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We present a theoretical study of the density of states and supercurrent in diffusive superconductor-normal
metal-superconductor �SNS� junctions. In particular, we study the influence on these two equilibrium proper-
ties of both an arbitrary transparency of the SN interfaces and the presence of spin-flip scattering in the normal
wire. We show that the minigap that is present in the spectrum of the diffusive wire is very sensitive to the
interface transmission. More importantly, we show that at arbitrary transparency the minigap replaces the
Thouless energy as the relevant energy scale for the proximity effect, determining, for instance, the temperature
dependence of the critical current. We also study in detail how the critical current is suppressed by the effect
of spin-flip scattering, which can be due either to magnetic impurities or, under certain circumstances, to an
external magnetic field. Our analysis based on the quasiclassical theory of diffusive superconductors can be
very valuable in establishing quantitative comparisons between experiment and theory.
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I. INTRODUCTION

When a normal metal �N� and a superconductor �S� are
brought together, their mutual interaction results in the modi-
fication of their electronic and transport properties. In par-
ticular, the normal metal may acquire genuine superconduct-
ing properties such a gap in the density of states or the ability
to sustain a supercurrent. This effect, known as proximity
effect, was first discussed by de Gennes1 in the 1960s and in
recent years it has been extensively studied in diffusive hy-
brid nanostructures.2 Many equilibrium3,4 and transport
properties5,6 of diffusive SN systems are now well under-
stood, which is partially due to the impressive predictive
power of the quasiclassical theory of superconductivity for
diffusive systems, which is summarized in the Usadel
equations.7

The proximity effect is mediated by Andreev reflections.8

In this tunneling process, an electron coming from N with
energy � below the superconducting gap � is converted into
a reflected hole, thus transferring a Cooper pair to the S
electrode. The time-reversed states involved in this process
are coherent over a distance LC=min���D /� ,L��, where D
is the diffusion constant of N and L� is the phase coherence
length. This coherence may also be altered by interactions
that break the time-reversal symmetry such as those induced
by paramagnetic impurities or an external magnetic field.

In this work, we present a theoretical study of the density
of states and the supercurrent in diffusive SNS junctions.
These quantities nicely reflect the proximity effect under
equilibrium conditions. It was first shown by McMillan9 that
a diffusive normal metal in contact with a superconductor
can develop a gap in its electronic spectrum, which is usually
referred to as minigap. More recently, the minigap has been
studied by numerous authors, usually within the framework
of the Usadel equations.10–14 From the experimental point of
view, the appearance of a minigap has been tested indirectly

in several tunneling experiments �see, for instance, Refs. 15
and 16 and references therein�.

On the other hand, the fact that a SNS junction can sustain
a supercurrent is known since the first experiments per-
formed with Pb-Cu-Pb sandwiches.17,18 It was soon realized
that the existence of a dissipationless current in these struc-
tures is possible due to the proximity effect.1 Later on, a
more systematic experimental study of the critical current in
these hybrid structures was carried out with the help of dif-
fusive SNS microbridges.19,20 The results of these experi-
ments were described by Likharev,21 who made use of the
Usadel equations in the high temperature regime ���kBT�.
A more general study of the Josephson effect in diffusive
SNS junctions was made in Ref. 22. More recently, Dubos
et al.6 demonstrated that the full temperature dependence of
the critical current of diffusive Nb-Cu-Nb junctions with
highly transparent interfaces could be quantitatively de-
scribed by the quasiclassical theory.

Most of the theoretical work done on proximity effect has
been focused either in the case of ideal �perfectly transmis-
sive� SN interfaces or in the tunneling limit,23–25 with some
notable exceptions.26 One of the two main goals of this paper
is to study how the local density of states �DOS� and the
supercurrent in diffusive SNS junctions are influenced by
arbitrary transmission of the interfaces. This is an important
issue, in particular, in order to be able to establish quantita-
tive comparisons between theory an experiment, since in re-
ality the mismatch of material parameters leads to a broad
range of transmission through the SN interfaces. In particu-
lar, we shall discuss the following issues: �i� how the trans-
mission determines the magnitude of the minigap and, in
general, the shape of the DOS in the normal wire, both in the
absence and in the presence of a supercurrent, and �ii� how a
finite transmission modifies the current-phase relation and
the critical current of these junctions. Our results, based on
the quasiclassical theory, show that the minigap, which is
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reduced as the interface resistance increases, is the energy
scale that controls, in particular, the magnitude and tempera-
ture dependence of the critical current. For ideal interfaces,
this role is played by the Thouless energy �T=�D /L2, where
L is the length of the normal metal. Our study has been
partially motivated by the very recent experiments of Ref.
27, where using a combination of atomic force microscopy
and scanning tunneling microscopy, the local DOS of diffu-
sive SNS junctions has been measured with an unprec-
edented resolution. The experimental results have been ex-
plained with the help of the approach that we present here
and, in particular, the description of the effect of a finite
transmission of the interfaces has been decisive to reach a
quantitative agreement between experiment and theory.

