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Supercurrent and Andreev bound state dynamics in superconducting quantum point contacts
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We present an extensive theoretical analysis of the supercurrent of a superconducting point contact of arbitrary
transparency in the presence of a microwave field. Our paper is mainly based on two different approaches: a
two-level model that describes the dynamics of the Andreev bound states in these systems and a fully microscopic
method based on the Keldysh–Green function technique. This combination provides both a deep insight into the
physics of irradiated Josephson junctions and quantitative predictions for arbitrary range of parameters. The main
predictions of our analysis are: (i) for weak fields and low temperatures, the microwaves can induce transitions
between the Andreev states, leading to a large suppression of the supercurrent at certain values of the phase; (ii)
at strong fields, the current-phase relation is strongly distorted and the corresponding critical current does not
follow a simple Bessel-function-like behavior; and (iii) at finite temperatures, the microwave field can enhance
the critical current by means of transitions connecting the continuum of states outside the gap region and the
Andreev states inside the gap. Our paper is of relevance for a large variety of superconducting weak links as well
as for the proposals of using the Andreev bound states of a point contact for quantum computing applications.
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I. INTRODUCTION

In 1962 Josephson predicted that a dissipationless current
(supercurrent) could flow in a junction between two supercon-
ductors (S) weakly coupled by an insulating barrier,1 which
was confirmed experimentally shortly afterward by Anderson
and Rowell.2 Soon after this confirmation, it became clear
that this phenomenon, referred to as the dc Josephson effect,
could take place in a variety of superconducting weak links
such as Dayem bridges, SNS junctions, where N corresponds
to a normal metal bridge, or large point contacts.3,4 The only
difference between these systems lies in the exact current-
phase relation (CPR), which depends on the characteristics of
the constriction linking the superconducting leads.5

In recent years, the dc Josephson effect has been in-
vestigated in novel superconducting junctions with weak
links based on atomic contacts,6–8 carbon nanotubes,9–11

fullerenes,12 semiconductor nanowires,13,14 or graphene.15–17

Some of these nanostructures fall into the category of a
superconducting quantum point contact (SQPC), where the
constriction has a length much smaller than the supercon-
ducting coherence length. In this limit, and in the absence of
strong interactions in the constriction, the dc Josephson effect
can be described in a unified manner using two basic concepts
of mesoscopic physics, namely the concepts of conduction
channels and Andreev bound states. In the normal state,
the coherent transport through a mesoscopic system can be
described in terms of the independent contributions of the
eigenfunctions of the transmission matrix from the structure,
known as conduction channels, and these contributions are
determined by the corresponding transmission coefficients
{τi}. In the superconducting state, the electrons (holes)
transmitted in a conduction channel are Andreev reflected at
the electrodes as holes (electrons) in the same channel. This

process is successively repeated in both electrodes, leading to
the formation of a pair of bound states in the gap region. These
are known as the Andreev bound states (ABSs). In the case
of a single-channel SQPC with transmission τ , the energies of
the ABSs are given by18,19

E±
A (ϕ,τ ) = ±EA(ϕ,τ ) = ±�

√
1 − τ sin2(ϕ/2), (1)

where � is the superconducting gap and ϕ is the phase
difference between the order parameters on both sides of
the junction. In equilibrium, these two states carry opposite
supercurrents I±

A (ϕ) = (2e/h̄)∂E±
A /∂ϕ, which are weighted

by the occupation of the ABSs (determined by the Fermi
function). In the case of a multichannel SQPC, the supercurrent
is simply given by the sum of the contributions from the
individual channels.19

This unified microscopic picture of the dc Josephson effect
has been confirmed experimentally in the context of atomic
contacts by Della Rocca and co-workers.8 In particular, these
authors measured the CPR of an atomic contact placed along
with a tunnel junction in a small superconducting loop and
found an excellent agreement with the theory using the
independently determined transmission coefficients. At this
stage, one may wonder whether it is possible to control the
occupation of ABSs of a SQPC with an external field, and in
turn to control the supercurrent. This is the main issue explored
in this paper, and for this purpose, we present here an extensive
theoretical analysis of the supercurrent and the dynamics of
the ABSs of a SQPC under microwave irradiation. This is a
basic problem in mesoscopic superconductivity, which is also
relevant for the field of quantum computing since the ABSs
of a SQPC have been proposed to be used as the two states of
a qubit.20–22 In this proposal, a microwave field can be used
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for the spectroscopy of the two-level system or to probe its
quantum state by current measurements.

The microwave-assisted supercurrent in SQPCs is often
discussed in the framework of the adiabatic approximation
(see Sec. II), where one assumes that the ABSs follow
adiabatically the microwave field. This approximation does
not take into account the possible transitions between the
ABSs and therefore it fails to describe the current at high
frequencies or for highly transmissive contacts, where the
energy difference between the states can be rather small.
The first microscopic analysis of this problem for a SQPC
of an arbitrary transparency was reported by Shumeiko and
co-workers.23 These authors studied the limit of weak fields
and predicted the possibility of having a large suppression
of the current due to resonant transitions between the ABSs.
Later, other aspects of this problem, including the dynamics
of the ABSs, have been addressed, focusing on the linear
response regime24–26 or in the limit of perfect transparency.27

A complete solution of this problem, valid for an arbitrary
range of parameters, has only been reported very recently.28

In this latter work, we developed a theory of the supercurrent
through a microwave-irradiated SQPC in the framework of
the Keldysh–Green function technique. This theory allowed
us to put forward new predictions such as the evolution of the
CPR with the radiation power and the possibility of enhancing
the critical current at finite temperatures by irradiating the
junction. Here, we describe in detail this theory (see Sec. IV)
and, in particular, we present new analytical results that
elucidate the origin of the microwave-enhanced supercurrents.

In the process of understanding the results of the exact
theory, we are confronted with the question of to what extent
the physics of microwave-irradiated SQPCs can be understood
in terms of just the dynamics of the ABSs, i.e., in terms of
a natural extension of the argument described in the previous
paragraphs for the case of a junction in equilibrium. To answer
this question, we make use of the two-level Hamiltonians of
a SQPC existing in the literature,21,29 and we compare the
results with the exact theory. This comparison serves in turn
to establish the range of validity of these two-level models.
It is worth stressing that within these models the computation
of the dc properties such as the supercurrent or the average
occupation of the ABSs for arbitrary radiation is a highly
nontrivial task. To carry it out, we have developed a new
powerful method which allows us to compute any dc quantity
in an arbitrary two-level system driven out of equilibrium by a
periodic perturbation. This method is described in Sec. III, and
it constitutes one of the main results of this paper. With the help
of this method, we show that with the Hamiltonian of Ref. 21
we can nicely reproduce the exact results at low temperatures
and low radiation powers. Moreover, this analysis allows us to
obtain analytical results for the supercurrent dips produced by
microwave-induced transitions between the ABSs.

The rest of the paper is organized as follows. In the next
section we briefly review the equilibrium properties of a SQPC
as well as the basic results of the adiabatic approximation. In
Sec. III we study the dynamics of the ABSs under a microwave
field within the two-level Hamiltonian of Ref. 21. In particular,
we describe a method that allows us to obtain the CPR for any
power and frequency of the external field, and we also derive
analytical expressions for the supercurrent beyond the rotating-

wave approximation. In Sec. IV we discuss the Keldysh–Green
function technique, which describes the supercurrent for an
arbitrary range of parameters, including also the contribution
of the continuum of states outside the gap region. We present
a detailed comparison of the results of this technique at zero
temperature with those obtained with the two-level model.
Moreover, we analyze in detail the phenomenon of microwave-
enhanced supercurrent at finite temperatures, for which we
present analytical results. Finally, Sec. V is devoted to some
additional discussions and to summarizing the main results of
this paper.

