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Motivated by recent advances in the fabrication of Josephson junctions in which the weak link is made of a
low-dimensional nonsuperconducting material, we present here a systematic theoretical study of the local density
of states (LDOS) in a clean two-dimensional normal metal (N) coupled to two s-wave superconductors (S). To
be precise, we employ the quasiclassical theory of superconductivity in the clean limit, based on Eilenberger’s
equations, to investigate the phase-dependent LDOS as a function of factors such as the length or the width of the
junction, a finite reflectivity, and a weak magnetic field. We show how the spectrum of Andreev bound states that
appear inside the gap shape the phase-dependent LDOS in short and long junctions. We discuss the circumstances
when a gap appears in the LDOS and when the continuum displays a significant phase dependence. The presence
of a magnetic flux leads to a complex interference behavior, which is also reflected in the supercurrent-phase
relation. Our results agree qualitatively with recent experiments on graphene SNS junctions. Finally, we show
how the LDOS is connected to the supercurrent that can flow in these superconducting heterostructures and
present an analytical relation between these two basic quantities.
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I. INTRODUCTION

If a normal metal (N) is in good electrical contact with a
superconductor (S), it can acquire genuine superconducting
properties. This phenomenon, which is known as proximity
effect, was first investigated in the 1960s [1–3] and there
has been a renewed interest in the last decade due to the
possibility to study this effect at much smaller length and
energy scales [4] and in novel low-dimensional materials.
The proximity effect manifests itself in a modification of
the local density of states (LDOS) of the normal metal and
it is mediated by the so-called Andreev reflection [5]. In
this process, an electron of energy E < �, where � is the
superconducting gap in S, inside the normal metal impinges
in the SN interface and is reflected as a hole transferring
a Cooper pair to the S electrode. When the normal metal
is sandwiched between two superconducting leads, multiple
Andreev reflections can occur at the SN interfaces leading to
the formation of Andreev bound states (ABSs) inside the gap
region [6]. These ABSs are, in turn, largely responsible for the
supercurrent that can flow through the superconductor–normal
metal–superconductor (SNS) junction when there is a finite
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superconducting phase difference between the superconduct-
ing leads [6].

In the last 50 years the Josephson effect in SNS weak links
has been thoroughly investigated in numerous experiments in
which the normal link ranged from standard normal metals
[7–11] to low-dimensional materials such as carbon nanotubes
[12], semiconductor nanowires [13], or graphene [14], just to
mention a few. However, experimental studies exploring the
LDOS in a normal metal in proximity to a superconductor
are more scarce and they have only been reported in re-
cent years. The proximity-induced modification of the LDOS
has been spatially resolved with the help of local tunneling
probes [15–17] and by means of a scanning tunneling spec-
troscopy technique applied to mesoscopic systems [18–22].
This method has been further refined to probe the proxim-
ity effect in two-dimensional (2D) metals with high spatial
and energy resolution [23–26]. These experiments have been
successfully explained with the help of the quasiclassical the-
ory of superconductivity and the so-called Usadel equations
[27–29], which describes the proximity effect in the dirty
limit, i.e., when the elastic mean free path is much smaller
than the superconducting coherence length in the normal
region. In another context, the local density of states has been
probed in ferromagnetic proximity systems in order to probe
the pairing symmetries. For instance, a zero-bias peak in the
density of states relates to a mixed-spin triplet pairing [30–33]
or a triplet gap related to equal-spin Cooper pairing [34].

In the regime, known as the clean limit, the mean free
path is larger than both the junction and the coherence length.
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The LDOS is expected to display discrete ABSs inside the
gap [6,35–38]. To our knowledge, these discrete ABSs have
only been resolved with tunneling probes in SNS heterostruc-
tures based on normal quantum dots, i.e., zero-dimensional
systems, formed in carbon nanotubes [39], graphene [40], or
semiconductor nanowires [41]. A natural candidate to observe
ABSs in a 2D clean metal is graphene. In fact, the proximity
superconductivity in graphene systems has been intensively
investigated since its early days [42–44] and has recently been
reviewed in Ref. [45]. Remarkably, a two-dimensional inter-
ference pattern has been predicted in warped Fermi-surface
proximitized in two dimensions [46] or in the presence of
boundaries [47].

In a recent work Bretheau et al. [48] used a van der Waals
heterostructure to perform tunneling spectroscopy measure-
ments of the proximity effect in superconductor-graphene-
superconductor junctions. By incorporating these heterojunc-
tions into a superconducting loop, they were able to measure
the phase-dependent DOS in the graphene region. Due to
the large width of the junction they reported a continuum
of ABSs, which clearly indicates that the junctions were
not strictly in the one-dimensional limit; nevertheless, these
experiments demonstrated the feasibility to fabricate and in-
vestigate clean 2D SNS junctions. Interestingly, the authors
of that work also postulated a heuristic relation between the
supercurrent and the LDOS, which allowed them to extract
the current-phase relation from their LDOS measurements.

The LDOS and the corresponding ABS spectrum in clean
three-dimensional SNS junctions have been discussed earlier
in the literature. The impact on the ABS spectrum of nonper-
fect interfaces [49,50] and the possible pairing in the normal
metal [51,52] by employing a self-consistent treatment of the
pair potential in quasi-one-dimensional SNS junctions have
been studied. The authors of Ref. [53] considered the prox-
imity effect in a S–two-dimensional electron gas–S junction
in the short junction limit, while interference phenomena in
clean SN sandwiches have been investigated in Ref. [54].
However, a systematic theoretical analysis of the LDOS in
junctions of arbitrary sizes and nonperfect transparency with
and without magnetic field has not been done so far.