The second goal of our work is to study the role of spin-
flip scattering in the local DOS and supercurrent of diffusive
SNS junctions. This type of scattering, which can be induced
by magnetic impurities or an external magnetic field, breaks
the time-reversal symmetry between the electrons in Cooper
pairs and reduces the superconducting correlations.28,29 Dif-
ferent authors11,14,24,30,31 have studied the effect of spin-flip
scattering in the properties of SN structures. However, basic
quantities such as the supercurrent in SNS structures have, to
our knowledge, not yet been addressed. We present in this
work a detailed study of the dependence of the critical cur-
rent of a diffusive SNS on the strength of the spin-flip scat-
tering for arbitrary range of parameters �length of the normal
wire, temperature, and interface resistance�. Our predictions
are also applicable to the magnetic field dependence of the
critical current in narrow junctions. It is known that if the
normal wire is made of a thin film and it is sufficiently nar-
row, the field acts simply as a pair-breaking mechanism
equivalent to spin-flip scattering.11,29,32 Indeed, this part of
the work has been motivated by the very recent experiments
of Ref. 33, where measurements of dc SNS superconducting
quantum interference devices �SQUIDs� in the long junction
limit have been performed. The authors find a Gaussian ex-
tinction of the critical current as a function of the magnetic
field. This behavior is in clear contrast to the magnetic inter-
ference patterns �Fraunhofer pattern� found routinely in wide
junctions17 and there is currently no theory that describes
such behavior. We show here that our results for the critical
current in the presence of spin-flip scattering provide a natu-
ral explanation for these observations.

The rest of the paper is organized as follows. In the next
section, we describe the general formalism, based on the
quasiclassical theory for diffusive superconductors, that al-
lows us to compute the DOS and the supercurrent in diffu-
sive SNS junctions for arbitrary length, temperature, and in-
terface transparency. Section III is devoted to the analysis of
the local DOS in the normal wire in different situations. In
Sec. IV, we discuss the results for the dependence of the
supercurrent on the interface resistance, temperature, and
strength of the spin-flip scattering. Finally, we summarize
our main conclusions in Sec. V. In Appendix A, we describe
our analytical results for the critical current in the limit of
weak proximity effect, and in Appendix B, we include some
numerical fits described in the previous sections.

II. QUASICLASSICAL GREEN’S FUNCTION FORMALISM

We consider the SNS junction consisting of a metallic
diffusive wire �N� connected at its ends to two identical su-
perconducting reservoirs Sl and Sr with gap �. We assume
that the transport is phase coherent, i.e., L�L�, and neglect
the suppression of the pair potential in the S leads near the
interfaces. Our main goal is to study how the equilibrium
properties of this system are influenced by the transparency
of the SN interfaces and by the presence of a spin-flip
mechanism in the diffusive wire. In particular, we want to
study �i� the equilibrium DOS in the normal wire and �ii� the
supercurrent in the SNS system when a superconducting
phase difference � is established between the electrodes.

In order to describe these properties, we use the quasiclas-
sical theory of superconductivity in the diffusive limit,7,34,35

where the mean free path is much smaller than the coherence
length �=��D /�, where D is the diffusion coefficient of the
normal metal. This theory is formulated in terms of momen-

tum averaged Green’s function Ǧ�R ,��, which depends on
position R and an energy argument �, since we shall only
deal with stationary situations. This propagator is a 4�4
matrix in Keldysh space �indicated by an inverted caret�,
where each entry is a 2�2 matrix in electron-hole space
�indicated by a caret�,

Ǧ = �ĜR ĜK

0 ĜA
�, ĜR = �GR FR

F̃R G̃R � . �1�

The general definitions of the different functions can be
found in Ref. 36. The Green’s functions for the left �l�
and right �r� leads can be written as Ǧ j���
=e−i�j	̂3/2�Ǧ0���ei�j	̂3/2�, where � j is the phase of the order

parameter of the electrode j= l ,r. Here, Ǧ0��� is the
equilibrium bulk Green’s function of a BCS superconductor.
Notice that, since we shall only consider equilibrium situa-

tions, the Keldysh component of Ǧ�R ,�� can be expressed in

terms of the retarded and advanced components as ĜK

= �ĜR− ĜA�tanh�
� /2�, where 
=1/kBT is the inverse of the
temperature.

