
PHYSICAL REVIEW RESEARCH 5, 033176 (2023)

Full counting statistics of Yu-Shiba-Rusinov bound states

David Christian Ohnmacht * and Wolfgang Belzig
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

Juan Carlos Cuevas
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),

Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Received 8 May 2023; revised 26 July 2023; accepted 14 August 2023; published 11 September 2023)

With the help of scanning tunneling microscopy (STM) it has become possible to address single magnetic
impurities on superconducting surfaces and to investigate the peculiar properties of the in-gap states known
as Yu-Shiba-Rusinov (YSR) states. These systems are an ideal playground to investigate multiple aspects of
superconducting bound states, such as the occurrence of quantum phase transitions or the interplay between
Andreev transport physics and the spin degree of freedom, with profound implications for disparate topics like
Majorana modes or Andreev spin qubits. However, until very recently YSR states were only investigated with
conventional tunneling spectroscopy, missing the crucial information contained in other transport properties
such as shot noise. In this paper we adapt the concept of full counting statistics (FCS) to provide the deepest
insight thus far into the spin-dependent transport in these hybrid atomic-scale systems. We illustrate the power
of FCS by analyzing different situations in which YSR states show up including single-impurity junctions with
a normal and a superconducting STM tip, as well as double-impurity systems where one can probe the tunneling
between individual YSR states [Nat. Phys. 16, 1227 (2020)]. The FCS concept allows us to unambiguously
identify every tunneling process that plays a role in these situations and to classify them according to the charge
transferred in them. Moreover, FCS provides all the relevant transport properties, including current, shot noise,
and all the cumulants of the current distribution. In particular, our approach is able to reproduce the experimental
results recently reported on the shot noise of a single-impurity junction with a normal STM tip [Phys. Rev. Lett.
128, 247001 (2022)]. We also predict the signatures of resonant (and nonresonant) multiple Andreev reflections
in the shot noise and Fano factor of single-impurity junctions with two superconducting electrodes and show
that the FCS approach allows us to understand conductance features that have been incorrectly interpreted in
the literature. In the case of double-impurity junctions we show that the direct tunneling between YSR states is
characterized by a strong reduction of the Fano factor that reaches a minimum value of 7/32, a significant result in
quantum transport. The FCS approach presented here can be naturally extended to investigate the spin-dependent
superconducting transport in a variety of situations, such as atomic spin chains on surfaces or superconductor-
semiconductor nanowire junctions, and it is also suitable to analyze multiterminal superconducting junctions,
irradiated contacts, and many other basic situations.
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I. INTRODUCTION

Yu-Shiba-Rusinov (YSR) bound states are one of the most
fundamental consequences of the interplay between mag-
netism and superconductivity at the atomic scale [1–3]. They
appear when a magnetic impurity is coupled to one or sev-
eral superconducting leads, and they have been extensively
investigated in the context of STM experiments and impuri-
ties on superconducting surfaces [4–31], for recent reviews
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see Refs. [32,33]. The appeal of these hybrid junctions is
manifold. On the one hand, they enable the investigation of
a fundamental quantum phase transition [6,7,16,18,27]. They
also provide the chance to study states that are the precursors
of Majorana modes, which might potentially appear when
magnetic impurities are combined to form magnetic chains
[34–40]. On the other hand, these systems are also a new
kind of Andreev spin qubit, a topic that is rapidly growing
in the community of superconducting qubits [41–44]. More
important for the topic of this paper is the fact that magnetic
impurities on superconducting surfaces offer the possibility
of exploring the role of the spin degree of freedom in situa-
tions where the electronic transport is dominated by Andreev
reflections, which is a topic of great interest for the field of
superconducting spintronics [45,46].

Until very recently, YSR states had been only investi-
gated by the means of standard tunneling spectroscopy, i.e.,
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via current or conductance measurements. This has already
allowed us to elucidate many basic properties of these su-
perconducting bound states. However, as it is well known in
mesoscopic physics, the analysis of other transport properties,
such as shot noise, may provide very valuable information
that is out of scope of conventional tunneling spectroscopy
[47,48]. An experimental breakthrough illustrating this idea
was recently reported in which the shot noise through a mag-
netic impurity featuring YSR states was measured [49]. These
experiments revealed the power of shot noise measurements
by accessing scales like the intrinsic YSR lifetimes, which
are very difficult to obtain via conductance measurements.
These experiments call for more comprehensive theories able
to provide knowledge about the YSR states and their trans-
port properties beyond the conventional calculations of the
charge current. In this regard, the concept of full counting
statistics (FCS), introduced some time ago in the context of
quantum transport in mesoscopic systems [50,51], is clearly
the most powerful tool that we have at our disposal to
reach this goal. This concept has already provided unprece-
dented insight into the physics of superconducting junctions
[52–56], which includes not only the current, shot noise, and
all possible cumulants of the current distribution, but also
the possibility to unambiguously identify the contribution
of every possible tunneling process and the charge trans-
ferred in it. Unfortunately, the concept of FCS has not been
used in the context of the superconducting hybrid junctions
featuring YSR states mainly due to technical difficulties im-
plementing the spin-dependent scattering that occurs in these
systems.

In this paper we fill this void by providing a systematic
study of the FCS in a variety of junctions featuring YSR
bound states. Those cases include single-impurity junctions
with one and two superconducting leads, and two-impurity
systems in which the tunneling between individual YSR states
has been recently reported for the first time [25,26]. In all
these cases we show how the concept of FCS allows us to
identify all the relevant tunneling processes and to classify
them according to the charge transferred in them, providing so
a very deep insight into the physics of YSR states. Moreover,
from the knowledge of the FCS in these situations we obtain
all the relevant transport properties: current, shot noise, and all
the cumulants of the current distribution. Among the main re-
sults of this paper we can highlight the full analysis of the shot
noise through a single magnetic impurity coupled to a normal
and to a superconducting lead in excellent agreement with
very recent experimental results [49]. This analysis reveals
the possibility to access energy and time scales that are usually
out of the scope of conductance measurements, and it provides
a very fresh insight into the nature of a resonant Andreev re-
flection. We also present very concrete predictions for the shot
noise and Fano factor in the case in which a magnetic impurity
is coupled to two superconducting leads for arbitrary junc-
tion transparency. In particular, we elucidate the signatures
of resonant and YSR-mediated multiple Andreev reflections
(MARs) in both the current and shot noise and amend some
misinterpretations related to these processes that have been
reported in the literature. In the case of two-impurity junc-
tions, we demonstrate that the direct quasiparticle tunneling
between YSR states provides an unique signature in the noise

and Fano factor. In particular, this tunneling can be identi-
fied by a strong reduction of the Fano factor at the resonant
voltage at which the two states align and it can reach a min-
imum value of 7/32. We quantitatively explain this result in
terms of the quasiparticle tunneling between two sharp levels,
which constitutes an extreme example of quantum tunneling.
It is also worth stressing that the FCS approach presented
here can be readily adapted to analyze the charge trans-
port properties in a plethora of superconducting nanoscale
junctions including magnetic atomic chains, superconductor-
semiconductor nanowire hybrid junctions, multiterminal
Josephson junctions, irradiated junctions, just to mention a
few.

The rest of this paper is organized as follows. First, in
Sec. II we remind the basics of FCS in the context of elec-
tronic quantum transport. Then, Sec. III presents the details
on how the FCS can be obtained in practice in all the systems
analyzed in this paper with the help of a powerful Keldysh
action. Section IV shows how this action can be used in
combination with a mean-field model for the YSR states to
describe the FCS in single-impurity junctions. The results of
this combination are discussed in detail in Sec. V for the
case in which an impurity is coupled to a superconducting
lead and a normal reservoir. In particular, we focus on the
analysis of the resonant Andreev reflection that can take place
in the presence of YSR states and we present a detailed
discussion on very recent shot noise experiments [49]. This
analysis is extended to the case of single magnetic impuri-
ties with two superconducting electrodes in Sec. VII. In this
case, we focus on the prediction of the signatures of MARs
in the noise and Fano factor to guide future experiments.
Section VIII deals with the case of two-impurity junctions
in close connection with recent experiments [25,26], and
shows how the tunneling between individual YSR states is
revealed in the current fluctuations. Finally, we present an
outlook and our main conclusions in Sec. IX. Some of the
technical details related to the Keldysh action and the cor-
responding Green’s functions are discussed in Appendices A
and B.

II. FULL COUNTING STATISTICS: A REMINDER

The electronic transport in a quantum device can be viewed
as a stochastic process, which can be completely characterized
by a probability distribution. Most experiments focus on the
measurement of the electrical current, i.e., the average of that
distribution. However, it has been shown in numerous systems
that nonequilibrium current fluctuations (shot noise), i.e., the
second cumulant of the current distribution, contain very valu-
able information outside the scope of current measurements
such as the charge of the carriers or the distribution of conduc-
tion channels [47,48]. Ideally, one would like to have access
to all the cumulants of the current distribution to completely
characterize the electronic transport. This idea was developed
in the context of quantum optics and led to the introduction of
the concept of photon counting statistics [57], which turned
out to be key to characterize quantum states of the light
such as those realized in a laser. In the 1990s, Levitov and
Lesovik adapted this concept to mesoscopic electron transport
[50,51], in which the electrons passing a certain conductor are
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counted. Later on, Nazarov and coworkers showed that these
ideas could be combined with the powerful Keldysh-Green’s
function approach [48,58,59], which enabled the analysis of
the electron counting statistics in numerous situations includ-
ing those that involve superconducting electrodes [52–54].
In this section, we briefly remind the reader of the basics
of full counting statistics in the context of quantum elec-
tronic devices, and in Sec. III we shall address how it can
be computed in the situations in which we are interested in
this paper, namely superconducting hybrid junctions featuring
YSR states.

