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Quantization effects due to topological invariants such as Chern numbers have become very relevant in
many systems, yet key quantities such as the quantum geometric tensor providing local information about
quantum states remain experimentally difficult to access. Recently, it has been shown that multiterminal
Josephson junctions constitute an ideal platform to synthesize topological systems in a controlled manner.
We theoretically study properties of Andreev states in topological Josephson matter and demonstrate that
the quantum geometric tensor of Andreev states can be extracted by synthetically polarized microwaves.
The oscillator strength of the absorption rates provides direct evidence of topological quantum properties of
the Andreev states.
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Introduction.—Presently, there is huge interest in con-
densed matter physics in topologically nontrivial systems
and, in the last two decades, there has been great effort to
find novel types of topological quantum matter such as
topological insulators [1,2], topological semimetals [3], or
topological superconductors [4]. The topological phase is
often related to isolated singularities in the band structure at
which two energy bands intersect [5,6]. In the case of
topological superconductors, Bogoliubov quasiparticles at
zero energy, called Majorana zero modes, could potentially
be used in topologically protected quantum computation
[4]. The existence of zero-energy modes in such systems is
topologically protected [7], which recently has been con-
firmed in experiments on superconducting three-terminal
junctions [8]. Actually, Andreev bound states (ABS) in
superconducting weak links, also known as Josephson
junctions, have also been proposed for implementing qubits
[9,10]. ABS can be easily tuned if the junctions are
embedded in an rf superconducting quantum interference
device (SQUID) and can be experimentally accessed and
coherently manipulated by microwave [11–14], tunneling
[15], and supercurrent spectroscopy [16].
Recently, multiterminal Josephson junctions (MJJs)

made of conventional superconductors have been predicted
to exhibit nontrivial topology for four [17–22] and three
[23–27] leads. In such systems there is no need for exotic
topological materials, although multiterminal topological
nanowires have been discussed as well [27]. In MJJs
the quantized transconductance across two terminals is a
manifestation of the integer-valued Chern number
[17,20,21,27]. Alternatively, Floquet states in periodically
driven Josephson systems with connectivity simpler than

MJJs can also show nontrivial topology [28,29]. Although
it is challenging to fabricate MJJs [30], a realization of
a three-terminal superconducting junction in a double-
SQUID configuration and the investigation of its topologi-
cal properties has already been reported [31]. First
experiments towards ballistic MJJs have been performed,
too [32,33].
Since the Chern number follows from integrating the

Berry curvature over periodic parameters, accessing the
more fundamental local properties contained in the quan-
tum geometric tensor (QGT), i.e., the Fubini-Study metric
tensor and the Berry curvature, provides additional infor-
mation about the geometry of the state space manifolds
[34]. There have been several proposals how to measure the
elements of the QGT, e.g., via the noise spectral functions
[35] proposed also for electronic solid state systems [36] or
via nonadiabatic periodic modulation of the space-defining
parameters [37]. In fact, local topological properties can
also be revealed by the quantized spectroscopic response
under (nonadiabatic) circular drive [38,39], which has
already been successfully carried out in Floquet states of
ultracold fermionic atoms under time-dependent drive
[40,41]. Similarly, a nontrivial (Floquet) topology was
achieved in superconducting qubits [42,43] generated by
custom-built engineered time-dependent drives.
In this Letter, we present a straightforward way to

experimentally access the full QGT in MJJs. We show
how to extract the elements of the QGT of the ground
state manifold of the low-energy ABS hosted in MJJs
by measuring the absorption rates under a weak time-
dependent perturbation. Such linear response measurements
have now become standard in ABS spectroscopy [11–13].
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To this end, we conceive a concrete and feasible exper-
imental way to implement synthetically linear or circular
polarized microwave absorption spectroscopy in MJJs.
Figure 1 presents the specific example of a four-terminal
Josephson junction and summarizes the general protocol to
extract the full information of the metric tensor and the
Berry curvature via microwave absorption spectroscopy.
The latter represents our main result. Our proposedmethod
can be used in a large variety of topological Josephson
matter and, therefore, provides an unprecedented insight
into the nature of quantum states in these systems. Finally,
by integrating the absorption rate differences related to the
Berry curvature, our approach allows us to measure the
Chern number in MJJs complementary to transconduct-
ance measurements.