The propagator Ǧ�R ,�� satisfies the stationary Usadel
equation, which in the N region reads37

�D

�
� �Ǧ � Ǧ� −

�

2�	sf
�	̌3Ǧ	̌3,Ǧ� + ��	̌3,Ǧ� = 0, �2�

where 	̌3 is proportional to the unit matrix in Keldysh space
and equal to the Pauli matrix 	̂3 in electron-hole space. Equa-
tion �2� is supplemented by the normalization condition

Ǧ2=−�21̌. In the previous equation, 	sf is the scattering time
associated with spin-flip �magnetic� impurities or related
pair-breaking mechanisms. For instance, as it has been
shown in Refs. 11 and 32, if the normal wire is a thin film
and its width W is sufficiently small, the effect of a perpen-
dicular magnetic field H can be described with an effective
spin-flip scattering rate �sf =� /	sf =De2H2W2 / �6��.

In order to solve numerically the Usadel equation, it is
convenient to use the so-called Riccati parametrization,38
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which accounts automatically for the normalization condi-
tion. In this method and for spin-singlet superconductors, the
retarded and advanced Green’s functions are parametrized in
terms of two coherent functions R,A�R ,�� and ̃R,A�R ,�� as
follows:

ĜR,A = � i�N̂R,A�1 − R,ÃR,A 2R,A

2̃R,A ̃R,AR,A − 1
� , �3�

with the “normalization matrices”

N̂R,A = ��1 + R,ÃR,A�−1 0

0 �1 + ̃R,AR,A�−1 � .

The use of the Riccati parametrization facilitates the numeri-
cal calculations because the coherent functions are smooth
and bounded. Moreover, this parametrization is also well
suited for its generalization to time-dependent problems, as
we have shown in Ref. 39.

Some of these functions are related by fundamental sym-
metries �particle-hole, retarded-advanced� like

A�R,�� = − �̃R�R,���*, A�R,�� = − R�R,− �� . �4�

Therefore, we just have to determine, for instance, the re-
tarded functions. Using their definition in Eq. �3� and the
Usadel equation �Eq. �2��, one can obtain the following
transport equations for these functions in the normal wire
region:40

�x
2R + ��x

R�
F̃R

i�
��x

R� − 2��sf

�T
�R

G̃R

i�
+ 2i� �

�T
�R = 0,

�5�

�x
2̃R + ��x̃

R�
FR

i�
��x̃

R� + 2��sf

�T
�̃R

GR

i�
+ 2i� �

�T
�̃R = 0.

�6�

Here, x is the dimensionless coordinate which describes the
position along the N wire and ranges from 0 �left lead� to 1

�right lead�. The expressions for F̃R, G̃R, FR, and GR are
obtained by comparing Eq. �1� with Eq. �3�. Notice that Eqs.
�5� and �6� couple the functions with and without tilde. This
means in practice that, in general, one has to solve Eqs. �5�
and �6� simultaneously.

Now, we have to provide the boundary conditions for Eqs.
�5� and �6�. Let us first remind that for ideal interfaces �per-
fect transparency�, such conditions at the ends of the N wire
result from the continuity of the Green’s functions over the
SN interfaces:

l
R��� = 0

R���, ̃l
R��� = − 0

R��� ,

r
R��� = e−i�0

R�� − eV�, ̃r
R��� = − ei�0

R�� + eV� , �7�

where l
R����R�x=0,�� and r

R����R�x=1,��, and the
same for the coherent function with tilde. Here,
0

R���=−� / 	�R+ i��2− ��R�2
, where �R=�+ i0+. Finally, � is
the eventual phase difference between the two superconduct-
ing reservoirs, which we assume to be applied in the right
electrode.

For nonideal interfaces, one has to use the more general
boundary conditions derived in Refs. 41 and 42. These con-
ditions for a spin-conserving interface are expressed in terms
of the Green’s functions as follows:

Ǧ
�xǦ

 = � G0

GN
��

i

2�2	i�Ǧ
,Ǧ��

4�2 − 	i�	Ǧ
,Ǧ�
 + 2�2�
. �8�

Here, Ǧ
��� refers to the Keldysh-Green function on side

��� of the interface, G0=2e2 /h is the quantum of conduc-
tance, GN is the conductance of the normal wire, and 	i are
the different transmission coefficients characterizing the in-
terface. In general, one would need the whole set 		i
, but
since one does not have access to this information, we adopt
here a practical point of view. We assume that all the N
interface open channels have the same transmission 	 and
define GB=G0N	 as the conductance of the barrier. Thus, the
two S-N interfaces will be characterized by two quantities,
namely, the barrier conductance GB and the transmission 	,
and our starting point for the boundary conditions will be

rǦ
�zǦ

 =

2�2�Ǧ
,Ǧ��

4�2 − 	�	Ǧ
,Ǧ�
 + 2�2�
, �9�

where we have defined the ratio r=GN/GB. In this language,
an ideal interface is characterized by r=0 and a tunnel con-
tact is described by 	�1. In what follows, unless the oppo-
site is explicitly stated, we shall assume a symmetric situa-
tion with two identical interfaces. In the literature, the so-
called Kupriyanov-Lukichev23 boundary conditions are often
used. These conditions can be obtained from Eq. �9� by re-
moving the term proportional to 	 in the denominator. Such
approximation is valid strictly speaking for the case of tunnel
junctions �	�1� and it turns out to be very good for highly
transparent interfaces �r�1�.