Since the charge transfer in any junction is fundamentally
discrete, one can aim at counting those charges. In a mea-
suring time t0, there is a certain likelihood for N particles to
cross the junction, which is described by a set of probabilities
{Pt0 (N )}N , the so-called full counting statistics (FCS), which
contains all the information concerning the possible transport
processes. In practice, the FCS can be obtained from the
so-called cumulant generating function (CGF) At0 (χ ), which
is given by

At0 (χ ) = ln

(∑
N

Pt0 (N )eıNχ

)
, (1)

where χ is the so-called counting field. Notice that because∑
N Pt0 (N ) = 1, the CGF is normalized: At0 (0) = 0. The

counting field χ is the conjugate variable to the charge number
N and it is used as an auxiliary variable. By performing
derivatives of the CGF with respect to the counting field, one
obtains the cumulants Cn as follows:

Cn = (−ı)n ∂nAt0 (χ )

∂χn

∣∣∣∣
χ=0

. (2)

Thus, for instance, the first cumulant reads

C1 =
∑

N

NPt0 (N ) = 〈N〉, (3)

which is the expectation value of the charge number. Physi-
cally, it corresponds to the current I averaged over the time
interval t0, I = eC1/t0. The second cumulant is given by

C2 =
∑

N

N2Pt0 (N ) −
(∑

N

NPt0 (N )

)2

= 〈N2〉 − 〈N〉2, (4)

which describes the variance. This second cumulant can be
related to the zero-frequency shot noise S via S = 2e2C2/t0.
An important measurable quantity is the so-called Fano factor,
which is given by

F ∗ = S

2e|I| = C2

|C1| , (5)

which is easily accessible in the framework of FCS. The Fano
factor is a measure of the effective charge of the carriers in
a system when the junction transmission is low and tunneling
events are uncorrelated (Poissonian limit). In superconducting
(SC) junctions, the Fano factor can be super-Poissonian (F ∗ >

1), indicating that the transferred charge is larger than one due

to the occurrence of Andreev reflections. In contrast, resonant
tunneling might result in a so-called sub-Poissonian (F ∗ < 1)
Fano factor, where the interpretation of the Fano factor as an
effective charge breaks down [47].

In the simple case of a two-terminal device featuring
a single conduction channel characterized by an energy-
independent transmission coefficient τ , the CGF at zero
temperature reads (ignoring spin)

At0 (χ ) = eV t0
h

ln(1 + τ (eıχ − 1)), (6)

where V is the bias voltage between the two terminals. The
interpretation of this result is that the transport is dominated
by single-electron tunneling with a probability P1 = τ . This
interpretation becomes apparent when considering the corre-
sponding full counting statistics, which is given by

Pt0 (N ) =
(

M

N

)
τN (1 − τ )M−N . (7)

This is a binomial distribution where we define the number of
attempts M = �eV t0/h�, where � � describes the next highest
integer. This is justified by the fact that t0 is chosen to be
sufficiently large. Hence, it is evident that the transport can
be described as N particles being transmitted in individual
tunneling processes transferring a single-electron charge with
a probability τ .

In the case of junctions containing SCs, there are ad-
ditional multiparticle tunneling processes, namely MARs,
whose probabilities can also be obtained from the knowledge
of the CGF. As we shall show below, in the case where there is
no spin-flip scattering the CGF of a superconducting contact
can be expressed as [55,56]

At0 (χ ) = t0
2h

∑
σ

∫
dE ln

[ ∞∑
n=−∞

Pσ
n (E ,V )eınχ

]
, (8)

where Pσ
n (E ,V ) is the spin-, energy-, and bias-dependent

probability of a transport process transferring n electron
charges with spin σ . Thus, the evaluation of the CGF in the
different physical situations that we shall address in this paper
will allow us to classify the different tunneling processes that
can take place according to the charge they transfer, something
that cannot be objectively done with any other theoretical
method. Moreover, from the knowledge of those probabilities
we can readily obtain the different transport quantities: cur-
rent, noise, and higher-order cumulants. In the most general
case of spin-flip, like in the example of Sec. VIII, the main
difference will be the impossibility to spin-resolve the tunnel-
ing probabilities (see discussion below).

III. KELDYSH ACTION

Our goal is to obtain the probabilities of the different tun-
neling processes Pn(E ,V ) from the knowledge of the CGF,
like in Eq. (8). Here, we shall make use of a remarkable result
obtained by Snyman and Nazarov [60,61] in which the CGF of
an arbitrary mesoscopic/nanoscopic device can be expressed
in terms of two basic ingredients: (i) the Green’s functions of
the electron reservoirs or leads, which can be superconduct-
ing, and (ii) the scattering matrix of the device in the normal
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state. Technically speaking, these researchers showed that the
CGF of any type of junction (ignoring inelastic interactions)
can be expressed as (in this section we drop the subindex t0
and omit the prefactor t0/h)

A(χ ) = 1

2
Tr ln

⎡
⎢⎢⎢⎣ 1̂ + Ĝ(χ )

2
+ Ŝ

1̂ − Ĝ(χ )

2︸ ︷︷ ︸
Q̂(χ )

⎤
⎥⎥⎥⎦− 1

2
Tr ln Q̂(0),

(9)
where Ĝ(χ ) contains the information of the reservoir Green’s
functions (GFs) and Ŝ is the normal-state scattering matrix
whose structure will be explained in what follows. First, Ĝ(χ )
is a GF in the lead-time-Keldysh-spin-Nambu space, denoted
by the symbol ( ˆ ). In this paper, we focus on two-terminal
settings for which this GF adopts the generic form

Ĝ(χ ) = diag(GL(χ ), GR ), (10)

which is a block-diagonal matrix with the two time-Keldysh-
spin-Nambu GFs as entries on the diagonal. The counting
field, similarly to the voltage, can be gauged away from the
right onto the left lead. In what follows the right terminal will
always be superconducting GR = GSC, while the left terminal
can be either normal or superconducting. The GFs are in fact
infinite matrices in time space, which means that the element
(t, t ′) of the GF GL,R(χ ) is the Keldysh GF ǧL,R(χ, t, t ′). In
other words, the lead GF is an infinitely large matrix in time
space whose entries are 16 × 16 matrices in lead-Keldysh-
spin-Nambu space. For a detailed explanation of the structure
of the GFs we refer to Appendix A. Equivalently, the normal
state scattering matrix Ŝ is also an infinite matrix in time space
whose (t, t ′) entry is a 16 × 16 matrix in lead-Keldysh-spin-
Nambu space, which we denote as s̃(t, t ′), where the symbol
( ˜ ) indicates that the scattering matrix is expressed in lead-
Keldysh-spin-Nambu space. However, the scattering matrix
only depends on the relative time trel = t − t ′, meaning that
s̃(t, t ′) = s̃(trel ). To elaborate on the structure of the scattering
matrix, in a two-terminal setting it can be written in lead space
as follows:

s̃(trel ) =
(
ř(trel ) ť′(trel )
ť(trel ) ř′(trel )

)
, (11)

where ť(trel ) is the transmission matrix and ř(trel ) the reflection
matrix in Keldysh-spin-Nambu space. Upon a Fourier trans-
formation the scattering matrix reads

s̃(E ) =
(
ř(E ) ť′(E )
ť(E ) ř′(E )

)
. (12)

The scattering matrix is unitary, meaning that s̃(E )s̃†(E ) = 1̃,
where 1̃ is the identity in lead-Keldysh-spin-Nambu space. If
the transport preserves time-reversal symmetry, the scattering
matrix is symmetric, meaning that s̃(E ) = s̃T (E ). The scat-
tering matrix depends on the system under consideration and
below we shall show how it can be obtained from models for
the description of YSR states.

Fourier transforming, we can write Eq. (9) in a Floquet
representation as follows:

A(χ ) = 1

2
Tr ln

⎡
⎢⎢⎢⎣ 1̆ + Ğ(χ, E )

2
+ S̆(E )

1̆ − Ğ(χ, E )

2︸ ︷︷ ︸
Q̆(χ,E )

⎤
⎥⎥⎥⎦

− 1

2
Tr ln Q̆(0, E ), (13)

with the matrices Ğ(χ, E ) and S̆(E ) both expressed in
Floquet-lead-Keldysh-spin-Nambu space, which are the Flo-
quet representations of the GF Ĝ(χ ) and the scattering matrix
Ŝ, respectively. In addition, we define the matrix Q̆(χ, E ). The
trace that initially went over time space goes now about the
Floquet space and Eq. (13) can be rewritten in terms of the
Floquet energy E ∈ [−eV, eV ] as follows (see Appendix B
for more details):

A(χ ) = 1

2

∫ eV

−eV
dE Tr(ln[Q̆(χ, E )] − ln[Q̆(0, E )]). (14)

The trace now goes over the matrix Q̆(χ, E ), which is infinite
in the Floquet index with its entries being 16 × 16 matrices
in lead-Keldysh-spin-Nambu space. Note that we can use that
Tr ln Q̆ = ln det(Q̆). In addition, in the case of single-impurity
junctions the matrix Q̆(χ, E ) is a block-diagonal matrix in
spin space and thus the determinant factorizes into two contri-

butions, a spin ⇑ and ⇓ contribution, Q̆
⇑

and Q̆
⇓

, which leads
to the result

A(χ ) = 1

2

∫ eV

−eV
dE (ln det[Q̆(χ, E )] − ln det[Q̆(0, E )])

= 1

2

∫ eV

−eV
dE ln

det Q̆(χ, E )

det Q̆(0, E )

= 1

2

∑
σ=⇑,⇓

∫ eV

−eV
dE ln

det Q̆
σ

(χ, E )

det Q̆
σ

(0, E )

= 1

2

∑
σ=⇑,⇓

∫ eV

−eV
dE ln Pσ (χ, E ), (15)

where we have defined the charge- and spin-resolved counting
polynomials Pσ (χ, E ). Note that these counting polynomi-
als follow from the determinant of infinitely large matrices,
namely Q̆

σ
. In addition, it holds that Pσ (0, E ) = 1. Therefore,

it is evident that the counting polynomials take the following
form:

Pσ (χ, E ) =
∞∑

n=−∞
Pσ

n (E )eınχ , (16)

where we encounter the spin-, charge- and energy-resolved
tunneling probabilities Pσ

n (E ) with the respective counting
factor eınχ . Thus, we obtain the action in the form of Eq. (8)
by adding the prefactor t0/h.
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FIG. 1. Schematic representation of a magnetic impurity coupled
to a superconducting substrate and to an STM tip that can be either
normal or superconducting. The tunneling rates �t and �S describe
the strength of the coupling of the impurity to the tip and substrate,
respectively. The superconducting gaps of the electrodes are denoted
by �t and �S.