In this paper, motivated by the experiments of Bretheau
et al. [48], we present a systematic study of the LDOS in clean
2D SNS junctions. We will make use of the quasiclassical
theory of superconductivity in the clean limit, which is based
on the so-called Eilenberger equations [55], to study the
impact on the phase-dependent LDOS of parameters such
as the junction length and width, the transmission of the
system, and the presence of a weak magnetic field. The use
of the quasiclassical Green’s function formalism allows us to
determine not only the ABSs, but also the phase dependence
of continuum of states outside the gap region. Moreover, we
revisit the relation between LDOS and supercurrent proposed
in Ref. [48] and show that that the correct formula should
relate the supercurrent density to the global density of states,
which leads to significant changes in the limit of relatively
short junctions. In such systems the quasiclassical treatment
is equivalent to the Bogoliubov–de Gennes description [56].

The rest of the paper is organized as follows. In Sec. II we
introduce the system under study and describe in detail the
quasiclassical Green’s function formalism that we employ to

FIG. 1. Schematic representation of the system under study
where a clean 2D normal metal of length L and width W is coupled to
two s-wave superconducting electrodes. The additional electrode that
appears on top of the normal region represents an eventual tunneling
probe that could be used to measure the local DOS in the normal
metal.

compute the LDOS in clean 2D SNS junctions. In particular,
we discuss in different sections how to compute the LDOS in
a fully transparent junction, how to account for the presence of
a potential barrier in the systems, and how to describe the role
of a finite width of the normal region and the presence of a
weak magnetic field. Section III is devoted to the description
of the main results of this work. In this section we illustrate
the impact of different factors, such as the length, the barrier
transmission, or the presence of a weak magnetic field, in the
LDOS in the normal region of a clean SNS junction. In Sec. IV
we present a discussion of the magnetic-field modulation
of the LDOS in close connection to the work of Ref. [48]
and present an analytical relation between LDOS and the
supercurrent in fully transparent junctions. Finally, Sec. V
contains a summary of our main results and conclusions.

II. SYSTEM AND METHOD

Our goal is to calculate the local DOS in a clean (no
impurities) 2D normal metal sandwiched by two identical
s-wave superconductors (see Fig. 1). We assume the normal
region to have a length L and a width W . Eventually, we shall
consider the role of interface scattering by considering the
presence of a potential barrier in the middle of the normal
metal characterized by a transmission coefficient D that takes
values from 0 to 1. In what follows, all the energy scales will
be expressed in units of the superconducting energy gap of
the electrodes, �, and the lengths will be compared to the
superconducting coherence length (inside the normal metal),
which in the clean limit is given by ξ = h̄vF/�, where vF

is the magnitude of the Fermi velocity. Moreover, in the
following discussion we shall set h̄ = 1 and kB = 1 in most
calculations, but reinsert them in selected final results.

In order to describe the electronic structure in this SNS
heterostructure we make use of the quasiclassical theory of
superconductivity, which in the clean case is based on the
Eilenberger equation of motion [55]. In thermal equilibrium,
this equation adopts the form [57]

−vF∂ĝ(r, vF, E ) = [−iE τ̂3 + �̂(r), ĝ(r, vF, E )], (1)

where ĝ is the quasiclassical Green’s function that contains
the full information about the equilibrium properties of the
system. This function depends on the energy E , the position r,
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the Fermi velocity vF, and it has the following matrix structure
in Nambu (electron-hole) space [57]:

ĝ =
(

g f
f † −g

)
. (2)

Moreover, τ̂3 = diag(1,−1) is the third Pauli matrix and �̂

is the gap matrix that contains the information about the
modulus and phase of the superconducting order parameter:

�̂(r) = �(r)

(
0 eiφ(r)

e−iφ(r) 0

)
= �(r)τ̂φ(r). (3)

Let us also say that the Green’s function in Eq. (2) obeys
the normalization condition ĝ2 = 1̂ ⇒ g2 + f f † = 1. On the
other hand, in what follows we shall make use of two addi-
tional Pauli matrices: τ̂φ from the gap matrix [see Eq. (3)],
and ˆ̄τφ = iτ̂φ τ̂3 = τ̂φ−π/2. The Pauli matrices introduced in
this way obey the standard spin algebra [τ̂3, τ̂φ] = 2i ˆ̄τφ

and the cyclic permutations, the anticommutation relations
{τ̂3, τ̂φ} = {τ̂3, ˆ̄τφ} = {τ̂φ, ˆ̄τφ} = 0, and the normalization con-
ditions τ̂ 2

3 = τ̂ 2
φ = ˆ̄τ 2

φ = 1̂.
From now on, our technical task is to solve the Eilen-

berger equation [see Eq. (1)], with the appropriate boundary
conditions (see below). Once this is done, the knowledge
of the quasiclassical Green’s function allows us to compute
any equilibrium property of our system of interest. Thus, for
instance, the local DOS is given by [57]

N (r, vF, E ) = N0Re[g(r, vF, E + iη)], (4)

where η is the broadening parameter and N0 = m/π is the
density of states per unit area of a 2D normal metal at
the Fermi energy. The Eilenberger equation (1) contains the
directional derivative along the Fermi velocity, which makes
this equation effectively one dimensional. This implies that
Eq. (4) gives us the resolved local DOS for a single trajectory
of certain length. In order to obtain the LDOS in 2D, we need
to average Eq. (4) over all possible trajectories:

N2D(r, E ) = 〈N (r, vF, E )〉vF , (5)

where 〈· · · 〉vF stands for the average over the Fermi velocity
directions.