II. SYSTEM AND ADIABATIC APPROXIMATION

We consider a SQPC consisting of two identical super-
conducting electrodes with an energy gap �, linked by a
single conduction channel of transmission τ . Our main goal
is to compute the supercurrent through this system when it is
subjected to a monochromatic microwave field of frequency
ω. We assume that the external radiation generates a time-
dependent voltage V (t) = V0 sin ωt ,4 where the amplitude
V0 depends on the power of the external radiation source
and eventually also on the polarization of the radiation.
According to the Josephson relation, this voltage induces a
time-dependent superconducting phase difference given by

φ(t) = ϕ + 2α cos ωt, (2)

where ϕ is the dc part of the phase and α = eV0/h̄ω is a
parameter that measures the strength of the coupling to the
electromagnetic field. This latter parameter depends primarily
on the power of the external radiation (it is proportional to the
square root of the radiation power at the junction), but it can
also depend through V0 on the polarization of the microwaves,
on the exact geometry and material of the point contact as well
as its electromagnetic environment. As usual in the context of
superconducting junctions, we shall use α here as a parameter
to be determined by comparing with the experiments.

As explained in the introduction, in the absence of mi-
crowaves the supercurrent can be expressed as a sum of
the contributions of the two ABSs as Ieq(ϕ) = I−

A nF(E−
A ) +

I+
A nF(E+

A ), nF(E) being the Fermi distribution function, which
yields30

Ieq(ϕ) = e�2

2h̄

τ sin ϕ

EA(ϕ)
tanh

(
EA(ϕ)

2kBT

)
, (3)

where EA is defined in Eq. (1) and T is the temperature. In
the tunnel regime (τ � 1), this expression reduces to the
sinusoidal CPR given by the Ambegaokar–Baratoff formula:31

Ieq(ϕ) = IC sin ϕ, with IC = (e�τ/2h̄) tanh (�/2kBT ).
At perfect transparency (τ = 1), this expression
reproduces the Kulik–Omelyanchuk formula:32 Ieq(ϕ) =
I0 sin(ϕ/2) tanh(� cos(ϕ/2)/2kBT ). Here, I0 = e�/h̄ is the
zero-temperature critical current for τ = 1 and we frequently
use it below to normalize the supercurrent in the different
graphs. According to Eq. (3), at zero temperature only the
lower ABS contributes to the supercurrent Ieq = I+

A , while at
a finite temperature the negative contribution from the upper
ABS leads to a decrease of the total supercurrent. The simplest
approach to compute the supercurrent in the presence of the mi-
crowave field is the so-called adiabatic approximation.4 In this
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approximation one assumes that the ABSs follow adiabatically
the ac drive and there are no direct transitions between them.
Thus, the CPR in this approximation is obtained by replacing
the stationary phase ϕ in Eq. (3) by the time-dependent phase
φ(t) of Eq. (2), which leads to the following result:

Iad(ϕ,α) =
∞∑

n=1

InJ0(2nα) sin(nϕ), (4)

where In = (1/π )
∫ 2π

0 dϕ Ieq(ϕ) sin(nϕ) are the harmonics of
the equilibrium CPR of Eq. (3) and J0 is the zero-order Bessel
function of the first kind. Notice that the current in this approx-
imation does not depend explicitly on the radiation frequency.
We illustrate the results of this approximation in Fig. 1 for the
zero-temperature case. In particular, in the two upper panels
we show the CPR [obtained from Eq. (4)] for two different
transmissions and several values of the α parameter (related to
the microwave power). Panel (a) corresponds to the tunnel limit
(τ = 0.2) where the CPR is sinusoidal irrespective of the radi-
ation power, while in panel (b) we show the results for a high
transmission of τ = 0.95. In this latter case, the critical current
is reached at different values of the phase depending on the
value of α. Notice that, no matter the value of the phase ϕ, the
magnitude of the supercurrent is always suppressed by the mi-
crowaves as compared with the zero-field result (α = 0), which
is true at any temperature. With respect to the behavior of the
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FIG. 1. (Color online) The current-phase relation in the adiabatic
approximation for (a) τ = 0.2 and (b) τ = 0.95. The different curves
correspond to different values of α as indicated in the graphs. The
current is given in units of I0 = e�/h̄, where � is the value of
the superconducting gap at T = 0. (c) The zero-temperature critical
current as a function of α for three different values of the transmission
τ . Notice that critical current is normalized by its value in the absence
of microwaves.

critical current IC(α), as one can see in Fig. 1(c), it decays in a
nonmonotonic manner, as governed by the Bessel function J0.

III. THE TWO-LEVEL MODEL

It is instructive to start our analysis toward a microscopic
theory by restricting ourselves to the study of the contribution
of ABSs, ignoring for the moment the continuum part of the
spectrum. This can be done with the help of the two-level
models that have been derived in Refs. 29 and 21 to describe
the dynamics of a SQPC under external ac fields. The models
of these two references coincide at equilibrium, but they differ
slightly when the phase depends on time. In particular, the
model of Ref. 21 ensures charge neutrality, while the model of
Ref. 29 does not. For this reason, we base our discussion here
on the model put forward by Zazunov and co-workers.21 In
this model, the SQPC is described by the 2 × 2 Hamiltonian,

ĤB(t) = �e−iσ̂x rφ/2

(
cos

φ

2
σ̂z + r sin

φ

2
σ̂y

)
, (5)

where r = √
1 − τ and φ(t) is the time-dependent phase given

by Eq. (2). This Hamiltonian is written in the ballistic basis
of right- and left-moving electrons, which are eigenvectors of
the current operator in the perfectly transmitting case (τ = 1).
For our subsequent analysis it is more convenient to work
in the instantaneous Andreev basis {|+〉φ(t), |−〉φ(t)}, whose
basis vectors are time dependent. This is the basis where the
Hamiltonian of Eq. (5) becomes diagonal in equilibrium. The
Andreev basis is obtained from the ballistic basis by means
of a transformation ĤA(t) = R̂†(t)ĤB(t)R̂(t) generated by the
unitary matrix

R̂(t) = e−iσ̂x r
φ

4 e−i π
4 σ̂z e−iθ(φ)σ̂y , (6)

where θ (φ) = (1/2) arctan[r tan(φ/2)]. With this transforma-
tion the Schrödinger equation for a state vector �(t) =
(α(t),β(t))T becomes

i∂t�(t) = ĤA(t)�(t) , (7)

where

ĤA(t) = EA(φ(t))σ̂z − rτ�2 sin2 (φ(t)/2)
4[EA(φ(t))]2

φ̇(t)σ̂y, (8)

and φ̇(t) = ∂φ(t)/∂t . Moreover, in the previous two equations,
and in the rest of this section, we set h̄ = 1.

The corresponding current operator can be written as

ÎA(t) = 2eE′
A(φ(t))σ̂z + erτ�2 sin2 (φ(t)/2)

EA(φ(t))
σ̂x, (9)

where the prime in E′
A means a derivative with respect to

the argument (the time-dependent phase in this case). To
obtain the expectation value of the current at different times,
Eq. (7) needs to be solved. Despite the apparent simplicity,
this task has nontrivial aspects. Straightforward numerical
approaches run into problems, as both very fast (t−1 ∼ ω) and
very slow (t−1 ∼ EA − nω) time scales can be simultaneously
present. No closed-form analytical solution can be obtained
either,33 and the significant nonlinear coupling to the drive
makes it more difficult to derive approximations via standard
routes.33,35
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Focusing our analysis on time-averaged quantities, we
can obtain accurate analytical and numerical results via a
systematic Floquet-type approach. We are interested in two
physical quantities: the dc current,

Ī = lim
t→∞

1

t

∫ t

0
dt ′�†(t ′)Î (t ′)�(t ′), (10)

and the time-averaged populations of the Andreev levels,

p̄± = lim
t→∞

1

t

∫ t

0
dt ′�†(t ′)

1̂ ± σ̂z

2
�(t ′). (11)

Below, we show how to obtain Ī , although the method
described can as well be used to compute any other time-
averaged quantity, including p̄±.