IV. SINGLE-IMPURITY YSR JUNCTIONS:
MODEL AND SCATTERING MATRIX

The goal of this section is to use the concept of full count-
ing statistics to describe the electronic transport properties of
a junction featuring YSR states in which a single magnetic
impurity is coupled to superconducting leads. As we showed
in Sec. III, we need as an input a normal-state scattering
matrix describing these types of junctions. To obtain it, we
make use of a mean-field Anderson model with broken spin
symmetry (see Ref. [62] and references therein for a discus-
sion on its origin and range of applicability), and which has
been very successful describing different transport charac-
teristics [23,27]. This model, which is illustrated in Fig. 1,
describes the experimentally relevant situation in which a
magnetic impurity (an atom or a molecule) is coupled to a
superconducting substrate (S) and to an STM tip (t), which can
also be superconducting. The model used here is summarized
in the following Hamiltonian:

H = Ht + HS + Himp + Hhopping. (17)

Here, Hj (with j = t, S) is the BCS Hamiltonian of the lead j
given by

Hj =
∑
kσ

ξk jc
†
k jσ ck jσ

+
∑

k

(� je
iϕ j c†

k j↑c†
−k j↓ + � je

−iϕ j c−k j↓ck j↑), (18)

where c†
k jσ and ck jσ are the creation and annihilation opera-

tors, respectively, of an electron of momentum k, energy ξk j ,
and spin σ =↑,↓ in lead j, � j is the superconducting gap,
and ϕ j is the corresponding superconducting phase. On the
other hand, Himp is the Hamiltonian of the magnetic impurity,

which reads

Himp = U (n↑ + n↓) + J (n↑ − n↓). (19)

Here, nσ = d†
σ dσ is the occupation number operator on the

impurity, U is the on-site energy, and J is the exchange en-
ergy that breaks the spin degeneracy on the impurity. Finally,
Hhopping describes the coupling between the magnetic impurity
and the leads and adopts the form

Hhopping =
∑
k, j,σ

t j
(
d†

σ ck jσ + c†
k jσ dσ

)
, (20)

where t j describes the tunneling coupling between the impu-
rity and the lead j = t, S and it is chosen to be real.

It is convenient to rewrite the previous Hamiltonian in
terms of four-dimensional spinors that live in a space resulting
from the direct product of the spin space and the Nambu
(electron-hole) space. In the case of the leads, the relevant
spinor is defined as

c̄†
k j = (c†

k j↑, c−k j↓, c†
k j↓,−c−k j↑), (21)

while for the impurity states we define

d̄† = (d†
↑, d↓, d†

↓,−d↑). (22)

Using the notation τi and σi (i = 1, 2, 3) for Pauli matrices
in Nambu and spin space, respectively, and with τ0 and σ0

as the unit matrices in those spaces, one can show that the
Hamiltonian in Eq. (17) can be cast into the form

Hj = 1

2

∑
k

c̄†
k j H̄k j c̄k j, (23a)

Himp = 1

2
d̄†H̄impd̄, (23b)

Hhopping = 1

2

∑
k, j

{c̄†
k jV̄j,impd̄ + d̄†V̄imp, j c̄k j}, (23c)

where

H̄k j = σ0 ⊗ (ξkτ3 + � je
iϕ jτ3τ1), (24a)

H̄imp = U (σ0 ⊗ τ3) + J (σ3 ⊗ τ0), (24b)

V̄j,imp = t j (σ0 ⊗ τ3) = V̄ †
imp, j . (24c)

The k-dependent retarded and advanced GFs of the leads
can be expressed in spin-Nambu space as a function of the
energy as

ḡr/a
k, j (E ) = (E ± ıη j − H̄k, j )

−1, (25)

where the Dynes’ parameters η j are introduced. The k depen-
dence can be eliminated by summing over it and defining the
spin-Nambu GF

ḡr/a
j (E ) =

∑
k

ḡr/a
k, j (E )

= σ0 ⊗ −1√
�2

j − (E ± ıη j )2

(
E ± ıη j � jeıφ j

� je−ıφ j E ± ıη j

)
,

(26)

where φ j is the superconducting phase of the order parameter
of electrode j. In the case of a normal metal, the previous
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expression reduces to

ḡr/a
N = ∓ıσ0 ⊗ τ0. (27)

Equivalently for the impurity, its GF is given by

ḡr/a
imp = (E ± ıηimp − H̄imp)−1, (28)

where ηimp is the regularization constant of the impurity GF. It
will later be evident that it can be set to zero. In the following,
we focus on the electron space of Nambu space. Namely, on
the first and third component of the spinors in Eq. (21) and
Eq. (22). Of special interest are the electron self-energies of
the two leads, which are given by

�̄
r/a
t,e = V̄imp,t,e ḡr/a

t,e V̄t,imp,e, (29)

�̄
r/a
S,e = V̄imp,S,e ḡr/a

S,e V̄S,imp,e, (30)

where the index (e) refers to extracting the first and third
component of the respective quantity in spin-Nambu space.
The dressed electron impurity retarded GF can be calculated
using the self-energies as follows:

Ḡr/a
imp,e = ((E ± ıηimp)1̄ − H̄imp,e − �̄

r/a
t,e − �̄

r/a
S,e

)−1
. (31)

We define the electron coupling matrix in spin space with
�̄t/S,e by taking the imaginary part of the self-energy

�̄t/S,e = �(�̄a
t/S,e

)
. (32)

Let us recall that in the usual regime in which the STM
experiments are operated �t � �S, this model predicts the
appearance of a pair of fully spin-polarized YSR bound states
in the limit J � �S, and they are inside the gap when also
�S � �S. In this case, the energy of the YSR states (measured

with respect to the Fermi energy) is given by [62]

εYSR = ±�S
J2 − �2

S − U 2√[
�2

S + (J − U )2
][

�2
S + (J + U )2

] . (33)

In the electron-hole symmetric case U = 0, the previous ex-
pression reduces to

εYSR = ±�S
J2 − �2

S

J2 + �2
S

. (34)

The entries of the electron scattering matrix, namely the elec-
tron reflection matrices re, r

′
e and the transmission matrices

te, t
′
e, can be computed using the Fisher-Lee relations follow-

ing Ref. [63],

r̄e = σ0 − 2ı(�̄t,e )1/2Ḡr
imp,e(�̄t,e )1/2, (35)

t̄′e = 2(�̄t,e )1/2Ḡr
imp,e(�̄S,e)1/2, (36)

t̄e = 2(�̄S,e)1/2Ḡr
imp,e(�̄t,e)1/2, (37)

r̄′e = −σ0 + 2ı(�̄S,e)1/2Ḡr
imp,e(�̄S,e)1/2. (38)

The hole components of the scattering matrix follow from the
electron components with [61]

sh(E ) = σ2se(−E )Tσ2. (39)

It is important to remark that in the action of Eq. (9), the
scattering matrix is the normal-state one. Hence, to obtain the
desired result, we have to evaluate the transmission matrix in
the case in which both reservoirs are in the normal state, i.e.,
when the corresponding GFs are given by ḡr/a

j = ḡr/a
N . Thus,

for instance, it is straightforward to show that the transmission
matrix t̄ in the spin-Nambu basis (�†

↑, �↓, �
†
↓,−�†) is given

by the following diagonal matrix:

t̄ =

⎛
⎜⎜⎜⎝

t⇑
e (E )

t⇑
h (E )

t⇓
e (E )

t⇓
h (E )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

2
√

�t�S

E−U−J+ı(�S+�t )
2
√

�t�S

−E−U+J+ı(�S+�t )
2
√

�t�S

E−U+J+ı(�S+�t )
2
√

�t�S

−E−U−J+ı(�S+�t )

⎞
⎟⎟⎟⎟⎟⎠,

(40)

where we have defined the tunneling rates �t/S = πN0,t/St2
t/S,

where N0,t/S corresponds to the normal density of state of
the corresponding electrode. The tunneling rates describe the
strength of the coupling between the impurity and the cor-
responding lead ( j = t, S). It is evident that the impurity
regularization constant can be set to zero ηimp ≈ 0 as the
substrate tunneling rate is always orders of magnitude larger
than it.

Due to the unitary of the scattering matrix, it can be written
in terms of the transmission matrix t̄ as follows:

s̃(E ) =
(
r̄ t̄′

t̄ r̄′

)
=
⎛
⎝1 − ı t̄

√
�t
�S

t̄

t̄ − t̄

t̄∗

(
1 − ı t̄

√
�t
�S

)∗

⎞
⎠,

(41)

which is a 8 × 8 matrix in lead-spin-Nambu space. Note that
the scattering matrix is proportional to the identity in Keldysh
space in this case, thus its Keldysh structure is not included in
the above formulas.

There are some interesting limiting cases to be discussed.
First, in the case in which the energy of the impurity level
is U = 0, the electron- and hole-transmission function are
related via

t⇑
e (E ) = −t⇑

h (E )∗, (42)

and thus |t⇑
e |2 = |t⇑

h |2, so the transmission is the same for elec-
trons and holes. Another interesting case is the high-coupling
regime where �L, �R � U, J . In that case, the transmission at
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FIG. 2. Tunneling processes in the case of an impurity coupled to a normal and to a superconducting lead. In these diagrams the left density
of states (DOS) corresponds to a normal STM tip and the right one to the impurity coupled to the superconducting substrate. The red lines
correspond to electron-like quasiparticles and the blue ones to hole-like. In all cases, we indicate the threshold voltage at which the process
starts to contribute to the transport. (a) Single-quasiparticle tunneling in which a quasiparticle tunnels either into the continuum DOS of the
superconducting electrode (i) or resonantly into the excited YSR state inside the gap (ii). (b) Standard nonresonant Andreev reflection in which
an electron is reflected as a hole. (c) A resonant Andreev reflection in which the electron that is retro-reflected impinges at the energy of a YSR
state.

low energies adopts the form

t⇑
e (E ) = 2

√
�L�R

ı(�R + �L)
= t⇑

h (E ), (43)

so the transmission matrix for electrons and holes are the
same. In the case where �t = �S, it holds that r⇑

e = r⇑
h ≈ 0

and the junction behaves as a single-channel highly transmis-
sive point contact.