Another property of interest in this work is the super-
current, i.e., the equilibrium current that can flow through
the heterostructure when there is a phase difference between
the superconducting electrodes. The supercurrent density at a
temperature T can be expressed in terms of the quasiclassical
Green’s functions as follows [58]:

j(r) = −eN0

∫ ∞

−∞
〈vFg(r, vF, E )〉vF tanh

(
E

2T

)
dE , (6)

where e is the elementary charge.

A. A fully transparent junction

We first consider a fully transparent (no potential barriers)
clean 2D SNS junction of infinite width. We assume that the
Fermi velocity is along the x direction, vF = vFex (see Fig. 2).
Rewriting Eq. (1) using the Pauli matrix set {τ̂φ, ˆ̄τφ, τ̂3} allows
us to obtain the following set of particular solutions for a

FIG. 2. A clean 2D SNS junction with a barrier (red) of trans-
parency D in the middle of the normal metal of a length L and infinite
width (blue). The coherent functions γ1,2 and γ̃1,2 are solutions of
the Riccati-like Eilenberger equations [see Eqs. (20) and (21)]. The
functions 	1(2) (	̃1(2)) are stable solutions obtained by integrating
the transport equation towards the barrier. The fully transparent case
corresponds to D = 1.

spatially inhomogeneous superconductor:

ĝs
h(φ) = 1



(−iE τ̂3 + �τ̂φ ), (7)

ĝs
±(φ, x) = 1

2

(�τ̂3 + iE τ̂φ ± i
 ˆ̄τφ )e±2
x/vF

= ĝ±(φ)e±2
x/vF , (8)

where 
 = √
�2 − E2. Here, ĝs

h(x) corresponds to a homoge-
neous solution, while ĝs

±(x) are spatially dependent ones. The
general solution of Eq. (1) is a linear combination of those and
depends on the boundary conditions. For the normal metal we
obtain correspondingly

ĝn
h = τ̂3, (9)

ĝn
±(x) = τ̂±e±2iEx/vF , (10)

where we defined τ̂± = 1
2 (τ̂1 ± iτ̂2).

We now solve the Eilenberger equation assuming that the
order parameter follows a step function: �(x) = �θ (|x| −
L/2), i.e., there is no inverse proximity effect. For this pur-
pose, we make the following ansatz for a trajectory starting
at x = −∞ in superconductor 1 with the phase −ϕ/2 going
straight through the normal metal with a length L and ending
in x = ∞ in superconductor 2 with the phase +ϕ/2:

ĝs(x < −L/2) = ĝs
h(−ϕ/2) + B1ĝ+(−ϕ/2)e2
x/vF , (11)

ĝs(x > L/2) = ĝs
h(ϕ/2) + B2ĝ−(ϕ/2)e−2
x/vF , (12)

ĝn(x) = Aĝn
h + A−ĝn

−(x) + A+ĝn
+(x), (13)

where A, A±, B1,2 are unknown coefficients, which have to
be determined with the help of the boundary conditions at
the interfaces. We assume that the Green’s function is a
continuous function throughout the system, which leads to the
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boundary conditions at the two SN interfaces

ĝs(−L/2) = ĝn(−L/2),

ĝn(L/2) = ĝs(L/2). (14)

Using these boundary conditions and solving the problem
in the opposite direction (ϕ/2 → −ϕ/2), we arrive at the
following solution for the Green’s function inside the normal
metal:

gn(ϕ, σ, E , θ )

= A = −i
E + √

�2 − E2 tan [EL/vF cos(θ ) + σϕ/2]√
�2 − E2 − E tan [EL/vF cos(θ ) + σϕ/2]

,

(15)

where σ = ± denotes the direction of propagation (left or
right), vF is the magnitude of the Fermi velocity, and θ is
the angle between the incoming trajectory and the direction
perpendicular to the interface (see Fig. 2). We note that
gn(ϕ, σ, E , θ ) does not depend on the position, i.e., it is
constant throughout the normal metal. The LDOS can now
be obtained from Eq. (4):

N (ϕ, σ, E , θ = 0) = N0Re[gn(ϕ, σ, E + iη, θ = 0)], (16)

which gives us the resolved LDOS for a single trajectory of a
length L. The LDOS in 2D [see Eq. (5)] adopts in this case the
form

N2D(ϕ, E ) =
∑

σ=±1

1

π

∫ π/2

−π/2
N (ϕ, σ, E , θ )dθ. (17)

B. Effect of a finite transparency

To investigate the role of a finite transparency through
the heterostructure, we consider now a SNS junction with
a normal metal of length L and infinite width featuring a
potential barrier in the middle (x = 0; see Fig. 2). The barrier
is characterized by the transmission coefficient D and the
corresponding reflection coefficient is denoted by R (R =
1 − D). The angular dependence of the D is taken from a
deltalike potential and it is given by [59]

D(θ ) = D0 cos2 θ

R0 + D0 cos2 θ
, (18)

where D0 is the transmission coefficient for θ = 0, i.e., for the
trajectory perpendicular to the interface and R0 = 1 − D0.

