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We present a microscopic theory of the effect of a microwave field on the supercurrent through a

quantum point contact of arbitrary transmission. Our theory predicts that (i) for low temperatures and

weak fields, the supercurrent is suppressed at certain values of the superconducting phase, (ii) at strong

fields, the current-phase relation is strongly modified and the current can even reverse its sign, and (iii) at

finite temperatures, the microwave field can enhance the critical current of the junction. Apart from their

fundamental interest, our findings are also important for the description of experiments that aim at the

manipulation of the quantum state of atomic point contacts.
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The dc Josephson effect is one of the most striking
examples of macroscopic quantum coherence. In the con-
text of superconductivity this phenomenon manifests as the
flow of a dissipationless dc current through a junction in
the absence of any voltage [1,2]. Since its discovery in the
early 1960s, this effect has been observed in a large variety
of weak links such as tunnel junctions [3], microbridges
[4], atomic contacts [5], carbon nanotubes [6], semicon-
ductor nanowires [7], and graphene [8]. In spite of their
intrinsic differences, the dc Josephson effect in these sys-
tems can be described in a unified manner. It has been
shown that for constrictions shorter than the superconduct-
ing coherent length, the Josephson current is carried ex-
clusively by a single pair of Andreev bound states (ABSs)
[9,10]. In the simplest case of a single-channel contact of

transmission �, these states appear at energies E�
A ð’; �Þ ¼

��½1� �sin2ð’=2Þ�1=2, where � is the superconducting
gap and ’ is the phase difference between the order
parameters on both sides (see Fig. 1). These states carry
opposite supercurrents I�A ð’Þ ¼ ð2e=@Þ@E�

A =@’, which
are weighted by the occupation of the ABSs. A more
complex weak link, like the ones mentioned above, can
be viewed as a collection of independent conduction chan-
nels, characterized by a set of transmission coefficients.
The supercurrent through it is given by the sum of the
contributions from the individual channels [10].

This unified microscopic picture of the dc Josephson
effect has been recently confirmed experimentally in the
context of atomic contacts [11], where the current-phase
relationship has been directly measured. These experi-
ments mainly probed the ground Andreev state and, as it
is stated in Ref. [11], it would be of great interest to also
probe the excited state, for instance, through microwave
spectroscopy. This leads us to the central question of the
present work, how does a microwave radiation modify the

supercurrent of a single-channel quantum point contact
(QPC)? Apart from its fundamental interest for the field
of mesoscopic superconductivity, this question is also of
great relevance for the proposals of using the ABSs of a
QPC as the two states of a quantum bit [12–14], whose
quantum state can be probed by means of current
measurements.
Surprisingly, there is no complete answer to the question

posed above. The theoretical analysis of the microwave-
assisted supercurrent in point contacts has either been
addressed within phenomenological approximations or in
the limiting case of very weak fields [15–17]. In this Letter,
we present a microscopic theory of the effect of a micro-
wave field on the supercurrent of a single-channel quantum
point contact valid for arbitrary range of parameters. Our
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FIG. 1. Dispersion relation of the ABSs in a single-channel
QPC with transmission � ¼ 0:95. The vertical dashed lines
indicate one- and two-photon transitions between the
ABSs (a),(b), and transitions between the continuum and
ABSs (c),(d). We have chosen E ¼ 0 at the Fermi energy.
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theory based on the Keldysh technique predicts the follow-
ing novel effects: (i) at low temperatures, the supercurrent
can be strongly suppressed at certain values of the phase
due to resonant microwave-induced transitions between
the two ABSs (processes of type a and b in Fig. 1);
(ii) as the radiation power increases, the supercurrent-
phase relation is strongly modified and it can even reverse
its sign; (iii) at finite temperatures, the radiation can induce
the transition of quasiparticles from the continuum to the
lower ABS leading to an enhancement of the critical
current as compared to the case in the absence of micro-
waves (process of type c in Fig. 1). We also compare our
results to a two-level model (TLM), where the QPC is
described exclusively in terms of the ABSs and show that
effects (ii) and (iii) fall out of the scope of TLM. This is
especially relevant for the quantum computing
applications.

