance at perfect transparency.(ii ) The shot noise in the
subgap region can be much larger than the Poisson noise
sSI,Poisson=2eId. Moreover, in the tunneling regime the effec-
tive charge defined as the ratioq;SI /2I is quantized in units
of the electron charge:qsVd /e=1+Ints2D /eVd. This is illus-
trated in Fig. 2, where the ratiosC2/C1 andC3/C1 are shown
as a function of the voltage.(iii ) As shown in Fig. 2, the third

cumulant at low transmissions is described byC3=q2C1,
where againq is the quantized effective charge defined
above. For higher transmissions this cumulant is negative at
high voltage as in the normal state, whereC3=st0/hdTs1
−Tds1−2TdeV, but it becomes positive at low bias, and after
this sign change there is a huge increase of the ratioC3/C1.

The features described in the previous paragraph can be
easily understood with the help of an analysis of the prob-
abilities PnsE,Vd. To give an idea about them, in Fig. 3 we

have plotted their average value defined asP̄nsVd
;s1/eVde0

eVdEPnsE,Vd for two very different transmissions.
First of all, note that, no matter what the transmission is, the
probability of ann-order MAR has a threshold voltageeVn
=2D /n, below which the process is forbidden. WhenV
.Vn, ann-order MAR gives a new contribution to the trans-
port, which is finally the explanation of the subharmonic gap
structure. On the other hand, the big difference between the
tunneling regime and perfect transparency can be explained
as follows. At low transparency there are two factors that
make the subgap structure so pronounced. First, atVn, the
n-order MAR is a process that connects the two gap edges,
where the BCS density of states diverges[see Eq.(58)]. This
fact, together, of course, with its higher probability, implies
that this MAR rapidily dominates the shape of the I-V
curves, giving rise to a nonlinearity atVn. Second, atVn there
is a huge enhancement of the probabilities of the MARs of
order m.n. This is due to the fact that precisely atVn the
MAR trajectories can connect both gap edges, which as can
be seen in Eq.(58) enormously increases their probability. At
perfect transparency, the MAR probabilities do not exhibit
any abrupt features[see Fig. 3(b)]. This is due to the fact that
the BCS density of states is renormalized, and, in particular,
the divergences disappear[see Eq.(59)]. This fact explains

FIG. 1. Current, shot noise, and third cumulant at zero tempera-
ture as a function of the voltage for BCS superconductors of gapD.
The different curves correspond to different transmission coeffi-
cients as indicated in the panels. Here,GN=s2e2/hdT is the normal
state conductance.

FIG. 2. (a) Second cumulant and(b) third cumulant at zero
temperature for BCS superconductors. Both are normalized to the
first cumulant(the average current). The transmissions are indicated
in the plots.

FIG. 3. Average MAR probabilities P̄nsVd
;s1/eVde0

eVdEPnsE,Vd as a function of voltage for a contact be-
tween BCS superconductors at zero temperature. The two panels
correspond to two different transmissions. The index of the pro-
cesses is indicated in the plots. Notice the logarithmic scale in the
panel(a).
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naturally why the subharmonic gap structure is completely
washed out atT=1.

Another interesting feature of the MAR probabilities oc-
curs at low transparencies. As one can see in Fig. 3(a), at a
voltage 2D /n,eV,2D / sn−1d the MAR of ordern has a
much higher probability than the other MARs. This means
that in this voltage window, then-order MAR clearly domi-
nates the transport properties and the charge is predomi-
nantly transferred in packets ofne. This fact explains the
charge quantization in the tunnel regime observed both inC2
andC3 (see Fig. 2). More generally, this fact implies that at
low transparencies the multinomial distribution of Eq.(19)
becomes Poissonian, and in this limit all the cumulants are
proportional to the current:Cn=sqsVd /ednC1, whereqsVd is
the voltage-dependent quantized charge. When the transmis-
sion is not very low, there are always several MARs that give
a significant contribution to the transport at every voltage
[see Fig. 3(b)]. This explains why the charge is in general not
quantized.

