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We investigate the Josephson coupling between two singlet superconductors separated by a half-
metallic magnet. The mechanism behind the coupling is provided by the rotation of the quasiparticle
spin in the superconductor during reflection events at the interface with the half metal. Spin rotation
induces triplet correlations in the superconductor which, in the presence of surface spin-flip scattering,
results in an indirect Josephson effect between the superconductors. We present a theory appropriate
for studying this phenomenon and calculate physical properties for a superconductor/half-metal/
superconductor heterostructure.
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Introduction.—The interplay between superconductiv-
ity and spin-polarized materials has potential applica-
tions in the emerging field of spin electronics. For this
purpose, a high degree of spin polarization of the mate-
rials in contact with superconducting regions is desirable.
The recently discovered half metals are ideal materials in
this respect [1]. In half metals, electronic bands exhibit
insulating behavior for one spin direction and metallic
behavior for the other. They are thus completely spin-
polarized magnets. Half-metallic behavior has been
found experimentally in the manganese perovskite
La0:7Sr0:3MnO3 [2,3] and in CrO2 [4]. The perovskite is
particularly interesting because of its ability to form
high-quality heterostructures with high-Tc cuprate super-
conductors [5].

The superconducting proximity effect in spin-
polarized materials has attracted considerable attention
recently in the context of superconductor/ferromagnet
heterostructures [6–11]. The singlet pairing amplitude
shows oscillations with a wave vector matching the spin
splitting of the Fermi wave vectors in the ferromag-
net [11,12]. The magnitude of this proximity effect de-
creases with increasing spin polarization. In the extreme
case of a completely spin-polarized material, the singlet
proximity effect is absent. Consequently, the Joseph-
son current between two singlet superconductors sepa-
rated by a half metal is expected to be exactly zero. In
this Letter, we show that this is not necessarily the case.
We propose a mechanism which leads to a nonvanish-
ing superconductor/half-metal/superconductor (S/HM/S)
Josephson effect.

The indirect Josephson effect requires the interplay of
two separate interface effects: spin mixing (or spin
rotation) and spin-flip scattering. The former, represented
by the phase difference � between waves of opposite
spin orientations reflected from a spin-active interface,
introduces triplet correlations at the superconducting
side of the S/HM boundary. The latter mediates these
correlations to the half-metallic side. To illustrate the
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particles, j"ik and j#ik, from a half-metallic material
(which defines the spin quantization axis). The re-
flected amplitudes for opposite spins differ in phase,
j"i�k � ei�=2j"ik, j#i�k � e�i�=2j#ik [13]. In a superconduc-
tor, incoming quasiparticles (k) near the interface form
pairs with outgoing quasiparticles (�k). As j"ikj#i�k
�j#ikj"i�k transforms under reflection into ei�j"ikj#i�k�
e�i�j#ikj"i�k, pairing states near such interfaces are
singlet-triplet mixtures. This property of spin mixing is
intrinsic to any spin-active interface. If, additionally,
spin-flip scattering is present at the S/HM interface, the
resulting triplet amplitudes induce equal-spin pairing
correlations in the half metal, leading to an S/HM/S
Josephson effect. Spin-flip scattering is expected to be
enhanced, e.g., due to local variations of the spin quanti-
zation axis [7], or diffusion of magnetic moments. The
importance of these processes was pointed out by recent
experiments [14].

The indirect proximity effect introduced above can
also be relevant for strong ferromagnets. In the conven-
tional description, the dispersions for spin-up and spin-
down bands in ferromagnets are assumed to be identical
apart from an energy splitting, given by an effective
exchange field h [6,7]. The range of the spin-singlet
proximity effect is drastically reduced by a strong ex-
change field. In contrast, no such suppression occurs in the
case of the indirect proximity effect.

Theory.—Our treatment is based on the quasiclassical
theory of superconductivity [15]. This theory is formu-
lated in terms of Green’s functions (propagators) which
are matrices in Nambu-Gor’kov particle-hole space and
in spin space. The quasiclassical propagator, ĝg�k̂k;R; ��
depends on energy �, position R, and the direction k̂k of
the momentum on the Fermi surface. Its particle-hole
diagonal and off-diagonal elements are denoted by spin
matrices g and f. The quasiclassical propagator satisfies
the Eilenberger equation [15]

