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We study theoretically the electronic and transport properties of a diffusive superconductor-normal
metal-superconductor junction in the presence of a perpendicular magnetic field. We show that the field
dependence of the critical current crosses over from the well-known Fraunhofer pattern in wide junctions
to a monotonic decay when the width of the normal wire is smaller than the magnetic length �H ��������������

�0=H
p

, where H is the magnetic field and �0 the flux quantum. We demonstrate that this behavior is a
direct consequence of the magnetic vortex structure appearing in the normal region and predict how this
structure is manifested in the local density of states.
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Introduction.—The study of the modification of the
properties of a normal metal in contact with superconduc-
tors, known as the proximity effect, has a long history [1].
In recent years there has been a renewed interest in this
subject because new experimental techniques have allowed
resolving properties on smaller length scales and very low
temperatures [2]. Although many electronic and transport
properties of hybrid SN structures are now well under-
stood, the situation is less satisfactory when dealing with
the magnetic field dependence of those properties. A few
years ago, Heida et al. [3] measured the critical current as a
function of a perpendicular magnetic field in ballistic
superconductor-normal metal-superconductor (SNS) junc-
tions of comparable length and width and found a period-
icity close to 2�0, where �0 � h=2e is the flux quantum,
instead of the standard �0 of the Fraunhofer pattern [4].
This was qualitatively explained in Refs. [5,6] in terms of
the classical trajectories associated with current-carrying
Andreev states in a normal clean wire. In the case of
diffusive junctions, numerous experiments have shown
that in wide junctions the critical current exhibits a
Fraunhofer-like pattern [7,8]. However, very recent experi-
ments in junctions where the width is comparable to the
superconducting coherence length have shown a mono-
tonic decay of the critical current with field, i.e., the
absence of magnetic interference patterns [9]. The unified
description of these two very different behaviors is a basic
open problem.

In this Letter we show that the solution to the previous
puzzle is closely related to the issue of the formation of a
magnetic vortex structure in the normal conductor. Vortex
matter in mesoscopic superconductors is also a very active
field [10]. It has been shown that the basic properties such
as critical fields [11] and the magnetization [12] depend
crucially on the size and topology of the mesoscopic
samples, which in turn determine the vortex structure.
There is also a great interest in the study of nucleation of
superconductivity and vortex matter in hybrid structures
[13]. However, little attention has been paid to the forma-
tion of vortices inside nonsuperconducting materials. Our
goal here is to answer the following fundamental ques-

tions: is it possible to induce a vortex structure in a normal
wire by proximity to a superconductor? If so, what are the
properties of such proximity vortices and their influence on
the Josephson effect? For this purpose, we have studied a
diffusive SNS junction in the presence of a perpendicular
magnetic field. By solving the two-dimensional Usadel
equations [14], we are able to describe the electronic
properties for arbitrary length, L, and width, W, of the
normal wire. We find that a magnetic vortex structure may
develop in the normal metal with properties similar to
those in the mixed state of a type II superconductor [15].
This vortex structure is reflected in the appearance of an
interference pattern in the critical current that tends to the
Fraunhofer pattern in the wide-junction limit (W � �H ��������������

�0=H
p

). On the contrary, when W is comparable or
smaller than �H, the formation of vortices is not favorable
and the field acts as a pair-breaking mechanism which
suppresses monotonously the critical current. Our results
not only solve the puzzle described above, but also illus-
trate the richness of the vortex physics in hybrid structures.