The explanation for the sign change ofC3 at low bias and
high transparencies can be found in Eq.(23). In order to get
a positive value forC3, one needs the first two terms in Eq.
(23) to dominate, which happens whenPn!1. This is pre-
cisely what happens at low bias, where the MAR probabili-
ties are rather small. On the other hand, the huge enhance-
ment after the sign change is due to fact thatn, the charge
transferred by these MARs is, indeed, huge at low bias.

Finally, atT=1 the cumulantsCn (with n.1) do not com-
pletely vanish due to the fact that at a given voltage different
MARs give a significant contribution, and, therefore, their
probability is smaller than one[see Fig. 3(b)].

B. Pair-breaking mechanisms

It is well known that there are many mechanisms that can
lead to pair-breaking effects, which modify the quasiparticle
spectrum of a superconductor. Typical examples are a mag-
netic field, supercurrents, or magnetic impurities. It was
shown in the 1960s that for diffusive superconductors, vari-
ous pair-breaking mechanisms can be described in a unified
manner with a single parameterG, the depairing energy,
which describes the strength of the pair breaking.76 The only
difference between these mechanisms is contained in the mi-
croscopic expression ofG. For instance, for a thin film of
thicknessd, much smaller than the superconducting coher-
ence length in a magnetic fieldH parallel to the filmG
=De2d2H2/ s6"c2d, where D is the diffusion constant. In
these situations, the energy-dependent retarded Green’s func-
tion can be calculated from76

gR =
u

Îu2 − 1
= ufR,

E

D
= uF1 −

G

DÎ1 − u2G . s60d

Here, D is the order parameter, which in this case differs
from the spectral gap and has to be determined
self-consistently.77 For small G, the pair-breaking mecha-
nisms result in a smearing of the BCS singularities in the
density of states and in a suppression of the spectral energy
gap Dg to a reduced valueDg=Df1−sG /Dd2/3g3/2. The gap
disappears completely atG<0.45D0, whereD0 is the order

parameter in the absence of pair breaking. The gapless su-
perconductivity survives until the critical valueGC=0.5D0.
This behavior is illustrated in Fig. 4(a), where we show the
density of states as a function of energy for different values
of G in units of D0. In Fig. 4(b) one can see the evolution of
the order parameter and spectral gap with the depairing en-
ergy.

Let us discuss now how this modified density of states is
reflected in the transport properties. In Fig. 5 we show I-Vs
for different transmissions and different values of the depair-
ing energy. The most noticeable features are(i) the subhar-

FIG. 4. (a) Density of states as a function of energy of a super-
conductor for different values of the depairing energyG measured
in units of gap in the absence of pair-breakingD0. (b) Order param-
eter D and spectral gapDg in units of D0 as a function of the
depairing energyG normalized byD0.

FIG. 5. Zero temperature current-voltage characteristics for su-
perconductors with a depairing energyG in units ofD0. The current
and the voltage have been normalized with the order parameterD at
the correspondingG. The different panels correspond to different
transmissions values.
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monic gap structure is shifted to voltageseV=2Dg/n, and(ii )
the subgap structure progressively disappears as the pair-
breaking strength is increased. These features are simple
consequences of the evolution of the density of states withG.
Anyway, one can get further insight by analyzing the contri-
bution to the current of the individual MAR processes:In
=s2e/hde0

eVdEPnsE,Vd. These quantities are plotted in Fig. 6
for T=1. As one can see, the threshold voltage for an-order
MAR is now eVn=Dg/2n as a consequence of the reduced
spectral gap. As the gap diminishes, the processes of the
lowest order dominate the I-Vs, even at low bias. It is inter-
esting to note that, even in a gapless situationsG=0.475d,
there is a finite contribution of the MARs. It is worth men-
tioning that in Refs. 78 and 79, the type of theory described
here accounted for the magnetic field dependence of the I-Vs
of atomic contacts.

Let us now turn our attention to the second and third
cumulants, which can be seen in Figs. 7 and 8, respectively.
As in the case of the current, the subharmonic gap structure
is shifted and smoothed as the gap evolves withG. Moreover,
one can notice that for high transparencies and in the subgap
region, there is a great reduction of both cumulants asG
increases. This is a consequence of the fact that low-order
MARs dominate even at low bias, which, in practice, means
that the charge transferred at these voltages is on average not
very big.