In order to solve the problem analytically it is convenient
to use the so-called Riccati parametrization in which for the
quasiclassical Green’s function is parametrized in terms of
two coherent functions as follows [59]:

ĝ(r, vF, E ) = 1

1 + γ γ̃

(
1 − γ γ̃ 2γ

2γ̃ −1 + γ γ̃

)
. (19)

With this parametrization the normalization condition ĝ2 = 1̂
is automatically fulfilled and from the Eilenberger equation
[see Eq. (1)], one can show that the coherent functions γ

and γ̃ satisfy the following decoupled first-order differential
equations [59]:

−vF∂γ (r) = −2iEγ (r) + �∗γ (r)2 − �(r), (20)

vF∂γ̃ (r) = −2iE γ̃ (r) + �γ̃ (r)2 − �∗(r). (21)

We now follow Ref. [59] and define the coherent functions
on the both sides of the barrier γ1, γ̃1, γ2, γ̃2, which are the
stable solutions for integration towards the interface. The
boundary conditions determine the solutions away from the
interface denoted by 	1, 	̃1, 	2, 	̃2 (see Fig. 2):

	1,2 = R1,2γ1,2(0) + D1,2γ2,1(0), (22)

	̃1,2 = R̃1,2γ̃1,2(0) + D̃1,2γ̃2,1(0), (23)

where R1, D1 and R̃1, D̃1 are given by

R1 = R
1 + γ2γ̃2

1 + Rγ2γ̃2 + Dγ1γ̃2
, (24)

D1 = D
1 + γ̃2γ1

1 + Rγ2γ̃2 + Dγ1γ̃2
, (25)

R̃1 = R
1 + γ2γ̃2

1 + Rγ2γ̃2 + Dγ2γ̃1
, (26)

D̃1 = D
1 + γ2γ̃1

1 + Rγ2γ̃2 + Dγ2γ̃1
. (27)

The coefficients R2, D2 and R̃2, D̃2 are given by the analogous
expressions. All the previous expressions fulfill Rj + Dj = 1
and R̃ j + D̃ j = 1.

To show how to obtain the expression for the quasiclassical
Green’s function, we consider here the solution for γ1 (Fig. 2).
The solution for γ1 of Eq. (20) in a homogeneous super-
conductor (with the superconducting phase φ = ϕ/2) and a
normal metal are, respectively,

γ s
1 (ϕ, E ) = �eiϕ/2

√
�2 − E2 − iE

, (28)

γ n
1 (ϕ, σ, E , θ ) = Ae2iEx/σvF cos(θ ), (29)

where A is an unknown coefficient. By applying the boundary
condition of Eq. (14) at the left SN interface (x = −L/2) we
obtain the solution in the normal metal as

γ n
1 (ϕ, σ, E , θ ) = �√

�2 − E2 − iE
eiϕ/2+iEL/σvF cos(θ ). (30)

By repeating the same procedure for the other γ (γ̃ ) functions
we obtain the full set of solutions in the normal metal:

γ̃ n
1 (ϕ, σ, E , θ ) = �√

�2 − E2 − iE
e−iϕ/2+iEL/σvF cos(θ ), (31)

γ n
2 (ϕ, σ, E , θ ) = �√

�2 − E2 − iE
e−iϕ/2+iEL/σvF cos(θ ), (32)

γ̃ n
2 (ϕ, σ, E , θ ) = �√

�2 − E2 − iE
eiϕ/2+iEL/σvF cos(θ ). (33)

Notice that since the LDOS does not depend on the position,
we have omitted the spatial arguments in the coherent func-
tions in Eqs. (30)–(33).

Now, the g component of the incoming Green’s function
(g1,in in Fig. 2) is obtained from [59]

g1,in = 1 − γ n
1 	̃n

1

1 + γ n
1 	̃n

1

, (34)
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where 	̃n
1 is defined in Eq. (23). Analogously, one can define

the outgoing Green’s function (g1,out in Fig. 2) arriving at the
solutions

g1,in =
(
1 − γ n

1 γ̃ n
1

)(
1 + γ n

2 γ̃ n
2

) + D
(
γ n

2 + γ n
1

)(
γ̃ n

1 − γ̃ n
2

)
(
1 + γ n

1 γ̃ n
1

)(
1 + γ n

2 γ̃ n
2

) + D
(
γ n

2 − γ n
1

)(
γ̃ n

1 − γ̃ n
2

) ,

(35)

g1,out =
(
1 − γ n

1 γ̃ n
1

)(
1 + γ n

2 γ̃ n
2

) + D
(
γ n

1 − γ n
2

)(
γ̃ n

1 + γ̃ n
2

)
(
1 + γ n

1 γ̃ n
1

)(
1 + γ n

2 γ̃ n
2

) + D
(
γ n

2 − γ n
1

)(
γ̃ n

1 − γ̃ n
2

) .

(36)

Finally, the total Green’s function in the normal metal is the
average of the incoming and the outgoing ones:

gn
1(ϕ, σ, E , θ ) = 1

2 [g1,in(ϕ, σ, E , θ ) + g1,out (ϕ, σ, E , θ )].

(37)

The single trajectory and the 2D LDOS are obtained by
inserting Eq. (37) into Eqs. (4) and (5), respectively.

C. Presence of a weak magnetic field and the effect
of the finite width

We now want to describe the effect of the presence of
a weak (perpendicular) magnetic field and also consider the
effect of having a finite width W in the normal region. By
weak magnetic field we mean that one can neglect the orbital
and Zeeman effects in the normal region and the role of
the field is simply to spatially modulate the superconducting
phase inside the electrodes. In other words, the magnetic field
only enters via the gauge-invariant superconducting phase
difference that becomes [7]

ϕ(y) = ϕ0 + 2π

(
�

�0

)
y

W
, (38)

where ϕ0 is a constant value superconducting phase differ-
ence, � is the magnetic flux enclosed in the normal region,
�0 = h/(2e) is the flux quantum, and y is the transverse
coordinate (parallel to the SN interfaces; see Fig. 3).