The next step is to express these boundary conditions di-
rectly in terms of the coherent functions. Substituting the
definitions of Eq. �3� into Eq. �9� and after straightforward
algebra, one obtains the following boundary conditions for
the parametrizing functions:

�r
�x


R + �

R�2�x̃


R

�1 + 

R̃


R�2

=
�1 − 


R̃

R��

R − �1 − �
R̃�

R�

R

�1 + 

R̃


R��1 + �
R̃�

R� − 	��
R − 


R��̃�
R − ̃


R�
,

�10�

where the minus sign is for the left interface and the plus
sign for the right one. The boundary conditions for ̃R can be
obtained from Eq. �10� by exchanging the quantities without
tilde by the corresponding ones with tilde and vice versa.
These equations establish a relation between the functions
and their derivatives evaluated on the side of the interface
inside the N wire �
� and the corresponding functions evalu-
ated on the side of the interface inside the reservoir ���,
which are given by Eq. �7�.

In the limit of weak proximity effect, Eqs. �5� and �6� can
be solved analytically, as we discuss in Appendix A. How-
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ever, in general, they have to be solved numerically. These
are second order differential equations with boundary condi-
tions relating the functions and their derivatives in the two
SN interfaces. This is a typical two point boundary value
problem that we solve numerically using the so-called relax-
ation method as described in Ref. 43.

To end this section, we discuss the formula for the super-
current. The electrical current can be expressed in terms of
the Usadel Green’s functions as34

I =
GN

8�2e
�

−�

�

d� Tr		̂3�Ǧ�xǦ�K���
 . �11�

Combining this expression with fundamental symmetries of
the Green’s functions and using the fact that we only address
equilibrium situations, we can write the supercurrent as

I =
GN

e
�

−�

�

d�S���tanh�
�/2� , �12�

where S= �1/4�2�Re	Tr�	̂3ĜR�xĜ
R�
 is the spectral supercur-

rent.

III. LOCAL DENSITY OF STATES

In equilibrium, the most basic quantity that reflects the
proximity effect in the N wire is the local DOS, which is
defined as DOS�x ,��=−Im	GR�x ,��
 /�. This quantity can, in
principle, be measured with a tunneling probe electrode as in
Ref. 3 or with a scanning tunneling microscope as in Ref. 4
In this section, we analyze the local DOS in the normal wire
in different situations.

Let us start discussing a situation where there is no phase
difference between the superconducting reservoirs ��=0�. In
this case, one can show that the relation ̃R���=−R��� holds.
Thus, one only needs to solve Eq. �5� for the coherent func-
tion R���. In Fig. 1, we show an example of the local DOS
in the middle of a normal wire �x=0.5� of length L=2� with-
out spin-flip scattering ��sf =0�. The most prominent feature
is the appearance of a minigap �g in the spectrum, which for
perfect transparency scales with the Thouless energy roughly
as �g3.1�T in the long junction limit �L���. Let us remind
that the minigap is the same along the normal wire, although
the exact DOS depends on the position. The existence of a
minigap in a diffusive normal metal in contact with a super-
conductor was discussed by McMillan9 within a tunneling
model, where the normal region was a thin layer. In more
recent years, the minigap has been extensively studied in
various hybrid diffusive SN and SNS structures.10–12 As one
can see in Fig. 1�a�, this minigap diminishes progressively as
the ratio r increases, i.e., as the interface becomes more
opaque. For this particular length, we find that the minigap
decays with the interface parameter r as �g /�0.14/r for
r�1 �see the fit to our numerical data in Fig. 12, Appendix
B�.

In Fig. 1�b�, we illustrate the effect of the transmission
coefficient 	 in the local DOS for a ratio r=1.0. Notice that
the minigap is only slightly reduced as 	 decreases, while the
features around �g become more pronounced. The effect of a

transmission smaller than 1 is much more pronounced for
larger values of r, i.e., r�1, while for values r�1 it is rather
insensitive to the value of 	.