C. Diffusive SNS contacts

So far we have discussed the case of a single channel
contact. The results are trivially generalized to the multi-
channel case by introducing a sum over the conduction chan-
nels. In this section we briefly address the case of a short
diffusive SNS junction with a large number of transmission
channels and diffusive electron transport in the normalN
region. The superconducting leads are considered as BCS

superconductors. In this case, the distribution of transmission
coefficients is continuous and characterized by the density
function rsTd, which has the well-known bimodal form80

rsTd =
GN

2G0

1

TÎ1 − T
, s61d

whereGN is the normal-state conductance of theN region
andG0=2e2/h is the conductance quantum. Then, the differ-
ent cumulants can be calculated from the single-channel re-
sultsCnsTd as follows:

Cn =E
0

1

dTrsTdCnsTd. s62d

In Fig. 9(a) we show the first three cumulants for this SNS
system. Both the current and the noise have been previously
discussed in the literature,22,81 and here we recover these
results. Both quantities exhibit a subharmonic gap structure,
which is a result of the competition of channels with differ-
ent transparencies. Again, this structure can be understood by
analyzing the individual contributions to the current of the

FIG. 6. Current contribution of processesn=1,2, . . . forT=1 as
a function of voltage for superconductors with a depairing energyG
in units of D0. The current and the voltage have been normalized
with the order parameterD at the correspondingG. The order of the
processes is indicated in the plots.

FIG. 7. Zero temperature noise for superconductors with a de-
pairing energyG in units of D0. The current and the voltage have
been normalized with the order parameterD at the correspondingG.
The different panels correspond to different transmissions values.

FIG. 8. Zero-temperature third cumulant for superconductors
with a depairing energyG in units of D0. The current and the volt-
age have been normalized with the order parameterD at the corre-
spondingG. The different panels correspond to different transmis-
sions values.
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different MARs, see Fig. 9(b). As one can see, at every volt-
age there are several processes giving significant contribu-
tions, which makes that subgap structure much smoother
than in the single-channel case. This fact also explains the
absence of the charge quantization in this multichannel case.
This is illustrated in Fig. 9(c), where we show the ratio
C2/C1 as a measure of the effective charge. Note that at low
bias this effective charge grows ass1/Vd as obtained in Ref.
22. In this regime the numerical results can be approximately
described by the following linear function:C2/C1
=0.31s2D /eVd+0.55. On the other hand, the third cumulant
exhibits a huge increase at low voltages.35 In particular, as
shown in Fig. 9(d), the ratioC3/C1 grows ass1/Vd2 at low
bias. In this regime the ratio can be approximated by
C3/C1=0.05s2D /eVd2+0.5.

V. TRANSPORT PROPERTIES AT FINITE
TEMPERATURES

So far we have discussed the transport properties of su-
perconducting point contacts at zero temperature. In this sec-
tion, we shall investigate the role of the temperature, which
we shall denote asTe. We focus our attention on the case of
a single channel contact between BCS superconductors. At
finite temperature it is not easy to determine analytically the
probabilitiesPnsE,Vd, and, in this case, we have calculated
them numerically. The idea goes as follows. According to
Eq. (18) we need to calculate the coefficientsPn8sE,Vd,
which are simply the Fourier coefficients of the series in Eq.
(18), i.e.,

Pn8sE,Vd =
1

2p
E

0

2p

dxe−inx detQ̆sxd. s63d

Finally, detQ̌sxd is calculated numerically. Of course, if one
is only interested in the different cumulant, one can easily

calculate them by taking the numerical derivative of the
CGF, see Eq.(2).