We assume that in the normal region the quasiparticles
are specularly reflected in the interfaces between the normal
metal and the vacuum. Moreover, for the sake of simplicity,
we consider only processes with one specular reflection. With
this assumption, the range for θ , the angle defining the quasi-
particle trajectory, depends on the geometrical parameters of
the junction as follows: −θ0(h) < θ < θ0(h), where θ0(h) =
arctan[2d (h)/L], and d (h) = W − h for h � W/2 and d (h) =
h for h > W/2 (see Fig. 3 for a definition of h).

To avoid reflections inside the superconductors we assume
they are infinitely wide. From Eq. (38) we can see that the

FIG. 3. A clean 2D SNS junction in the presence of a weak mag-
netic field. The normal region contains a potential with transparency
D(θ ) and it has a length L and a finite width W . The quasiparticles are
assumed to undergo specular reflection at the interface between the
normal metal and the vacuum. The superconducting phase difference
is a linear function of y due to the magnetic field.

superconducting phase difference depends on the y position
of the incoming and outgoing Green’s function at the SN in-
terface (x = −L/2). The averaged LDOS over all trajectories
[see Eq. (5)] adopts the form

N2D(ϕ, E )

=
∑

σ=±1

1

W

∫ W

0

1

2θ0(h)

∫ θ0(h)

−θ0(h)
N (ϕ, σ, E , θ, h)dθ dh.

(39)

D. The Josephson current

One of the questions that we discuss below is the relation
between the LDOS and the Josephson current that flows
across the junction. To establish such a relation, it is con-
venient to consider the case of a single trajectory at normal
incidence. In this case, the Josephson current [see Eq. (6)] can
be expressed as

I (ϕ) = −eN0vFW
∫ ∞

−∞
Js(ϕ, E , θ = 0) tanh

(
E

2T

)
dE , (40)

where W is the width of the normal metal and Js(ϕ, E , θ ) =
(1/2)Re[gn(ϕ, 1, E , θ ) − gn(ϕ,−1, E , θ )] is the spectral cur-
rent. By inserting Eq. (15) into the formula above, one obtains
the single-trajectory spectral current

Js(ϕ, E ) = Im

{
1

4

�2 sin ϕ

[�2 − 2(E + iη)2] cos [2(E + iη)L/vF] − 2(E + iη)
√

�2 − (E + iη)2 sin [2(E + iη)L/vF] + �2 cos ϕ

}

= −Re

{∑
σ=±

∫ E

0

(
vF√

�2 − (ε + iη)2
+ L

)
∂gn(ϕ, σ, ε + iη, θ = 0)

∂ϕ
dε

}
, (41)

where gn(ϕ, σ, ε, θ ) is given by Eq. (15). At zero temperature tanh(E/2T ) → sgn(E ).
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FIG. 4. The single-trajectory LDOS for a SNS junction as a
function of energy E and superconducting phase difference ϕ for
transparencies (a) D = 0.5 and (b) D = 1.0. The length of the
trajectory in both panels is L = 2.0ξ and the broadening parameter
was taken as η = 0.01�.

III. RESULTS

In this section we shall make use of the formalism devel-
oped in the previous one and explore systematically the role
of different parameters in the LDOS of a clean SNS junction
such as the length, the width, the transmission barrier, and the
presence of a weak external magnetic field.

A. The single trajectory case

For illustration purposes, we start in this section with the
analysis of the trajectory-resolved LDOS in the absence of
a magnetic field. In Fig. 4 we present the LDOS inside the
normal region for a single trajectory of length L = 2.0ξ as a
function of both the energy and the superconducting phase
difference for two values of the barrier transmission, D =
0.5 and D = 1.0. Let us recall that the LDOS is constant
throughout the normal metal. As expected, the main feature of
the LDOS is the presence of ABSs inside the gap that evolve

FIG. 5. Averaged LDOS of a SNS junction of length L = 2.0ξ as
a function of energy E and superconducting phase difference ϕ for
normal incidence transparencies (a) D0 = 0.5 and (b) D0 = 1.0. The
broadening parameter was taken as η = 0.01�.

with the phase difference. In particular, we see the appearance
of four different ABSs for this value of the length trajectory.
Notice that in the fully transparent case [see Fig. 4(b)] the
ABS energy is basically a linear function of the phase and,
in particular, two states have zero energy (i.e., they appear at
the Fermi level) at ϕ = ±π . In contrast, at finite transparency
[see Fig. 4(a)] there is a gap between the ABSs, which we
shall term Andreev gap, irrespective of the value of the phase
difference. In the case of perfect transparency, and with the
help of Eqs. (15) and (16), one can show that the energies of
the ABSs for a single trajectory are given by the solutions of
the following well-known equation [6]:

2EL

vF
± ϕ − 2 arccos

(
E

�

)
= 2πn, (42)

where n is an integer number, vF is the Fermi velocity, and
ϕ is the superconducting phase difference. For long trajec-
tories (L 	 ξ = vF/�) the previous equation reduces to (for
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FIG. 6. The averaged LDOS in the normal region of a SNS junction as a function of energy and the superconducting phase difference.
The different panels correspond to different values of the junction length, as indicated in the legends, and to two different values of the barrier
transparency: (a)–(d) D0 = 0.5 and (e)–(h) D0 = 1.0. The width is considered to be infinite and the broadening parameter is η = 0.01�.

energies much smaller than �)

2EL

vF
± ϕ = (2n + 1)π. (43)

From this expression we see that in this long-junction limit the
energy of the ABSs depends linearly on the phase, something
that it is already apparent in Fig. 4(b).