V. SINGLE-IMPURITY YSR JUNCTIONS: NORMAL
CONDUCTING TIP

We now analyze the situation in which the STM tip is in
the normal state, while the substrate is in the superconducting
state. In this case the transport properties are a result of the
competition between two tunneling processes, namely single-
quasiparticle tunneling and an Andreev reflection, and the

fact that both of them become resonant due to the presence
of in-gap YSR states, see Fig. 2. In this case, the GFs only
depend on the relative time and we just have to integrate over
all energies E in the formula of the Keldysh action in Eq. (9).
Moreover, in this single-impurity case the electrode GFs and
the scattering matrix are block-diagonal in spin space. This
allows us to carry out the calculation of the CGF analytically
and the final result reads

At0 (χ ) = t0
2h

∑
σ=⇑,⇓

∫ ∞

−∞
dE ln

⎡
⎣ 2∑

n=−2

Pσ
n (E ,V )eınχ

⎤
⎦, (44)

where Pσ
n (E ,V ) corresponds to the probability of transferring

n charges across the junction for spin σ . The single-
quasiparticle tunneling probabilities from tip to substrate (n =
1) and from substrate to tip (n = −1) are given by

Pσ
1 (E ,V ) = ρS

Dσ

[(∣∣tσ
e

∣∣2 − ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2/2
)

f1(1 − f0) + (∣∣tσ
h

∣∣2 − ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2/2
)

f0(1 − f−1)
]

+
∣∣tσ

e

∣∣2∣∣tσ
h

∣∣2
8Dσ

(1 + f a f r − gagr )(2 f0 − 1){( f1 + f−1 − 1)[1 − (2 f0 − 1)( f1 + f−1 − 1)]

+ (2 f0 − 1)(1 + f1 − f−1)( f1 − f−1)}, (45)

Pσ
−1(E ,V ) = ρS

Dσ

[(∣∣tσ
e

∣∣2 − ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2/2
)

f0(1 − f1) + (∣∣tσ
h

∣∣2 − ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2/2
)

f−1(1 − f0)
]

+
∣∣tσ

e

∣∣2∣∣tσ
h

∣∣2
8Dσ

(1 + f a f r − gagr )(2 f0 − 1){( f1 + f−1 − 1)[1 − (2 f0 − 1)( f1 + f−1 − 1)]

+ (2 f0 − 1)(1 + f−1 − f1)( f−1 − f1)}, (46)

while the corresponding Andreev reflection probabilities from tip to substrate (n = 2) and from substrate to tip (n = −2) are
given by

Pσ
2 (E ,V ) =

∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2
8Dσ

f1(1 − f−1)[1 − f a f r − gagr − (2 f0 − 1)2(1 + f a f r − gagr )], (47)

Pσ
−2(E ,V ) =

∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2
8Dσ

f−1(1 − f1)[1 − f a f r − gagr − (2 f0 − 1)2(1 + f a f r − gagr )]. (48)
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In these expressions we have assumed that a bias volt-
age is applied to the normal metal, gr,a(E ) = −ı(E ± ıη)/√

�2 − (E ± ıη)2 and f r,a(E ) = −ı�/
√

�2 − (E ± ıη)2 are
the GFs of the superconducting substrate, � being the gap
of the SC electrode and η the corresponding Dynes’ pa-
rameter, ρS = (gr − ga )/2 is the substrate density of states
(DOS), fn(E ) = f (E + neV ) with the Fermi function f (E ) =
1/(eE/kBT + 1), and the normalization factor Dσ (E ) is given
by

Dσ = ∣∣1 + 1
2

(
1 − rσ

e

(
rσ

h

)∗)
(gr − 1)

∣∣2. (49)

Let us say that these probabilities reduce to the known result
for a NS junction with energy-independent transmission and
spin degeneracy [54]. Moreover, we have verified that they
lead to the same results for the current as in Ref. [62]. These

probabilities have the expected structure. Thus, for instance,
the single-quasiparticle probabilities (n = ±1) are to a lead-
ing order proportional to the transmission coefficients (for
electrons and holes) and to the DOS in the superconducting
substrate. The Andreev reflection probabilities (n = ±2) are
proportional to the product of the electron and hole trans-
mission coefficients and to the Cooper pair density in the
superconducting electrode (this will become more obvious in
a moment). On the other hand, the denominators or normal-
ization factors Dσ are responsible for higher-order terms in the
transmission and they contain the information of the energy of
the bound states and their lifetimes.

One can gain more insight into these expressions by
considering the zero-temperature case where the above prob-
abilities reduce to

Pσ
1 (E ,V > 0) = 1

Dσ

⎧⎪⎨
⎪⎩

ρS

∣∣tσ
h

∣∣2 + ∣∣tσ
h

∣∣2∣∣tσ
e

∣∣2(1 + f a f r − gagr − 2ρS) if E ∈ [0, eV ]

ρS

∣∣tσ
e

∣∣2 + ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2(1 + f a f r − gagr − 2ρS) if E ∈ [−eV, 0]
0 otherwise

, (50)

Pσ
2 (E ,V > 0) = 1

4Dσ

{
− f a f r

∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2 if E ∈ [−eV, eV ]
0 otherwise

, (51)

where − f a f r corresponds to the energy-dependent Cooper pair density. The other contributions are zero (Pσ
−1/−2 = 0) as there

is no current flowing to the normal metal without thermal excitation. For negative voltages, we obtain

Pσ
−1(E ,V < 0) = 1

Dσ

⎧⎪⎪⎨
⎪⎪⎩

ρS

∣∣tσ
h

∣∣2 + ∣∣tσ
h

∣∣2∣∣tσ
e

∣∣2(1 + f a f r − gagr − 2ρS) if E ∈ [−e|V |, 0]

ρS

∣∣tσ
e

∣∣2 + ∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2(1 + f a f r − gagr − 2ρS) if E ∈ [0, e|V |]
0 otherwise

Pσ
−2(E ,V < 0) = 1

4Dσ

{
− f a f r

∣∣tσ
e

∣∣2∣∣tσ
h

∣∣2 if E ∈ [−e|V |, e|V |]
0 otherwise

, (52)

where we see that now only the currents flowing from the
substrate to the tip are nonzero and Pσ

1/2 = 0.
From the knowledge of the probabilities Pσ

n (E ,V ) we can
easily compute all the cumulants of the current distribution.
Here, we shall focus on the analysis of the current and the
noise, which can be obtained from the CGF of Eq. (44) using
Eqs. (3) and (4), and are given by

I (V ) = e

2h

∑
σ=⇑,⇓

∫ ∞

−∞
dE

2∑
n=−2

nPσ
n (E ,V ), (53)

S(V ) = e2

h

∑
σ=⇑,⇓

∫ ∞

−∞
dE

⎧⎨
⎩

2∑
n=−2

n2Pσ
n (E ,V )

−
⎛
⎝ 2∑

n=−2

nPσ
n (E ,V )

⎞
⎠2
⎫⎪⎬
⎪⎭. (54)

Let us now illustrate the results. We begin by analyzing the
impact of the broadening or lifetime of the YSR states on the
different transport properties. For this purpose, we choose the
following system parameters: �S = 100�, J = 80�, U =
60�,�t = �, and assume zero temperature. With these

parameters the junction has a total normal-state conductance
of GN = 0.025G0, where G0 = 2e2/h. This corresponds to the
tunnel regime in which the STM usually operates, and the cor-
responding YSR energy given by Eq. (33) is εYSR = 0.41�.
In Fig. 3 we show the bias dependence of the differential con-
ductance, shot noise, and Fano factor for these parameters and
for different values of the Dynes’ parameter η of the substrate.
The most salient feature in the conductance is the appearance
of a peak (for both positive and negative voltages) exactly at
the energy of the YSR states. The broadening of these peaks
increases as η increases, as expected, and the height goes from
being independent of the bias polarity for very small η to
exhibit a very clear asymmetry when η is relatively large. In
the case of the shot noise, see Fig. 3(b), the presence of the
YSR states results in an abrupt increase of the noise at the
energy of these states, while the value of η determines the
rounding of the noise step. Finally, the impact of the YSR
lifetime is most notable in the Fano factor, see Fig. 3(c). In
this case, for very long lifetimes, F ∗ exhibits a plateau for
voltages below the YSR energy (e|V | < εYSR), while it adopts
values very close to 1 for higher voltages. As the broadening
of the YSR states increases (or their lifetime decreases), the
Fano factor at low voltages progressively diminishes. More-
over, the dependence on the bias polarity also becomes more
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FIG. 3. Differential conductance (a), shot noise (b), and Fano
factor (c) as a function of the voltage for the case of a single impurity
coupled to a normal tip and SC substrate for different values of the
Dynes’ parameter η of the SC electrode, as indicated in the legend
of panel (b). The parameters used are �S = 100�, J = 80�, U =
60�, �t = �, and T = 0. With these parameters the junction has a
normal-state conductance of 0.025G0 and the corresponding YSR
energy is εYSR = 0.41�.

apparent. Notice also that values of F ∗ < 1 become possible,
in particular, inside the gap. Another thing that is worth men-
tioning is the absence of pronounced features at eV = ±� in
all transport characteristics, contrary to what happens in the
absence of YSR states. This is due to the fact that, due to the
conservation of the number of states, the appearance of in-gap
states is accompanied by the disappearance of the BCS gap
edge singularities. This fact will become important in the next
section when we compare with recent experimental results.

The previous results can be easily understood thanks to the
unique insight that FCS offers us by identifying every individ-
ual tunneling process that contributes to the transport. In this
regard, we show in Fig. 4 the results for the charge-resolved
contributions to the differential conductance corresponding to
the example of Fig. 3. In other words, we present in Fig. 4
the individual contributions to the conductance due to single-
quasiparticle tunneling (G1) and to the Andreev reflection
(G2). These processes are schematically represented in Fig. 2.
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FIG. 4. Charge-resolved differential conductance as a function
of the voltage for the cases considered in Fig. 3. Every panel
corresponds to a value of the Dynes’ parameter η of the SC elec-
trode: (a) η = 0.1�, (b) η = 0.01�, (c) η = 0.001�, and (d) η =
0.0001�. The red lines correspond to the contribution of single-
quasiparticle tunneling (G1) and the blue ones to the contribution of
the Andreev reflection (G2).