In Figs. 10–12 we show the current, noise, and third cu-
mulant, respectively, for different transmission and tempera-
tures ranging from zero to the critical one. Note that in order
to get rid of the trivial temperature dependence due to the
decrease of the gap, we have normalized the voltage by the
temperature-dependent gapDsTed. As it can be seen in Fig.
10, the temperature progressively smoothes the SGS and in-
creases the current for low transmissions. These are simple
consequences of the thermal excitation of quasiparticles. For
higher transmissions the temperature has the opposite effect
(see the lower two panels in Fig. 10). The current decreases
with increasing temperature and approaches the normal state
current-voltage characteristic from above. At the same time
the excess current, i.e.IsV@D /ed−GNV, vanishes obviously.
So in short, by increasing the temperature high-order An-

FIG. 9. Zero-temperature transport properties of a short diffu-
sive SNS junction.(a) First three cumulants: current in units of
sGND /ed, shot noise in units ofs2GNDd, and the third cumulant in
units of sGNDt0/hG0d. (b) Current contribution of the different pro-
cesses.(c) Ratio C2/C1 as a function of the inverse of the voltage.
(d) Ratio C3/C1 as as a function of the inverse of the voltage.

FIG. 10. Current-voltage characteristics at finite temperature for
BCS superconductors. The temperature is in units of the critical
temperatureTC. The current and the voltage are normalized with the
temperature-dependent gap. The different panels correspond to dif-
ferent transmission values.

FIG. 11. Finite temperature noise for BCS superconductors. The
temperature is normalized with the critical temperatureTC. The
different panels correspond to different transmission values. The
voltage is normalized with the temperature-dependent gap, and the
current with the zero-temperature gap. Note that the scaling is dif-
ferent from the other plots in this section.
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dreev reflections contribute less to the current, which is
dominated by thermally activated direct quasiparticle tunnel-
ing. This behavior is clearly illustrated in Fig. 13, where we
show the evolution with the temperature of the average prob-

ability P̄nsVd;s1/eVde0
eVdEPnsE,Vd of different processes

for a contact with transmissionT=0.95. Note that we only
show the first electron processes that give a positive contri-
bution to the current. Remember that at finite temperature
there are also hole processes that give a negative contribution
to the current, the magnitude of which is still much smaller
than the one of the electron processes in the shot noise limit
eV@kBT. At vanishing voltages, of course,Pn=P−n as re-
quired by the fluctuation-dissipation theorem.

In Fig. 13 one can observe the following important fea-
tures. First, at finite temperature the different processes do

not have any finite threshold voltage, and they can contribute
down to zero bias due to thermal activation. Second, as the
temperature increases the probability of the single quasipar-
ticle processes is greatly enhanced inside the gap. This fact
results in a reduction of the average effective charge trans-
mitted through the contact. Finally, note that although the
MAR probabilities are reduced inside the gap at finite tem-
perature, high-order processes can give a significant contri-
bution to the transport even at voltages larger than the gap at
the corresponding temperature. This is clearly at variance
with the zero temperature case. To understand this behavior,
let us recall that the total voltage gain for an ordern process
is neV, which means essentially that higher-order processes
can start well below the gap and end well above the gap.
Now, at finite temperature, for example, the end states above
the gap are filled with finite probabilityfsE+neVd, assuming
that the process has started with a quasiparticle at energyE.
A certain process can only happen if its final state is empty.
This gives a factor 1−fsE+neVd, which enhances the chance
for higher-order processes, since they have to end up at
higher energies, for which this factor is larger. On the other
hand, a similar argument can be made about the initial state,
which has to be filled for the process to take place. Again,
this is more likely for higher-order processes, since they can
emerge from energies well below the gap, which are com-
pletely filled also at finite temperature.

It is interesting to discuss the qualitative different tem-
perature behavior of the second and third cumulants. The
noise exhibits a transition from pure shot noise at zero tem-
perature to thermal noise when the temperature is larger than
the voltage. As it can be seen in Fig. 11, this transition is
reflected in a saturation of the noise at low bias to a finite
value, which is given by the fluctuation-dissipation theorem.
It is interesting to note, that the noise decreases as a function
of voltage in the transition region from thermal to shot noise
also for relatively small transmissions. Such a behavior can
be attributed to the multinomial distribution. Interestingly,
from Eq. (28) we see that the cross correlations between
processes of orders with opposite sign(e.g.,m=−n) tend to
increase the noise. As these terms appear only in the thermal
regime, whenPn< P−n, the reduction of noise below the
thermal level can be understood as consequence of the van-
ishing cross correlations between processes of orders with
different signs.

