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When a superconducting tunnel junction at a finite voltage is irradiated with microwaves, the interplay
between the alternating Josephson current and the ac field gives rise to steps in the dc current known as Shapiro
steps. In this work, we predict that in a mesoscopic structure connected to several superconducting terminals,
one can induce Shapiro-like steps in the absence of any external radiation simply by tuning the voltages of the
leads. To illustrate this effect, we make quantitative predictions for a three-terminal structure which comprises
a diffusive superconductor–normal-metal–superconductor junction and a tunneling probe, a setup which can be
realized experimentally.
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I. INTRODUCTION

In 1962, Josephson predicted that a tunnel junction be-
tween two superconductors at a finite bias V would sustain
an alternating current with frequency 2eV /�.1 Josephson also
argued that the alternating current would be frequency modu-
lated by an applied rf field and this would lead to steps in the
dc current-voltage characteristics at bias voltages given by
V=mh� /2e, where � is the frequency of the field and m is an
integer. In 1963, Shapiro shone microwaves onto a junction
and observed the predicted steps,2 which since then are re-
ferred to as Shapiro steps. This experiment constituted the
first proof of ac Josephson effect and also paved the way for
applications of this effect.3

The Shapiro steps are a consequence of the interplay be-
tween an ac Josephson current and a microwave signal. The
observation of Shapiro steps does not necessarily require an
external microwave generator: when two Josephson junc-
tions are electromagnetically coupled like in the classical ex-
periment of Giaever,4 a voltage-biased junction can be used
as a microwave source and induce Shapiro steps in the
current-voltage �I-V� characteristics of the other one. More
subtle coupling schemes have been achieved, in which two
superconducting weak links placed a few micrometers apart
share a common electrode. Shapiro-like steps were then ob-
served in the I-V’s, which were attributed to the phase lock-
ing of the Josephson frequencies when the dc voltages on
two bridges are approximately matched.5 Although there is
no rigorous microscopic theory of this nonequilibrium effect,
it is usually attributed to the diffusion of the quasiparticle
charge imbalance generated in and around the weak links.6

Very recently, it has been predicted that one could also gen-
erate Shapiro steps by coupling a tunnel Josephson junction
to a mechanical oscillator.7

In this work, we predict that a different type of Shapiro-
like steps can appear in a single multiterminal superconduct-
ing structure without any external radiation. The idea goes as
follows. Inspired by the experiment of Ref. 8, let us consider
the three-terminal structure shown in Fig. 1. It is formed by
a diffusive superconductor–normal-metal–superconductor
�SNS� junction and a superconducting tunneling probe Sp

attached to the normal wire. If one applies a potential differ-
ence U across the wire, ac currents with a frequency 2eU /h
and its harmonics will flow along the N wire. If a potential V
is now applied to the probe electrode, it will generate ac
currents with Josephson frequencies 2e�V±U /2� /h. The in-
terference between these ac currents which both involve the
quasiparticles in the diffusive wire gives rise to contributions
to the dc current through the interface N-Sp, which in this
setup appear as Shapiro steps at discrete voltages V=mU /2,
where m is an odd integer. Notice that in this case, the steps
appear due to the nonequilibrium state created in the diffu-
sive wire. In this region, the energy distribution function of
quasiparticles is driven to oscillate at different frequencies by
the dc voltages of the leads, and the Shapiro steps are a result
of the beating of these internal Josephson frequencies. As
illustrated below, this effect is described quantitatively using
the quasiclassical theory of superconductivity for diffusive
systems, in particular, time-dependent Usadel equations. Fi-
nally, it is important to emphasize that these voltage-induced
Shapiro steps may appear in a great variety of mesoscopic
structures and, as explained below, it constitutes a valuable
way to directly test the ac Josephson effect.

The rest of the paper is organized as follows. In Sec. II,
we recall the basic physics of diffusive SNS junctions at
finite bias. Section III is devoted to the description of the

FIG. 1. �Color online� Schematic representation of the setup: a
metallic wire �N� is connected at its ends to superconducting reser-
voirs Sl and Sr, biased at potentials −U /2 and U /2, respectively. An
additional superconducting probe �Sp� at a potential V is attached to
the wire through a tunnel junction.
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theoretical formalism and contains the main technical results.
In Sec. IV, we discuss the numerical results for both the
current-voltage characteristics of the tunneling probe and the
dependence of the height of the voltage-induced Shapiro
steps on the different system parameters. Finally, in Sec. V
we briefly summarize the main conclusions of this work.