In Fig. 2, we present a detailed study of the decay of the
minigap as a function of the wire length for different values
of the interface resistance and 	=1.0. We have normalized
the minigap �g with the Thouless energy to show explicitly
that in the long wire limit �g, simply scales with this energy.
In this limit �� /�T→��, we were able to fit accurately the
decay of the minigap with the ratio r with the function
�g /�T=0.64/ �0.20+r� �see Fig. 12 in Appendix B�. In the
opposite case of a short junction, i.e., when L��, the mini-
gap is of the order of � for perfect transparency, while it is
given by �g�T /2r in the limit of r�1.24

Let us now study how the density of states is modified
when there is a finite phase difference � between the leads,

0

0.5

1

1.5

2

2.5

3

D
O

S

r = 0.0
r = 0.05
r = 0.1
r = 0.2
r = 0.5
r = 1.0
r = 5.0

-1.5 -1 -0.5 0 0.5 1 1.5
ε/∆

0

0.5

1

1.5

D
O

S

τ = 1.0
τ = 0.6
τ = 0.2
τ = 0.0

(a)

(b)

τ = 1.0

r = 1.0

L = 2ξ

L = 2ξ

FIG. 1. �Color online� Density of states of a SNS junction as a
function of energy in the middle of a wire of length L=2� without
spin-flip scattering ��sf =0�. The SN interfaces are assumed to be
identical and there is no phase difference between the S electrodes.
In panel �a�, the different curves correspond to different values of
the ratio r=GN/GB and a transmission 	=1, while in panel �b�, they
correspond to different values of the transmission 	 for a ratio
r=1.0.
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FIG. 2. �Color online� Minigap �g of a SNS junction as a func-
tion of the length of the N wire for different values of r=GN/GB

and �sf =0. The contact is assumed to be symmetric and the trans-
mission is set to 	=1. Notice that is �g is normalized by the Thou-
less energy �T.
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i.e., in the presence of a supercurrent. In this discussion, we
shall assume that �sf =0. Considering ideal interfaces, Zhou
et al.12 showed theoretically that the minigap decreases
monotonically as the phase difference increases and it closes
completely when �=�. In Fig. 3, we show two examples for
L=2� of how the DOS in the middle of the wire evolves with
the phase � for perfect transparency and r=1.0. Notice that
for finite r, the qualitative behavior of the minigap is very
similar. Indeed, a detailed study shows that if the minigap is
normalized by its value at �=0, its phase dependence does
not change significantly with the interface resistance. Notice,
however, that the features in the DOS around the minigap
can be clearly different, as Fig. 3 exemplifies.

Now, we turn to the analysis of the influence of spin-flip
scattering in the local DOS. Belzig et al.11 showed that the
minigap of a SN structure is reduced in the presence of a
spin-flip mechanism and vanishes for large values of �sf.
Different authors24,30,31 have studied the effect of magnetic
impurities in the transport of SN structures and found that
the Thouless energy is the scale that controls the effect of
spin flip on the proximity effect. In particular, Crouzy et al.14

have shown analytically that in the long junction limit of a
SNS structure, the minigap closes at a critical value of
�sf

C �4.96�T.
Figure 4 displays the local DOS in the middle of a normal

wire of length L=10� ��T=0.01�� for different values of the
spin-flip rate �sf. The upper panel shows the case of ideal
interfaces, while the lower one contains the results for a ratio
r=1.0. One can see how the minigap is progressively re-
duced as �sf increases and finally vanishes. For r=0 �perfect
interfaces�, we find numerically that the gap closes at
�sf

C �4.9�T, in very good agreement with the long junction
limit mentioned above.14 For the case r=1.0, this critical
value is �sf

C �0.8�T. This means that it is reduced by approxi-

mately a factor 6, which is the same reduction factor ob-
tained for the minigap �see Fig. 2�. This indicates that at
finite transmission, the relevant scale for the proximity effect
is the minigap rather than the Thouless energy. This will
become even clearer in the analysis of the supercurrent in the
next section.

IV. SUPERCURRENT

As mentioned in the Introduction, the supercurrent in dif-
fusive SNS junctions has been the subject of numerous the-
oretical and experimental studies. In particular, from the
theory side, the results for the critical current for ideal inter-
faces and without spin-flip scattering are summarized in
Refs. 6 and 25. The critical current in SNS junctions with
partially transparent interfaces was discussed in Ref. 23 us-
ing the boundary conditions developed in the same reference.
More recently, Heikkilä et al.26 studied the reduction of the
zero-temperature critical current with the interface resistance
considering a disordered interface.