The temperature dependence of the third cumulant is very
interesting. First, we recall that the third cumulant vanishes
at zero voltage for any temperature(as all odd cumulants
do). In Ref. 45 the temperature dependence of the third cu-
mulant for a quantum contact between normal metals was
calculated. It was shown that an increasing transparency has
quite a dramatic effect on the third cumulant. For a tunnel
junction (i.e., for small transmission) C3 is independent of
the temperature and it is simply equal to theq2C1. However,
this is interesting because it allows a direct measurement of
the chargeq transferred in an elementary event even for volt-
ages below the shot noise limit. Note, that this relation holds
also for nonlinear current-voltage characteristics, since it is a
consequence of the bidirectional Poisson distribution in this
limit. The effects of a finite transparency are even more dra-
matic. The third cumulant has a marked temperature depen-

FIG. 12. Finite temperature thrid cumulant for BCS supercon-
ductors. The temperature is normalized with the critical temperature
TC. The different panels correspond to different transmission values.
The third cumulant and the voltage are normalized with the
temperature-dependent gap.

FIG. 13. Average MAR probabilities P̄nsVd
;s1/eVde0

eVdEPnsE,Vd at finite temperature as a function of volt-
age for a contact between BCS superconductors with transmission
T=0.95. The four panels correspond to different temperaturesTe

expressed in units of the critical temperatureTC. The index of the
processes is indicated in the plots.
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dence, crossing over from aFI dependence, whereF=1−T
is the Fano factor, to an unusual high-temperature depen-
dence,FIs1−2Td, which can even become negative forT
.1/2. In view of these findings, we now discuss our results
for the temperature dependence of the third cumulant of a
superconducting point contact.

First, we note that in Fig. 12C3 has a temperature depen-
dence even in the tunnel regime. As explained in the previ-
ous paragraph, this is in contrast with the normal state, where
C3 is almost independent of the temperature, as it has been
discussed theoretically in Ref. 45 and observed experimen-
tally in Ref. 63(after correcting for the effect of the environ-
ment, see Refs. 65). In our case the temperature dependence
is due to the change in the MAR probabilities caused by the
thermal activation. As explained above, the thermal activa-
tion enhances the probability of the tunneling of single qua-
siparticles inside the gap, which, in turn, reduces the average
effective charge. A consequence of this fact is the great re-
duction of the ratioC3/C1 as the temperature increases. This
is illustrated in Fig. 14. This reduction is specially pro-
nounced in the subgap region for intermediate transparen-
cies.

VI. CONCLUSIONS

We have presented a detailed analysis of the full-counting
statistics in superconducting point contacts at finite bias volt-

age. We have demonstrated that the charge transfer in these
systems is described by a multinomial distribution of pro-
cesses, in which multiple chargesne (with n
=1,2,3, . . . ,20, . . .) are transferred through the contact.
These processes are nothing but multiple Andreev reflec-
tions. The knowledge of the full-counting statistics allows us
to obtain the probabilities of the individual MARs, providing
a deep insight into the electronic transport of these junctions.
From the knowledge of these probabilities one can easily
calculate not only the current or the noise, but all the cumu-
lants of the current distribution. We have also shown that one
can obtain analytical expressions for the MAR probabilities
at zero temperature, which provides the most efficient
method to calculate the transport properties of these contacts.
Moreover, the FCS approach allows us to describe a great
variety of situations in a unified manner.

In this sense, we have addressed different situations, such
as contacts between BCS superconductors, junctions be-
tween superconductors where a pair-breaking mechanism is
acting, or short diffusive SNS contacts. We have also dis-
cussed the temperature dependence of the first cumulants and
illustrated their peculiarities as compared to the normal case.
It is also worth mentioning that the formalism developed in
this work can be easily applied to other situations not ad-
dressed here, such as point contacts with proximity-effect
superconductors82 and Josephson junctions of unconven-
tional superconductors.83,84.