We first introduce a modified Hamiltonian,

ĤA(t,χ ) = ĤA(t) + χÎA(t), (12)

where χ is a parameter conjugate to the observable, and it
is set to zero at the end of the calculation. The solution of
the Schrödinger equation �(t,χ ) can be formally written by
introducing the time-evolution operator Û (t,0; χ ),

�(t,χ ) = T e−i
∫ t

0 dt ′ĤA(t ′,χ)�0 ≡ Û (t,0; χ )�0, (13)

where T indicates time ordering and �0 is the state vector at
t = 0. We define now the generating function:

S(t,χ ) = �
†
0U (0,t ; χ = 0)U (t,0; χ )�0. (14)

One can easily check that the dc current defined in Eq. (10)
can be written as

Ī = lim
t→∞

i

t
∂χS(t,χ )|χ=0. (15)

Thus, we need to compute only the function S, or, equivalently,
the evolution operator Û (t,0; χ ) ≡ Û (t ; χ ).

Since our Hamiltonian is periodic in time with a period
T = 2π/ω, i.e., HA(t,χ ) = HA(t + T ; χ ), we can define two
periodic (Floquet) states v± via the eigenvalue problem

Û (T ; χ )v±(χ ) = e±iE(χ)T v±(χ ). (16)

The symmetry of the two eigenvalues follows here from the
fact that ĤA(t,χ ) and log[U (T ; χ )] are traceless, and U (T ; χ )
is unitary. Moreover, from the periodicity of the Hamiltonian
it follows that

Û (nT ; χ ) = Û (T ; χ )n = V̂ (χ )eiE(χ)nT σ̂z V̂ −1(χ ), (17)

where the eigenvectors v± form the columns of the unitary
matrix V̂ . Replacing in Eqs. (14) and (15) t by nT and taking
the limit n → ∞ we now find the derivative with respect to χ :

1

nT
∂χÛ (nT ; χ )

n→∞−→ iV̂ −1(χ )σ̂ze
iE(χ)nT σ̂z V̂ (χ )

∂E(χ )

∂χ
.

(18)

Thus, the dc current is given by

Ī = −�
†
0(v+v†+ − v−v†−)�0

∂E(χ )

∂χ

∣∣∣∣
χ=0

. (19)

This exact expression for the dc current is very useful for
numerics. It is easy to compute, and it handles the fast and slow
time scales of the problem separately. To obtain the dc current,
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FIG. 2. (Color online) (a)–(c) Zero-temperature supercurrent, in
units of I0 = e�/h̄, as a function of the phase for τ = 0.95, α = 0.15
and three different values of the microwave frequency, as indicated
in the upper part of the graphs. The solid lines correspond to the
numerical results obtained with the two-level model, while the dashed
lines is the result obtained with the adiabatic approximation.(d)–(f)
Time-averaged-occupation of the upper ABS for the cases shown in
the upper panels.

one needs first to integrate the Schrödinger equation with the
Hamiltonian of Eq. (12) over one period to find the 2 × 2
matrix Û (T ; χ ); then one computes its eigenvalues ±E and
eigenvectors v±, and finally the derivative ∂χE(χ ) is computed
via numerical differentiation.

To have a first impression of the results from this two-level
model, we show in Fig. 2 a few examples of the CPR of
a highly transmissive channel (τ = 0.95) computed with the
numerical recipe that we have just described.36 The upper
panels of this figure show the CPR for a moderate power (α =
0.15) and three different values of the microwave frequency.
For comparison, we also show the result obtained with the
adiabatic approximation of Eq. (4). As one can see, the main
difference is the appearance in the results of the two-level
model of a series of dips at certain values of the phases where
the current is largely suppressed. It is easy to understand that
such dips are due to microwave-induced transitions between
the ABSs. These transitions enhance the population of the
upper ABS, which at zero temperature would be empty
otherwise, and at the same time they reduce the occupation of
the lower ABS. This redistribution of the quasiparticles in turn
results in a suppression of the current. The microwave-induced
transitions occur with the highest probability when the distance
in energy between the ABSs (the Andreev gap) is equal to
a multiple of the photon energy, i.e., when 2EA(ϕ) = nω,
where n = 1,2, . . . , is the number of photons involved in the
transition. If this condition is expressed in terms of the phase
ϕ, it adopts the form

ϕn = 2 arcsin
√

[1 − (nω/2�)2]/τ , n = 1,2, . . . . (20)

A detailed analysis shows that this expression reproduces the
positions of all the dips appearing in the examples of Fig. 2.

This interpretation of the origin of the dips in the CPR
can be corroborated by a direct analysis of the occupations of
the ABSs. Following the same numerical recipe, we have also
computed the average occupation of the upper ABS, p̄+, for
the examples shown in the upper panels of Fig. 2. The results
can be seen in the lower panels of this figure and, as one can ob-

054504-4



SUPERCURRENT AND ANDREEV BOUND STATE DYNAMICS . . . PHYSICAL REVIEW B 84, 054504 (2011)

serve, there is a clear one-to-one correspondence between the
current dips and the enhancement of the time-averaged popu-
lation of the upper state. In particular, whenever the upper state
reaches a population equal to 1/2, the current vanishes exactly.

The method described above is not only very convenient for
numerical calculations, but it also provides a route to obtain
analytical results. In what follows, we show how this method
can be used, in particular, to gain a further insight into the
microwave-induced supercurrent dips. To proceed, it is useful
to first rewrite Eq. (19) in a more convenient form. In particular,
we would like to avoid the calculation of eigenvectors in this
equation. This can be done by noting that the unperturbed
Hamiltonian of Eq. (8) obeys

σ̂xĤAσ̂x = −ĤA . (21)

Consequently, v− ∝ σxv+, and the dc current given by Eq. (19)
can be written as

Ī = −v†+ (ρ̂0 − σ̂x ρ̂0σ̂x) v+
∂E(χ )

∂χ

∣∣∣∣
χ=0

, (22)

where ρ̂0 = �0�
†
0. Using the expression for the change of an

eigenvalue due to a perturbation, we can finally write

Ī = ∂E(χ,μ)

∂μ

∂E(χ,μ)

∂χ

∣∣∣∣
χ,μ=0

. (23)

Here E(χ,μ) is an eigenvalue of the matrix

M̂(χ,μ) = i

T
�̂(T ,χ ) + μ (ρ̂0 − σ̂x ρ̂0σ̂x) , (24)

�̂(T ,χ ) ≡ log[U (T ,χ )], and μ is an additional perturbation
parameter. The problem is now reduced to finding the
eigenvalues of a 2×2 matrix.

As discussed above, the dc current for weak fields deviates
from the adiabatic result only close to the resonant condi-
tions nω = 2EA (with n = 1,2,3, . . .), where the transitions
between the ABSs are more likely. To study what happens close
to these resonant situations, we can consider the problem in a
rotating frame and rewrite the evolution operator Û (t) defined
in Eq. (13) as

Û (t) = e−iŴntT e−i
∫ t

0 dt ′ ˆ̃Hn(t ′) ≡ e−iŴnt ˆ̃Un(t), (25)

where Ŵn = nωσ̂z/2 and the rotating-frame Hamiltonian is
ˆ̃Hn(t) = eiŴnt [ĤA(t) − Ŵn]e−iŴnt . (26)

The generating function can then be written as in Eq. (14)
simply by substituting ĤA by ˆ̃Hn. The additional exponential
factors simply cancel out, and the Hamiltonian ˆ̃Hn(t) remains
periodic. Thus, we can proceed exactly as above.