In this section, we shall discuss how both the supercurrent
and the critical current are modified by a finite transparency
of the interfaces. To be precise, we shall investigate both the
current-phase relationship and the temperature dependence
of the critical current. Moreover, we shall study in detail the
effect of spin-flip scattering in the critical current, which, to
our knowledge, has not been discussed before in the litera-
ture. This analysis is very relevant from the experimental
point of view since it might describe the supercurrent in the
presence of a magnetic field, as explained in the previous
section. Finally, let us remind that the results of this section
are complemented with Appendix A, where we study analyti-
cally the supercurrent for the case of low transparent inter-
faces �r�1 and 	�1�.
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We start our discussion by analyzing the current-phase
relation in the absence of spin-flip scattering. In Fig. 5, we
show this relationship at zero temperature for a wire of
L=8� for different values of the ratio r. As it can be seen, the
supercurrent is a nonsinusoidal function of the phase differ-
ence, which reaches its maximum at ��1.27� /2, almost
irrespectively of the value of r. For the ideal case �r=0�, this
result agrees with the previous results reported in the
literature.6 It is important to stress that in this figure and in
what follows, we normalize the current with the total resis-
tance in the normal state R, which includes the contributions
of both the diffusive wire and the interfaces. For a symmetric
junction, this resistance can be expressed in terms of the ratio
r as R= �1+2r� /GN.

Notice that, as one can see in Fig. 5�b�, when the super-
current is normalized by the critical current IC, the different
results almost collapse into a single curve. At a first glance,
this result seems to suggest that the interface transparency
just enters as a reduction prefactor in the expression of the
critical current. However, as we discuss in the next para-
graph, this is clearly not the case at finite temperature.

Let us now turn to the analysis of the temperature depen-
dence of the critical current IC. In Fig. 6, we show this de-
pendence for a wire of length L=8� and different values of r.
Notice that the temperature is normalized with the Thouless
energy. The main conclusion that can be extracted from these
results is that the critical current decays faster with tempera-
ture as the interface resistance increases. Moreover, the satu-
ration region at low temperatures in which the critical current
is almost constant shrinks as the interface resistance in-
creases. For ideal interfaces �r=0� this region corresponds,

roughly speaking, to the range kBT��T, while for finite r it
corresponds to kBT��g. This illustrates the fact that the
minigap is the scale that controls the magnitude of the super-
current at arbitrary transparency. The faster decay for par-
tially transparent interfaces can be confirmed analytically in
the limit of very long junctions ��T /�→0�. In this case and
for perfectly transparent interfaces �r=0�, one finds a critical
current that decays as IC� �kBT /�T�3/2 exp�−L /LT�, where
LT=��D /2�kBT is the thermal length �see Refs. 6 and 22�.
In the opposite case of opaque interfaces �r�1�, the result of
Appendix A indicates that the critical current decays as
IC� �kBT /�T�1/2 exp�−L /LT�.

The decay of the zero-temperature critical current with the
interface resistance is examined systematically in Fig. 7�a�
for different wire lengths and fixed transmission 	=1. After
normalizing the curves by the resistance in the normal state,
we find in the limit of very short wires �L��� a maximal
critical current at finite r before it slowly decays for large
interface resistances. Thus, eRIC� in the whole parameter
space. For wires with L��, we find a monotonic decay of
eRIC /� with increasing r. Then, for � /�T→� the energy
scale of the critical current for large ratios r is determined by
an effective Thouless energy �T,eff /�TArB / �C+r�. For in-
stance, when r�10, we can fit the decay of the eRIC product
for the special case of a wire with L=9� with the help of
eRIC /�T=5.13r0.29/ �0.22+r� �see Fig. 12�. Here, a fitting
curve with B=0 would be proportional to the minigap but
would only give a rough estimate of eRIC�r�. So far, we do
not have a good explanation of the factor rB and the numeri-
cal value of B.

The lower panel of Fig. 7 shows the current-phase relation
at zero temperature for a junction with L=2�, 	=1, and
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asymmetric barriers as a function of the asymmetry param-
eter �=1−rL /rR that fulfills rL+rR=rLR=const. The critical
current shows an enhancement for larger asymmetries while
the phase difference moves toward � as � increases. By
modeling the diffusive SNS junction as a point contact and
averaging the current through the different channels over the
bimodal distribution for diffusive systems, one can under-
stand this trend with the help of the Kirchhoff rules and the
set of possible shapes of the current-phase relation in this
regime.25 Furthermore, the formulas of Appendix A can be
generalized to the asymmetric case. Then, the eRIC product,
Eq. �A9�, is proportional to �rL+rR� / �rLrR�, which is in
agreement with our numerical results.