The first thing to notice is that while the contribution of single-
quasiparticle tunneling depends on the bias polarity, it is not
the case for the Andreev reflection. Thus, any asymmetry in
the transport characteristics must be produced by the contribu-
tion of the single-quasiparticle tunneling. The main message
of this figure is that the Dynes parameter η determines the
relative contribution of both tunneling processes: In the limit
of large η the single-quasiparticle tunneling dominates the
transport characteristics, while the Andreev reflection takes
over in the opposite limit of very long-lived YSR states.
This naturally explains the fact that the Fano factor is re-
duced upon increasing the broadening, which is simply due
to the fact that in this case the transport is dominated by
single-quasiparticle tunneling, see Fig. 2(a). This also ex-
plains the doubling of the Fano factor at low bias (e|V | <

εYSR) in the limit of small η because in this case the An-
dreev reflection (transferring two electron charges) dominates
the transport, see Fig. 2(b). A less trivial issue is to under-
stand the origin of the abrupt jump of the Fano factor when
eV = ±εYSR and why in the limit of η → 0 the Fano factor
gets much smaller than 2 in the voltage range εYSR < e|V | <

� where the Andreev reflection completely dominates the
transport. These interesting issues deserve a detailed expla-
nation, as the one we are about to provide in the following
paragraphs.

To clarify these issues we make use of the following
analytical approximation for the probabilities of the two tun-
neling processes. Assuming zero temperature and focusing
on energies close to the YSR energy, the probabilities for
single-quasiparticle tunneling and the Andreev reflection for
positive bias in Eq. (50) can be approximated as Lorentzians
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of the form

PYSR
1 (E ) ≈ Pmax

1

1 + (E − εYSR)2/W 2
, (55)

PYSR
2 (E ) ≈ Pmax

2

1 + (E − εYSR)2/W 2
, (56)

where Pmax
1/2 are the energy-independent maxima of these

two probabilities that is reached at E = εYSR and W is the
broadening of the YSR state in our model. If we assume
electron-hole symmetry (U = 0) for simplicity, the factors
Pmax

1/2 are given by

Pmax
1 = 2Z

(1 + Z )2
and Pmax

2 = 1

(1 + Z )2
, (57)

where Z = ηJ
�t�

(�2
S+J2 )2

4�2
SJ2 . Notice that in the limiting case η →

0, it holds that Z = 0 and then Pmax
2 = 1 and Pmax

1 = 0, i.e.,
there is no single-quasiparticle tunneling as expected. On the
other hand, in the limit �L � �R, J and η � �, the broaden-
ing of the YSR states is given by

W = η + �t

J

4J2�2
S(

�2
S + J2

)2 �. (58)

With these approximate expressions, one can compute the
current and shot noise in the voltage range εYSR < e|V | < �.
Considering first the ideal case of η = 0, where only the An-
dreev reflection contributes to the in-gap transport, we obtain

I (V ) = 2e

h

∫ ∞

−∞
dE PYSR

2 (E ) = 2e

h
πW, (59)

S(V ) = 8e2

h

∫ ∞

−∞
dE PYSR

2 (E )
(
1 − PYSR

2 (E )
)

= 4e2

h
πW. (60)

Thus, the corresponding Fano factor is F ∗ = S/(2eI ) = 1
in this voltage range, while it is easy to show that F ∗ = 2 for
e|V | < εYSR (as long as η = 0). Thus, the abrupt reduction
of the Fano factor at e|V | = εYSR is a signature of the fact
that the Andreev reflection becomes resonant because of the
presence of the bound state, see Fig. 2(c). The occurrence of
this resonant Andreev reflection can reduce the Fano factor all
the way down to 1 inside the gap, see Fig. 3(c). This is due
to the fact that the Andreev reflection can have a probability
as high as 1 at the energy of the YSR states, which leads
to a reduction of the Fano factor from 2 to 1 when crossing
the bound state. In other words, as the Andreev reflection is
resonant at the YSR energy, the transport is not longer in the
Poissonian limit (with independent tunneling events) and the
Fano factor can no longer be interpreted as an effective charge.
The fact that we observe in Fig. 3(c) that the Fano can be
larger than 1 in the voltage range εYSR < e|V | < � is because
U �= 0 in this example. In this case, it can be shown that the
probability of the Andreev reflection does not reach unity,
see Fig. S2(d) within the Supplemental Material (SM) [71],
and the Fano factor reduction upon crossing the YSR state is
not complete, i.e., F ∗ > 1. Actually, all of this is analogous
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FIG. 5. Differential conductance (a), shot noise (b), and Fano
factor (c) as a function of the voltage for the case of a single impurity
coupled to a normal tip and SC substrate and for different values
of the tip tunneling rate �t , as indicated in the legend of panel
(b). The parameters used are �S = 100�, J = 80�, U = 60�, η =
0.001�, and T = 0.

to what happens in other resonant situations like in the case
of a normal conductive double barrier structure. In that case,
the Fano factor becomes 1/2 for a symmetric situation (two
identical barriers), and it gets close to 1 for a very asymmetric
case [47,64,65]. It is also worth mentioning that this crossover
of the Fano factor, related to an Andreev reflection from 2 to 1
when crossing a bound state, has been reported theoretically in
mesoscopic normal-superconducting structures [66]. To con-
clude this discussion, let us mention that one can also show
using Eqs. (55) and (56) that as long as U = 0, even in the
case of a finite η, the zero-temperature Fano factor is equal to
1 in the voltage range εYSR < e|V | < �.

Let us now analyze the evolution of the transport charac-
teristics in the crossover between the tunneling regime and
a highly transparent situation. For this purpose, we show in
Fig. 5 the bias dependence of the differential conductance,
shot noise, and Fano factor for different values of the tun-
neling rate �t and �S = 100�, J = 80�, U = 60�, η =
0.001�, and T = 0. In this case the conductance evolves
from exhibiting peaks at the YSR energies (see curve for
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FIG. 6. Charge-resolved differential conductance as a function
of the voltage for the cases considered in Fig. 5. Every panel cor-
responds to a given value of the tip tunneling rate �t : (a) �t = 0.1�,
(b) �t = 1�, (c) �t = 10�, and (d) �t = 100�. The red lines corre-
spond to the contribution of single-quasiparticle tunneling (G1) and
the blue ones to the contribution of the Andreev reflection (G2).

�t = 0.1�, which corresponds to GN = 0.0025G0), to dis-
play a plateau inside the gap in which the conductance is
close to 2G0 (see curve for �t = 100�, which corresponds
to GN = 0.83G0). This latter case essentially corresponds to a
fully transparent standard (spin-degenerate) NS point contact.
Notice that in this case the Fano factor has a complex evolu-
tion, namely it first increases at low bias upon increasing the
transparency of the contact and then becomes sub-Poissonian
(F ∗ < 1) in the whole voltage range due to the reduction
caused by the Pauli exclusion principle.

Again, these results can be easily rationalized making
use of the charge-resolved contributions to the total differ-
ential conductance, which are displayed in Fig. 6 for this
example. These results show that at the lowest transparency
in this example the single-quasiparticle tunneling and the
Andreev reflection give similar contributions. However, as
the transmission increases the Andreev reflection completely
dominates the transport inside the gap. For this reason, the
evolution of the Fano factor can be solely understood from
the evolution of the probability of the Andreev reflection.
In particular, the sub-Poissonian Fano factor inside the gap
for the highest transmission is simply due to the fact that
the Andreev reflection reaches almost perfect transparency.
Outside the gap, the Fano factor remains smaller than 1 due
to the competition between the two tunneling processes that
both give finite contributions. Finally, notice again that the
contribution of the Andreev reflection is independent of the
bias polarity and, thus, any asymmetry in the transport charac-
teristics must be due to the contribution of single-quasiparticle
tunneling.
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FIG. 7. Conductance (a) and Fano factor (b) as a function of volt-
age. The symbols correspond to the experimental data of Ref. [49]
that were obtained with a normal tip at T = 0.7 K and a magnetic
impurity deposited on a 2H-NbSe2 superconducting surface. The
orange lines in both panels correspond to a fit with our theory using
a two-channel model, as described in the main text. The yellow lines
in both panels correspond to the theory results considering only the
contribution of the magnetic channel (see explanation in the text).

VI. SINGLE-IMPURITY YSR JUNCTIONS: COMPARISON
WITH SHOT NOISE MEASUREMENTS

Very recently, Thupakula and coworkers reported the first
measurements of the shot noise through a magnetic impurity
on a superconducting substrate featuring YSR states [49].
To be precise, these researchers employed shot-noise scan-
ning tunneling microscopy to measure the nonequilibrium
current fluctuations through a magnetic impurity deposited
on 2H-NbSe2 at temperatures around 0.7 K, way below the
critical temperature of this superconductor. The STM tip was
made of a normal metal and the main observation was the
appearance of a Fano factor above 1. This fact was interpreted
as the evidence of the contribution of an Andreev reflection
to the charge transport. Moreover, those authors presented a
theoretical analysis that suggested that the broadening of the
YSR state was of the order of 1 µeV, which was clearly below
the thermal energy (kBT ) in this experiment demonstrating
that shot noise can probe energy scales that are not accessible
in conventional tunneling spectroscopy measurements. The
goal of this section is to provide a thorough analysis of those
experimental results in the light of the theory presented in
Sec. V.

In Fig. 7 we show an example of the experimental results
reported in Ref. [49], which corresponds to the conductance
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and Fano factor measured in the tail of the YSR states of a
magnetic impurity. The most notable feature in the conduc-
tance is the appearance of two peaks inside the gap, which
correspond to the YSR states. Notice also the asymmetry in
the height of the peaks for positive and negative bias. With
respect to the Fano factor, the main observation is the ap-
pearance of values above 1 for negative bias, but inside the
gap region. This signature was taken as the evidence of the
occurrence of Andreev reflections. Notice also that the Fano
factor is asymmetric and for positive bias it remains below 1
for most voltages inside the gap. The Fano factor at very low
bias was not reported simply due to the difficulty of measuring
the very low currents in this voltage range.