The key idea that allows us to obtain analytical results
is the fact that, for weak fields (α � 1), the dynamics in the
rotating frame are slow ( ˆ̃Hn is small) around the corresponding
resonance. For this reason, we can use the Magnus expansion37

to determine the matrix �̂ appearing in Eq. (24):

�̂(T ) = −i

∫ T

0
dt1Ĥn(t1)

−1

2

∫ T

0
dt1

∫ t1

0
dt2[Ĥn(t1),Ĥn(t2)] + · · · . (27)

This is essentially an expansion in the parameter λn ∼
2nπ (EA − nω/2)/ω, which indeed is small close to a
resonance.

We proceed now to compute the dc current close to the
first resonance ω = 2EA, assuming that initially the system is
in its ground state �

†
0 = (0,1). We choose Ŵ = ωσz/2, and

take only the first term of expansion (27), expanding up to
first order in α and χ . The time integral is straightforward to
evaluate, and we obtain

i

T
ˆ̃�1(T ,χ ) �

[
EA−ω

2
+2eχE′

A

]
σ̂z+ r

2E2
A

α

[(
�2−E2

A

)ω

2

−χ
(
�2 + E2

A

)
2eE′

A

]
σ̂x . (28)

Note that this expression is analogous to the well-known
rotating- wave approximation, with the difference that, by
considering the generating function, our formalism takes the
time dependence of the operator Î (t) into account. For the
eigenvalues of the matrix ˆ̃M1 = (i/T ) ˆ̃�1 + μσz we obtain

E2 =
[
EA−ω

2
+μ+2eχE′

A

]2

+(
rα/2E2

A

)2
[(

�2−E2
A

)ω

2

−χ
(
�2 + E2

A

)
2eE′

A

]2

. (29)

Finally, working in the limit (ω − 2EA)/� � 1 for simplicity,
we find the dc current from Eq. (23):

Ī1(ϕ,ω,α) ≈ −2eE′
A

(
1 − �2

r,1

(ω − ω1)2 + �2
r,1

)
, (30)

where the resonant frequency ω1 = 2EA equals the unper-
turbed Andreev level spacing 2EA (up to first order in α),
and �r,1 = rαω(�2 − E2

A)/2E2
A is the corresponding Rabi

frequency. This expression tells us that the current vanishes
exactly at the resonant condition ω = ω1 and that the width of
the current dip is given by �r,1, which is linear in α. Moreover,
its form clearly suggests that the populations of the two states
undergo Rabi oscillations with the frequency �r,1, as usual
in two-state systems, and the time-averaged populations of
the ABS coincide at the resonance. As a consequence, the dc
current drops to zero at the resonance, a result that qualitatively
coincides with the prediction in Ref. 23.

We can also determine the dc current at the higher
resonances, for example for ω ≈ EA. In this case we work
in the frame corresponding to Ŵ2 = ωσ̂z. As the resonance
is due to two-photon processes, terms up to order α2 must be
taken into account, which requires including the first two terms
in Eq. (27). The computations are again straightforward, and
up to second order in α we obtain

i

T
ˆ̃�2 ≈

[
EA − ω + α2E′′

A + 2eχE′
A + r2α2ω

(�2 − ε2)2

12E4
A

]
σ̂z

− rα2E′
A

2E2
A

[
�2

(
ω

EA
+ 1

)
− E2

A

)]
σ̂x . (31)

For simplicity, we dropped terms of order αχ , which do not
essentially affect the form of the resonance. As above, the
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current is obtained from the eigenvalues of ˆ̃M2 = (i/T ) ˆ̃�2 +
μσz, and it adopts the form

Ī2(ϕ,ω,α) � −2eE′
A

(
1 − �2

r,2

(ω − ω2)2 + �2
r,2

)
, (32)

where ω2 = EA + α2E′′
A + r2α2(�2 − E2

A)2/12E3
A and

�r,2 = rα2(2�2 − E2
A)E′

A/2E2
A. Here, one can observe that

the resonant frequency is shifted from the position 2ω = 2EA

by two contributions: The first arises from nonlinearities, and
the second is the Bloch–Siegert shift.34

One can also go further and compute the dc current
around resonances n > 2, although this gets progressively
more cumbersome as an increasing number of terms are
required in the Magnus expansion, reflecting the increasing
number of allowed multiphoton processes generated by the
nonlinearities. One can, however, see from Eqs. (30) and (32),
and also check for higher resonances, that the width of the
resonances scales with αn. Moreover, one can show that, within
this model, the time-averaged current vanishes exactly at each
resonance, i.e., Ī |ω=ωn

= 0.
The results in Eqs. (30) and (32) can be combined into a

single approximate expression:

Ī ≈ −2eE′
A

(
1− �2

r,1

(ω−ω1)2 + �2
r,1

)(
1− �2

r,2

(ω−ω2)2 + �2
r,2

)
.

(33)

The quality of this approximation can be established by
comparing it with the exact numerical results. This is done
in Fig. 3, where we have considered the case of a weak
microwave field (α = 0.05). There is an excellent agreement
between Eq. (33) and the numerical results, apart from the
fact that the numerics also include a dip produced by three-
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FIG. 3. (Color online) (a) CPR in the two-level model, obtained
from Eq. (33) (solid line) and numerics based on Eq. (19) (dotted
line). Parameters are ω = 0.6�, τ = 0.95, and α = 0.05. The n =
3 resonance is not included in the analytical approximation. Inset:
close-up of the second resonance. (b) Time-averaged population p̄+
of the upper Andreev state for the same parameters.

photon processes, which we have left out from the above
approximation.

We can conclude this section by saying that, in spite of
the simplicity of the two-level model considered here, such
a model captures the essential physics of the microwave-
irradiated SQPC and, as we show in the next section, it
provides accurate results for not too high frequencies and up to
moderate radiation power. As we establish in the next section,
the limitations of the two-level model are mainly related to the
fact that it does not take into account the contribution of the
continuum of states outside the gap region.

IV. THE KELDYSH–GREEN FUNCTION APPROACH

In the previous section we have analyzed the supercurrent
assuming that the only contribution comes from the ABSs.
While this is true for a SQPC in equilibrium, it is not obvious
that this should be the case in the presence of a microwave
field. Indeed, at high frequencies or at high radiation powers,
and especially at finite temperatures, transitions between the
ABSs and the continuum of states outside the gap become
possible and, in principle, they can also contribute to the
current. Therefore, to describe the complete phenomenology
of irradiated SQPCs, we must develop a fully microscopic
theory. This is the goal of this section.

Our microscopic theory is based on the Keldysh–Green
function approach. In this approach the starting point is the
expression for the quasi-classical Green functions of the
left (L) and right (R) electrodes. In our case, these Green’s
functions can be expressed in terms of the equilibrium Green’s
functions ǧ(t − t ′) as

ǦR(L)(t,t
′) = e±iφ(t)τ̂3/2ǧ(t − t ′)e∓iφ(t ′)τ̂3/2. (34)

Here φ(t) is the time-dependent phase given by Eq. (2), and the
upper (lower) sign in the exponents corresponds to the R (L)
electrode. The symbolˇ indicates that the Green’s functions are
4×4 matrices in the Keldysh–Nambu space, where they have
the structure

Ǧ =
(

ĜR ĜK

0 ĜA

)
. (35)

Here the symbol ˆ indicates that the different elements are
2×2 Nambu matrices. The retarded (R), advanced (A), and
Keldysh (K) components of the equilibrium Green’s functions
appearing in Eq. (34) are given by

ǧ(t) =
∫ ∞

−∞

dE

2π
e−iEt/h̄ǧ(E), (36)

where

ĝR(A)(E) = gR(A)(E)τ̂3 + f R(A)(E)iτ̂2, (37)

ĝK (E) = [ĝR(E) − ĝA(E)] tanh(E/2kBT ), (38)

gR(A)(E) = E√
(E ± iη)2 − �2

= E

�
f R(A)(E), (39)

where η describes the inelastic scattering energy rate within
the relaxation-time approximation and T is the temperature.