Let us now discuss the influence of a spin-flip mechanism
in the supercurrent. As explained above, the spin-flip scatter-
ing may be due to paramagnetic impurities and in this case
�sf is proportional to the impurity concentration, or it may be
caused by a magnetic field and in this case �sf is proportional
to the square of the field. Indeed, the second possibility is
much more interesting since it offers a natural way to control
the strength of the spin-flip scattering and, in this sense, it is
also more relevant from the experimental point of view.33

Figure 8 displays the zero-temperature critical current as a
function of the spin-flip rate �sf for different values of the
wire length and ideal interfaces �r=0�. The reason for plot-
ting the current as a function of the square root of the rate is
that this plot can be seen as the magnetic field dependence of
the critical current when the normal wire is a thin film. It is
important to remark that in these calculations, we assume
that the order parameter in the leads is not affected by the
spin-flip mechanism �such an effect can be trivially in-
cluded�. As one can see in Fig. 8, the spin-flip mechanism

causes a decay of the critical current. It is well known28,29

that the spin-flip scattering acts as a pair-breaking mecha-
nism for the Cooper pairs that penetrate in the normal wire.
Such scattering introduces a new relevant length scale in the
problem, namely, the spin-flip length Lsf =��D /2�sf. When
this length becomes smaller than the length of the system
and the thermal length, it dominates the decay of the super-
current. As we show in Fig. 8�b�, when IC is normalized by
its value in the absence of spin-flip rate, its decay with �sf
becomes universal for relatively long wires. Such decay can
be phenomenologically fitted with a Gaussian function
IC / IC��sf =0�=exp�−0.145�sf /�T�, as demonstrated in Fig.
8�b�. The analysis detailed in Appendix A suggests that, in
the low transparent regime, the decay follows a law of the
type IC� ��T /2�sf�1/2 exp�−L /Lsf� at finite temperature,
which numerically is similar to the Gaussian function above.

On the other hand, as one can see in Fig. 8, there is still
a non-negligible supercurrent even when the minigap is
completely closed, i.e., when �sf �5�T. This phenomenon
in the proximity structure considered here is the equiva-
lent of the well-known gapless superconductivity in bulk
superconductors.28,29

In order to understand the role of the interface transpar-
ency in the decay of the critical current as a function of �sf,
we present in Fig. 9 the results for IC for a wire of length
L=10� for different values of the ratio r. As it can be seen, in
particular, in Fig. 9�b�, the critical current decays faster as
the interface resistance increases. This fact illustrates again
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that the most relevant energy scale at finite transparency is
the minigap rather than the Thouless energy.

Finally, to complete the discussion of the role of the spin-
flip scattering, let us now describe what happens at finite
temperatures. In Fig. 10, one can see the critical current for a
wire length L=10� as a function of the rate �sf for different
values of the temperature. The main conclusion is that by
increasing the temperature, the decay of the critical current
becomes slower. Such a trend can be understood with the
help of the result of Appendix A.

V. CONCLUSIONS

With the advances in the fabrication techniques of super-
conducting hybrid structures and the development of local
measuring probes, it is now possible to explore the proximity
effect in diffusive metallic nanostructures in great detail.27,33

In this sense, it is highly desirable from the theory side to
elucidate the role of ingredients usually present in experi-
ments such as partially transmissive interfaces and pair-
breaking mechanisms. With this idea in mind, we have pre-
sented in this work a detailed analysis of the density of states
and supercurrent in diffusive SNS junctions. In particular, we
have studied the influence in these two equilibrium proper-
ties of an arbitrary transmission of the interfaces and spin-
flip scattering in the normal wire. Our analysis is based on
the quasiclassical theory for diffusive superconductors �Us-
adel theory�, supplemented by the boundary conditions put
forward by Nazarov.41

With respect to the local density of states, we have shown
that the minigap that appears in the normal wire is very sen-
sitive to the interface transmission both in the absence and in

the presence of a supercurrent in the system. Moreover, we
have shown that the minigap closes when the energy rate that
describes the spin-flip scattering is a few times larger than
the minigap in the absence of this type of scattering. This
fact nicely illustrates that the minigap is indeed the relevant
energy scale for the proximity effect for nonideal interfaces.

Turning to the analysis of the supercurrent, we have
shown that both the magnitude and temperature dependence
of the critical current depend crucially on the interface resis-
tance. In particular, the critical current decays faster with
temperature as the interface resistance increases. Moreover,
we have studied how the existence of spin-flip scattering in
the normal wire diminishes the supercurrent and identified
the relevant energy and length scales for its decay. In par-
ticular, we have shown that a supercurrent can still flow
when the minigap is completely closed, which is analogous
in proximity structures of the well-known gapless supercon-
ductivity in bulk samples.28,29 This prediction can be tested
experimentally by using an external magnetic field, as long
as the width of the normal wire is sufficiently small and it is
made of a thin film.11,32 Indeed, a detailed comparison of our
predictions for the field dependence of the critical current
with experiments on dc SQUIDS will be reported in Ref. 33.
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APPENDIX A: LINEARIZED EQUATIONS

In the limit of very low transparent interfaces �r�1 and
	�1�, the supercurrent can be computed analytically by lin-
earizing the Usadel equations.23 In this appendix, we de-
scribe how this can be done within the formalism presented
in Sec. II.