We consider a QPC consisting of two identical super-
conducting electrodes (denoted as L and R) and linked by a
single conduction channel of transmission �. Our goal is to
compute the supercurrent through this QPC when it is
subjected to a monochromatic microwave field of fre-
quency !. We assume that the external radiation generates
a time-dependent voltage VðtÞ ¼ V0 sin!t [3]. According
to the Josephson relation, this voltage induces a time-
dependent superconducting phase difference given by
�ðtÞ ¼ ’þ 2� cos!t, where ’ is the dc part of the phase
and � ¼ eV0=@! is a parameter that measures the strength
of the coupling to the electromagnetic field and that is
proportional to the square root of the radiation power at
the junction. Following Refs. [18,19], the current through a
QPC with an arbitrary time-dependent voltage can be

computed as IðtÞ ¼ ðe=4@ÞTr�̂3ÎKðt; tÞ, where �̂3 is the

third Pauli matrix and ÎKðt; tÞ is the Keldysh component
of the current matrix given by

�Iðt; t0Þ ¼ 2�½ �GL; �GR�� � ½4� �ð2� f �GL; �GRg�Þ��1ðt; t0Þ:
(1)

Here the symbol � represents 4� 4 matrices in Keldysh-
Nambu space and the symbol � denotes the convolution

over intermediate time arguments. Moreover, �GLðRÞ are the
quasiclassical Green functions for the left and right elec-

trodes, which can be expressed as �Gjðt; t0Þ ¼ ei�jðtÞ�̂3=2

�gjðt� t0Þe�i�jðt0Þ�3=2. Here, �gðtÞ ¼ RðdE=2�Þe�iEt=@ �gðEÞ
is the equilibrium Green function of the leads and �jðtÞ
is the time-dependent phase of the j superconductor, j ¼
L; R, i.e., �LðtÞ ¼ ��RðtÞ ¼ �ðtÞ=2. The retarded (R),
advanced (A), and Keldysh (K) components of �gðEÞ
adopt the form ĝRðAÞðEÞ ¼ gRðAÞðEÞ�̂3 þ fRðAÞðEÞi�̂2
and ĝKðEÞ ¼ ½ĝRðEÞ � ĝAðEÞ� tanhðE=2kBTÞ, where

gRðAÞðEÞ ¼ E=½ðE� i�Þ2 � �2�1=2, fRðAÞðEÞ ¼ �=

½ðE� i�Þ2 ��2�1=2, and � ! 0þ.
It is easy to show that, due to the time dependence

of the phase, the lead Green functions �GLðRÞ, and any

product of them, admit the following Fourier expansion:

�Gðt; t0Þ ¼ P1
m¼�1 eim!t0 R dE

2� e
�iEðt�t0Þ=@ �G0mðEÞ, where

�GnmðEÞ � �GðEþ n@!;Eþm@!Þ are the corresponding

Fourier components in energy space. Thus, �I in Eq. (1) can
be written as a product of matrices in energy space. In
particular, its Keldysh component is given by

Î K
nm ¼ X

l

½ÂR
nlX̂

K
lm þ ÂK

nlX̂
A
lm�: (2)

Here, we have defined the matrices �Anm � 2�½ �GL; �GR�nm
and �Xnm ¼ ½4�1� �ð2� f �GL; �GRgÞ��1

nm, which can be deter-

mined from the Fourier components of �GLðRÞ. Once the

components of ÎK are obtained from Eq. (2), one can
compute the current. We are only interested in the dc
component, which reads

Ið’;!;�Þ ¼ e

4@

Z dE

2�
Tr�̂3Î

K
00ðE;’;!; �Þ: (3)

The dc current can only be calculated analytically in
certain limiting cases like in the absence of micro-
waves, in the tunnel regime, or for very weak fields.
In general, Eq. (2) and the current have to be evaluated
numerically.
In the absence of microwaves, the current from Eq. (3)

can be written as a sum of the contributions of the two
ABSs as Ieqð’Þ ¼ I�A nFðE�

A Þ þ IþA nFðEþ
A Þ, nFðEÞ being

the Fermi distribution function, which yields

Ieqð’Þ ¼ e�2

2@

� sin’

Eþ
A ð’Þ

tanh

�
Eþ
A ð’Þ
2kBT

�
: (4)