From the full-counting-statistics view point, we have
found a different distribution occuring in superconducting
point contacts. The statistics take the form of a multinomial
distribution of charge transfers of all orders, which are al-
lowed by the applied bias voltage. We have shown that the
limit of opaque contacts provides an interesting situation in
which Poissonian statistics makes it possible to observe mul-
tiple charge transfers in a direct manner. Furthermore, we
have discussed consequences of the multinomial statistics of
charge transfers of different sizes at the same time. For ex-
ample, an open contact has a finite noise due to the presence
of different MAR processes at the same time. The tempera-
ture dependence of the counting statistics provides a new
insight in to the transport characteristics because we have
shown that higher-order Andreev processes contribute also at
voltages much larger than the superconducting gap.

We acknowledge discussions with A. Levy Yeyati, A.
Martín-Rodero, and Yu.V. Nazarov. J.C.C. was financially
supported by the DFG within the CFN and by the Helmholtz
Gemeinschaft within the Nachwuchsgruppe program(Con-
tract No. VH-NG-029), and W.B. by the Swiss NSF and the
NCCR Nanoscience.

1I. Giaever, H. R. Hart Jr., and K. Magerle, Phys. Rev.126, 941
(1962).

2J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.108,
1175 (1957).

3B. N. Taylor and E. Burstein, Phys. Rev. Lett.10, 14 (1963).

4I. K. Yanson, V. M. Svistunov, and I. M. Dmitrenko, Sov. Phys.
JETP 20, 1404(1965).

5S. M. Marcus, Phys. Lett.19, 623 (1966); S. M. Marcus, Phys.
Lett. 20, 236 (1966).

6J. M. Rowell and W. L. Feldmann, Phys. Rev.172, 393 (1968).

FIG. 14. RatioC3/C1 for two different temperatures as a func-
tion of the voltage for a contact between BCS superconductors. The
different curves correspond to different transmissions as indicated
in the plots.

J. C. CUEVAS AND W. BELZIG PHYSICAL REVIEW B70, 214512(2004)

214512-16



7A. A. Bright and J. R. Merrill, Phys. Rev.184, 446 (1969).
8I. Giaever and H. R. Zeller, Phys. Rev. B1, 4278(1970).
9J. R. Schrieffer and J. W. Wilkins, Phys. Rev. Lett.10, 17 (1963).

10N. R. Werthamer, Phys. Rev.147, 255 (1966).
11T. M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica B

109&110, 1657(1982).
12M. Octavio, G. E. Blonder, M. Tinkham, and T. M. Klapwijk,

Phys. Rev. B27, 6739(1983).
13K. Flensberg, J. B. Hansen, and M. Octavio, Phys. Rev. B38,

8707 (1988).
14G. B. Arnold, J. Low Temp. Phys.68, 1 (1987).
15E. N. Bratus, V. S. Shumeiko, and G. Wendin, Phys. Rev. Lett.

74, 2110(1995).
16D. Averin and A. Bardas, Phys. Rev. Lett.75, 1831(1995).
17M. Hurd, S. Datta, and P. F. Bagwell, Phys. Rev. B54, 6557

(1996).
18J. C. Cuevas, A. Martín-Rodero, and A. Levy Yeyati, Phys. Rev.

B 54, 7366(1996).
19A. Levy Yeyati, J. C. Cuevas, A. López-Dávalos, and A. Martín-

Rodero, Phys. Rev. B55, R6137(1997).
20G. Johansson, E. N. Bratus, V. S. Shumeiko, and G. Wendin,

Phys. Rev. B60, 1382(1999).
21J. C. Cuevas, A. Martín-Rodero, and A. Levy Yeyati, Phys. Rev.

Lett. 82, 4086(1999).
22Y. Naveh and D. V. Averin, Phys. Rev. Lett.82, 4090(1999).
23J. C. Cuevas, J. Heurich, A. Martín-Rodero, A. Levy Yeyati, and

G. Schön, Phys. Rev. Lett.88, 157001(2002).
24C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Phys. Rev.

Lett. 69, 140 (1992).
25N. van der Post, E. T. Peters, I. K. Yanson, and J. M. van Ruiten-

beek, Phys. Rev. Lett.73, 2611(1994).
26J. G. Rodrigo, N. Agraït, C. Sirvent, and S. Vieira, Phys. Rev. B

50, 12788(1994).
27M. C. Koops, G. V. van Duyneveldt, and R. de Bruyn Ouboter,

Phys. Rev. Lett.77, 2542(1996).
28E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret,

Phys. Rev. Lett.78, 3535(1997).
29E. Scheer, N. Agraït, J. C. Cuevas, A. Levy Yeyati, B. Ludoph, A.