Assuming that the proximity effect in the normal wire is
weak, the coherent functions are small and the retarded and
advanced Green’s functions can be approximated by �see Eq.
�3��

ĜR,A � � i�� 1 2R,A

2̃R,A − 1
� . �A1�

Here, the coherent functions R and ̃R fulfill the linearized
version of Eqs. �5� and �6�, which reduce to

�x
2R + 2� i� − �sf

�T
�R = 0, �A2�

�x
2̃R + 2� i� − �sf

�T
�̃R = 0. �A3�

Notice that now the equations for R and ̃R are uncoupled
and have an identical form.

The boundary conditions for the previous equations are
obtained by linearizing Eq. �11� in the following way:

�r�x

R =

�
R

1 + �
R̃�

R = −
F�

R

2�i
, �A4�

�r�x̃

R =

̃�
R

1 + ̃�
R�

R = −
F̃�

R

2�i
, �A5�

where the minus sign is for the left interface and the plus

sign for the right one. Here, F�
R and F̃�

R are the anomalous
Green’s functions of the corresponding superconducting lead
�= l ,r.

The solution of Eq. �A2� with the boundary conditions of
Eq. �A4� can be written as

R�x� = ARei�x + BRe−i�x, �A6�

where �2=2�i�−�sf� /�T and the constants AR and BR can be
expressed as

AR =
1

4�ir� sin �
�Fr

R + Fl
Re−i�� ,

BR =
1

4�ir� sin �
�Fr

R + Fl
Rei�� .

The solution for the function ̃R is obtained from the solution

for R by replacing the functions Fr,l
R by F̃r,l

R .
After linearizing the expression of Eq. �12�, the supercur-

rent can be written as

I =
GN

e
�

−�

�

d� Re	̃R�x
R − R�x̃

R
tanh�
�

2
� . �A7�

Using the solutions for R and ̃R, it is straightforward to
show that the supercurrent-phase relation can be written as

I =
GN

e�2r2 sin����
−�

�

d� Re� − �FS
R�2

2i� sin �
�tanh�
�

2
� ,

�A8�

where FS
R is the bulk anomalous Green’s function without

including the superconducting phase. This integral can be
done analytically and the result for the critical current is

eRIC =
4�kBT

r
�
n=0

�
�2/��2 + �n

2�

�2��n + �sf

�T
�sinh��2��n + �sf

�T
�� ,

�A9�

where �n= �2n+1��kBT. Here, we have used
R= �1+2r� /GN�2r /GN. If, in particular, the temperature is
just a few times larger than the Thouless energy, one just
needs to keep the first term �n=0� in the previous expression.
In the limit of an infinitely long wire, this formula reduces to

eRIC =
4�kBT

r
� L̃

L
�exp�− L/L̃� , �A10�

where the effective length L̃=LTLsf /�LT
2 +Lsf

2 . Here, LT

=��D /2�kBT is the thermal length and Lsf =��D /2�sf is the
spin-flip length.

In order to establish the range of validity of the expression
of Eq. �A9�, we have compared this result with the full nu-
merical solution of the nonlinearized Usadel equations. An
example of such a comparison for the temperature depen-
dence of the critical current is presented in Fig. 11 for a wire
with �=75�T. The different curves correspond to different
values of the ratio r=GN/GB keeping always 	=0, which
correspond to a tunnel junction. Notice that the approxima-
tion of Eq. �A9� describes very well the exact results even for
values of r very close to 1.

In the limit of highly transparent interfaces, i.e., r�1, the
solution of Eqs. �5� and �6� demands a more careful
treatment.22 However, in the limit of high temperatures
�kBT���, one can obtain an analytical expression for the
critical current using the linearized solution of Eq. �A6� and
assuming that this function is continuous at the SN inter-
faces. This means, in practice, that the constants AR and BR

appearing Eq. �A6� adopt now the following form:
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AR =
1

2i sin �
�r

R − l
Re−i�� ,

BR =
1

2i sin �
�l

Rei� − r
R� .

The rest of the calculation is identical and now the result
for the critical current is

eRIC = 4�kBT�L

L̃
�exp�− L/L̃� . �A11�

In the absence of spin-flip scattering, this result reproduces
the well-known result originally derived by Likharev in Ref.

21, which indicates that IC� �kBT /�T�3/2 exp�−L /LT�. It has
been shown that this dependence describes a broad tempera-
ture range,6,22 as long as kBT��T.

APPENDIX B: NUMERICAL FITS

Figure 12 shows some of the numerical fits mentioned in
Secs. III and IV.
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