In equilibrium, the maximum current is then obtained at
temperature T ¼ 0, when the lower ABS is fully occupied
and the upper one is empty. In the presence of the micro-
wave field the simplest approach is the so-called adiabatic
approximation [3], which consists in replacing the station-
ary phase ’ in Eq. (4) by the time-dependent phase �ðtÞ.
This leads to

Iadð’;�Þ ¼
X1

n¼1

InJ0ð2n�Þ sinðn’Þ; (5)

where In ¼ ð1=�ÞR2�
0 d’Ieqð’Þ sinðn’Þ are the harmonics

of the equilibrium current-phase relation and J0 is the zero-
order Bessel function of the first kind.
In Fig. 2(a) we show the zero-temperature current-phase

relation (CPR) computed numerically from Eq. (3) for a
highly transmissive channel with � ¼ 0:95 and a weak field
� ¼ 0:1 of frequency @! ¼ 0:6�. For comparison we also
show as a dashed line the result obtained with the adiabatic
approximation of Eq. (5). The main difference is that the
exact result shows a series of dips where the current is
largely suppressed. These dips originate from microwave-
induced transitions from the lower ABS to the upper one
that enhance the population of the latter, diminishing the
supercurrent (see processes a and b in Fig. 1). Such tran-
sitions can occur whenever the Andreev gap (distance
between the ABSs) is equal to a multiple of the microwave
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frequency, i.e., 2Eþ
A ð’Þ ¼ n@!, where n ¼ 1; 2; . . . can be

interpreted as the number of photons involved in the tran-
sition. For small values of � the ABSs remain almost
unchanged; thus, the resonant processes take place at
phases given by

’n ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðn@!=2�Þ2�=�

q
; n ¼ 1; 2; . . . :

(6)

This expression accurately reproduces the positions of the
dips in Fig. 2(a). The origin of the dips can be further
confirmed by exploring the CPR for different frequencies,
as we do in Fig. 2(b). One can see that by decreasing the
frequency, the dip of order n ¼ 1moves to higher values of
’ and disappears for @! � 0:4� [cf. Eq. (6)].

One can gain further insight by analyzing this problem
in terms of a TLM that describes the dynamics of our QPC
in terms of the ABSs [13,20]. We consider the TLM of
Ref. [13], whose effective Hamiltonian in the instanta-
neous basis of ABSs reads

Ĥ AðtÞ ¼ Eþ
A ð�ðtÞÞ�̂z � r��2sin2½�ðtÞ=2�

4½Eþ
A ð�ðtÞÞ�2 @ _�ðtÞ�̂y; (7)

where �̂y;z are Pauli matrices, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
, and _�ðtÞ ¼

@�ðtÞ=@t. We have computed the CPR from this model
using a Floquet approach [21]. In Fig. 2(a) we show a
comparison of the results of this TLM with the exact
results. There is an excellent agreement in a wide range
of phases and, in particular, the TLM is able to reproduce
the current dips. A discrepancy occurs at phases close to �,
which is understandable as the model assumes that

@ _�ðtÞ � �! 	 2Eþ
A , while for ’� � and high �, the

ABSs are very close to each other and the assumption no

longer holds. Using a rotating-wave-type approximation
we also obtain from the TLM the following analytical
expression for the dc current at the first two resonances:

Ið’;!;�Þ ’ 2eE0
A

@

�
1� �2

1

�2
1 þ �2

1

��
1� �2

2

�2
2 þ �2

2

�
: (8)

Here and below, E0
A and E00

A are the first and second
derivatives of Eþ

A with respect to the phase. The detunings
�1;2 are given by �1 ¼ Eþ

A ð’Þ � @!=2þ �2E00
Að’Þ

þ3r2�2
@!ð�2 � Eþ

A ð’Þ2Þ2=ð32Eþ
A ð’Þ4Þ, and �2 ¼

Eþ
A ð’Þ � @! þ �2E00

Að’Þ � r2�2
@!ð�2 � Eþ

A ð’Þ2Þ2=ð12Eþ
A ð’Þ4Þ, and include shifts in the ABS energies

caused by the microwave field. The resonance widths
are �1 ¼ r�@!ð�2 � Eþ

A ð’Þ2Þ=ð4Eþð’Þ2Þ and �2 ¼
r�2

@!E0
Að’Þð2�2 � Eþ

A ð’Þ2Þ=ð2Eþ
A ð’Þ3Þ, in general

being proportional to the coupling strength, �n / �n. For
small power, Eq. (8) is in a good agreement with the exact
solution for the current-phase relation. We also find that
within the TLM the current vanishes completely at the
resonances (given by the condition �n ¼ 0), as a conse-
quence of the fact that at these points the long-time average
populations on the ABSs are equal, so that the currents
carried by the two states cancel exactly [22]. Transitions
from the continuum, however, make the current at the
resonances finite and dependent on the frequency and the
excitation energies. This is seen, for example, in the exact
result for the second dip shown in Fig. 2(a) [23].
Let us now discuss the dependence of the CPR on