B. The 2D case

Let us turn now to the analysis of the angle-averaged LDOS
in the normal metal for junctions of infinite width and in the
absence of an external magnetic field. In Fig. 5 we present
the LDOS inside the normal region for a junction of length
L = 2.0ξ as a function of both the energy and the phase
difference. The two panels correspond to two different values
of the barrier transmission for normal incidence, D0 = 0.5
and D0 = 1.0. Let us recall that we are using an angular
dependence of the transmission coefficient given by Eq. (18).
As one can observe, this angle-averaged LDOS exhibits many
of the features of the single-trajectory case (see Fig. 4), the
main difference being the larger DOS inside the gap due to the
contributions of trajectories of different lengths. In particular,
we still see that the role of the finite transparency is to induce
a finite and hard Andreev gap for any phase value, while such
a gap vanishes in the case D0 = 1.0 for ϕ = ±π .

To understand the role of the junction length, we present in
Fig. 6 the results for the LDOS by varying the length from
the short-junction case (L 
 ξ ) to the long-junction limit
(L 	 ξ ). As one can see, the number of ABSs increases with
increasing junction length. In the short-junction limit [L → 0;
see Fig. 6, panels (a) and (e)], the LDOS exhibits the same
behavior as in the single-trajectory case due to an absence
of the contributions of trajectories of various lengths. The
Andreev spectrum of a junction with the intermediate normal

metal length [L = 1.0ξ ; see Figs. 6(b) and 6(f)] is similar to
the one shown before in Fig. 5. By increasing the junction
length, the Andreev gap diminishes [see Figs. 6(c) and 6(g)
for L = 5ξ ], and the proximity effect tends to disappear
altogether for very long junctions [see Figs. 6(c) and 6(g) for
L = 10ξ ].

C. Presence of a weak magnetic field and the effect
of a finite width

In experimental setups, like that of Ref. [48], the super-
conducting phase difference is controlled by incorporating the
weak link into a superconducting loop and applying a weak
magnetic field. For this reason, we analyze in this section
the role of the application of a weak external magnetic field
perpendicular to the SNS junction and study also the role
of having a finite width. As explained in Sec. II C, by weak
magnetic field we mean that the only role of the external field
is to modulate the superconducting phase difference inside
the electrodes and along the SN interfaces. This modulation
leads to the following expression for the gauge-invariant phase
difference:

ϕ(y) = ϕ0 + 2π

(
�

�0

)
y

W
, (44)

where y is the transverse coordinate along the SN interfaces
(see Fig. 3), ϕ0 is a constant, � is the magnetic flux enclosed
in the normal region, and �0 is the flux quantum.

Here, we focus on the case in which the magnetic field
is only applied to the junction and the constant part of the
superconducting phase difference, ϕ0, can take an arbitrary
value. In the next section we shall consider the situation where
the junction is incorporated into a superconducting loop and
ϕ0 is determined by the magnetic flux enclosed in the loop.
Making use of the formalism detailed in Sec. II C, we have
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FIG. 7. Averaged LDOS in fully transparent 2D SNS junctions as a function of energy and the magnetic flux � enclosed in the junction
for several values of the constant part of the superconducting phase difference ϕ0. Panels (a)–(c) correspond to a length L = 2.0ξ and a width
W = 10ξ , (d)–(f) to L = 2.0ξ and W = 2.0ξ , and (g)–(i) to L = 0.01ξ and W = 10ξ . The broadening parameter was taken in all cases as
η = 0.01�.

computed the results shown in Fig. 7 for the averaged LDOS
as a function of energy and the magnetic flux enclosed in the
junction for different values of the length and width of the
normal region and the phase ϕ0. In particular, Figs. 7(a)–7(c)
show the results for the case of a junction with an intermediate
length (L = 2.0ξ ) and the width W = 10.0ξ . In this case and
for weak magnetic fields (� � 0.5�0), the features related
to the ABSs are smeared but they are still clearly visible.
In the cases of ϕ0 = 0, π , the ABSs are visible as peaks
centered around the zero magnetic field, while in the case
ϕ0 = π/2 the peaks are shifted to � = �0/4. For stronger
magnetic fields � > �0, and irrespective of the value of ϕ0,
the features related to the ABSs are strongly suppressed due
to the destructive interference between different quasiclassical
trajectories that see effectively different values of the phase
difference. Notice also that all the structures are symmetric

with respect to the Fermi energy (E = 0), but the symmetry
with respect to zero magnetic field does not hold in the case
of ϕ0 = π/2.

In Figs. 7(d)–7(f) we also show the results for an interme-
diate junction length L = 2.0ξ , but this time the junction is
narrower with W = 2.0ξ . Comparing the results with those
of the much wider junction shown in Figs. 7(a)–7(c), we see
that the width of the junction does not have a very strong
impact. This can be explained with the help of Eq. (44).
That formula tells us that the range phase ϕ(y) as a function
of y is independent of the width W and only depends on
the magnetic flux: ϕ ∈ [ϕ0, ϕ0 + 2π�/�0]. Hence, the phase
pattern in Figs. 7(a)–7(c) and 7(d)–7(f) are practically the
same for the equal phase biases ϕ0. From the discussions
above, it is obvious that the largest contributions to the An-
dreev spectrum come from the shortest trajectories. The main
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FIG. 8. (a) Averaged LDOS in the normal region of a clean SNS junction embedded in a superconducting loop, as schematically shown in
the right inset. The LDOS is shown as a function of the energy and the magnetic flux through the entire loop of area Aloop. In this case the SNS
junction is fully transparent, the length is L = 0.2ξ , the width W = 0.7ξ , and the broadening parameter η = 0.01�. (b) The corresponding
Josephson current normalized by the critical current at zero field.

difference therefore appears in the slightly large Andreev gap
for W = 2ξ compared to the case W = 10ξ due to absence of
the contribution of long trajectories.

