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Microscopic Origin of Conducting Channels in Metallic Atomic-Size Contacts
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(Received 20 August 1997)

We present a theoretical approach which allows one to determine the number and orbital character of
conducting channels in metallic atomic contacts. We show how conducting channels arise from atomic
orbitals with a significant contribution to bands around the Fermi level. Our theory predicts that the
number of conducting channels with non-negligible transmission is three for Al and five for Nb one-
atom contacts, in agreement with recent experiments. These results are shown to be robust with respect
to disorder. The experimental values of the channel transmissions lie within the calculated distributions.
[S0031-9007(97)05206-X]
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Metallic contacts of atomic dimensions, which can b
produced by means of scanning tunneling microscope a
break-junction techniques, have been the object of gr
attention in the last few years [1]. According to the sca
tering approach, the electronic transport in these me
scopic structures can be described in terms of independ
“conducting channels” characterized by certain transm
sion coefficients which vary between zero and one [2
The complete understanding of their transport propert
requires the knowledge of the transmission coefficien
alongeachconducting channel. This information, which
is not accessible by usual conductance measurements,
for the first time been obtained in recent experiments
superconducting Al contacts [3]. The possibility of ex
tracting the individual transmissions from measuring th
superconductingI-V characteristic is based on the ex
treme sensitivity of the subgap structure to small chang
in these parameters [4,5].

A remarkable conclusion of this experimental study
that, although the total conductance of an Al contact
the first plateau (presumably a one-atom contact [6]) c
be close to one quanta of conductance, this situation d
not correspond to a nearly open single channel, but rat
to a situation with three partially open channels. Th
question naturally arises on the microscopic origin of th
phenomenon for the specific case of Al. More general
one would like to know what is the number of conductin
channels for a given metal in a given contact geomet
The aim of this Letter is to provide theoretical insight int
these questions.

Having a system of atomic dimensions it seems natu
to choose an atomic orbital basis for the description
its electronic structure. This choice has proven use
in the context of scanning tunneling microscopy theo
[7]. Furthermore, the use of a local basis in combinatio
with Green function techniques provides an efficie
way for obtaining the transport properties [4,7,8] i
terms of microscopic parameters. In an atomic orbit
basis the electronic Hamiltonian adopts the usual tigh
binding form
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Ĥ ­
X

ia,s

eiac
y
iascias 1

X
iafijb,s

tia,jbc
y
ia,scjb,s , (1)

where i, j run over the atomic sites anda, b denote
the different atomic orbitals (the number of orbita
at each site will be denoted byNorb). The hopping
elementstia,jb are assumed to connect first-neighbor sit
only. There exist in the literature several parametrizati
procedures for determining the tight-binding Hamitonia
[9,10] which are known to accurately reproduce the ba
structure of bulk materials. As a starting point we follow
the parametrization proposed in Ref. [10] considering a
minimal basis for each metal those atomic orbitals havi
a significant contribution to the electronic density of stat
(DOS) around the Fermi energy,EF. Thus, for the case
of superconducting metals of groups III and IV, like A
Pb, etc., onlys and p orbitals need to be considered
while for transition metals like Nbd orbitals have to
be included.

In an atomic contact the local environment in the ne
region is very different to that of the bulk material an
therefore the use of bulk parameters in the Hamiltoni
requires some justification. In the first place, the inh
mogeneity of the contact geometry can produce large
viations from the approximate local charge neutrality th
typical metallic elements must exhibit. Within the tight
binding approximation this effect can be corrected im
posing local charge neutrality through a self-consiste
variation of the diagonal parameterseia [11]. As dis-
cussed below, this self-consistency in the neck region tu
out to be crucial for the correct determination of the co
ducting channels. Regarding the hopping elements,tia,jb ,
although we shall initially consider them as being equal
the bulk values in order to represent a neck geometry w
bulk interatomic distances, we shall show that the resu
are robust with respect to fluctuations in the hopping e
ments induced by disorder in the atomic positions.

An idealized geometry for a one-atom contact is d
picted in Fig. 1. It consists of a close-packed fcc stru
ture grown along the (111) direction (hereafter denot
as z direction), starting from a central atom [12]. Thi
© 1998 The American Physical Society
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FIG. 1. Idealized geometry for a one-atom contact. Th
layers are numbered from 1 toN starting from the left lead.

structure is connected to two semi-infinite crystals d
scribing the metallic leads,N being the number of atomic
layers within the neck region. By taking different value
of N we can describe both the cases of long and sh
necks.