the radiation power. In Fig. 2(c) we show the CPR for
� ¼ 0:95, @! ¼ 0:3�, and different values of �. As �
increases, the CPR is drastically modified and the current
is not only strongly suppressed around the phase values
given by Eq. (6), but everywhere. Notice also that in certain
regions, particularly at large phases, the current even re-
verses its sign. In this respect, such behavior differs how-
ever from so-called � junctions. It is also worth stressing
that as � increases, we find larger deviations between the
exact results and those of the TLM (not shown here) due to
multiphoton processes connecting the ABSs and the con-
tinuum of states. Notice that in the context of atomic
contacts the values of � considered in this work are ex-
perimentally achievable [24]. In Fig. 2(d) we show the
influence of the transmission in the CPR for @! ¼ 0:3�
and � ¼ 0:1. In this case, for � & 0:9 the CPR can be
accurately described with the adiabatic approximation for
all phases since the transitions between the ABSs are very
unlikely.
We turn now to the analysis of the critical current IC,

i.e., the maximum value of the dc Josephson current. In
Fig. 3(a) we show the critical current as a function of � for
several temperatures. One clearly sees that the adiabatic
approximation (dashed lines) only describes correctly the
behavior of IC when the frequency, power, and temperature
are low enough so that the microwaves cannot induce
transitions between the ABSs and between them and
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FIG. 2 (color online). Zero-temperature supercurrent, in units
of I0 ¼ e�0=@, as a function of the phase. (a) The solid line
shows the exact result for � ¼ 0:95, @! ¼ 0:6�, and � ¼ 0:1,
the dashed line corresponds to the approximation of Eq. (5), and
the dotted line to the TLM. The rest of the panels show the exact
result for (b) � ¼ 0:95, � ¼ 0:1, and different frequencies;
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the continuum. The most striking result in Fig. 3(a) is the
enhancement of IC with respect to the case � ¼ 0 as the
temperature is raised. In Fig. 3(b) we show that this occurs
in a wide range of transmission values. The enhancement
of the critical current by a microwave field has been
predicted and observed in superconducting microbridges
[25,26] and in proximity effect structures [27,28]. In both
cases the enhancement is due to a redistribution of the
excitations induced by the field. In our case the underlying
mechanism is similar. At finite temperature the lower ABS
is not fully occupied and the microwave field can promote
quasiparticles from the continuum to this state if @! 

�þ E�

A ð’Þ, for values of ’ close to that where the maxi-
mum takes place (see process c in Fig. 1). This naturally
results in an enhancement of the supercurrent. We illustrate
this argument in Fig. 3(c), where we show the frequency
dependence of the supercurrent for a fixed value of the
phase ’0 ¼ 2:0. As one can see, the current remains
largely unaffected until @! reaches �þ E�

A ð’0Þ �
0:46�, where it starts to increase. Then, as the frequency
increases further one can observe the appearance of two
dips, corresponding to the resonances at @! ¼ Eþ

A =2 and
Eþ
A . For larger values of @! one finally sees a decrease of

the current at �þ Eþ
A ð’0Þ � 1:54� due to processes that

promote quasiparticles from the continuum to the upper
ABS (see process d in Fig. 1). Because of electron-hole
symmetry, similar transitions exist between the ABS and
the upper continuum. Obviously, the enhanced supercur-
rent cannot be explained in terms of any TLM since it
involves the continuum of states.

In summary, we present here a microscopic theory of the
microwave-assisted supercurrent in quantum point con-
tacts. It predicts the appearance of a variety of novel
phenomena that in general are out of the scope of simple
approximations and two-level models. Our results are of
relevance for many different types of weak links and, in
particular, they can be quantitatively tested in the context
of atomic contacts.
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