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We study theoretically quantum transport through laser-irradiated metallic atomic-sized contacts. The radia-
tion field is treated classically, assuming its effect to be the generation of an ac voltage over the contact. We
derive an expression for the dc current and compute the linear conductance in one-atom-thick contacts as a
function of the ac frequency, concentrating on the role played by electronic structure. In particular, we present
results for three materials �Al, Pt, and Au� with very different electronic structures. It is shown that, depending
on the frequency and the metal, the radiation can either enhance or diminish the conductance. This can be
intuitively understood in terms of the energy dependence of the transmission of the contacts in the absence of
radiation.
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I. INTRODUCTION

The study of electronic transport in microscopic and
nanoscale electrical contacts under the influence of time-
dependent external fields has a long history. Perhaps as the
most famous example, superconducting tunnel junctions sub-
jected to microwave radiation exhibit a steplike structure in
their current-voltage �I-V� characteristics.1 This can be un-
derstood in terms of inelastic �“photoassisted”� transport of
electrons across the junction. In the early theoretical work of
Tien and Gordon �TG�,2 this phenomenon was described by a
harmonic voltage at the radiation frequency � applied to one
of the leads, giving rise to photo “sidebands” associated with
the “absorption” or “emission” of an integer multiple of the
photon energy ��. This theory has also been extended to
describe superconducting atomic point contacts3 and the pre-
dictions have been confirmed experimentally using micro-
fabricated Al break junctions under microwave irradiation.4

In addition, a similar approach has been used to describe
laser-irradiated junctions in scanning tunneling microscopes
�STMs�.5 In these, as a result of inherent asymmetries in the
geometry and the materials of the junction, laser irradiation
can cause dc �rectification� currents even in the absence of a
dc bias voltage.6,7

Over the years, several types of model calculations have
been employed also to describe the ac response of semicon-
ductor heterostructures8,9 and other mesoscopic systems,10–12

as well as atomic and molecular contacts.13–17 Among these,
the TG-like theories have been quite successful in gaining a
qualitative understanding of light-induced currents.1,8,13

Metallic atomic-sized wires fabricated with STM or
break-junction techniques have turned out to be ideal sys-
tems for investigating electronic transport at the nanoscale.18

The bulk of the research in this field so far has concentrated
on stationary transport properties, while systems being
driven by time-varying external fields �such as laser light�
have received less attention. Very recent experiments on
laser-irradiated gold contacts support the idea that photoas-
sisted processes may play an important role in their transport
properties.19 To take the first steps toward a microscopic de-

scription of experiments of this type, we address in this paper
the role of electronic structure in photoassisted transport
through atomic-sized junctions. This problem is not only rel-
evant for the field of atomic contacts, but also for molecular
electronics, where the role of the metallic contacts in photo-
assisted transport through molecular junctions remains to be
understood.

In different types of metals, the nature and number of
conduction channels in one-atom contacts reflect the valence
of the metal, i.e., what type of atomic orbitals are available at
the Fermi energy.20 How is this difference between the met-
als seen in their response to irradiation? To investigate this
question, we use a tight-binding model and explore mainly
one-atom-thick contact geometries like the one shown in Fig.
1�a�. We are interested in the linear conductance Gdc
=�I /�V�V=0 as a function of the radiation frequency �, which
we call the photoconductance. Following the TG ideology,
we model the effect of radiation with a time-periodic voltage,
but we also take into account the effect of the voltage profile
across the contact �see Fig. 1�b��. While many previous
model calculations with periodic driving fields are based on
Floquet theory,8,13 our method is based on nonequilibrium
Green’s functions.7,9,21,22 Our approach allows for a realistic
description of the photoconductance of atomic contacts, with
a single free parameter describing the local intensity of the
radiation.