II. BASIC PHYSICS OF DIFFUSIVE SNS
JUNCTIONS

The effect described above is a consequence of the non-
equilibrium properties of diffusive SNS junctions. The phys-
ics of these junctions is the result of the interplay between
the proximity effect in the normal wire and the occurrence of
multiple Andreev reflections �MARs�. The proximity effect is
the modification of the properties of a normal metal in con-
tact with a superconductor and it has been extensively stud-
ied in diffusive hybrid nanostructures.9 MARs are the tunnel-
ing processes that dominate the subgap transport in SNS
junctions. Here, successive Andreev reflections at both S
electrodes lead to a progressive rise of the quasiparticle en-
ergy until its energy exceeds the gap energy �.10 The inter-
play between proximity effect and MARs in diffusive SNS
junctions gives rise to a rich variety of phenomena. Thus, for
instance, the conductance exhibits a very peculiar subgap
structure.11 Dubos et al.12 studied the ac Josephson effect by
shining microwaves onto a junction, and they observed the
appearance of fractional Shapiro steps, which is a signature
of a nonsinusoidal supercurrent-phase relation. On the other
hand, using the setup of Fig. 1, Pierre et al.8 measured the
nonequilibrium distribution function in a long silver wire,
where the proximity effect was negligible. They showed that
this function exhibits several steps, which is a manifestation
of MARs.

The consequences of the interplay between proximity ef-
fect and coherent MARs in the dissipative current have been
addressed theoretically only very recently by using the time-
dependent Usadel equations.13 This theory describes the
crossover from the short junction regime �L��=��D /��,14

where L is the wire length, � is the superconducting coher-
ence length, and D is the diffusion constant, to the incoherent
limit �L���.15 The intermediate regime is the relevant one
for the observation of the voltage-induced Shapiro steps.

III. CALCULATION OF THE VOLTAGE-INDUCED
SHAPIRO STEPS

We consider the structure depicted in Fig. 1, where the
position of the tunneling probe along the wire is denoted by
x �xl=0 and xr=L�. We assume that the three superconduct-
ors �Sl, Sr, and Sp� have the same energy gap �. Our goal is
the calculation of the current I�V� through the probe junction
Sp when a voltage U is applied across the wire. We assume
the N-Sl,r interfaces to be fully transparent and neglect
phase-breaking phenomena.

To solve our problem, we use the quasiclassical theory of
superconductivity for diffusive systems.16 This theory is for-
mulated in terms of momentum-averaged Green’s functions

Ǧ�R , t , t�� which depend on position R and two time argu-

ments. These propagators are 2	2 matrices in Keldysh
space �ˇ�, where each entry is a 2	2 matrix in electron-hole
space �ˆ�:

Ǧ = �ĜR ĜK

0 ĜA
�, ĜR = �GR FR

F̃R G̃R � . �1�

The Green’s functions for the left �l� and right �r� leads and

for the probe �p� electrode can be written as Ǧ j�t , t��
=e−i
j�t��̂3/2�Ǧ0�t− t��ei
j�t���̂3/2�, where 
 j�t� is the phase of
the order parameter of the electrode j= l ,r , p given by
�
 j�t� /�t=2� j /�, where the chemical potentials are

�l=−eU /2, �r=eU /2, and �p=eV. Here, Ǧ0�t� is the equi-
librium bulk Green’s function of a BCS superconductor. We
now transform to energy representation, in which the propa-

gator Ǧ�R , ,�� depends on two energy arguments. It satis-
fies the nonstationary Usadel equation, which in the N region
reads

�D

�
� �Ǧ � �Ǧ� + �̂3Ǧ − Ǧ�̂3� = 0, �2�

where �̂3 is the Pauli matrix in electron-hole space. The con-

volution product � is defined as �Ǎ � B̌�� ,��
=�d1Ǎ� ,1�B̌�1 ,��. Equation �2� is supplemented by the

normalization condition Ǧ �Ǧ=−�2��−��1̌. Due to the fi-
nite bias U, to solve Eq. �2� is a formidable task, which is
explained in detail in Ref. 13. What matters for our discus-
sion is that the Green’s functions in the wire adopt the form

Ǧ�R,,�� = �
m

Ǧ0,m����m − �� , �3�

where m=+meU. Here, m is an even integer for the diag-
onal components of the Green’s functions in Nambu space
and an odd integer for the off-diagonal ones. Equation �3�
means, in particular, that the energy distribution function and
the density of states in the normal wire oscillate with the
Josephson frequency 2eU /h and its harmonics. These oscil-
lations result in a parametric pumping of the N-Sp junction
and hence to Shapiro steps.