	��̂�3 � �̂�; ĝg
 � ivf � rRĝg � 0; (1)
 2003 The American Physical Society 137003-1



kin

kout kout

kin

τ (k      k   )out in S τ S
^ ^ ^^ = ττ ( k      k   )out in =^ ^

τ(k     k    )in out
^ = ^τ S τ Sτ( k     k    )^

outin =
^ ^ ^

FIG. 1. Scattering geometry illustrating the scattering chan-
nels and the corresponding transfer amplitudes for the model
discussed in the text.
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parameter �̂��R�. It is essential for our purpose to deter-
mine the spatial variation of the order parameter near the
interface region in accordance with the triplet correla-
tions, which decay into the superconducting region on the
coherence length scale. In order to ensure current con-
servation in the whole system, we obtain the spatial
variation of ��R� self-consistently,

��R� � �
Z �c

��c

d�
2�i

hf�k̂k;R; ��ik̂k tanh

�
�
2T

�
: (2)

The coupling constant � and the cutoff energy �c are
eliminated in favor of the transition temperature Tc in the
usual manner. The quasiclassical Green’s functions are
normalized according to ĝg2 � ��21̂1 [15].

Boundary conditions.—A standard method to treat
boundary conditions for spin-active interfaces is a
scattering-matrix formulation [6,16,17]. However, for
the present problem, where the number of spin channels
on one side of the interface differs from that on the other,
it would be necessary to use the formulation by Millis
et al. [16], which is rather involved. For this reason, we
proceed with an alternative but equivalent approach [18].
It allows us to derive explicit quasiclassical boundary
conditions in terms of an auxiliary Green’s function,
ĝg0, which solves the boundary condition for an impene-
trable interface and is easy to obtain. The impenetrable
interface is characterized by two surface scattering ma-
trices, ŜS and ŜS , on either side of the interface. The result-
ing propagators on the two sides are denoted by ĝg0 and ĝg0,
respectively.
At the boundary, incoming propagators, ĝg0

in, are con-
nected with outgoing ones, ĝg0

out, via the surface scattering
matrices by ĝg0

out � ŜSĝg0
inŜS

y [13]. Particle conservation
requires unitarity, ŜSy � ŜS�1. We include the transmis-
sion processes through the interface via an effective hop-
ping amplitude �̂� in a t-matrix approximation. We assume
translational invariance in the plane of the interface. The
quasiclassical hopping amplitudes from left to right dif-
fer in general for incoming and outgoing quasiparticles.
However, the requirement of current conservation leads to
relations between these elements as shown in Fig. 1.

The quasiclassical t-matrix equations read

t̂tin � �̂�ĝg0
out�̂�

y�1̂1 � ĝg0
in t̂tin�; t̂tout � ŜSt̂tinŜSy; (3a)

t̂tout � �̂�yĝg0
in�̂��1̂1 � ĝg0

out t̂tout�; t̂tin � ŜSyt̂tout ŜS : (3b)

On each side of the interface, the t matrix describes the
modifications of the quasiclassical propagators due to
virtual hopping processes to the opposite side. Finally,
we express the full propagator in terms of the decoupled
solution ĝg0, leading to the boundary conditions for in-
coming and outgoing propagators,

ĝgin � ĝg0
in ��ĝg0

in � i�1̂1�t̂tin�ĝg
0
in � i�1̂1�; (4a)

ĝgout � ĝg0
out ��ĝg0

out � i�1̂1�t̂tout�ĝg0
out � i�1̂1�; (4b)

and similarly for ĝgin and ĝgout [19,20]. In the appropriate
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limiting cases, these boundary conditions reduce to those
published previously [21,16,17,22,18].

For reference, we also present the corresponding full
scattering matrix which would enter the boundary con-
ditions of Ref. [16]. Without loss of generality, it can be
written in the form

ŜS �

�
ŜS11 ŜS12

ŜS21 ŜS22

�
�

�
ŜS 0
0 1̂1

��
r̂r d̂d
d̂dy �r̂r

��
1̂1 0
0 ŜS

�
; (5)

with the transmission matrix d̂d � �1 � �2�̂��̂�y��1 �
2��̂�, and the reflection matrices on either side of
the interface, r̂r � �1 � �2�̂��̂�y��1�1 � �2�̂��̂�y�, r̂r �
�1 � �2�̂�y�̂���1�1 � �2�̂�y�̂��.

The particle-hole structures of the surface scattering
matrix and the hopping amplitude are ŜS � diag	S; ~SS
 and
�̂� � diag	�; ~SSy��~SSy
. The above equations are for general
spin structures. In the following, � is a 2 � 1 spin matrix,
S a 2 � 2 spin matrix, and S a spin scalar.