In order to obtain the dc current for a constant bia
voltage applied between the leads, it is most convenie
to use nonequilibrium Green function techniques [13
Within this formalism the current can be written with an
expression formally equivalent to that of scattering theo
[14] by treating the coupling between the central regio
and the leads as a perturbation [15]. The current betwe
the left lead and the central region is then given by

I ­
2e
h

Z `

2`

TsE, V d f fLsEd 2 fRsEdg dE , (2)

where fL,R are the Fermi-distribution functions for the
(left, right) leads andT sE, V d is an energy and voltage de-
pendent transmission probability, which can be written
terms of the matrix elements of the (retarded, advance
Green function matrix̂Gr ,asEd ­ fE 6 i01 2 Ĥg21 as

TsE, V d ­ 4 Tr

∑
Im ŜL

µ
E 2 e

V
2

∂
3 Ĝr

1N sEd Im ŜR

µ
E 1 e

V
2

∂
Ĝa

N1sEd
∏

.

In this expressionĜr
1N and Ĝa

N1 are matrices whose
elements are the Green functions connecting layers
and N, ŜL,R being self-energy matrices describing th
coupling of the central region to the leads. Thes
matrices have a dimension equal to the number of bon
connecting the central region to the leadssML,Rd and have
a simple expression in terms of the Green functions of t
uncoupled leads,gia,jb :

fŜL,RsEdgia,jb ­
X

k,l[L,R;g,d

tia,kgga
kg,ldsEdtld,jb .

The gia,jb ’s can be evaluated numerically by standar
decimation techniques [16].

The voltage range which is probed in the experimen
with superconducting contacts is of the order of th
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gap parameterD (typically a few tenths of meV) [3].
For this bias range normal metallic systems will beha
Ohmically. Even when the atomic-size contacts exhib
resonances aroundEF [11], their width will in general
be much larger thanD and linearization of Eq. (2) is ap-
propriate. In this linear regime the contact normal co
ductance can be expressed asG ­ s2e2yhdT sEF , 0d. By
using the cyclic property of the trace,G can be written in
the Landauer formG ­ s2e2yhd Trft̂sEFdt̂ysEFdg, where

t̂sEd ­ 2fIm ŜLsEdg1y2Ĝr
1N sEd fIm ŜRsEdg1y2 . (3)

The existence ofs Im Ŝd1y2 as a real matrix is warranted
by ImŜ being positive definite. Moreover,̂tt̂y is a
Hermitian matrix havingML real eigenvalues,Ti, which
are bounded by zero and one [17]. Associated with the
eigenvalues there will beML eigenvectors, which in our
model are linear combinations of the atomic orbitals
the layer which is in contact with the left lead. Thes
eigenvectors define the way in which the atomic orbita
contribute to each conducting channel.

Although the dimension oft̂ t̂y can be arbitrarily
large depending on the size of the central region, t
actual number of conducting channels (those with
nonvanishing transmission eigenvalueTi) is limited by
the number of orbitals in the narrowest section of th
neck (Norb when having a single atom contact). Thi
fact can be shown by the following simple argumen
As the division between “central region” and leads
somewhat arbitrary, one could always redefine the lea
for the geometry of Fig. 1 in such a way that the ne
central region would consist only of the central atom
Then the new lead self-energy matricesŜ

0
L,R would

have a dimension of justNorb and the new transmission
matrix would admit only Norb eigenmodes. Current
conservation along each conducting channel ensures
the nonvanishing eigenvaluesTi andT 0

i must be the same.
The above simple argument already allows an estim

of the maximum number of relevant conducting channe
in a one-atom contact. Thus, for ansp-like metal like Al,
this number should be typically four, while for a transitio
metal like Nb (having a negligible weight ofp orbitals
at EF) this number would be of order six. As discusse
below, this rough estimate should be taken as an up
bound. The actual number of conducting channels can
smaller as some of the channels can carry no current
to symmetry considerations.

Let us first consider the case of an Al one-atom conta
which is the one analyzed experimentally in Ref. [3]. A
contacts have also been addressed theoretically in [1
The atomic configuration for Al,3s23p1, gives rise to a
conductingsp band with three electrons per atom. Th
bulk DOS atEF has important contributions from both3s
and3p orbitals, the3s level being located,7 eV below
the 3p level [10]. While the above simple argumen
would predict a maximum number of four channe
for a one-atom contact, the self-consistent calculati
for the ideal geometry yields only three channels wi
1067
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FIG. 2. Transmission eigenvalues as a function of ener
for Al one-atom contacts in the two extreme cases of sho
(a) and long (b) necks. The solid curve corresponds to t
nondegeneratespz mode and the dotted curve corresponds t
the twofold degeneratepx 2 py mode.

nonvanishing transmission. In Fig. 2 the transmissio
eigenvalues of the ideal (111) contact are shown
a function of energy for the two extreme cases of
shortsN ­ 1d or a longsN ! `d neck geometry. There
are certain features that are common to both cases:
there are three channels having a significant transmiss
aroundEF , the fourth one being closed for every energy
(ii) the total transmission is close to one aroundEF

increasing to almost three at higher energies, (iii) the
is a nondegenerate mode which is widely open for almo
every energy, and (iv) the second transmission eigenva
is twofold degenerate and has a small value aroundEF .