FIG. 1. �Color online� �a� Two infinite fcc �001� surfaces con-
tacted with pyramids of ten atoms in each, forming a “dimer” con-
tact. The tip-to-tip distance is denoted by D; all other interatomic
distances are the same as in the bulk. �b� Two model ac voltage
profiles Ui

ac, where i labels atomic sites and orbitals in the C region:
a double step �A� and a linear ramp �B� between the lead values UL

ac

and UR
ac.
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As examples of metals with very different electronic
structures we choose Al, Pt, and Au. We study one-atom-
thick junctions of these materials mainly in the so-called
contact regime, but also in the tunneling regime. In the case
of the contact regime we find the following results. For Pt
the effect of the ac voltage is almost always to decrease Gdc
from its value in the absence of radiation. This is because the
Fermi energy �F lies at the edge of the d band, and exciting
electrons above �F necessarily decreases their transmission
probability, since fewer transmission channels are available
there. For Al, where �F is at the beginning of the p band, also
an enhancement of the conductance is possible. The magni-
tude of these changes depends on the intensity of the radia-
tion, but can be up to 10% or more at visible frequencies. For
Au, �F is in the s band, with a single completely open trans-
mission channel for a wide range of energies. Thus, low-
frequency radiation has no effect on the conductance, while
in the visible range both an increase and a decrease are pos-
sible. These conclusions are based on detailed numerical
simulations, but they can be understood in an appealing way
in terms of the energy dependence of the transmission in the
absence of the ac drive.

The rest of the paper is organized as follows. In Sec. II we
introduce the theoretical model used to describe the elec-
tronic structure of atomic-sized contacts and the effect of
irradiation. Section III is devoted to the derivation of a gen-
eral formula for the dc current through atomic contacts sub-
jected to an ac voltage. In Sec. IV we describe examples of
numerical results of the frequency dependence of the linear
conductance for one-atom-thick contacts of Al, Pt, and Au.
Finally, in Sec. V we discuss some of the assumptions and
restrictions of our model and present the main conclusions.

II. MODEL

We describe the laser-irradiated point contact with an spd
tight-binding Hamiltonian of the form

H�t� = H0 + H1�t� ,

H0 = �
ij

di
†Hijdj, H1�t� = �

ij

di
†Wij�t�dj , �1�

where the indices i , j run over the different atoms and orbit-
als, including the two spin directions. The creation and anni-
hilation operators �di

† and dj� satisfy �di ,dj�=0 and �di ,dj
†�

= �S−1�ij, where S is the overlap matrix of the nonorthogonal
basis.23 The Hamiltonian H0 is for the system without radia-
tion and dc voltage, while H1�t� includes them both. The
matrix elements of the Hamiltonian and the overlap matrix
�Hij and Sij� are taken from the parametrization of Ref. 24.
All matrices in the spin-orbital basis �such as H and S� are
denoted with a boldface symbol.

We consider ideal symmetric geometries of the type
shown in Fig. 1�a�, with a single-atom-thick constriction.
This type of “dimer” structure is suggested by molecular
dynamics simulations as the most common one in the last
conductance plateau.25 When the distance D between the tip
atoms corresponds to the bulk interatomic distance, the junc-

tion is said to be in the contact regime. We also study larger
D values, where the junction enters the tunneling regime. For
the calculation of transport we shall, in the usual way, divide
the system into left lead �L�, central �C�, and right lead �R�
regions. The leads are modeled with infinite surfaces, where
the fcc �001� axis coincides with the transport direction. We
index the regions with the label �=L ,C ,R. As a matrix in-
dex, this label also indicates collectively all the orbital indi-
ces of the respective region.23

We assume that the L and R lead potentials are
spatially constant and harmonic with angular frequency �,
such that T�=2� /� is the oscillation period. Thus W���t�
=U��t�S��, where U��t�=U�

dc+U�
accos��t�, and �=L ,R.