To explore the role of the junction in the presence of a
weak magnetic field, we present the results for a junction of
length L = 0.01ξ and width W = 10ξ in Figs. 7(g)–7(i). As in
previous cases, for the weak fields (� � �0/2) the ABS peaks
are smeared but still visible, while for stronger magnetic fields
they disappear. The peaks for ϕ0 = 0, π are located around
zero field, while for ϕ0 = π/2 they are shifted to � = �0/4.
The Andreev gap is empty in this case because we only have
contributions from short trajectories. In the case of ϕ0 = 0,
panel (g), the Andreev peaks are shifted to the edge of the gap
(E ≈ �). For ϕ0 = π [see panel (i)], we observe only one
ABS in each branch of the spectrum in contrast to the case of
L = 2.0ξ where we have two. The geometric symmetry of the
pattern is similar to the previous cases.

IV. DISCUSSION

A. LDOS of a SNS junction embedded in a
superconducting loop

As mentioned above, the practical way to investigate the
phase dependence of the LDOS in a weak link is by in-
corporating it into a superconducting loop and applying an
external magnetic field. This is, for instance, what was done
in Ref. [48] in which the authors used graphene as a normal
metal in the weak link. Inspired by this experiment, we now
consider a setup like the one shown in the inset of Fig. 8(a)
where the SNS junction of area AN is embedded in a super-
conducting loop of total area Aloop. We assume, like in the
experiments, that an external magnetic field is applied such
that the total magnetic flux enclosed in the whole loop is
equal to �loop. This flux determines now the constant part of
the phase difference, ϕ0, which is given by ϕ0 = 2π�loop/�0.
Thus, the gauge-invariant phase difference is modulated along
the SN interfaces as

ϕloop(y) = 2π
�loop

�0

(
1 + AN

Aloop

y

W

)
, (45)

where we insist that �loop is the magnetic flux enclosed in the
whole loop rather than the flux enclosed in the junction.

To illustrate the magnetic flux modulation of the LDOS, we
follow Ref. [48] and assume that Aloop/AN = 7.5 and consider
a normal metal of length L = 0.2ξ and width W = 0.7ξ . We
show in Fig. 8(a) the modulation of the energy dependence of
the LDOS of this junction with the magnetic flux enclosed in
the whole superconducting loop. As expected, the modulation
of the LDOS is progressively suppressed as the magnetic flux
increases, but it does it much more slowly than in the cases
shown in Fig. 7 because the flux enclosed in the normal region
of the junction is much smaller than the total flux enclosed
in the loop (7.5 times smaller). Notice that in the first cycles
one can clearly see a hard Andreev gap (no DOS close to the
Fermi energy) that only closes when the total flux is close to
a multiple of the flux quantum. For completeness, we show
in Fig. 8(b) the corresponding modulation of the supercurrent
with the magnetic flux enclosed in the loop. As one can see,
the current is strongly nonsinusoidal and it decays as the
magnetic flux increases. The results presented here for the
LDOS actually resemble those reported in Ref. [48] for a
S-graphene-S junction, especially for high gate voltages when
the graphene Fermi energy is away from the Dirac point. The
main differences are as follows: (i) the experimental results
typically show a soft gap at low energies, contrary to the hard
gap that we obtain, and (ii) the modulation of the LDOS in our
simulations decays with the magnetic flux more rapidly than
in the experiments. In any case, it is important to emphasize
that we do not aim here at reproducing or explaining the
results of Ref. [48] since our model does not incorporate any
specific physics of graphene. Moreover, the authors of that
reference estimated a mean free path of le ∼ 140 nm and a
superconducting coherence length of ξ ∼ 590 nm, while the
junction length was about 380 nm. This means that those
experiments were likely in an intermediate situation between
the clean and the dirty limit.

B. Relation between the density of states
and the Josephson current

Now, we want to investigate the relation between the
DOS and the dc Josephson current. Let us recall that in a
short Josephson junction (L 
 ξ ), the whole supercurrent is
carried by the ABSs. In particular, for a single-channel point
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D. NIKOLIĆ, W. BELZIG, AND J. C. CUEVAS PHYSICAL REVIEW RESEARCH 1, 033031 (2019)

contact of transparency D, the ABS energies are given by
E±

A (ϕ) = ±�
√

1 − D sin2 ϕ/2. These states carry opposite
supercurrents [35,36,60]

I±(ϕ) = 2e

h̄

∂E±
A

∂ϕ
, (46)

which are weighted by the occupation of the ABSs. Inspired
by this expression, Bretheau et al. [48] proposed the following
heuristic formula that relates the Josephson current and the
LDOS at zero temperature and for a junction of arbitrary
length:

I (ϕ) = − W

2�0

∫ ∞

−∞
sgn(−E )Js(ϕ, E , L)dE , (47)

where �0 = h̄/2e is the reduced magnetic flux quantum, W
is the width of the normal metal, and Js is the spectral current
given by

Js(ϕ, E , L) = L
∫ E

0

∂Nn(ϕ, ε, L)

∂ϕ
dε, (48)

where L is the length of the normal metal and Nn is the
corresponding LDOS. This formula gives exactly Eq. (46)
whenever we deal with a DOS of the form

Nn(ϕ, E ) = 1
2 {δ[E − E+

A (ϕ)] + δ[E − E−
A (ϕ)]}, (49)

which, however, is not always true. Actually, in Sec. II D
we proved that Eq. (48) is not correct for a single trajectory
solution by comparing it to the analytical result for a junction
of perfect transparency [see Eq. (41)]. Here we propose a
modified formula based on the global DOS instead. This
global DOS is defined as an integral of the LDOS over the
whole space, which for a single-trajectory case (1D) adopts
the form