Martín-Rodero, G. Rubio, J. M. van Ruitenbeek, and C. Urbina,
Nature(London) 394, 154 (1998).

30B. Ludophet al., Phys. Rev. B61, 8561(2000).
31M. F. Goffmanet al., Phys. Rev. Lett.85, 170 (2000).
32R. Cronet al., Phys. Rev. Lett.86, 4104(2001).
33M. Buitelaar, W. Belzig, B. Babic, Th. Nussbaumer, C. Bruder,

and C. Schönenberger, Phys. Rev. Lett.91, 057005(2003).
34J. C. Cuevas and W. Belzig, Phys. Rev. Lett.91, 187001(2003).
35G. Johansson, P. Samuelsson, and A. Ingerman, Phys. Rev. Lett.

91, 187002(2003).
36L. Mandel and E. Wolf,Optical Coherence and Quantum Optics

(Cambridge University, Cambridge, England, 1995).
37L. S. Levitov and G. B. Lesovik, Zh. Eksp. Teor. Fiz.58, 225

(1993)[L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math.
Phys. 37, 4845(1996)].

38Quantum Noise in Mesoscopic Physics, edited by Yu. V. Nazarov
(Kluwer, Dordrecht, 2003).

39L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math. Phys.37,
4845 (1996).

40H. Lee, L. S. Levitov, and A. Yu. Yakovets, Phys. Rev. B51,
4079 (1996).

41Yu. V. Nazarov, Ann. Phys.(Leipzig) 8, SI-193(1999).

42O. N. Dorokhov, Solid State Commun.51, 381 (1984).
43Yu. V. Nazarov, Phys. Rev. Lett.73, 1420(1994).
44R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bu-

nin, and D. Mahalu, Nature(London) 389, 162(1997); L. Sami-
nadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett.
79, 2526(1997); M. Reznikov, R. de Picciotto, T. G. Griffiths,
M. Heiblum, and V. Umansky, Nature(London) 399, 238
(1999); T. G. Griffiths, E. Comforti, M. Heiblum, A. Stern, and
V. Umansky, Phys. Rev. Lett.85, 3918(2000).

45L. S. Levitov and M. Reznikov, cond-mat/0111057.
46H. Saleur and U. Weiss, Phys. Rev. B63, 201302(2001).
47W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett.87, 197006

(2001).
48B. A. Muzykantskii and D. E. Khmelnitzkii, Phys. Rev. B50,

3982 (1994).
49C. W.J. Beenakker, Phys. Rev. B46, 12841(1992); C. J. Lam-

bert, J. Phys.: Condens. Matter3, 6579 (1991); Y. Takane and
H. Ebisawa, J. Phys. Soc. Jpn.61, 1685(1992).

50W. Belzig, Quantum Noise in Mesoscopic Physics, Ref. 38, p.
463.

51W. Belzig and P. Samuelsson, Europhys. Lett.64, 253 (2003).
52P. Samuelsson, W. Belzig, and Yu. V. Nazarov, Phys. Rev. Lett.

92, 196807(2004).
53W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett.87, 067006

(2001).
54B. Reulet, A. A. Kozhevnikov, D. E. Prober, W. Belzig, and Yu.

V. Nazarov, Phys. Rev. Lett.90, 066601(2003).
55X. Jehl, P. Payet-Burin, C. Baraduc, R. Calemczuk, and M. San-

quer, Phys. Rev. Lett.83, 1660(1999); A. A. Kozhevnikov, R.
J. Schoelkopf, and D. E. Prober,ibid. 84, 3398(2000); X. Jehl,
M. Sanquer, R. Calemczuk, and D. Mailly, Nature(London)
405, 50 (2000).