S/HM/S structure.—We study a heterostructure con-
sisting of a half metal, �LH<x<LH, between two
superconductors, �L<x<�LH and LH<x<L.
We investigate the equilibrium supercurrent due to a
phase difference � between the superconductors,
��L�����L�ei�.

As mentioned above, band splitting in the interface
region results in a relative spin phase for quasiparticles
with spin along the quantization axis of the half metal
(for quasiparticles with spin in the perpendicular plane
the corresponding effect is a spin rotation around the
quantization axis) [13]. This effect can be described by
a scattering matrix ŜS � exp�i��z=2�1̂1 at the supercon-
ducting side of the interface, where � defines a spin-
rotation angle and �z denotes the Pauli spin matrix
[13,17]. Generally, the value of � depends on the angle
of impact,  [13], and can approach values of the order of
� for strong band splitting [23]. For definiteness, we
present results for � � 0:75� cos . On the half-metallic
side, the scattering matrix has no spin structure, ŜS � 1̂1.

The t-matrix equations are parametrized by the hop-
ping amplitude �̂� and the scattering matrices ŜS, ŜS , which
are the phenomenological parameters characterizing the
interface in our theory.We use �� �1�Sy��0 cos , where
�0 � ��""; �#"�T is determined by the two spin scattering
channels from the superconductor to the half-metallic
spin-up band. With this choice, the spin rotation during
transmission is half of the spin rotation during reflection.
137003-2
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The cos factor accounts for the reduced transmission at
large impact angles. We present results for �#"=�"" � 0:7
and 0.1 , 2��"" � 1:0, 2LH � 3�0 (with the coherence
length �0 � vf=2�Tc), L� LH, and cylindrical Fermi
surfaces (calculations using spherical Fermi surfaces
lead to similar results). We iterate Eqs. (1) and (2) until
self-consistency is achieved, with the boundary condi-
tions (3) and (4) at the two interfaces. All our calculations
are in the clean limit.

In Fig. 2, we present the spatial modulation of the
singlet order parameter and the triplet pairing correla-
tions for an S/HM/S heterostructure. We compare results
for a zero junction (� � 0) and a� junction (� � �). The
spin-rotation effect at the superconducting side of the
interface leads to local triplet correlations in the super-
conductor of the form f"# � f#". We quantify the triplet
pairing correlations by the integral,

Ftripl�x� �
Z �c

��c

d�
2�i

h �k̂k�f�k̂k; x; ��ik̂k tanh

�
�
2T

�
; (6)

where  �k̂k� projects out the p-wave pairing amplitude,
and is equal to the cosine of the angle between k̂k and
the surface normal. Spin-flip scattering induces a F""

amplitude in the half metal, and leads to both F"" and
F## amplitudes in the superconductor. The correlations
are shown in Fig. 2 for all three spin-triplet channels.
Triplet correlations extend into the superconductor up
to a few coherence lengths from the interface, leading
to a suppression of the singlet order parameter near the
interface. We also show schematically the s and p orbitals
for a zero junction and a � junction. The alignment of
the p orbitals is determined by the direction of the sur-
−10 −5 0 5 10
x/ξ0

−1

0

1

∆/
∆ 0,

 F
tr

ip
l /∆

0

−1

0

1

∆/
∆ 0,

 F
tr

ip
l /∆

0

− 

+

− 

+

π−junction

superconductor
half

superconductormetal

0−junction

+

− 

+ +

− +

− +

− + + −

FIG. 2 (color online). Self-consistent order parameter and
triplet correlations in an S/HM/S heterostructure for a zero
junction and a � junction. The relative signs of the pairing
correlations in the s-wave singlet and three p-wave triplet
channels are indicated. A zero junction for the singlet order
parameter leads to a relative phase difference of � for the
triplet correlations, and vice versa. The calculations are for
temperature T � 0:05Tc, and for �#"=�"" � 0:7.
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face normal. As a consequence, the relative sign between
the p orbitals is opposite to that of the s orbitals. As
will be shown below, this leads to a reversal of the cur-
rent direction from that expected for a superconductor/
normal metal/superconductor junction.