Quasiclassical formalism.—We consider a SNS junc-
tion, where N is a diffusive normal metal of length L and
width W coupled to two superconductors with gap �. The
junction is subjected to an uniform magnetic field H � Hẑ
perpendicular to the normal film lying in the xy plane,
where x 2 �0; L� and y 2 ��W=2; W=2�. We assume that
the thickness of the normal wire is smaller than the London
penetration depth; i.e., the field penetrates completely in
the normal region. To describe the electronic properties we
use the quasiclassical theory of superconductivity in the
diffusive limit [14,16], where the mean free path is much
smaller than the coherence length, � �

�������������
@D=�

p
, D being

the diffusion constant of the normal metal. In equilibrium
situations this theory is formulated in terms of retarded
Green functions ĜR�R; ��, which depend on position R
and energy �. This propagator is a 2� 2 matrix in electron-
hole space

 Ĝ R �
GR F R

~F R ~GR

� �
; (1)
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which satisfies the Usadel equation in the N region [16]

 

@D
�
r�ĜR �rĜR� 	 ���̂3; Ĝ

R� �
ieD
�

A��̂3; Ĝ
R �rĜR�: (2)

Here, A is the vector potential, �r � r1̂� �ie=@�A�̂3, �̂3 is
the Pauli matrix, and the Coulomb gauge (rA � 0) has
been already used. Equation (2) is supplemented by the
normalization condition �ĜR�2 � ��21̂ and proper bound-
ary conditions. For the SN interfaces we use the boundary
conditions introduced in Ref. [17], which allow us to
describe the system for arbitrary transparency. For the
metal-vacuum borders of the normal wire we impose that
the current density in the y direction vanishes at y �

W=2 [18]. In general, the Usadel equation has to be
solved together with the Maxwell equation r�H �
�0j in a self-consistent manner. However, we are inter-
ested here in the case where the widthW is smaller than the
Josephson penetration length �J �

�����������������������
@=2�0ejcd

p
, where jc

is the critical current per unit area and d is the effective
length of the junction including the London penetration
depths in the leads. In this case one can ignore the screen-
ing of the magnetic field by the Josephson currents and the
field is equal to the external one [4].

The physical properties of interest can be expressed in
terms of the Usadel-Green functions. Thus, for instance,
the local density of states is given by ��R; �� �
�ImGR�R; ��=�. To quantify the superconducting corre-
lations we use the pair correlation function defined as
F�R� � �1=4�i�

R
d��F R �F A� tanh���=2�, where � �

1=kBT. Finally, the supercurrent density in the junction can
be written as j�R� � �	N=4�2e�

R
d� tanh���=2� �

Re fF Rr ~F R � ~F RrF R 	 �4ie=@�AF R ~F Rg, where 	N
is the normal state conductivity. The net current is obtained
integrating jx across the y direction.

Equation (2) constitutes a set of coupled second-order
nonlinear partial differential equations, whose resolution is
a formidable task. In general, one has to resort to numerical
methods [19]. However, one can get analytical insight in
two limiting cases. By choosing the gauge A � �Hyx̂,
one can identify in Eq. (2) the length �H �

�������������
�0=H

p
as the

characteristic variation scale of the Green functions in the
transversal direction. In the narrow-junction limit, i.e.,
when W < �H, the Green functions do not vary consider-
ably in the y direction and after averaging Eq. (2) over this
direction one obtains a one-dimensional equation analog to
Eq. (2), but with the right-hand side replaced by
��H=2����̂3Ĝ

R�̂3; Ĝ
R�. Here, �H � De2H2W2=�6@� is a

depairing energy, which in terms of the Thouless energy,
�T � @D=L2, can be written as �H � �T���=

���
6
p

�0�
2,

where � � HLW is the flux enclosed in the junction.
This equation can now be easily solved and describes the
effect of a pair-breaking mechanism, such as magnetic
impurities, that has been studied extensively in Ref. [20].
The other analytic case is the limit of a wide junction where
W � L, �H. A dimensional analysis shows that in this
limit one can neglect the terms containing the derivatives

with respect to the y coordinate. The field also disappears
from the equation and its only effect is to change the
superconducting phase difference 
 into the gauge-
invariant combination � � 
� 2���=�0�y=W. Thus, it
is easy to anticipate, in particular, that critical current
exhibits a Fraunhofer-like pattern in this limit.