Assuming that the electrode Sp is weakly coupled to the N
wire, we can express the time-dependent current I�V , t�
through the tunnel probe up to first order in the tunneling
conductance GT as follows:17

I�V,t� = � GT

8�e
� � dt1 Tr	�̂3
Ǧw�t,t1�,Ǧp�t1,t��K� , �4�

where Ǧw is the Green’s function of the wire at the position

of the probe junction and Ǧp is the Green’s function of the
probe electrode, i.e., a bulk BCS Green’s function. Using
Eqs. �3� and �4�, it is easy to show that

I�V,t� = �
m=−�

�

�
n=−1

1

In
m�V�ei�n
+2neVt/�+meUt/��, �5�

where 
 is the dc part of the phase difference. From Eq. �5�,
one can distinguish two contributions to the dc current,
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which we shall simply denote as I. First, there is a back-
ground current IB= I0

0 that contributes at every voltage V.
More importantly, there is a series of contributions at discrete
voltages Vm=mU /2 with m odd,18 which are given by
IShapiro�
�=�m�0�I1

−mei
+ I−1
m e−i
���V−Vm�, where I1

−m

= �I−1
m �*. Thus, Shapiro-like resonances are induced every

time the probe voltage V is an odd multiple of U /2. From
Eq. �4�, one can show that the ac components in Eq. �5� can
be expressed as

I1
m = � GT

8�2e
��

−�

�

d	
Fw
R�0,m��F̃p

K�m + eV�

+ 
Fw
K�0,m��F̃p

A�m + eV�� . �6�

Here, 
Fw
R,K�0,m�� are Fourier components of the anomalous

Green’s functions induced in the normal wire by proximity
effect. These components contain the information of ac Jo-
sephson effect in the SNS junction and depend on L, U, and
x. Obviously, when L��, these components vanish and, in

turn, the Shapiro steps.19 The functions F̃p
A,K�� are the bulk

Green’s functions of the electrode Sp given by F̃p
A��=

−�� /��2− �− i0+�2 and F̃p
K��=−2i Im	F̃p

A���tanh�� /2�,
where �=1/kBT is the inverse of the temperature.

For completeness, let us also mention that the background
current can be approximated by

IB = �GT

e
��

−�

�

d�p� − eV��w��
f� − eV� − fw��� ,

where f�� is the Fermi function, fw�� is the dc part of the
distribution function of the N wire at the position of Sp, �p��
is the bulk BCS density of states, and �w� ,U�
=Im	
Gw

A�0,0� /� is the nonequilibrium spectral density in the
normal wire.

IV. RESULTS AND DISCUSSION

It is illustrative to start the discussion of the results with
the case of zero bias �U=0�. In this limit, there are no Sha-
piro steps, but the dc current exhibits a supercurrent peak at
V=0. This can be seen in Fig. 2, where we plot the dc current
through a probe located on x=L /2 for different wire
lengths.20 Apart from the supercurrent, the main feature of
these I-V curves is the presence of a gap, which is equal to
�+�g, where �g is the well-known minigap present in the N
wire due to proximity effect �see, for instance, Fig. 1 in Ref.
13�. Such a minigap decays with L as �g3.2T, where T
=�D /L2 is the Thouless energy. In the inset of Fig. 2, we
show how the critical current decays with L. This critical
current is a good reference for the height of the Shapiro steps
at finite U. Notice, in particular, that for L��, the critical
current adopts the value I=�GT� /2e, which is simply the
critical current of a tunnel junction between BCS
superconductors.21

Now, we turn to the case of finite bias U. To give a first
impression of how the steps would appear in an experiment,
we show in Fig. 3�a� the total contribution to the dc current,

i.e., background current plus Shapiro steps, for L=2�, x
=L /2, and three different values of the voltage U. Notice that
since we are assuming that the system is voltage biased, the
Shapiro steps appear as peaks in the current rather than steps
as in a current-biased contact.2 We have also plotted in Fig. 3
both the distribution function and the nonequilibrium spec-
tral function, which determine the shape of the background
current. The first two peaks in the I-V at V= ±U /2 could
simply be viewed as the supercurrent peaks that correspond
to the condition of equality between the potentials of the

FIG. 2. �Color online� Zero-temperature dc current in the probe
electrode Sp at zero bias �U=0� for different lengths. The probe is
located at x=L /2. The inset shows the critical current as a function
of the wire length.