Different authors have shown that the transport properties
of a point contact with an arbitrary time-dependent voltage can
be described by making use of adequate boundary conditions
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for the full quasi-classical propagators.38–41 These boundary
conditions can be expressed in terms of a current matrix,

Ǐ =
(

Î R ÎK

0 Î A

)
, (40)

which for the case of a single-channel SQPC of transmission
τ can be expressed in terms of the lead Green’s functions of
Eq. (34) as39

Ǐ (t,t ′) = 2τ [ǦL,ǦR]◦ ◦ [4 − τ (2 − {ǦL,ǦR}◦)]−1(t,t ′).
(41)

Here, the symbol ◦ denotes the convolution over intermediate
time arguments. Finally, the electric current is obtained by
taking the trace

I (t) = e

4h̄
Tr τ̂3Î

K (t,t), (42)

where τ̂3 is the third Pauli matrix in Nambu space.
Due to the periodic time dependence of the phase [Eq. (2)],

the Green’s functions ǦL(R), and any products of them, admit
the following Fourier expansion:

Ǧ(t,t ′) =
∞∑

m=−∞
eimωt ′

∫
dE

2π
e−iE(t−t ′)/h̄Ǧ0m(E), (43)

where Ǧnm(E) ≡ Ǧ(E + nh̄ω,E + mh̄ω) are the correspond-
ing Fourier components in energy space, and n,m are integers.
In particular, the Fourier components of ǦL(R) can be deduced
from Eq. (34). For instance, for the left electrode, Ǧnm(E) is
given by

(ǦL)nm =
∑

l

�̌nl ǧl �̌
∗
lm, (44)

where

�̌nm =
(

�̂nm 0

0 �̂nm

)
, �̂nm =

(Pnm 0

0 P∗
nm

)
. (45)

Here, Pnm = (i)m−nJm−n(α/2)eiϕ/4, where Jn is the Bessel
function of order n, and ǧn = ǧ(E + nh̄ω) is the equilibrium
Green’s function matrix with the argument shifted in energy.

From this discussion, it is easy to understand that the current
adopts the general expression

I (t) =
∞∑

m=−∞
Imeimωt , (46)

which means that the current oscillates in time with the
microwave frequency and all its harmonics. These current
components can be computed from the Fourier components
in energy space of Ǐ in Eq. (41). From that equation, it is
straightforward to show that the Fourier components of Î K are
given by

Î K
nm =

∑
l

[
ÂR

nlX̂
K
lm + ÂK

nlX̂
A
lm

]
. (47)

Here, we have defined the matrices Ǎnm ≡ 2τ [ǦL,ǦR]nm and
X̌nm = [41̌ − τ (2 − {ǦL,ǦR})]−1

nm, which can be determined
from the Fourier components of ǦL(R). Once the components

of Î K are obtained from Eq. (47), one can compute the current.
We are interested here in only the dc component, which reads

I (ϕ,ω,α) = e

4h̄

∫
dE

2π
Tr τ̂3Î

K
00(E,ϕ,ω,α). (48)

The dc current can be calculated analytically in certain limiting
cases: for example, in the absence of microwaves, where it
reduces to Eq. (3), in the tunnel regime or for very weak fields.
However, for arbitrary radiation power one needs to evaluate
Eq. (48), numerically. In the next subsections we present the
results for the dc current of this microscopic theory and we
compare them with those obtained from the two-level model
of Sec. III.

A. Zero-temperature limit: Comparison with the
two-level model

We focus first on the analysis of the results of the exact
theory at zero temperature. This allows us, in particular, to
make a comparison with the two-level model of Sec. III and
to establish its range of validity.

In Fig. 4 we show several examples of the CPR calculated
with the microscopic approach (solid lines) for a highly
conductive channel (τ = 0.95) for several frequencies and low
values of the radiation power (α � 1). For comparison, we also
show the results of both the two-level model (dashed lines) and
the adiabatic approximation (dotted lines). As one can see, the
main deviation from the adiabatic results is the appearance of
a series of dips, as discussed in Sec. III. These features, which
originate from the microwave-induced transitions between the
ABSs, are accurately reproduced by the two-level model (both
the position and the width of the dips). There is a small
discrepancy between the exact result and those of the two-level
model for phases close to π , i.e., when the level spacing
between the ABS is very small. This is understandable since
the model assumes that h̄φ̇(t) � 2EA, which is not fulfilled
when ϕ ∼ π and τ is close to 1. Notice also that, for the
high-order dips (due to high-order photonic processes), the
suppression of the current in the two-level model is larger than
in the case of the exact theory. The reason is the additional
broadening introduced by the finite inelastic scattering rate
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FIG. 4. (Color online) Four examples of the zero-temperature
CPR for τ = 0.95 obtained from the microscopic model (solid lines),
the two-level model (dashed lines), and the adiabatic approximation
(dotted lines). The parameters characterizing the microwave field are
indicated in the different panels.
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FIG. 5. (Color online) (a) The CPR for α = 0.1, h̄ω = 0.6�, and
two values of the transmission coefficient, τ = 0.8 and τ = 0.6.
(b) The CPR for h̄ω = 0.3�, τ = 0.95, and two values of α, 0.2
and 0.6. In both panels the solid lines correspond to the microscopic
theory and the dashed lines to the two-level model.

used in the calculations with the microscopic theory, which in
this case is η = 10−4�.

The good agreement between the microscopic theory and
the two-level model in these examples can be understood as
follows. At zero temperature, the lower ABS is fully occupied,
while the upper one is empty. Therefore, for small values of α

and h̄ω < �, transfer of quasiparticles between the continuum
and the ABSs is not possible. The agreement between these
models is further confirmed in Fig. 5(a), where the CPR is
shown for h̄ω = 0.6�, α = 0.1, and two lower values of the
transmission (τ = 0.6 and 0.8). In this case, the agreement
is almost perfect for all phases. The reason is that now the
smallest energy gap between the ABSs, which occurs at ϕ = π ,
is large enough to avoid the overlap of the levels in the presence
of the microwave field. If the transmission is further reduced,
no transitions can occur between the Andreev states and the
adiabatic approximation becomes exact.

From the discussion above, we can conclude that
the two-level model provides an excellent description of
the supercurrent at zero temperature and for weak fields
(α � 1). However, as the radiation power increases, the
situation changes. This is illustrated in Fig. 5(b), where we
show the CPR for a highly conductive channel (τ = 0.95),
a frequency h̄ω = 0.3�, and two values of α. As one can
see, the deviations between the results of the two-level model
and the microscopic theory become more apparent as the
power increases. The main reason for this discrepancy is
the occurrence of multiphotonic processes, which become
more probable as the power increases. These processes induce
quasiparticle transitions between the ABSs and the continuum
part of the energy spectrum, which are not included in the
two-level model.

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

I/
I 0

0 0.2 0.4 0.6 0.8 1
ϕ/π

-0.2

0

0.2

0.4

0.6

I/
I 0

(a)

(b)

0.0
0.2

0.5

1.0

1.5

0.00.2

0.5

1.0

1.5

τ = 0.95

τ = 0.8

FIG. 6. (Color online) The zero-temperature CPR for h̄ω = 0.3�

and two values of the transmission: (a) τ = 0.95 and (b) τ = 0.8. The
different curves correspond to different values of α, as indicated in
the graphs.