The channels can be classified according to the orbi
character of the eigenvectors on the central atom. In th
way, the nondegenerate channel, widely open atEF , is
a combination with an amplitude,0.63 on the s and
,0.77 on the p orbitals along thez direction. The
one with zero transmission corresponds to the orthogon
combination of these two orbitals. On the other han
the two degenerate modes correspond to combinations
p orbitals on a plane perpendicular to thez direction.
While the symmetry properties of the neck geometr
are responsible for the decoupling between thes 2 pz

and px 2 py orbitals, the approximate fulfillment of the
condition ImS0

ss Im S0
pzpz

­ sIm S0
spz

d2 accounts for the
presence of a nonconducting channel (details will b
given elsewhere).
1068
gy
rt

he
o

n
as
a

(i)
ion
,

re
st
lue

tal
is

al
d,

of

y

e

The orbital character and energy dependence of th
transmission eigenvalues is similar for the case of P
which is also ansp-like metal. However, in this case
the Fermi level lies in the region where the three channe
are almost open, giving rise to a total transmission large
than 2.

So far the possible effect of disorder in the atomic
positions has been disregarded. We have studied th
effect by introducing random fluctuations in the atomic
positions of the idealized structure, assuming the distan
dependence on the hopping parameters as suggested
Harrison [9]. Although there are certain features like
the twofold degeneracy which, as expected, disappe
with the inclusion of disorder, the gross features foun
for the ideal geometry are nevertheless robust. Th
fact is illustrated in the histograms shown in Fig. 3
which demonstrate that the decomposition of the tota
transmission consists of a widely open channel withTi

between 0.6 and 0.9 and two low transmissive channe
with Ti between 0.1 and 0.3. These predictions ar
consistent with the experimental results for the firs
conductance plateau [3]. The fourth channel always ha
an extremely small transmissionsTi , 1024d.

We have also analyzed the conducting channels of
Nb one-atom contact, as an example of transition met
contacts. As commented above, in this case the maximu
number of conducting channels is expected to be s
due to the fact that the DOS aroundEF mainly arises
from the contributions of5s and 4d orbitals [10]. The
idealized one-atom contact geometry yields in this cas
a total transmission between 2 and 3 depending on th
number of layers in the central region. The channe
decomposition shows that this total transmission is main
built up from the contribution of five conducting channels

FIG. 3. Typical distributions of the transmission eigenvalue
for an Al one-atom contact when disorder in the atomic
positions is included (the maximum fluctuation in the hopping
parameters is of the order of100% with respect to the bulk
values, which corresponds to variations of the order of 20% in
the interatomic distances). The two modes corresponding
the twofold degenerate eigenvalue in the idealized case exhi
a similar distribution.
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FIG. 4. Transmission eigenvalues as a function of energy f
a Nb one-atom contact for the long neck case. Note the twofo
degeneracy of modes 2-3 and of 4-5.

As can be observed in Fig. 4, thed bands cause a strong
energy dependence of the transmission eigenvalues, w
typical energy scales of the order of0.5 eV. The s
and dz2 orbitals hybridize strongly and give rise to the
conducting channel with the highest transmission arou
EF (mode 1 in Fig. 4). The almost closed channel (mod
6 in Fig. 4) corresponds to the orthogonal combinatio
of these two orbitals. There also appears a twofo
degenerate channel with transmission,0.7 and another
twofold degenerate channel with transmission,0.3. Both
the values of the total transmission and the number
relevant conducting channels are in good agreement w
preliminary experimental results [19].

Our theory and the experimental results show th
atomic contacts of metals which have an important cont
bution from p and d orbitals do not necessarily, even in
the one-atom case, exhibit an integer number of perfec
transmitting modes. This situation is at variance wit
that of simple metals like Na, Au, Ag, etc., which can b
described by a singles-like band aroundEF and exhibit
well defined quantized conductance steps, at least at
lower plateaus [20]. Within our theory, in the one-atom
contact geometry, simple metals would have a sing
conducting channel. The transmission of that chann
is strongly pinned at one due to the charge neutrali
condition [11].

In conclusion, we have presented a theoretical ana
sis of the conducting channels in metallic atomic-siz
contacts. We have shown that the number and charac
of these channels are determined by the orbital electron
structure and the local atomic environment around th
neck region. For the case ofsp-like metals like Al and
Pb we predict the presence of three conducting chann
in a one-atom contact, in good agreement with th
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available experimental data [3]. For one-atom contacts
a transition metal like Nb we expect the presence of fiv
conducting channels due to the contribution ofd orbitals.
This result has been confirmed by recent experiments [1
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