These experimental results were analyzed in Ref. [49] in
the light of a model for the YSR state similar in spirit to ours,
but just focusing on voltages inside the gap. To be precise,
these authors used an approximation similar to that summa-
rized in our Eqs. (55) and (56). Although such a simplified
model qualitatively captures the physics of the YSR states, it
is obvious that it cannot provide an overall correct picture of
the experimental results. Actually, the major problem is that
no model based on a single magnetic channel can describe the
simultaneous appearance in the conductance of YSR peaks
and pronounced coherent peaks as those in Fig. 7(a). As we
explained above, these models do not predict the appearance
of the coherent peaks simply due to the conservation of the
number of states. So, as a way out to provide an overall
consistent fit of the experimental results, we propose that there
are at least two channels or pathways for the current: one due
to the magnetic impurity and another nonmagnetic channel,
which probably results from the direct tunneling of the STM
tip to the superconducting substrate. This is actually a solu-
tion that has been proposed before to explain the reported
conductance spectra, see for instance Refs. [23,27]. There is
another subtlety that we need to take into account, namely
2H-NbSe2 is not a regular BCS superconductor. In fact, it has
been shown by several groups that 2H-NbSe2 can be described
as a two-band superconductor [20,67,68]. So, we propose here
to explain the experimental results assuming that the transport
takes place via two independent channels, one magnetic that
is described by our YSR model of the previous sections and
a nonmagnetic channel that proceeds from the normal tip to
the 2H-NbSe2 substrate that we describe as a two-band super-
conductor. Moreover, we shall assume that this nonmagnetic
channel can be described in the tunneling regime, i.e., taking
only into account the quasiparticle tunneling at the lowest
order in transmission. We proceed now to describe the details
of such a two-channel model.

First, for the nonmagnetic channel we describe the su-
perconductivity in 2H-NbSe2 using the two-band model
described in Ref. [68]. In this model one considers that the
SC order parameter has two energy-dependent components
�1(E ) and �2(E ) that can be computed by solving the fol-
lowing self-consistent set of equations,

�1(E ) = �BCS
1 − �12

�1(E ) − �2(E )√
�2

2(E ) − E2
, (61)

�2(E ) = �BCS
2 − �21

�2(E ) − �1(E )√
�2

1(E ) − E2
, (62)

where �BCS
1/2 describes the bare SC gap of the separate bands.

The density of states for the two bands can be computed as
follows:

ρi(E ) = ρi(EF)
∫

dθ �

⎛
⎜⎝ |E |√

(1 + α cos(θ ))�2
i (E ) − E2

⎞
⎟⎠,

(63)
where the DOS at the Fermi energy is adjusted to fit the
experimental data and α is a measure of the band anisotropy.
The total DOS then follows

ρS(E ) = ρ1(E ) + ρ2(E ). (64)

Using the procedure explained in Ref. [20], we solved the
algebraic system of Eqs. (61) and (62) and found that the
best set of parameters is given by �BCS

1 = 1.23 meV, �12 =
0.27 meV, ρ1(EF) = 1, �BCS

2 = 0.29 meV, �21 = 1.25 meV,
ρ2(EF) = 0.18, and α = 0.2. As mentioned above, we as-
sume that the nonmagnetic channel operates in the tunnel
regime such that its transport properties are solely determined
by single-quasiparticle tunneling, whose probabilities can be
computed adapting Eqs. (45) and (46) to a nonmagnetic situ-
ation in the tunneling regime, i.e.,

P(nm)
1 = |t |2ρS[ f1(1 − f0) + f0(1 − f−1)], (65)

P(nm)
−1 = |t |2ρS[ f0(1 − f1) + f−1(1 − f0)], (66)

where ρS is given by Eq. (64). We have made use of the fact
that all the transmission coefficients are the same (for elec-
trons and holes and for spin up and spin down) and equal to
|t |2. This transmission coefficient was adjusted to fit the exper-
imental results for the conductance and we obtained a value
of |t |2 = 0.0044. For the second, magnetic channel we simply
used the theory of Sec. V and adjusted the different parameters
to describe as well as possible the in-gap conductance due
to the YSR states. In particular, our best fit was produced
with the following set of parameters: � = 1.23 meV, �S =
123 meV, �t = 0.014 meV, J = 99.32 meV, U = 49.2 meV,
η = 0.0011 meV, and we used the temperature of the experi-
ment T = 0.7 K.

The results of the best fit with our two-channel theory are
shown in Fig. 7 alongside with the experimental results for
both the conductance and Fano factor. As a reference, we
also include the corresponding theory results obtained taking
only into account the contribution of the magnetic channel.
As one can see in panel (a), the theory captures very well
the salient features of the differential conductance, namely
the YSR peaks inside the gap and the coherent peaks related
to the double-gap structure. Notice that the magnetic channel
by itself reproduces well the YSR peaks, but it is unable to
properly describe the conductance close to the gap edges and
outside the largest gap.

Concerning the Fano factor, which was simply calculated
from the parameters extracted from the fit of the conduc-
tance, there is an excellent agreement for positive voltages, see
Fig. 7(b). The Fano Factor is super-Poissonian for voltages be-
low the YSR energy and becomes sub-Poissonian for voltages
higher than the bound state energy. For negative voltages there
seems to be fine structure that we are not able to perfectly
reproduce, but overall the agreement is quite satisfactory. In
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FIG. 8. Tunneling processes through an impurity coupled to two superconducting leads. Here, the left electrode is a superconducting tip
and the right one is the impurity coupled to the superconducting substrate featuring YSR states. The diagrams follow the same convention as
in Fig. 2. (a) Single-quasiparticle tunneling, both nonresonant (upper) and resonant one (lower). (b) Standard nonresonant (multiple) Andreev
reflections. (c) Resonant (multiple) Andreev reflections in which at least an Andreev reflection at the energy of the YSR states takes place.
(d) YSR-mediated Andreev reflections, which are Andreev reflections that involve the tunneling from or into a YSR state.

particular, we are able to reproduce the fact that the Fano
factor is always bigger than 1 inside the gap and it tends to
1 for higher voltages. Here, it becomes even more apparent
that a two-channel model is necessary. The contribution of
the magnetic channel alone does not reproduce very well the
structure of the Fano factor and it supports our hypothesis on
the need of an additional contribution. Let us also say that at
very low bias (not shown here) the Fano factor becomes very
large simply because the current fluctuations are dominated
by a finite thermal noise, while the current tends to zero.

Something that is very important to emphasize is the fact
that as we showed in Sec. V, the Fano factor is very sen-
sitive to the broadening or lifetime of the YSR states. In
our fit we obtained a value of η = 1.1 µeV for the Dynes’
parameter in the superconducting substrate. Using Eq. (58)
and the rest of the parameter values extracted from the fit, we
obtain that W ≈ η = 1.1 µeV, which is much smaller than the
thermal energy in this case (kBT ≈ 60 µeV). Thus, as stated
in Ref. [49], the analysis of the noise and the corresponding
Fano factor allows us to have access to energy and time scales
that are usually out of the scope of conventional conductance
measurements due to thermal broadening.

VII. SINGLE-IMPURITY YSR JUNCTIONS:
SUPERCONDUCTING TIP

We now analyze the case in which a magnetic impu-
rity is coupled to two superconducting leads, which for

simplicity we assume to have the same gap �. In this case,
the novelty with respect to the previous case is the possibility
of having MARs. As a reference for our discussions below,
we illustrate the relevant tunneling processes in this case in
Fig. 8.

Technically speaking, this case is considerably more com-
plicated than the NS one because the GFs of the terminals
are no longer diagonal in energy space, which is due to the
ac Josephson effect. This means in practice that we have to
treat the problem in the Floquet language, as explained in
Appendix A. For this reason, it is not possible to provide
a complete analytical solution for the CGF and we have to
resort to numerics. The technical details are presented in Ap-
pendices A and B and; here we shall focus on the discussion
of the physical results.

As discussed in Sec. III, in this case the CGF reads

At0 (χ ) = t0
2h

∑
σ=⇑,⇓

∫ eV

−eV
dE ln

[ ∞∑
n=−∞

Pσ
n (E ,V )eınχ

]
, (67)

where Pσ
n (E ,V ) corresponds to the probability of transfer-

ring n charges across the junction for spin σ and E is the
Floquet energy. Notice that the main difference with respect
to Eq. (44) is the fact that n now runs from −∞ to ∞ due
to the occurrence of MARs and we integrate over a finite
energy range. Again, from the knowledge of the probabilities
Pσ

n (E ,V ) we can easily compute the current and the noise,
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which are given by the standard formulas of a multinomial
distribution

I (V ) = e

2h

∑
σ=⇑,⇓

∫ eV

−eV
dE

∞∑
n=−∞

nPσ
n (E ,V ), (68)

S(V ) = e2

h

∑
σ=⇑,⇓

∫ eV

−eV
dE

{ ∞∑
n=−∞

n2Pσ
n (E ,V )

−
( ∞∑

n=−∞
nPσ

n (E ,V )

)2}
. (69)

We begin by analyzing the impact of the broadening or
lifetime of the YSR states on the different transport properties.
For this purpose, we choose the following system parameters:
�S = 100�, J = 80�, U = 60�,�t = 5�, ηt = 0.001�

and assume zero temperature. With these parameters the junc-
tion has a normal-state conductance of GN = 0.12G0 and
the corresponding YSR energy given by Eq. (33) is εYSR =
0.41�. Figure 9 displays the conductance, shot noise, and
Fano factor for these parameters and different values of the
Dynes parameter of the substrate ηS. Notice that the con-
ductance exhibits a very rich subgap structure due to the
occurrence of MARs. In any case, the most visible con-
ductance peaks appear at eV = ±(� + εYSR), which as we
show below are due to both single-quasiparticle tunneling
and the lowest-order resonant Andreev reflection. Notice also
that the conductance depends on the bias polarity because
we are dealing with a situation with electron-hole asymme-
try (U = 60�). The additional conductance peaks appear at
eV = ±2�/n, which are due to conventional (nonresonant)
Andreev reflections, and at eV = ±(� + εYSR)/n, whose ori-
gin will be discussed below. Overall, the role of the Dynes’
parameter is to determine the width and the height of all
these conductance peaks, as expected. On the other hand,
the shot noise exhibits steps at the voltages at which the
conductance peaks appear and these steps are progressively
more pronounced as ηS decreases, see Fig. 9(b). Again, this
parameter has a strong impact in the Fano factor, see Fig. 9(c),
which now exhibits super-Poissonian values well above 2 as
ηS decreases. This is obviously a signature of the occurrence
of MARs. It is also important to notice that the Fano factor
does not exhibit integer values inside the gap, as it occurs
in the absence of in-gap states [69,70], which suggests that
no tunneling process completely dominates the transport at
any subgap voltage. Let us also say that we do not report the
results at very low bias because the current becomes exceed-
ingly small and it is not measurable in practice.