FIG. 3. �Color online� �a� Zero-temperature dc current in the
probe Sp located at x=L /2 for L=2� and three different values of
the voltage U: from bottom to top eU /�=0.3,0.6,0.9. �b� dc part of
the distribution function of the normal wire at x=L /2 as a function
of the energy for the three voltages above. �c� Corresponding non-
equilibrium spectral density in the normal wire �x=L /2� as a func-
tion of the energy. In the three panels, the two upper curves have
been shifted upward for clarity.
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probe Sp and of one of the reservoirs Sl,r. However, their
height depends on U and they are smaller than the critical
current at U=0 because the quasiparticles in the wire are out
of equilibrium. Notice, also, the large subgap current, which
is absent in Fig. 2. More obvious manifestations of the inter-
ference of ac Josephson currents are the higher-order Shapiro
steps, which appear at voltages that do not correspond to the
alignment of the potential of Sp to that of a reservoir. In Fig.
3�a�, they are clearly seen at V= ±3U /2 at the lowest voltage
�U=0.3��, but they progressively disappear as U increases.

Let us now study systematically the best conditions for
the observation of the voltage-induced steps. First, we ana-
lyze their dependence on the wire length and the position of
the probe at a given voltage U. In Fig. 4, we show for eU
=0.5� the height of the steps, denoted as SmU/2 for a step at
V=mU /2, as a function of x for different wire lengths. No-
tice that we show the steps for positive voltages V and the
first one for negative voltages, S−U/2. Indeed, one can show
that in this setup, the following relation holds: S−mU/2�x /L�
=SmU/2�1−x /L� for m�0, which can be seen in the upper
panels of Fig. 4. The most remarkable features of Fig. 4 are
the following. First, the step SU/2 is of the same order as the
critical current at U=0, although a bit smaller. Second, due
to the biasing in this setup �see Fig. 1�, the step SU/2 vanishes
close to the left electrode. The same happens with the steps
S3U/2 ,S5U/2 , . . . at both boundaries because we are assuming
that the electrodes are ideal bulk reservoirs. Third, the
higher-order steps �m�1� are, for this particular voltage U,
at least an order of magnitude smaller than SU/2. Finally, with
respect to the length dependence, the steps progressively dis-
appear as L increases. For a given position, they decay
roughly as � /L for L��, which is the usual decay of induced
superconducting correlations in a normal diffusive system.
However, for L of the order of �, the dependence is not
necessarily monotonous, as it can be seen for the steps S3U/2
and S5U/2.

The other crucial parameter that controls the height of the
steps is the voltage U. As Eq. �6� shows, in order to have a
step at V=mU /2 �m odd�, one needs to have a nonzero com-
ponent 
Fw

R,K�0,m. Such an ac component is related to the

coherent transfer of n= ��m�+1� /2 Cooper pairs through the
SNS junction, which requires the occurrence of coherent
MARs of at least order n. An n-order process contributes
significantly for voltages 2� /n�eU�2� / �n−1� and its
probability decreases as the voltage increases. Thus, one na-
ively expects �i� high-order �m�1� steps to be more clearly
visible at low bias U and that �ii� at voltages U�2�, only
the steps S±U/2 survive. Indeed, these expectations are con-
firmed by the calculations, as can be seen in Fig. 5, where we
show the height of the first two steps �for positive voltages�
as a function of U for different wire lengths and a probe
located on x=L /2. Notice that the step SU/2 reaches its maxi-
mum at 2� and then decays very slowly as the voltage
increases, whereas S3U/2 vanishes rapidly for voltages above
the gap.

V. CONCLUSIONS

In summary, we have predicted the possibility to generate
parametrically Shapiro steps in multiterminal superconduct-
ing structures by tuning the voltages in the reservoirs. We
have illustrated this effect with detailed calculations for the
case a diffusive SNS system with a third electrode coupled to
the N region through a tunnel junction. Our results, based on
the solution of the time-dependent Usadel equations, show
that these voltage-induced steps are a direct manifestation of
the ac Josephson effect in the SNS junction and they are
visible as long as there are sizable superconducting correla-
tions induced in the N wire. We stress that these steps can be
induced in any coherent mesoscopic structure attached to
several �more than two� superconducting electrodes. More-
over, if in the setup of Fig. 1 all the electrodes were strongly
coupled to the central wire, phenomena like the appearance
of fractional Shapiro steps for V= �m /n�U /2, with m ,n inte-
gers would occur. Thus, the effect predicted here suggests the
appearance of a variety of interesting physical phenomena
and, in particular, provides a way to directly test the ac Jo-
sephson effect in mesoscopic structures.
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FIG. 4. �Color online� Height of the Shapiro steps at zero tem-
perature as a function of the position of the probe �x� for eU
=0.5� and different wire lengths.

FIG. 5. �Color online� Height of the first two Shapiro steps for
positive voltages in x=L /2 at zero temperature as a function of U
for different lengths L.
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