The applied dc voltage V= �UL
dc−UR

dc� /e, where −e is the
electron charge, is assumed to be infinitesimal. For the lead-
center hoppings we also assume WC��t�=U��t�SC�, etc. The
central potential is assumed to be of the
form WCC�t�=WCC

dc +WCC
ac cos��t�, or �WCC�t��ij

= �SCC�ij�Ui�t�+Uj�t�� /2.26 Here, Ui�t�=Ui
dc+Ui

accos��t� is
the same for all orbitals i on the same atom in region C. The
actual shape of Ui�t� within C should in principle be obtained
self-consistently through the solution of a Poisson equation,
such that screening and local field-enhancement effects
would be properly accounted for. In this case the appearance
of higher harmonics of � and phase shifts in WCC�t� would
be possible. As this would be computationally very costly,
we shall do the following: the dc part Ui

dc is fixed by a
requirement of local charge neutrality in equilibrium23,26 and
incorporated into HCC, while for Ui

ac we just assume some
simple forms. Below we consider two model profiles �see
Fig. 1�b��: Ui

ac= �UL
ac+UR

ac� /2 for all orbitals i in region C
�profile A�, and one which linearly interpolates between UL

ac

and UR
ac �profile B�. For the symmetric junctions that we are

considering, symmetric profiles of this type are the most rea-
sonable.

III. CURRENT FORMULA

We only consider the time-averaged current, and can thus
neglect displacement contributions without losing current
conservation.10–12 The particle current is given in terms of
nonequilibrium Green’s functions by9

I =
e

�
	

0

T� dt

T�

Tr��GCL
� � tLC − tCL � GLC

� ��t,t�� . �2�

Here, in the case of the nonorthogonal basis23

tCL�t,t�� = ��HCL + WCL�t�� − SCLi � �t� � ��t − t�� ,

and using the “Langreth rules” GCL
� =GCC

r � tCL �gLL
� +GCC

�

� tCL �gLL
a .9 The product � is defined by �A �B��t , t��

=
�ds / � �A�t ,s�B�s , t��, where A and B are matrices in the
spin-orbital basis, over which the trace Tr acts. The Green’s
functions G���

x with x=r ,a ,	 and � ,��=L ,C ,R are de-
fined as usual,9,23 and g��

x are the functions for uncoupled
leads. The CC component of the full retarded function satis-
fies
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�SCCi �
�

�t
− HCC − WCC�t��GCC

r �t,t�� = � ��t − t�� + ��L
r

� GCC
r ��t,t�� + ��R

r � GCC
r ��t,t�� , �3�

whereas GCC
	 =GCC

r � ��L
	+�R

	� �GCC
a . Here we defined the

“lead self-energies” ��
x = tC� �g��

x � t�C, with �=L ,R. The
solutions of

�S��i �
�

�t
− H�� − W���t��g��

r �t,t�� = � ��t − t�� �4�

lead to self-energies of the form

��
x �t,t�� = exp�− i	

t�

t ds

�
U��s�� 	 d�

2�
e−i��t−t��/���

x,eq��� .

�5�

The equilibrium self-energies are given by ��
x,eq���

= tC����g��
x,eq���t�C���, where the Green’s functions g��

x,eq��� of
the infinite surfaces are obtained by a decimation method,23

while tC����=HC�−�SC� and t�C= �tC��†. We also have
g��

�,eq���=−f��� �g��
r,eq���−g��

a,eq���� where f��� is the Fermi
function.

Since the Green’s functions and self-energies A�t , t�� are
all periodic in the time �t+ t�� /2, we can simplify the analysis
by working in Fourier coordinates. We define the harmonic

matrices Â��� with components �Â�m,n���=Am−n��+ �m
+n��� /2�, where m ,n are integers, and

An��� = 	
0

T� dT

T�

ein�T	 d


�
ei�
/�A�T + 
/2,T − 
/2� .