Again, we can rationalize these results with the analysis
of the individual contributions of the different tunneling
processes classified according to the charge they transfer. In
Fig. 10, the charge-resolved currents are shown for different
values of ηS (we plot the absolute value of those currents for
clarity). The corresponding charge-resolved conductances are
shown in the SM (Fig. S7) [71]. The light grey line indicates
the total current, whereas the others correspond to the
contributions In due to the processes transferring n electron
charges. Notice that for the smallest value of the Dynes’
parameter, ηS = 0.1� in panel (a), the single-quasiparticle
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FIG. 9. Differential conductance (a), shot noise (b), and Fano
factor (c) as a function of the voltage for the case of a single impurity
coupled to two superconducting electrodes and for different values
of the Dynes’ parameter η of the SC electrode, as indicated in
the legend of panel (b). The parameters used are �S = 100�, J =
80�, U = 60�, �t = 5�, ηt = 0.001�, and T = 0. With these pa-
rameters the junction has a normal-state conductance of 0.12G0 and
the corresponding YSR energy is εYSR = 0.41�. The vertical lines
indicate the position of the voltages eV = ±2�/n (dotted lines) and
eV = ±(� + εYSR )/n (solid lines) with n = 1, 2, . . .

tunneling and Andreev reflection dominate the transport and
the MAR contributions with n > 2 are negligible for all
voltages. However, the resonant Andreev reflection illustrated
in the upper graph of Fig. 8(c) gives a sizable contribution
to the conductance peak at eV = ±(� + εYSR) = ±1.41�.
Decreasing ηS results in the suppression of the quasiparticle
current (I1) because the SC DOS in the gap region is
lowered. For ηS = 0.01� in panel (b), we see that the
lowest-order Andreev reflection takes over at voltages
� < e|V | < 2� and it is responsible for the conductance
peaks at eV = ±� [nonresonant Andreev reflection, see
Fig. 8(b)] and at eV = ±(� + εYSR) = ±1.41� [resonant
Andreev reflection, see Fig. 8(c)]. Notice, on the other
hand, that the third-order MAR starts to play a fundamental
role in the subgap transport and it is responsible for the
conductance peak at eV = ±(� + εYSR)/2 = ±0.705�
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FIG. 10. Charge-resolved currents as a function of the voltage
for the cases considered in Fig. 9. Every panel corresponds to a
given value of the Dynes’ parameter of the substrate: (a) ηS = 0.1�,
(b) ηS = 0.01�, (c) ηS = 0.001�, and (d) ηS = 0.0001�. Notice
that the absolute value of the current is plotted for clarity. The vertical
lines follow the same convention as in Fig. 9.

and eV = ±(� + εYSR)/3 = ±0.47�; this latter one
exhibiting moreover a pronounced negative differential con-
ductance. The conductance peak at eV = ±(� + εYSR)/2 =
±0.705� is extremely interesting because it has been
observed in a number of experiments and its origin has
been attributed to a second-order Andreev reflection that
starts or ends in a YSR state (transferring 2 charges)
[12,16,26,30]. This process, which we term YSR-mediated
Andreev reflection, is illustrated in the upper diagram
of Fig. 8(d) and, it has in fact a threshold voltage equal
to eV = ±(� + εYSR)/2. However, this interpretation is
incorrect in our case, as it is evidenced by the charge-resolved
currents and by the fact that the Fano factor is clearly
above 2 in this voltage region. Such a conductance peak
originates indeed from a MAR of order 3 that becomes
resonant precisely at eV = ±(� + εYSR)/2, as we illustrate
in the lower diagram of Fig. 8(c). It is easy to show that such a
resonant MAR requires the YSR energy to fulfill εYSR � �/3,
which is satisfied in this example. Another fact that confirms
our interpretation is the absence of negative differential
conductance at that bias, which would be expected from a
YSR-mediated Andreev reflection, but not from a resonant
MAR. This discussion illustrates again the unique insight of
the FCS approach, without which it would be hard to draw
the right conclusion in this case.

Coming back to the features at eV = ±(� + εYSR)/3 =
±0.47�, they also originate from a third-order MAR, but in
this case it is a MAR process that involves the tunneling into
an YSR state (i.e., a YSR-mediated MAR), which explains the
negative differential conductance. This process is illustrated
in the lower graph of Fig. 8(d). For ηS = 0.001� in panel (c),
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FIG. 11. Differential conductance (a), shot noise (b), and Fano
factor (c) as a function of the voltage for the case of a single impurity
coupled to two superconducting electrodes and for different values
of the tunneling rate �t , as indicated in the legend of panel (b).
The parameters used are �S = 100�, J = 80�, U = 60�, ηS =
0.001�, ηt = 0.001�, and T = 0. The vertical lines follow the same
convention as in Fig. 9.

the current steps are very abrupt leading to very high con-
ductance peaks. In this case, the conductance peaks at eV =
±(� + εYSR)/3 can now be mainly attributed to the fifth-
order YSR-mediated MAR. For the smallest ηS = 0.0001� in
panel (d), the total current exhibits pronounced negative dif-
ferential conductance whenever the tunneling into a YSR state
is involved. An important observation in Fig. 9 is that contrary
to the case of a normal tip, the contribution of the different
Andreev reflections does depend on the bias polarity. Thus,
asymmetries in the the current-voltage characteristics cannot
be solely attributed to the contribution of single-quasiparticle
tunneling.

Let us explore now the impact of the junction transmis-
sion by changing the tip tunneling rate �t , while maintaining
constant the other parameters: �S = 100�, J = 80�, U =
60�, ηS = 0.001�, ηt = 0.001�, and T = 0. In Fig. 11,
the conductance, shot noise, and Fano factor are shown
as a function of the voltage and for different tip tunnel-
ing rates �t . Considering the conductance, for the smallest
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value of �t = 0.1� (GN = 0.0025G0), the first YSR reso-
nance at eV = ±(� + εYSR) dominates the subgap structure.
Increasing �t firstly broadens the conductance peaks, and
secondly shifts the position of the conductance peaks slightly.
This is caused by the renormalization of the YSR energies due
to the finite coupling to the tip. For �t = � (GN = 0.025G0),
the first YSR resonance at eV = ±(� + εYSR) becomes in-
creasingly pronounced and additional subgap structure starts
to appear, namely at the Andreev reflection onsets at eV =
±� but also at the onset of the YSR-mediated and reso-
nant Andreev reflections eV = ±(� + εYSR)/n (with n > 1).
For �t = 5� (GN = 0.12G0), the conductance peaks are in-
creasingly broadened and, in particular, the peaks at eV =
±(� + εYSR)/3 become clearly visible. For �L = 10� (GN =
0.22G0), the YSR peaks at eV = ±(� + εYSR) are almost
completely washed out. The peaks at eV = ±� are clearly
visible and correspond to the onset of the regular Andreev
reflection. At eV = ±(� + εYSR)/3, we see high conductance
peaks that correspond to YSR-mediated Andreev reflections.
If one continued increasing the coupling (not shown here), the
system would resemble a highly transparent superconducting
point contact [72], and the YSR resonances are no longer
resolvable. On the other hand, the shot noise exhibits steps
at voltages corresponding to onsets of the different types
of Andreev processes. Concerning the Fano factor, for large
values of �t = 5, 10� it exhibits very high super-Poissonian
values due to the occurrence of MARs. In addition, we see
the characteristic drop-off of the Fano factor from roughly 2
to almost 1 at the first YSR resonance at eV = ±(� + εYSR),
which has the same origin as in the NS case just shifted by the
gap energy �. Decreasing the tip coupling decreases the Fano
factor because the MAR contributions are suppressed. Notice
that for small �t = 0.1�, the Fano Factor never reaches over
2 indicating that MARs do not contribute to the transport. In
addition to the characteristic drop-off at eV = ±(� + εYSR),
there are other signatures in the Fano factor, which correspond
to the MAR onsets at eV = ±(2�/n) and to the onset of
both resonant MARs and YSR-mediated Andreev reflections
at eV = ±(� + εYSR)/n.

Again, we can pinpoint the origin of every feature in the
transport characteristics by considering the charge-resolved
currents, as we illustrate in Fig. 12 (see Fig. S8 within SM for
the corresponding charge-resolved conductances [71]). Notice
that for the smallest coupling �t = 0.1� in panel (a) the
single-quasiparticle tunneling and the lowest-order Andreev
reflection dominate the transport and give similar contribu-
tions at eV = ±(� + εYSR). However, as the transmission
increases, the quasiparticle tunneling becomes progressively
more irrelevant in the subgap transport. Thus, for instance,
for �t = �, the structure at eV = ±(� + εYSR) is solely due
to the resonant Andreev reflection. For �t = 5� in panel
(c), the subgap structure becomes much more pronounced
with current steps not only at the standard MAR onsets
eV = ±2�/n, but also at voltages eV = ±(� + εYSR)/2 and
eV = ±(� + εYSR)/3, which, as explained above, are due to
resonant MARs and to YSR-mediated Andreev reflections,
respectively. Thus, for instance, the structure at eV = ±(� +
εYSR)/2 is mainly due to the third-order MAR, whereas sev-
eral YSR-mediated MARs contribute to the structure at eV =
±(� + εYSR)/3. The steps in the charge-resolved currents are
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FIG. 12. Charge-resolved currents as a function of the voltage for
the cases considered in Fig. 11. Every panel corresponds to a given
value of the tip tunneling rate: (a) �t = 0.1�, (b) �t = �, (c) �t =
5�, and (d) �t = 10�. Notice that the absolute value of the current
is plotted for clarity. The vertical lines follow the same convention as
in Fig. 9.

smoothed out when �t is further increased towards �t = 10�

in panel (d). In this case the first YSR resonance becomes so
broad that it can barely be identified as a resonance, whereas
the higher-order YSR resonances are still very sharp and be-
come increasingly easy to detect.