Model and effective Hamiltonian.—For the sake of
concreteness, we consider a four-terminal setup sketched
in Fig. 1(a) consisting of four superconducting (SC)
terminals connected to a normal conducting region that
consists of a single level, noninteracting quantum dot
providing a spin-degenerate energy level ε0. We assume
that the SC leads are described by standard BCS-type
mean-field Hamiltonians, with a pairing potential Δ > 0
and phase φj ∈ ½0; 2πÞ for j ¼ 1;…; 4, and that the
quantum dot is coupled to the leads with tunneling coupling
strength w > 0, while the leads are coupled to each other
with a tunneling coupling strength t > 0.
In the large-gap limit Δ → ∞ and for t=w ≪ 1, the

effective Hamiltonian describing the pair of ABS on the dot
reads H ¼ Ψ†H0Ψ, where Ψ† ¼ ðd†↑; d↓Þ is the Nambu
spinor consisting of an electronic annihilation (creation)

dð†Þσ operator of spin σ on the dot andH0 ¼ d · τ describes a
pseudospin τ ¼ ðτ1; τ2; τ3ÞT (Pauli matrices in Nambu
space) in an effective magnetic field

d ¼

0
BB@

Γ
P

4
j¼1 cosφj

−Γ
P

4
j¼1 sinφj

ε0 − 2t0Γ
P

4
j¼1 cosðφj − φjþ1Þ

1
CCA ð1Þ

controlled by the SC phases φj [44]. Here, Γ ¼ πN0w2 and
t0 ¼ πN0t, where N0 is the normal density of states in the
leads at the Fermi level.
Andreev states and topology.—The low-energy

Hamiltonian H0 defines a two-level system with a ground
state (GS) jgi and an excited state jei, where
H0je=gi ¼ εe=gje=gi. The pair of ABS has energies given
by εe=g ¼ �d, where we define d ¼ jdj. In the four-
terminal case only three SC phases are independent and,
therefore, gauge invariance allows us to set one SC phase to
zero (from now on we set φ4 ¼ 0). The remaining three SC
phases φ ¼ ðφ1;φ2;φ3Þ ∈ ½0; 2πÞ3 define a first Brillouin
zone (FBZ) in analogy to the quasimomentum space
of a periodic crystal. The spectrum εe=g is shown in
Figs. 2(a)–2(d) for several values of φ3 which show
zero-energy Weyl nodes φW separating different gapped
phases. From the constraint dðφWÞ ¼ 0, we find that Weyl
nodes only appear if −8 ≤ m ≤ 0 with m ¼ ε0=t0Γ. There
are four Weyl nodes φðsÞ

W ¼ ðφðsÞ
W;1;φ

ðsÞ
W;2;φ

ðsÞ
W;3Þ, s ¼ 1, 2, 3,

4, located at (modulo 2π in each direction)

φð1Þ
W ¼ ð−δ; π − δ; πÞ; ð2aÞ

φð2Þ
W ¼ ðδ; δ − π; πÞ; ð2bÞ

φð3Þ
W ¼ ðπ; π − δ;−δÞ; ð2cÞ

φð4Þ
W ¼ ðπ; δ − π; δÞ; ð2dÞ

(a) (b)

(d)

(c)

FIG. 1. Application of polarized microwave spectroscopy in
MJJs. (a) Microscopic model of the four terminals. Four super-
conducting leads, each with a phase φj (j ¼ 1, 2, 3, 4), are
connected to a normal quantum dot with level ε0 via the couplings
w. The nearest leads are also directly connected to each other by
the couplings t ≪ w. (b) A periodic modulation of two phases φj

and φk (j ≠ k) at frequency ω leads to transitions with rates of

absorption RðγÞ
jk , where γ is the relative phase between the two

modulations. (c) Two measurements with different relative phases

γ1 ≠ γ2 lead to different transition rates Rðγ1Þ
jk ≠ Rðγ2Þ

jk between the
ground state at energy εg and the excited state at energy εe.
(d) Schema of how to extract the elements of the quantum
geometric tensor χjk ¼ gjk − iFjk=2, where gjk is the metric
tensor and Fjk is the Berry curvature. Driving of one phase φj

allows for the detection of the diagonal elements gjj, while linear
(circular) driving of two phases φj and φk (j ≠ k) allows for the
extraction of the off-diagonal elements gjk (Fjk).

PHYSICAL REVIEW LETTERS 124, 197002 (2020)

197002-2



where δ ¼ arccosð1þm=4Þ, each of them carrying a
topologically positive or negative charge [44,45]. The
locations of these zero-energy bound states in the FBZ
are shown in Fig. 2(e). The existence of well-separated
Weyl nodes is robust against small variations of the
coupling constants. These variations simply move the
Weyl points in parameter space away from the locations
given in Eq. (2) leaving the topological structure of the
system intact. Only if the Hamiltonian drastically differs
from the presented one, Weyl nodes might merge and
annihilate. This happens, for instance, if we add a next-
nearest-neighbor coupling between leads 1–3 and 2–4 of
the same magnitude as the nearest-neighbor couplings. We

also remark that the existence of zero-energy solutions φðsÞ
W

is crucially linked to the presence of a hopping (t ≠ 0)
directly connecting nearest leads. The latter allows for
different interfering paths for particles between every two

neighboring leads. In the absence of these paths (i.e.,
t ¼ 0), the gap between the ABS cannot be closed for any
ε0 ≠ 0 and the system stays topologically trivial.
All SC phases play the role of synthetic Uð1Þ gauge

fields for which we define a gauge connection 1-form A ¼P
j Ajdφj of the GS jgi [46], where Aj ¼ ihgj∂jgi is the