As one could already see in Fig. 5(b), as the radiation power
increases the supercurrent dips broaden and the CPR acquires
a very rich structure. We illustrate this fact in more detail
in Fig. 6, where we show the evolution of the CPR with
α for two values of the transmission (0.95 and 0.8) and for
frequency h̄ω = 0.3�. Notice that, as the power increases, the
dips disappear, the CPRs become highly nonsinusoidal, and
in some regions of the phase the current can reverse its sign.
These results are clearly at variance with those found within the
adiabatic approximation (see Sec. II). They are a consequence
of a complex interplay between the dynamics of the ABSs,
which are broadened by the coupling to the microwaves and
the multiple transitions induced between the ABSs and the
continuum of states. This very rich behavior also has important
implications for the critical current, which for high transmis-
sions strongly deviates from the standard behavior described
by the adiabatic approximation. This is discussed below in
detail. Finally, it is worth stressing that the values of α used in
Fig. 6 are easily achievable in experiment, as demonstrated
in the context of atomic contacts,42 semiconductor
nanowires,13 or graphene junctions.15–17 Therefore, these
results indicate that the microscopic theory presented here will
always be necessary for the description of the experimental
results of highly transmissive junctions at sufficiently high
power, no matter how low the microwave frequency is.

B. Finite temperature: Enhancement of the supercurrent

We now turn to the analysis of the supercurrent at finite
temperature, carried out within the microscopic model. The
new ingredient at finite temperature is the fact that the ABSs
are neither fully occupied nor fully empty, which means that
quasiparticle transitions between the continuum of states and
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FIG. 7. (Color online) The CPR for h̄ω = 0.6�, α = 0.1, τ =
0.95, and two different temperatures: (a) kBT = 0.2� and (b) kBT =
0.3�. The solid lines in both panels correspond to the results of the
microscopic theory and the dashed lines to the supercurrent in the
absence of microwaves (α = 0).

the bound states are possible, even for frequencies h̄ω < �.
This has important consequences.

In Fig. 7 we show the CPR for h̄ω = 0.6�, α = 0.1,
τ = 0.95, and two different temperatures. For comparison,
we also show the results in the absence of microwaves (dashed
lines). Apart from the dips, whose origin is discussed above
in detail, one can observe that at a certain value of the
phase (ϕ0 ≈ 0.78π ) the current is suppressed. Notice that the
suppression is stronger as the temperature increases. Moreover,
for phases smaller than ϕ0 the supercurrent exceeds its value in
the absence of microwaves. In other words, for ϕ < ϕ0 there is
an enhancement of the supercurrent induced by the microwave
field. The origin of this enhancement is the promotion of
quasiparticles from the continuum below −� to the lower ABS
by the microwave field. There is also an identical contribution
coming from transitions connecting the upper state and the
continuum above +�. At low microwave powers, these
processes can occur only if the field frequency is larger than
the distance in energy between the gap edges and the nearest
ABS, i.e., if h̄ω > � − EA(ϕ), and they become possible at
finite temperatures because the lower state is not fully occupied
and the upper state is not fully empty. For the parameters of
Fig. 7 the previous condition is satisfied if EA(ϕ) > 0.4�,
which corresponds to a phase ϕ < 0.78π . Obviously, this
phenomenon of microwave-enhanced supercurrent cannot be
described by the two-level model since this model ignores the
contribution of the continuum part of the spectrum.

To confirm our interpretation of the origin of the
microwave-enhanced supercurrent, we have derived analytical
results describing this phenomenon in the limit of weak
microwave fields. We have obtained such results with the
help of an alternative method, known as the Hamiltonian

approach, which for SQPCs has been shown to be equivalent
to the microscopic theory described at the beginning of this
section.40,43,44 In this approach, a point contact is described
in terms of a tight-binding-like Hamiltonian and the transport
properties are calculated following a perturbative approach,
where the coupling between the electrodes is treated as the
perturbation. Although the calculations with this method are
slightly more cumbersome than with the approach used above,
it has certain advantages. For instance, it also allows us to
obtain the density of states (DOS) at the contact. Moreover, a
perturbative analysis (in the field) is much simpler when using
Eq. (48). The technical details of the Hamiltonian approach are
described in the Appendix, and in what follows, we discuss
only the results of this analysis.

We are interested in the correction to the current due to the
microwave field which is responsible for the enhancement of
the supercurrent. Thus, from our numerical results, we explore
the parameter region where � − EA < h̄ω. Moreover, to avoid
the resonant transitions between the ABSs, we also assume that
h̄ω < 2EA. As described in Appendix, a perturbative analysis
to lowest order in the parameter α shows that the supercurrent
can be written as

I (ϕ) = Ieq(ϕ) + δI (ϕ), (49)

where Ieq is the equilibrium supercurrent given by Eq. (3) and
the correction δI contains several contributions of order α2.
There are two types of contributions. One type of contribution
is related to the change in the bound states induced by the
coupling to the electromagnetic field. The other contribution
comes from the modification of the occupations of the bound
states due to the quasiparticle transitions involving the ABSs.
In the range of parameters that we are interested in, the second
type of contribution dominates at high-enough temperatures
and, in particular, they are responsible for the supercurrent
enhancement. Those contributions can be written in the spirit
of Eq. (3) as

δIenh(ϕ) = I−
A (ϕ)δn−(ϕ) + I+

A (ϕ)δn+(ϕ), (50)

where I±
A (ϕ) = (2e/h̄)∂E±

A /∂ϕ give the contribution of the
states to the equilibrium supercurrent and δn±(ϕ) are the
corrections to the occupations of the ABSs due to the
application of the microwave field. These corrections can be
written as

δn±(ϕ) = α2τ

8
[Re{eiϕρL(E±

A )ρ̃R(E±
A ± ω)}

+ ν(E±
A )ν(E±

A ± ω)][F0 − F±1]. (51)

Here, Fn is the distribution function with shifted arguments
Fn = tanh[(E + nh̄ω)/2kBT ], ν(E) is the DOS at the contact
in the absence of microwaves, and ρj and ρ̃j are the real
parts of the anomalous Green’s functions on the left (L)
and (R) sides of the interface (j = L,R) without the field,
as defined in Appendix. Equation (51) has a very appealing
form, and it tells us that the occupations of the ABSs can be
changed by microwave-induced transitions connecting these
states between the continua below and above the gap. These
transitions are illustrated in Fig. 8, where we also present
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FIG. 8. (Color online) The local DOS at the contact in the
absence of microwaves, as defined in Eq. (52), as a function of
energy for τ = 0.95, ϕ = 3π/4, and η = 10−3�. The lower arrows
represent the microwave-induced transitions between the continuum
part of the spectrum and the ABSs which are responsible for the
supercurrent enhancement at finite temperatures. The upper arrow
indicates the resonant transition between the ABSs, which suppresses
the supercurrent.

an example of the DOS of the contact in the absence of
microwaves, ν(E). This DOS is given by (see Appendix)

ν(E) = Re

{
E

√
(E + iη)2 − �2

(E + iη)2 − E2
A

}
, (52)

where the poles correspond to the ABSs, and, as one can see
in Fig. 8, there are no singularities at the gap edges E = ±�.

From Eq. (51) one can show that the transitions between
the continuum of states below −� and the lower ABS increase
the population of the lower state (δn− > 0), while the photon
processes connecting the continuum above +� and the upper
ABS decrease the occupation of the upper state (δn+ < 0).
As one can see from Eq. (50), both types of processes give a
positive contribution to the current at finite temperatures. and
thus they are responsible for the supercurrent enhancement.
Indeed, due to the electron-hole symmetry of this problem,
terms in Eq. (50) give the same contribution to the current.
Finally, the correction to the current due to these microwave-
induced transitions involving the continuum can be written
as

δIenh(ϕ) = α2

(−2eE′
A

h̄

)
τ

16

×
√

(EA + h̄ω)2 − �2
√

�2 − E2
A

ηh̄ωEA(2EA + h̄ω)
[EAh̄ω

+�2(1 + cos ϕ)][F1 − F0]�(|EA + h̄ω| − �).