56M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B49, 16070
(1994); K. E. Nagaev and M. Büttiker,ibid. 63, 081301(2001).

57F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Phys. Rev.
Lett. 90, 067002(2003).

58M. P. V. Stenberg and T. T. Heikkilä, Phys. Rev. B66, 144504
(2002).

59F. Pistolesi, G. Bignon, and F. W. J. Hekking, Phys. Rev. B69,
214518(2004).

60Yu. V. Nazarov and M. Kindermann, Eur. Phys. J. B35, 413
(2003).

61M. Kindermann and Yu. V. Nazarov,Quantum Noise in Mesos-
copic Physics, Ref. 38, p. 403.

62Alessandro Romito and Yu. V. Nazarov, cond-mat/0402412(un-
published).

63B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett.91,
196601(2003).

64B. Reulet, L. Spietz, C. M. Wilson, J. Senzier, and D. E. Prober,
cond-mat/0403437.

65C. W. J. Beenakker, M. Kindermann, and Yu. V. Nazarov, Phys.
Rev. Lett. 90, 176802(2003).

66M. Kindermann, Yu. V. Nazarov, and C. W. J. Beenakker, Phys.
Rev. Lett. 90, 246805(2003).

67D. Gutman, Y. Gefen, and A. Mirlin, cond-mat/0210076(unpub-
lished).

68K. E. Nagaev, S. Pilgram, and M. Büttiker, Phys. Rev. Lett.692,
176804(2004).

69A. V. Galaktionov, D. S. Golubev, A. D. Zaikin, Phys. Rev. B68,
235333(2003).

DC TRANSPORT IN SUPERCONDUCTING POINT… PHYSICAL REVIEW B 70, 214512(2004)

214512-17



70D. S. Golubev and A. D. Zaikin, Phys. Rev. B69, 075318(2004).
71Tero T. Heikkila and Leif Roschier, cond-mat/0407233(unpub-

lished).
72J. Gabelli, L.-H. Reydellet, G. Fève, J.-M. Berroir, B. Placais, P.

Roche, and D. C. Glattli, Phys. Rev. Lett.93, 056801(2004).
73J. Tobiska and Yu. V. Nazarov, Phys. Rev. Lett.93, 106801

(2004).
74Yu. V. Nazarov, Superlattices Microstruct.25, 1221(1999).
75A. Shelankov and J. Rammer, Europhys. Lett.63, 485 (2003).
76K. Maki, in Superconductivity, edited by R. D. Parks(Marcel

Dekker, New York, 1969), p. 1035.
77S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.136,

A1500 (1964).
78E. Scheer, J. C. Cuevas, A. Levy Yeyati, A. Martín-Rodero, P.

Joyez, M. H. Devoret, D. Esteve, and C. Urbina, Physica B280,
425 (2000).

79H. Suderow, E. Bascones, W. Belzig, F. Guinea, and S. Vieira,
Europhys. Lett.50, 749 (2000).

80Yu. V. Nazarov, Phys. Rev. Lett.73, 134 (1994).
81A. Bardas and D. V. Averin, Phys. Rev. B56, R8518(1997).

82E. Scheer, W. Belzig, Y. Naveh, M. H. Devoret, D. Esteve, and C.
Urbina, Phys. Rev. Lett.86, 284 (2001).

83A. Poenicke, J. C. Cuevas, and M. Fogelström, Phys. Rev. B65,
220510(2002).

84J. C. Cuevas and M. Fogelström, Phys. Rev. Lett.89, 227003
(2002).

85This relation follows from the definition of the current noise
powerSI =2e−`

` dtkIst /2dIs−t /2dl. The second cumulant, on the
other hand, is defined byC2=ee0

t0dtdt8kIstdIst8dl. In the static
situation the current-current correlation function depends only
on the time differencet= t− t8 and decays on some characteristic
scalet0. For long observation timest0@t0, we find for the sec-
ond cumulantC2=st0/2e2dSI.

86The argument to understand this statement goes as follows. The

Taylor expansions of both logarithms can be written as lnQ̌±

=on=1
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