Berry connection [5] and ∂j ≡ ∂=∂φj. The Chern number
of the GS manifold is encoded in the gauge-invariant
curvature 2-form F ¼ dA ¼ ð1=2ÞPjk Fjkdφj ∧ dφk,
where Fjk ¼ ∂jAk − ∂kAj is the Berry curvature [47].
For our particular two-level Hamiltonian H0, the Berry
curvature of the GS in the gapped phase (d > 0) can be
expressed as FjkðφÞ ¼ n · ½ð∂jnÞ × ð∂knÞ�=2 [2,44] via the
normalized effective magnetic field n ¼ d=d. Defining a
Chern number for fixed φ3 via

Cðφ3Þ ¼
1

2π

Z
2π

0

dφ1

Z
2π

0

dφ2F12ðφÞ; ð3Þ

we observe topologically nontrivial regions with nonzero
Chern number for certain values of φ3 [Fig. 2(f)].
Depending on the topological charge of a Weyl node,
the Chern number changes by �1 for each Weyl node that
is crossed while moving the ðφ1;φ2Þ plane of integration
along the φ3 axis. Therefore, the finite jumps of C are
associated with the values φW;3 ¼ π and φW;3 ¼ �δ. In the
shown case for m ¼ −2 in Figs. 2(e) and 2(f), the three
values of a topological phase transition are φW;3 ¼
π=3; π; 5π=3 in the FBZ.
Microwave spectroscopy of quantum geometry.—The

gauge-invariant hermitian QGTof the GS is defined as [34]

χjk ¼ h∂jgjð1 − jgihgjÞj∂kgi: ð4Þ

The QGT contains the symmetric (Fubini-Study) metric
tensor gjk ¼ ReðχjkÞ measuring the “distance” between
two adiabatically connected states and the antisymmetric
Berry curvature Fjk ¼ −2ImðχjkÞ containing information
about the geometrical phase acquired during an adiabatic
change of parameters. Similar to the Berry curvature, also
the metric tensor gjk can be conveniently calculated from
the normalized effective magnetic field n via gjk ¼ ð∂jnÞ ·
ð∂knÞ=4 [44,48].
Let us first show how the diagonal components of

the QGT, χjj ¼ gjj, can be obtained. For this purpose,
we modulate one of the SC phases according to
φj → φj þ ð2A=ℏωÞ cosðωtÞ, with a frequency ω and for
ðA=ℏωÞ ≪ 1 [see Fig. 1(b)], where A is a coupling
parameter, ℏ is Planck’s constant, and t is time. The
resulting Hamiltonian to linear order becomes H ¼ H0 þ
2Að∂jH0Þ cosðωtÞ=ℏω giving rise to transitions between
the two states with absorption rates Rjj ¼ rjjδð2d − ℏωÞ
by applying Fermi’s golden rule [see Fig. 1(c)]. The
oscillator strength is then given by [37,44]

FIG. 2. Band structure, Weyl nodes, and Chern number in the
four-terminal junction. (a)–(d) Energy spectrum εe=g ¼ �d for
(a)φ3 ¼ 0, (b)φ3 ¼ π=3, (c)φ3 ¼ 2π=3, (d)φ3 ¼ π, respectively.
(e) Locations of the four Weyl nodes in the FBZ. Blue (red) Weyl
nodescarrya topological chargec ¼ þ1 (c ¼ −1), seeRef. [44] for
details. The Chern number becomes nontrivial only if the ðφ1;φ2Þ
plane of integration lies between two opposing charges. (f) Chern
numberC as a function ofφ3. The points a, b, c and d correspond to
the values ofφ3 in panels (a),(b),(c) and (d), respectively. Common
parameters for all panels: t0 ¼ 0.1, ε0=Γ ¼ −0.2.
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rjj ¼
2π

ℏ
A2gjj: ð5Þ

The oscillator strength, or the line intensity, can be obtained
simply by integration over the proper frequency range,
around ℏω ≈ εe − εg ¼ 2d. Indeed, Eq. (5) is valid even in
the presence of a finite broadening of the line, as it is
expected in microwave experiments.
Furthermore, the off-diagonal elements are obtained by

time-periodic modulation of two phases as shown in
Fig. 1(b). Depending on the relative phase difference γ
between both modulations, one obtains the off-diagonal
elements of the QGT χjk ¼ gjk − iFjk=2. For j ≠ k, we use
the modulations [see Fig. 1(d)]