(53)

This expression gives a positive contribution to the supercur-
rent, and it explicitly shows that the enhancement can take
place only when h̄ω > � − EA. According to Eq. (53), the
correction to the current is proportional to 1/η, the inelastic
scattering time.45 In our model the parameter η describes the
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FIG. 9. (Color online) The dc Josephson current as a function of
the frequency ω of the microwave field for a fixed value of the phase
ϕ = π/2, and α = 0.1, τ = 0.95, kBT = 0.4�, and η = 10−3�. The
solid line shows the exact numerical result while the dashed line
shows the result obtained from Eq. (53). The dotted line shows the
value of the current in the absence of the microwave field.

energy-loss mechanism via which the microwave power is
dissipated. For simplicity, we assume it to be constant,
although, strictly speaking, it may depend on energy, tem-
perature and frequency, depending on the inelastic scattering
mechanism at work (see for instance Ref. 46). Equation (53)
reproduces the exact results obtained with the microscopic
approach in the limit of weak fields and in the range of
frequencies where the transitions between the ABSs cannot
take place. This is illustrated in Fig. 9, where we show the
supercurrent for a fixed value of the phase (ϕ = π/2) as a
function of the frequency for τ = 0.95, α = 0.1, and kBT =
0.4�. As one can see, the exact result (solid line) remains
constant for low frequencies. Then, at h̄ω = � − EA there is
a rise of the supercurrent due to the onset of the transitions
connecting the ABSs with the continuum of states. This
increase of the supercurrent is well described by the analytical
result of Eq. (53) (dashed line). At higher frequencies, one
can observe the dips due to the transitions between the ABSs.
The dip at h̄ω = EA corresponds to a two-photon process,
while the one at h̄ω = 2EA is produced by a single-photon
process. Finally, at h̄ω = � + EA the supercurrent starts to
decrease due to microwave-induced transitions between the
continuum below −� and the upper ABS and similar ones
between the continuum above +� and the lower ABS. These
transitions, which can also occur at zero temperature, tend to
increase the occupation of the upper state and to reduce the
population of the lower one, which results in a reduction of
the net supercurrent.

As one can see in Figs. 7 and 9, the maximum supercurrent
sustained by the junction, i.e., the critical current, can also
be enhanced by the microwave field at finite temperatures. A
microwave-enhanced critical current was first reported in ex-
periments on superconducting microbridges47,48 and explained
by Eliashberg49 in 1970 in terms of the stimulation of the
superconductivity in the electrodes, which were made of thin
films. Such a stimulation and the corresponding microwave-
enhanced critical current occur only at temperatures very
close to the critical temperature. Enhancements at much lower
temperatures were reported in the 1970s in the context of
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SNS structures,50,51 and they have been recently explained in
terms of the redistribution of the quasiparticles induced by
the field.52 In this case, for the enhancement to occur, the
temperature must be of the order of the minigap in the normal
wire, which can be much lower than the critical temperature
of the superconducting leads.

As discussed above, in the case of a point contact the
mechanism is similar to that of diffusive SNS structures,52

but it involves discrete ABSs, rather than a continuous band of
ABSs, as in the case of diffusive proximity structures. For this
reason we may expect the enhancement of the critical current in
SQPCs to occur at intermediate temperatures, when kBT is of
the order of the energy distance between the ABSs and the gap
edges (� − EA(ϕmax)), where ϕmax is the phase value at which
the supercurrent reaches its maximum. This is illustrated in
Fig. 10, where we show the critical current as a function of α for
different temperatures and different values of the transmission.
Panel (a) shows the critical current for a highly transmissive
channel (τ = 0.97) and three values of the temperature. Notice
first that, at finite temperatures, the critical current at finite α

(α � 0.5) exceeds the value in the absence of microwaves
(α = 0). Notice also that, as α increases, the critical currents
clearly deviate from the behavior described by the adiabatic
approximation, which is shown as dashed lines. It is also
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FIG. 10. (Color online) The critical current as a function of α for
h̄ω = 0.6�. The different curves correspond to different values of the
temperature and the transmission as indicated in the graphs. The solid
lines correspond to the exact results, while the dashed lines show the
results of the adiabatic approximation. In the three panels the critical
current has been normalized by e�(T )/h̄, where �(T ) is the gap at
the corresponding temperature.

important to emphasize that the microwave enhancement of the
critical current is not exclusive of highly conductive channels
and it persists up to relatively low transmissions, as we show in
Figs. 10(b) and 10(c). The relative enhancement of the critical
current is larger the larger the temperature is. It is also worth
remarking that, at sufficiently high power, the critical current
depends only weakly on the temperature.

V. CONCLUSIONS AND FURTHER DISCUSSIONS

Summarizing, we have presented a theoretical analysis of
the supercurrent in a phase-biased SQPC under microwave
irradiation. We have shown that, if the microwave frequency
ω is not high enough to induce transitions between the ABSs
or between the ABSs and the continuum of states outside
the gap region, the supercurrent is correctly described by the
standard adiabatic approximation (see Sec. II). However, when
h̄ω is comparable to the Andreev gap (energy distance between
the ABSs), quasiparticle transitions between the ABSs can
occur and the supercurrent can be largely suppressed at
the corresponding values of the phase difference. We have
shown that this phenomenon can be nicely explained within
a two-level model that describes the dynamics of the ABSs.21

This model indicates that the supercurrent suppression is due to
the enhancement of the occupation of the upper ABS induced
by resonant transitions from the lower state. Moreover, at
low temperatures and weak fields, this model is quantitatively
correct provided that i) the microwave frequency is not high
enough to induce transitions connecting the ABSs and the
continuum of states, and ii) the Andreev gap is large compared
with the broadening acquired by the ABSs by means of the
coupling to the electromagnetic field. Finally, we have shown
that, whenever microwave-induced transitions between the
ABSs and the continuum of states become possible (due
to finite temperatures, high frequencies or high radiation
powers), a fully microscopic theory is needed to describe the
supercurrent. We have developed such a theory and predicted
the following effects. First, at finite temperatures it is possible
to enhance both the supercurrent and the critical current by
the application of a microwave field. This effect originates
from the quasiparticle transitions between the ABSs and the
continuum of states, which increase the occupation of the
lower Andreev state and reduce the population of the upper
one. Second, the CPR at high powers is strongly distorted and
it can become highly nonsinusoidal, exhibiting sign changes
in the region between 0 and π . Third, the critical current as
a function of the radiation power can exhibit large deviations
from the standard Bessel-function behavior described by the
adiabatic approximation.