Ntotal =
∫ ∞

−∞
N (x)dx = Re

[ ∫ ∞

−∞
g(x)dx

]
, (50)

where N (x) is the LDOS along the system. By inserting
the single-trajectory solution for the Green’s function of
Eq. (15) into the previous formula and comparing the result
with Eq. (41), one can show that the following formula is
fulfilled:

Js(ϕ, E , L) = −
∫ E

0
dε

∫ ∞

−∞

∂N (x, ϕ, ε, L)

∂ϕ
dx

= −
∫ E

0

∂Ntotal(ϕ, ε, L)

∂ϕ
dε. (51)

The minus sign is due to the function sgn(−E ) in Eq. (47).
To illustrate the difference between this expression and the
heuristic formula above, we present in Fig. 9 a comparison
between our result and the heuristic formula summarized in
Eqs. (47) and (48). This comparison is made for a single
trajectory in a fully transparent junction and we present the
results for junctions of different lengths. As one can see, there
are clear deviations between these two formulas and they only
coincide in the limit of very long junctions. Mathematically,
this can be understood with the help of Eq. (41). In the limit
of sufficiently long junctions L 	 vF/

√
�2 − ε2 and the exact

FIG. 9. The zero-temperature current-phase relation for a single
trajectory in a fully transparent junction for various lengths. The
solid lines correspond to the exact results calculated from Eq. (40),
while the dashed lines correspond to the heuristic formula of Eq. (47)
proposed in Ref. [48] (dashed lines). The broadening parameter was
taken as η = 0.001�.

formula reduces to the heuristic one. In the opposite limit, i.e.,
for short trajectories, the disagreement between both results
is quite apparent. Note that the normal state resistance that
appears in Fig. 9 is defined as RN = 2π/We2kF. In order to
understand the difference on an analytic level, we can have a
look at the local density of states. From Eq. (15) we can write
in the subgap range

gn(ϕ, E ) = −i cot[ϕ/2 − γ̃ (E )], (52)

where we defined the energy-dependent phase factor γ̃ (E ) =
2EL/vF + arccos(E/�). The Green’s function has poles for
ϕ/2 − γ̃ (EBn) = nπ , where n = 0,±1,±2, . . .. We find the
local density of states

N (ϕ, E )

N0
=

∑
n

δ[E − EBn(ϕ)]

�L/vF + 1/

√
1 − E2

Bn(ϕ)/�2
. (53)

The difference to the global density of states (only the δ

functions) is related to the leakage of Andreev states into the
superconductor, which strongly depends on the energy of the
bound state (and hence on the phase). The phase dependence
is most striking in the short-junction limit. Here we obtain a
single bound state at EB(ϕ) = � cos(ϕ/2) and therefore

N (ϕ, E )

N0
= sin(ϕ/2)δ[E − EB(ϕ)]. (54)

Obviously, the local density of states differs drastically
from the simple δ function and this explains the deviations
from the heuristic formula and the full result illustrated
in Fig. 9. As a final remark on the heuristic formula, we
note that we have checked numerically that our relation
(51) for junctions of finite transparency works correctly as
well. In particular, in the limit of zero length, one ob-
tains in fact N (ϕ, E )/N0 = √

D sin(ϕ/2)δ[E − EB(ϕ)], where
EB(ϕ) = �

√
1 − D sin2(ϕ/2). Hence, one has to be careful
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when extracting the spectral supercurrent density and the
current-phase relation from local tunneling measurements.

V. CONCLUSIONS

With the goal to help to interpret future experiments, we
have presented here a comprehensive theoretical study of
the LDOS in clean 2D SNS junctions. Making use of the
quasiclassical Green’s function formalism, we have calculated
both the LDOS and the Josephson current as a function of
parameters such as the length and the width of the junction,
the transparency of the system, and we have studied the role
of a weak magnetic field.

First, we have shown how discrete ABSs become visible
inside the gap for short junctions. At finite reflectivity R a
phase-independent minigap ∼√

R� is present, but the LDOS
still reflects the energies of the Andreev bound states. The
phase dependence above the gap is rather weak and further
decreased by a finite reflection.

Next, we have studied the effect of a finite length of the
junction. A finite reflection still leads to a minigap, but this
diminishes for longer junction. Finally the spectrum of a long
junction with the linear phase-dependent Andreev states is
emerging.

The effect of a magnetic field leads to a rather complex
behavior. Interfering trajectories due to the finite flux lead
to a vanishing phase dependence of the density of states.
This is in analogy to usual Fraunhofer suppression of the
Josephson critical current for a magnetic flux threading the
junction. Generically, we observe that for ballistic transport,
the minigap closes at a phase difference of π and reopens for
a finite flux. At large fluxes there is no gap anymore.

To make a connection to the experiment of Bretheau et al.
[48], we have studied the experimental setup, for which the
phase difference is imposed by an additional loop and a
magnetic field leads to phase bias simultaneously to a flux
threading the junction. As a result we qualitatively reproduce
the LDOS pattern, but find, surprisingly, a stronger suppres-
sion with magnetic field compared to experiment. We attribute
this to a possible inhomogeneous current distribution in the
experiment caused by local perturbations.

Finally, we have investigated the relation between the
LDOS and the Josephson current proposed in Ref. [48]. We
have shown that, in general, it has to be modified because
the spectral weight of the bound states in the normal region
strongly depends on phase. We propose a new relation, which
takes this effect into account and will have important im-
plications for future experiments. Unfortunately, the relation
is less universal and requires a more sophisticated modeling
by theory. This is most likely even worse in the presence of
impurities.
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