In this way we find Ĝ	= Ĝr��̂L
	+ �̂R

	�Ĝa, while

�Ĝr,a�−1 = ��̂SCC − HCC�1̂ − Ŵ − �̂L
r,a − �̂R

r,a. �6�

Here ��̂�m,n= ��+m����m,n, �Ŵ�m,n=WCC
ac ��m−1,n+�m+1,n� /2,

and we have dropped the indices CC from the harmonic
matrices. The self-energies as well as the scattering rates

�̂�= i��̂�
r − �̂�

a � are related to the corresponding equilibrium
quantities by

��̂�
x �m,n = �

l

��̂�
x�l��m,n, ��̂��m,n = �

l

��̂�
�l��m,n, �7�

where we define the components

��̂�
�l��m,n��� = Jm+l���Jn+l�����

eq�� − U�
dc − l � �� ,

with a similar equation for �̂�
x�l����. Here ��

eq���= i��r,eq���
−�a,eq����, Jl are Bessel functions of the first kind, and �

=U�
ac / ��. All of the harmonic matrices satisfy the symmetry

�Â�l��m+k,n+k���= �Â�l+k��m,n��+k���. Finally, we may note

that 
�dt /T��Tr��A �B��t , t��=
0
���d� /2��Tr��Â���B̂����,

where Tr��Â����=�mTr�Â�m,m���. For numerical calcula-

tions, the matrices Â��� must be truncated to a few lowest
indices m ,n, but the results converge rapidly with the cutoff.

Using the above definitions and general symmetries like

Ĝr− Ĝa= Ĝ�− Ĝ�, Eq. �2� yields the dc current

I =
e

�
	

0

�� d�

2�
�
k,l

Tr��Ĝr�̂R
�k�Ĝa�̂L

�l���fL
�l� − fR

�k�� , �8�

where f�
�k����= f��−U�

dc−k���. In the absence of an ac field
this reduces to the standard Landauer-type formula.27 Al-
though we are not computing Ui�t� self-consistently, Eq. �8�
is still gauge invariant in the sense that a spatially constant
potential added everywhere has no effect. Thus, the results
depend only on UL�t�−UR�t�.11

IV. RESULTS

The experimentally accessible quantity that we calculate
is the linear conductance Gdc���=�I /�V�V=0. In what follows
we shall assume zero temperature. If the lead self-energies
�L,R

r,eq are furthermore assumed to be energy independent
�“wide-band” approximation�, then the full result for poten-
tial profile A simplifies to11

Gdc��� = G0�
l

�Jl�/2��2Teq��F + l � �� , �9�

where G0=2e2 /h and Teq��� is the equilibrium transmission
function.28 We have also defined the parameter =L−R
= �UL

ac−UR
ac� / ��, which measures the local intensity of the

radiation.2 Equation �9� describes electrons incident from the
different sidebands �after having absorbed or emitted l pho-
tons� being transmitted elastically through the constriction,
which mostly determines Teq���. In reality, the electric field
is nonzero only in the constriction and thus the actual physi-
cal transitions must occur there. Note that Eq. �9� should
reproduce the results for profile A only in the limit of small �
and . Still, it works surprisingly well for all the cases pre-
sented below.

Let us first discuss the results for the contact regime,
which is the subject of our main interest in this paper. In Fig.
2 we show results for a dimer Al contact, where �F lies in the
3p band. The upper panel shows the transmission function
Teq��� and the lower panels show Gdc��� for the two voltage
profiles as well Eq. �9� for several values of . In the absence
of an ac voltage ��=0� the conductance is close to G0, and is
dominated by three conduction channels due to the contribu-
tion of 3s and 3p orbitals.20 At finite �, the relative change
�Gdc���= �Gdc���−Gdc��=0�� /Gdc��=0� is initially nega-
tive, but can then rise to positive values of 10% toward
visible frequencies. This behavior is similar for both profiles
A and B, as well as for Eq. �9�. From the latter result, we can
interpret our findings in the following appealing way. For
�1 only the first sidebands �l=0, ±1� contribute to the
transport. In this limit, according to Eq. �9�, �Gdc��� mea-
sures, roughly speaking, the “second derivative” of Teq��� on
the scale of �� around �F. Thus, for instance, the conduc-
tance enhancement in the visible range follows from the
transmission increase for electrons promoted above �F �due
to absorption� overcoming the corresponding decrease for
electrons moved below �F �due to emission�.