It is now pertinent to discuss the connection with experi-
ments. As explained in the introduction, most of the experi-
mental results of the effect of microwaves on the supercurrent
of a point contact have been successfully described in the frame
of the adiabatic approximation. The reason is that the typical
frequency used in the experiments is relatively low (h̄ω � �),
and no transitions between the ABSs can occur. However, it is
important to remark that there are no fundamental limitations
to study the parameter regime where we predict the occurrence
of novel effects like the appearance of supercurrent dips in
the CPR or the microwave-enhanced critical current. These
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effects are easier to observe in highly transmissive point
contacts where the Andreev gap can become relatively small
(much smaller than �). The ideal experimental system in
which to test our predictions is a superconducting atomic
contact for several reasons. First, these contacts can sustain a
reduced number of channels, which facilitates the comparison
with theory. Second, it has been shown that it is possible to
determine independently the set of transmission eigenvalues
{τi},53 which has allowed us to establish a comparison between
theory and experiment with no adjustable parameters for many
different transport properties.8,42,54 Third, it is possible to tune,
at least to a certain extent, the transmission coefficients and,
in particular, to achieve very high transmission coefficients,
as demonstrated in the context of Al atomic contacts.8,42,53

Finally, it has already been shown that in these systems the
CPR is amenable to measurements,8 and investigations of the
transport properties of superconducting atomic contacts under
microwave irradiation have already been performed.42,55

In experiments with superconducting atomic junctions,
even at the level of a single-atom contact, one often has the
contribution of several conduction channels. In this sense,
one may wonder whether the presence of low-transmissive
channels can mask some of the striking effects that we have
discussed above. In Fig. 11 we show the CPR for a contact
consisting of three conduction channels with transmissions
τ = 0.17,0.6,0.97, where the total current was obtained by
adding the contribution of each channel. As one can see in
Fig. 11 the total current still shows the dips at the resonances
corresponding to the channel with the highest transmission
(τ = 0.97). However, the current does not vanish completely
due to the contribution of the low-transmissive channels.

It is worth stressing that the major problem of establishing
a direct comparison between our theory and the experiments
is the fact that we have assumed a phase-biased junction. In
reality, and depending on the details of the electromagnetic
environment seen by the point contact, the phase across
the junction may undergo fluctuations (both classical and
quantum) which can affect the value of the critical current
or the shape of the CPR. Thus a quantitative comparison with
the experiments may require in some cases combining our
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FIG. 11. (Color online) The zero-temperature CPR for a point
contact consisting of three channels with transmissions τ =
0.17,0.6,0.97, for α = 0.1 and h̄ω = 0.6�. The dashed lines show
the contribution of each channel, while the solid line corresponds to
the total current.

theory with a description of the phase fluctuations. For classical
fluctuations, this could be done in the spirit of Ref. 56 by means
of an extension of the resistively shunted junction using our
microscopic current-phase relation as a starting point.

Let us conclude by saying that in this paper we have shown
that the application of microwaves to one of the simplest
superconducting systems, namely a SQPC, leads to a very
rich phenomenology, which has remained largely unexplored.
In particular, we have shown that a microwave field is an
ideal tool to make a direct spectroscopy of the ABSs of
a superconducting junction. The ideas put forward in this
paper pave the way for the understanding of the influence
of a microwave field on the supercurrent of variety of highly
transmissive superconducting weak links.
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APPENDIX A: HAMILTONIAN APPROACH

The transport properties of a microwave-irradiated SQPC
can also be described within the so-called Hamiltonian
approach.43,57 We explain in this appendix how this approach
can be used to obtain analytical results for the supercurrent
enhancement discussed in Sec. IV B. In this approach a single-
channel SQPC can be described in terms of the following
tight-binding-like Hamiltonian:

Ĥ = ĤL + ĤR +
∑

σ

{vĉ
†
Lσ ĉRσ + v∗ĉ†Rσ ĉLσ }, (A1)

where ĤL,R are the BCS Hamiltonians describing the left (L)
and right (R) electrodes and the last term describes the coupling
between the electrodes. In this last term, v is a hopping element
that determines the transmission of the contact.

In this model the current evaluated at the interface between
the two electrodes adopts the form

I (t) = ie

h̄

∑
σ

{v〈c†Lσ ĉRσ 〉 − v∗〈ĉ†Rσ ĉLσ 〉}. (A2)

This expression can be rewritten in terms of the Keldysh–
Green functions as

I (t) = e

h̄
Tr

[
τ̂3

(
v̂ĜK

RL − v̂†ĜK
LR

)]
(t,t). (A3)

Here τ̂3 is the corresponding Pauli matrix, Tr denotes the trace
in Nambu space, and v̂ is the hopping matrix in Nambu space
given by

v̂ =
(

veiφ(t)/2 0
0 −v∗e−iφ(t)/2

)
. (A4)

Here, φ(t) is the time-dependent superconducting phase given
by Eq. (2).

To determine the Green’s functions appearing in the
current expression, we follow, a perturbative scheme and treat
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the coupling term in Hamiltonian (A1) as a perturbation.
The unperturbed Green’s functions describe the uncoupled
electrodes in equilibrium. Thus, for instance, the retarded and
advanced functions are given by

ĝ
R(A)
jj (E) = −i

W

1

ζR(A)(E)

(
E �

� E

)
, (A5)

where j = L,R, ζR(A) =
√

(E + iη)2 − �2, and W is an
energy scale related to the normal DOS at the Fermi energy.
The full Green’s functions can then be determined by solving a
Dyson equation, where the retarded and advanced self-energies
are simply given by the hopping matrix of Eq. (A4).

Since we are interested in the limit of weak fields (α � 1),
we can expand the phase factors in Eq. (A4) as follows:

eiφ(t)/2 ≈ eiϕ/2

(
1 + α cos ωt + 1

2
α2(cos ωt)2 + · · ·

)
. (A6)

Moreover, for the perturbative treatment in α it is convenient
to use the full Green’s functions of the contact in the absence
of microwaves (α = 0), Ĝij . It is straightforward to show that
these functions can be expressed as

Ĝ
R(A)
LL = −iζ R(A)

W (1 + β)ξR(A)

(
E ± iη E∗

g

Eg E ± iη

)
, (A7)

Ĝ
R(A)
RL = −v

W 2(1 + β)ξR(A)

(
aR(A) bR(A)

−bR(A)∗ −aR(A)∗

)
, (A8)

where Eg = �(1 + βeiϕ)(1 + β), β = (v/W )2, ξ = E2 −
E2

A, a = E2e−iϕ/2 − �E∗
ge

iϕ/2, and b = E(Ege
−iϕ/2 −

�eiϕ/2). Similar expressions hold for GRR and GLR . These
Green’s functions are now the zero-order propagators of

the perturbation theory. Substituting these functions into the
current expression of Eq. (A3) and identifying the transmission
coefficient as τ = 4β/(1 + β)2,43 one obtains the expression
for the equilibrium current of Eq. (3). On the other hand,
from the previous expressions one can determine the local
DOS at the contact in the absence of microwaves, which is
defined as νj (E) = W (1 + β)(i/2)(ĜR

jj − ĜA
jj )11 (νL = νR in

our symmetric contacts). This DOS is given by Eq. (52) and it
is shown in Fig. 8.

Going into the energy representation as was done in Sec. IV,
the first correction to the current of Eq. (A3), which is of order
α2, contains the following three terms:

δI = e

h̄

∫
dE

2π
Tr

[
v̂(2)Ĝ(0)

RL + v̂(0)Ĝ(2)
RL + v̂(1)Ĝ(1)

RL

] − L ↔ R,

(A9)

where the superscripted indices denote the order of perturba-
tion in α. Obtaining a complete analytical expression for an
arbitrary value of the field frequency is quite cumbersome.
Instead, we concentrate on the parameter range where the
current enhancement takes place. For that purpose, we focus
on frequency values far from the resonant condition h̄ω = 2EA

and close to � − EA. In this region, it turns out that the
second term in Eq. (A9) is proportional to the parameter �/η.
All the other terms give a contribution which depends only
weakly on the frequency. Assuming a small inelastic scattering
rate, one can approximate the correction to the current by
Eqs. (50) and (51), with ρj = (i/2)W (1 + β)[ĜR

j − ĜA
j ]1,2,

ρ̃j = (i/2)W (1 + β)[ĜR
j − ĜA

j ]2,1, and Fn = F (E + nh̄ω).
This correction gives precisely the enhancement of the
supercurrent at finite temperatures, as discussed in Sec. IV B.
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