We now turn to the half-metallic region in Fig. 2. The
spatial distribution of the proximity-induced F"" ampli-
tude shows a sign change at x � 0 in the case of zero
junction, but not for a � junction. As a result, the �
junction is expected to be more stable than the zero junc-
tion. Indeed, our numerical calculations show that the �
junction corresponds to the free-energy minimum for all
temperatures. The equal-spin correlations decay slowly
into the half metal, e.g., F""�x � 0� / 1=LH in the �
junction. This behavior is similar to that observed in
normal metal/superconductor structures.

In Fig. 3, we show the Josephson critical current as a
function of temperature. The current density,

J �
Z 1

�1
d�hevf�k̂k�N"�k̂k; ��ik̂knf���; (7)

is expressed in terms of the angle-resolved density of
states at the Fermi surface in the half metal, N" �
�Nf Im�g""�=�, the electronic charge e, and the Fermi
distribution function nf. In the inset of Fig. 3, we show
the current-phase relationship for different temperatures.
The current is negative for a positive phase difference �.
For each temperature, we determine the critical current
from the maximum current magnitude in the current-
phase relationship. The critical current has a �1�T=Tc�2

dependence near Tc. This is a consequence of the fact that
the order parameter at the interface varies linearly with
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FIG. 3 (color online). Critical Josephson current density as a
function of temperature for an S/HM/S heterostructure. The
two curves are for �#"=�"" � 0:1 (dashed line) and �#"=�"" � 0:7
(full line). The inset shows the current-phase relationships for
�#"=�"" � 0:7 for temperatures T=Tc � 0:05 (dashed line), 0.2,
0.3, 0.4, and 0.5 (full lines from bottom to top). The unit is the
Landau critical current density JL � evfNf�0, with the zero
temperature bulk superconducting gap �0 � 1:76Tc.
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FIG. 4 (color online). Density of states at T � 0:05Tc for
quasiparticles with normal impact at the half-metallic side of
the left interface (x � �LH), for (a) spin-flip rate �#"=�"" � 0:1
and phase difference � � 0:5�, and (b) �#"=�"" � 0:7 and � �
0:2�. The corresponding Josephson currents are close to the
critical values. Shown are both states carrying current in
positive (full lines) and negative directions (dashed lines).
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1�T=Tc, in contrast to the bulk �1�T=Tc�1=2 behavior.
At low temperatures, the critical current passes through a
maximum and then decreases again. This anomaly is due
to the interplay between current-carrying states, as we
proceed to explain.

We discuss the different contributions to the Joseph-
son current coming from the spectral features in the
momentum-resolved density of statesN" in the half metal.
The total current through the interface is dominated by
quasiparticle trajectories parallel to the surface normal.
In Fig. 4, we compare the spectrum of such quasiparticles
for incoming and outgoing momenta at the half-metallic
side of the left interface. We present results for �#"=�"" �
0:1 and �#"=�"" � 0:7. In both cases there is a continuum
around the chemical potential (� � 0). On either side of
this continuum there is a gap, followed by either addi-
tional continuum branches, or by Andreev bound states.
The Andreev bound states in Fig. 4(b) are closely related
to the surface Andreev states discussed in Refs. [17,23].
According to Eq. (7), the current is obtained by multi-
plying the curves in Fig. 4 with the Fermi function. At not
too low temperatures, the Josephson current is dominated
by the negative-energy features below the continuum at
the chemical potential. These features carry current in the
negative direction, explaining the negative sign of the
Josephson current for positive phase difference. Below
a certain temperature, the corresponding states are fully
populated, and the temperature dependence of the
Josephson current is dominated by the low-energy con-
tinuum around the chemical potential. The current car-
ried by this low-energy band is positive and increases
with decreasing temperature, leading to the decrease of
the magnitude of the critical Josephson current at low
temperatures in Fig. 3.

Conclusions.—We have presented a theory for half-
metal/superconductor heterostructures and have investi-
gated the Josephson coupling through a half-metallic
layer with a thickness of several coherence lengths. The
137003-4
Josephson coupling is induced by triplet pairing correla-
tions in the superconductor. These triplet correlations are
coupled to the singlet superconducting order parameter
via a spin-rotation effect, which occurs when quasipar-
ticles in the superconductor are reflected from a spin-
polarized medium. We have performed self-consistent
numerical calculations for this problem, and found a
low-temperature anomaly in the temperature behavior of
the critical Josephson current. This anomaly is a robust
feature, which is not very sensitive to parameter varia-
tions. We discuss the Andreev excitation spectrum in the
half-metallic region, and explain the temperature varia-
tion of the Josephson current in terms of this spectrum.
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