Figure 3 shows the corresponding results for Pt. In the
absence of radiation the conductance is close to 2.1G0 due to
the contributions of mainly three conduction channels, which
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originate from the 6s and 5d orbitals. In this case, and in the
contact regime in general for Pt, the effect of the radiation is
almost always a significant reduction in conductance. This is
understandable, since �F lies at the edge of the d band, and
photon absorption leads to an energy region where fewer
open transmission channels are available and Teq is smaller.
Note that for low �, the full results are again well described
by Eq. �9�. Let us remark that we only compute Gdc��� for
low enough � and , so that the electric fields of the radia-
tion remain reasonable ��3�109 V/m�.

The results for Au are shown in Fig. 4. As can be seen in
the upper panel, the conductance for �=0 is equal to 1G0
with a single open channel arising from the contribution of
the 6s orbitals.20 Moreover, notice that the transmission
around �F is very flat. Due to this flatness, for frequencies up
to ��1 eV the effect of radiation is practically negligible.
In the red part of the visible range ����2 eV� we find that
�Gdc����0 up to a few percent, although this depends
rather strongly on the choice of the voltage profile. This in-

crease in the conductance is due to a contribution of the 5d
bands located 2 eV below �F, where the number of open
transmission channels is higher than at �F. At higher frequen-
cies �Gdc����0, as for Pt. We have also studied Au contacts
with atomic chains of varying length and the results remain
qualitatively similar, although in the case of profile B the
amplitude �Gdc����0 becomes smaller as the number of
chain atoms increases.

When the distance D between the tip atoms of the dimer
contact �Fig. 1� is increased, the tunneling regime is ap-
proached. Here Gdc��� decreases exponentially with increas-
ing D, but �Gdc��� has a tendency to saturate. This is easy to
understand, because it may be shown that for very large D
the magnitude of the conductance is approximately deter-
mined by the square of the slowest-decaying hopping inte-
gral between the tip atoms, which enters the conductance
formula as a prefactor. The form of �Gdc��� can, however,
be very different from the contact regime.

An example of the tunneling regime results for Al is pre-
sented in Fig. 5. The top panels illustrate the exponential
decay of Gdc��=0� and Teq��� with D, while in the lower
panels the quantity Gdc��� /Gdc��=0� is shown for two val-
ues of  and for several distances D. The results again look
quite similar for the two voltage profiles as well as for Eq.
�9�. The quantity �Gdc can obtain both positive and negative
values, and its saturation with D is clearly visible. For Pt �see
Fig. 6� we find that Gdc��� is otherwise flat, but there is a
sharp resonance at ��1 eV where �Gdc��� can take on
positive values of up to a few hundred percent. This is due to
resonant transmission through a level formed by the d orbit-
als of the tip atoms, which can be seen also in the Teq���
curves. In the case of Au there exists a rather similar, but
broader positive peak covering the visible range �see Fig. 7�.
For each metal, we only consider large enough D to see the
saturation of �Gdc���. Indeed, the tight-binding parametriza-
tion we are using is based on bulk calculations24 and is prob-
ably not good for very large interatomic distances. Further-
more, the charge neutrality shifts mentioned in Sec. II are
strongest for the tip atoms. Therefore the peaks in Gdc���
observed for Pt and Au, for example, should be taken with
some reservations. For very large D, we would also not ex-
pect to see such a good agreement between the results for

FIG. 2. �Color online� Top panel: Equilibrium transmission Teq

and its decomposition into conduction channels T1,2,3,4 for an Al
dimer contact. The position of �F is indicated by a vertical dotted
line. Lower panels: Zero-temperature photoconductance for several
values of  as a function of frequency � using the voltage profile A
�a�, profile B �b�, and Eq. �9� �c�. In �b� wavelengths � with a tick
spacing of 400 nm are shown. The range of visible light is indicated
by vertical dotted lines.

FIG. 3. �Color online� Same as Fig. 2, but for Pt.

FIG. 4. �Color online� Same as Fig. 2, but for Au.
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profiles A and B, because the tunneling conductance for pro-
file B depends on the local densities of states of the tip atoms
in a way that cannot be written in the form �9�. Nevertheless,
our results serve as good illustrations of the different phe-
nomena that may potentially arise in the tunneling regime.