φj → φj þ ð2A=ℏωÞ cosðωtÞ; ð6aÞ

φk → φk þ ð2A=ℏωÞ cosðωt − γÞ; ð6bÞ

where we again assume ðA=ℏωÞ ≪ 1. As before, we obtain
the Hamiltonian to linear order

H ¼ H0 þ
2A
ℏω

�∂H0

∂φj
cosðωtÞ þ ∂H0

∂φk
cosðωt − γÞ

�
; ð7Þ

from which we obtain the transition absorption rates RðγÞ
jk ¼

rðγÞjk δð2d − ℏωÞ via Fermi’s golden rule. The oscillator
strength is given by [37,44]

rðγÞjk ¼ 2π

ℏ
A2ðgjj þ gkk þ 2gjk cos γ þ Fjk sin γÞ: ð8Þ

By performing two subsequent measurements with γ1 ¼ 0
and γ2 ¼ π (orthogonal linear polarizations), we can extract
the off-diagonal part of the metric tensor gjk, while two
measurements with γ1 ¼ π=2 and γ2 ¼ −π=2 (right- and
left-handed circular polarization) can be used to measure
the Berry curvature Fjk, i.e.,

rð0Þjk − rðπÞjk ¼ 8π

ℏ
A2gjk; ð9aÞ

rðþπ=2Þ
jk − rð−π=2Þjk ¼ 4π

ℏ
A2Fjk: ð9bÞ

As this gives direct visible evidence about the topological
phase of the system, we show the relation between the
oscillator strengths for circular drives and the resulting
Berry curvatures according to Eq. (9b) for the trivial and the
topological phase in Fig. 3 [49].
Finally, let us recall that once the Berry curvature Fjk is

extracted, the Chern number C automatically follows from
an integration of Fjk over the corresponding two SC phases
φj and φk, see Eq. (3).

Discussion.—We have presented a protocol to exper-
imentally measure the QGT of topological Josephson
matter via generalized microwave spectroscopy in which
different forms of synthetic polarizations are applied. The
SC phases play the role of quasimomenta in analogy to
topological insulators. However, the SC phases can be
individually fixed and controlled by SQUID loops, as
achieved in the experiments in Refs. [8] and [31]. The
modulation of SC phases can be performed by varying the
magnetic fluxes in the SQUID loops with a small ac drive,
as reported in the spectroscopy experiments [11–13,16].
This procedure is not limited to a four-terminal junction,

but can be universally applied to any multiterminal
Josephson device. For instance, another possible realization
of topological Josephson matter comprises three SC ter-
minals and the normal region is subjected to a
perpendicular magnetic field enclosing a magnetic flux
[26]. This system also supports Weyl nodes and topologi-
cally nontrivial states as long as there is a finite direct
coupling between the neighboring leads. The low-energy
physics on the dot is again described by an effective
Hamiltonian of the form H0 ¼ d · τ [44]. The presented
microwave protocol can be applied in the same way as
before.
We emphasize that our proposed method is an alternative

scheme to detect the topological properties beyond the
previously suggested transconductance measurements [17]
with the possible advantage that no electronic contacts are
needed. A further virtue is that our proposal works at low
microwave power such that the linear response regime is
applicable. We emphasize that MJJs can be intrinsically
topological and, hence, do not require the use of designed
(eventually strong) time-dependent drives [28]. Because of

FIG. 3. Oscillator strengths for right- and left-handed circularly
polarized absorption (first and second column). The difference
shown in the third column is the Berry curvature [Eq. (9b)]. The
upper and lower rows correspond to the trivial (φ3 ¼ 0) and the
topological (φ3 ¼ 2π=3) phase, respectively [cf. Fig. 2(f)]. The
parameters are t0 ¼ 0.1, ε0=Γ ¼ −0.2.
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the universal nature of our proposal, it can be applied to
various kinds of topological Josephson matter. As long as
two SC phases can be addressed independently, the QGT
can be determined by engineering the phase difference as
we have described. It is fair, however, to point out that
a realization of the exact setup described in this work
certainly requires some engineering effort because, in
particular, one has to control the coupling between the
superconducting leads. Furthermore, the large-gap limit of
our model does not consider possible parity jumps due to
quasiparticle poisoning [50].
To conclude, it will be interesting to apply our method to

proposed topologically protected candidates for quantum
information hardware in superconductors, like, e.g.,
Majorana states [51] or parafermions [52]. Because of
the central quantum dot, our model is an ideal platform to
address strong Coulomb interaction and study its effects on
both quantum geometry and topology beyond the weak
perturbative regime which has already been explored [53].
However, this goes beyond the scope of the present work.
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Note added in the proof.—An experimental measurement
of the quantum geometric tensor in qubits formed by NV
centers in diamond was recently reported in Ref. [54].
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