Discussion of the results.—We start by analyzing the
local density of states (DOS) in the normal wire. In the
absence of field the main feature is the presence of a
minigap, �g [21–23]. This minigap is the same throughout
the normal wire and for perfect transparency scales as
�g � 3:1�T in the limit L� �. In Fig. 1 we show the
local DOS in the middle (x � L=2) of a wire of length L �
2� for two different values of the width and the magnetic
flux. Notice that for W � � (see upper panels), the local
DOS is practically independent of the y coordinate.
Moreover, when the field is not very high, there is a clear
minigap (see upper left panel), which closes at higher fields
(see upper right panel). As one can see in the lower panels,
when W � L, the local DOS is strongly modulated along
the y direction. For low fields (�<�0), the minigap is still
open throughout the wire, but for higher fields the minigap
changes in a periodic fashion from its maximum value
(equal to the value in the absence of field) to exactly zero
at well-defined positions where the DOS is the normal state
one.

These results are in agreement with the limiting cases
discussed above. If the wire is narrow the field acts as a
pair-breaking mechanism. It is well known that the mini-
gap is reduced by such mechanisms [20,22] and, in par-
ticular, it closes at a critical value of the depairing energy
�CH � �2�T=2 [24], i.e., in our case at a critical flux �C ����

3
p

�0. This explains the results for W � �. To understand
the results for W � 50�, we remind that in the wide limit
the magnetic field only enters in the gauge-invariant phase
difference �. It has been shown that in the absence of field
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FIG. 1 (color online). Local density of states as a function of
the energy in the middle of a wire of length L � 2� for two
values of the magnetic flux. The different curves correspond to
different values of the y coordinate. We have assumed perfect
transparency for the interfaces and a phase difference 
 � 0. In
panel (d) we have used thicker lines to highlight the curves
where the DOS is equal to the normal state one.
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the minigap decreases monotonously as the phase differ-
ence increases and it closes when the phase is equal to �
[23]. Bearing this in mind, one can easily understand the
results of Fig. 1(c) and 1(d). When � � 0 the minigap is
completely open reaching the value in the absence of field.
However, when � � � the minigap closes. For � � 2�0

and 
 � 0, the phase � takes the values �� at y=W �

1=4, which explains why the two thick curves in Fig. 1(d)
correspond to normal state DOS.

The peculiar DOS suggests the presence of vortices in
the normal wire. To confirm this idea, we have analyzed the
pair correlation function, F�R�. In Fig. 2 we show a map of
the modulus of this function throughout the normal wire
for L � 2� andW=� � 1, 3, 50. All the panels show that F
diminishes towards the center of the wire, which simply
reflects the decay of the superconducting correlations in-
side the normal wire. The main difference is the modula-
tion along the y direction. In the case W � �, at low fields
(see panel for � � �0) F is still finite everywhere, while
for higher fields it can be very small in the center of the
wire, but with practically no modulation. The situation
changes by increasing the width of the junctions. Already
for W � 3� [see Fig. 2(b)] one can clearly see that a linear
array of vortices located on x � L=2 appears. Finally, for a
very wide junction [see Fig. 2(c)] the vortex array becomes
completely regular.

It is possible to get a deeper insight into the vortex
structure by linearizing Eq. (2). This can be done assuming
that the proximity effect is weak. In this case, using the
gauge A � �Hyx̂ one obtains the following equation for
the anomalous Green function

 @2
~xF

R	

�
L
W

�
2
@2

~yF
R	4is~y@~xF

R�4s2~y2F R��2i
�
�T

F R;

where s � ��=�0, ~x � x=L, and ~y � y=W. In the wide
limit W � L, it is easy to find the solution of this equation,