Above we have only shown some example results for
very idealized symmetric geometries. In general, the signs
and magnitudes of �Gdc��� depend sensitively on details of
the atomic structure, as does Teq���. For a more complete
analysis one should therefore study also larger contacts and
carry out a statistical exploration of geometrical variations
along the lines of Ref. 25. Based on Eq. �9�, we can still

expect that in the limit of several-atom-wide contacts the
relative effect of the ac voltage gradually becomes smaller as
Teq��� becomes smoother. A direct comparison with the on-
going experiments19 will be postponed for later.

V. DISCUSSION AND CONCLUSIONS

Some of the assumptions of our model and the effects not
taken into account are worth discussing. First, we assume a
flat potential in the leads, which requires a complete screen-
ing of the electric field. This is well satisfied in metals for
frequencies � much below the plasma frequency but, as �
begins to approach the visible range, the screening is weak-
ened. On the other hand, as we have mentioned, the screen-
ing in the central region is not treated self-consistently. One
of the main concerns here is that local surface-plasmon
modes in small geometries tend to have their frequencies
close to the visible range, and their excitation can lead to
huge field-enhancement effects.5 Although this is not a prob-
lem for our model, one should bear in mind that  is not
simply related to the field intensity away from the contact
and, following the spirit of the experiments in superconduct-
ing contacts,4 it must be understood as an adjustable param-
eter. Also, at visible frequencies “multiphoton” processes can
already cause a photoelectric effect, i.e., excite electrons
above the vacuum level, which typically lies 4–6 eV above
�F.

Heating accompanies any possible effect arising from ab-
sorption of light, which in metals is especially pronounced in
the optical range due to the onset of interband transitions.
While we may expect that the effect of temperature is just to
broaden our results, in practice thermal expansion can play
an important role. This is well documented in the STM
context,5 where expansion typically brings the tip closer to
the sample, thus reducing the tunneling gap width. This re-
sults in a strong enhancement of the tunneling current. In the
case of atomic wires �i.e., in the contact regime�, it is not
obvious in which sense and to what degree thermal expan-

FIG. 5. �Color online� Tunneling limit for Al contacts. Top left
panel: Zero-frequency conductance Gdc��=0� as a function of tip
distance D. The vertical lines indicate the distances where the ex-
amples with corresponding line styles in the other panels are com-
puted. Top right panel: transmission Teq��� for the example dis-
tances. Lower panels: the left-hand �a�, �d�, central �b�, �e�, and
right-hand �c�, �d� panels are for profile A, profile B, and Eq. �9�,
respectively. The panels �a�–�c� are for =0.5 and �d�–�f� for 
=1.0.

FIG. 6. �Color online� Same as Fig. 5, but for Pt.

FIG. 7. �Color online� Same as Fig. 5, but for Au.
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sion affects the conductance. Assuming that the expansion
simply mimics a mechanical closing process in the STM or
break-junction experiments, it can lead to either an increase
or a decrease of the conductance, depending on the metal.
For instance, for Al contacts, which exhibit rising plateaus
upon stretching,29 one would expect a decrease of the con-
ductance due to thermal expansion, as opposed to the effect
of the electronic structure in the visible range �see Fig. 2�. In
this sense, our predictions can be valuable for distinguishing
in an experiment �such as Ref. 19� between the contributions
of the different effects to the photoconductance.

In conclusion, we have modeled electronic transport in
atomic point contacts subjected to external electromagnetic
radiation. The radiation has been described by an ac voltage
over the contact. Within a nonequilibrium Green’s function
method, we have derived a formula for the dc current in the
presence of such an ac drive. Using a tight-binding model,

we have applied the method for describing atomic-sized con-
tacts of Al, Pt, and Au, and have found that the qualitative
modification of the dc conductance by the ac voltage can be
predicted from the equilibrium transmission function. De-
pending on the metal, the detailed structure of the contact,
and the external frequency, the effect can be either an in-
crease or a decrease in the conductance. At present, experi-
ments are under way to test these predictions.19
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