from which one can deduce that the zeros of the pair
correlation function are given by: x � L=2 and 
�
2���=�0�y=W � �2m	 1��, where m � 0;
1; . . . and
y 2 ��W=2; W=2�. This means that the vortex cores are
located exactly on the middle of the wire forming a regular
linear array along the y direction and they are separated by
a distance �0=HL. Thus, for the case W � 50� in Fig. 2
this condition tells us that for � � 4�0 there are four
vortex cores located on y=W � 
1=8, 
3=8, which are
the positions that one can read off from Fig. 2(c). Notice
also that the phase 
 simply shifts rigidly the line of
vortices along the y direction. Thus, measurements of the
local DOS at the outer interfaces (y � 
W=2) of a wide
junction changing the supercurrent through the structure
should show an oscillatory behavior. Moreover, from the
analytical solution of the linearized Usadel equation in the
wide-junction limit and from the numerical results for
arbitrary cases, one can show that the phase of the pair
correlation changes in 2� around the cores; i.e., each
vortex has a unit topological charge. These vortices are
reminiscent of the those known in the literature as
Josephson vortices, which appear in tunnel junctions where
W < �J [4]. However, there is a crucial difference. The
vortices found in this work do have a normal core, which is
absent in the standard Josephson vortices. This property is
essential to have a complete analogy with the Abrikosov
vortices. The only difference of the vortices presented here
with those in a bulk superconductor of type II is that they
are arranged in one-dimensional array instead of forming a
two-dimensional lattice and due to the confining geometry
they do not possess a rotational symmetry [15].

We discuss finally the magnetic field dependence of the
critical current. In Fig. 3 we show an example for L � 8�,
which is a typical value in the experiments [9], and differ-
ent values of W. Notice that for small values of W, the
critical current decays monotonously. This is simply due to

FIG. 2 (color online). Spatial map of
the modulus of the pair correlations,
jF�R�j, for L � 2� and 
 � 0. The dif-
ferent panels correspond to different val-
ues of the width W and the magnetic flux
�, as indicated in the graphs. jF�R�j has
been normalized to its value inside the
electrodes, the temperature is kBT �
0:01�, and perfect transparency was as-
sumed.
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the fact that in this limit no vortices appear and the field
suppresses progressively the superconductivity in the nor-
mal wire [20]. Indeed, as we show in the inset of Fig. 3, the
analytical result of the narrow-junction limit describes
quantitatively the field dependence in this limit. As the
width increases the vortex structure appears and as a con-
sequence one observes an interference pattern where the
critical current vanishes at certain values of the magnetic
flux. Notice that these values are clearly larger than �0 for
intermediate widths and the patterns are not ‘‘periodic’’.
Only in the limit W � �H, L one obtains a regular pattern
with zeros at multiples of �0, recovering the Fraunhofer
pattern [4]. These results explain in a unified manner the
different behaviors observed experimentally [7–9], which
at first glance seemed to be contradictory.

Finally, we have studied systematically the role of the
length L in the crossover from the narrow-junction to the
wide-junction behavior. We have found that as L increases
this transition occurs at larger values of W. This confirms
the fact that the condition for the appearance of an inter-
ference pattern, i.e., zeros in the critical current, is given,
roughly speaking, by W > �H, which is equivalent to
W=L >�0=�. The standard Fraunhofer pattern is ap-
proached when W * L.

Conclusions.—We have shown that the appearance of
magnetic interference patterns in the critical current of
diffusive SNS junctions is intimately linked to the forma-
tion of a vortex array in the normal wire. Our results
provide a unified description of the critical current for
arbitrary width of the junctions and solve the puzzle put
forward by recent experiments [9]. Our work also paves the
way to study the vortex matter in a great variety of hybrid
structures like the recently introduced superconducting
graphene junctions, where a standard Fraunhofer pattern
has been observed [25].
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FIG. 3 (color online). Critical current normalized by the zero-
field value vs magnetic flux for a wire length L � 8�, perfect
transparent interfaces, kBT � 0:01�, and different values of W.
The dashed line shows the standard Fraunhofer pattern given by
sin���=�0�=���=�0�. The inset shows for W � 0:5� the
comparison between the exact result and the approximation
used for the narrow-junction limit.
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