To conclude this section, let us say that one can provide
some analytical insight in the tunnel regime when �t � �S.
In this limit, and with the help of Ref. [62], one can de-
rive perturbative expressions for the current contributions of
single-quasiparticle tunneling (I1) and the lowest-order An-
dreev reflection (I2). These expressions are given by

I tunnel
1 (V ) ≈ 4eπ2

h
�t

∫ ∞

−∞
ρt (E − eV )ρimp(E )

× [ f (E − eV ) − f (E )]dE , (70)

I tunnel
2 (V ) ≈ 8eπ2

h
�2

t

∫ ∞

−∞
ρt (E − eV )ρt (E + eV )

× |F (E )|2[ f (E − eV ) − f (E + eV )]dE . (71)

Here, ρt (E ) is the BCS DOS of the superconducting tip,
ρimp(E ) is the total DOS of the impurity coupled to the
superconducting substrate, and F (E ) is the corresponding
anomalous Green’s function of the impurity coupled to the
substrate. The impurity DOS is given by

ρimp(E ) = 1

π
�
[

E�S + (U + E − J )
√

�2 − E2

D(E )

+ −E�S + (U − E − J )
√

�2 − E2

D(−E )

]
, (72)
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FIG. 13. Comparison between the analytical results of Eqs. (70)
and (71) for the current contributions from single-quasiparticle tun-
neling and Andreev reflection and the numerically exact results
obtained from the CGF. The different parameters of the model are:
�S = 100�, J = 80�, U = 60�, ηt/S = 0.01�, �t = 0.01�, and
T = 0.

where

D(E ) = 2�SE (E − J ) + [(E − J )2 − U 2 − �2
S

]√
�2 − E2,

(73)
and the impurity anomalous Green’s function is given by

F (E ) = �S�

D(E )
. (74)

By construction, these perturbative current formulas are
only valid in the tunnel regime, but they also require the
broadening of the YSR states to be large in comparison with
the tip tunneling rate �t . To test these approximate formulas,
we present in Fig. 13 a comparison with the exact numerical
results for the case in which �S = 100�, J = 80�, U = 60�,
ηt,S = 0.01�, �t = 0.01�, and T = 0. Notice that the analyt-
ical formulas nicely reproduce the numerical results, except
for the Andreev reflection contribution at very low bias when
higher-order terms in the transmission are expected to play a
role.

VIII. DOUBLE-IMPURITY JUNCTIONS: TUNNELING
BETWEEN YSR STATES

As mentioned in Sec. I, recently it has been experimentally
demonstrated that a superconducting STM tip can be function-
alized with a magnetic impurity that then features YSR states
[25]. More importantly, it was shown that this YSR-STM can
be used to probe other magnetic impurities deposited on a
superconducting substrate that also features YSR states. In
this way, these experiments realized the tunneling between
individual superconducting bound states at the atomic scale,
which is the ultimate limit for quantum transport. In particular,
the current-voltage characteristics in these double-impurity
junctions were shown to exhibit huge current peaks inside
the gap (with an extremely pronounced negative differential
conductance). These current peaks have been interpreted as
the evidence of tunneling between YSR states (both direct at

FIG. 14. Schematic representation of our two-impurity model.
Two magnetic impurities are respectively coupled to a supercon-
ducting substrate and to an STM tip that is also superconducting.
The tunneling rates �t and �S measure the strength of the coupling
of the impurity to the tip and substrate, respectively, and v is the
hopping matrix element describing the tunnel coupling between the
impurities. These impurities have magnetizations Jt and JS whose
relative orientation is described by the angle θ .

low temperatures and thermally excited at high temperatures)
[25,26,73]. In this section we want to analyze this unique sit-
uation from the FCS point of view and, in particular, provide
very concrete predictions for the shot noise and Fano factor in
these junctions. In turn, this problem gives us the opportunity
to show how the FCS approach can be used in a case in which
the scattering matrix is not diagonal in spin space.

A. Model and scattering matrix

In the spirit of the Keldysh action of Eq. (9) we now need
a scattering matrix describing these double-impurity junc-
tions. For this purpose, we follow the model put forward in
Ref. [73], which has been very successful describing the ex-
perimental observations for the current-voltage characteristics
[25,26]. We briefly describe this model and then proceed to
the determination of the corresponding normal-state scattering
matrix.

The double-impurity model of Ref. [73] is schematically
illustrated in Fig. 14. In this model, and inspired by the ex-
periments of Ref. [25], every impurity is strongly coupled
to a given superconducting lead (tip and substrate) and both
impurities are coupled via a tunnel coupling. The Hamiltonian
describing this model is given by [73]

H = Hlead,t + Himp,t + Hhopping,t

+ Hlead,S + Himp,S + Hhopping,S + V, (75)

where Hlead, j describes the Hamiltonian of lead j = t, S,
Himp, j describes the respective impurity, which is coupled
to lead j via the Hamiltonian Hhopping,j and V describes the
coupling between the two impurities. We choose a global
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z-quantization axis in which to describe the creation and anni-
hilation operators

c̄†
k, j = (c†

k↑, j, c−k↓, j, c†
k↓, j,−c−k↑, j ), (76)

d̄†
j = (d†

↑, j, d↓, j, d†
↓, j,−d↑, j ), (77)

where c̄†
k, j corresponds to lead j and d̄†

j to impurity j. We
can express the different terms of the Hamiltonian in their
respective basis as follows:

Hlead, j = 1

2

∑
k

c̄†
k, j H̄k, j c̄k, j, (78)

Himp, j = 1

2
d̄†

j H̄impd̄ j, (79)

Hhopping, j = 1

2

∑
k

(c̄†
k, jV̄j d̄ j + d̄†

j V̄
†
j c̄k, j ), (80)

where the respective matrices in spin-Nambu space take the
form

H̄k, j = σ0 ⊗ (ξk, jτ3 + � je
ıϕ jτ3τ1), (81)

H̄imp, j = Ujσ0 ⊗ τ3 + J j · (σ ⊗ τ0), (82)

V̄j = t jσ0 ⊗ τ3, (83)

with the on-site energies Uj and the exchange energies J j . The
tunneling term between the two magnetic impurities reads

V = 1
2 d̄†

t V̄tSd̄S + 1
2 d̄†

SV̄Std̄t, (84)

with the coupling matrix

V̄St = v(σ0 ⊗ τ3) = V̄ †
tS, (85)

where v is the tunneling coupling between the impurities. To
simplify things, it is convenient to transfer the dependence
on θ j and ϕ j to the coupling term V in Eq. (75) and work
with Hamiltonians describing the subsystems in which the

corresponding spin points along its quantization axis. For this
purpose, we introduce the combined unitary transformation
R̄ j = eıθ jσ2/2 ⊗ e−ıϕ jτ3/2, where θ j is the angle formed be-
tween the exchange energy J j and the global z-quantization
axis. Upon performing this unitary transformation, the Hamil-
tonian matrices of Eqs. (81)–(83) become now

H̄k, j = σ0 ⊗ (ξk, jτ3 + � jτ1), (86)

H̄imp, j = Ujσ0 ⊗ τ3 + Jj (σ3 ⊗ τ0), (87)

V̄j = t jσ0 ⊗ τ3, (88)

while the coupling matrices in Eq. (85) adopt now the form

V̄tS = v(e−ıθσ2/2 ⊗ τ3e−ıϕ0τ3/2), (89)

V̄St = v(eıθσ2/2 ⊗ τ3eıϕ0τ3/2). (90)

Notice that these coupling matrices effectively describe a
spin-active interface in which there are spin-flip processes
whose probabilities depend on the relative orientation of the
impurity spins described by θ .

To obtain the scattering matrix, we shall make use again
of the Fischer-Lee relations. For this purpose, we first notice
that the central region is now twice as big as in the single-
impurity case, and the corresponding Hamiltonian describing
this region reads

HC =
(

H̄imp,t V̄tS

V̄St H̄imp,S

)
(91)

in the rotated basis (d†
t , d†

S) ≡ (R̄td̄
†
t , R̄Sd̄†

S ). As in previous
cases, only the electron-components of the matrix representa-
tion are needed for the computation of the scattering matrix,
namely the first and third component of the spinor basis in
Eq. (77). Explicitly, that part of the Hamiltonian of the central
system reads

HC,e =

⎛
⎜⎜⎝

Ut + eV + Jt 0 v cos(θ/2) −v sin(θ/2)
0 Ut + eV − Jt v sin(θ/2) v cos(θ/2)

v cos(θ/2) v sin(θ/2) US + JS 0
−v sin(θ/2) v cos(θ/2) 0 US − JS,

⎞
⎟⎟⎠ (92)

in the basis (d†
↑,t, d†

↓,t, d†
↑,S, d†

↓,S). Notice that we have included
the bias voltage V in the tip subsystem as a shift of the
corresponding impurity level. This way we describe a situ-
ation in which the voltage entirely drops between the two
impurities, as it happens in the STM experiments. On the
other hand, the couplings can be expressed as Hhopping, j =
1
2

∑
k(c†

k↑,j, c†
k↓,j )Vj,e(d↑,t, d↓,t, d↑,S, d↓,S)T + c.c., where the

matrices Vj,e are given by

Vt,e =
(

tt 0 0 0
0 tt 0 0

)
, (93)

VS,e =
(

0 0 tS 0
0 0 0 tS

)
. (94)

With these couplings, the self-energies of the tip and substrate
can be readily computed as we are only interested in the nor-
mal state scattering matrix, and thus the lead GFs are normal
metal ones. In particular, the (normal-state) electron part of
the GFs are given by gr/a

N,e = ∓ıσ0. Thus, the self-energies read

�
r/a
t,e = V†

t,egr/a
N,eVt,e, (95)

�
r/a
S,e = V†

S,egr/a
N,eVS,e, (96)

or more explicitly

�
r/a
t,e = ∓ı

⎛
⎜⎜⎝

�t 0 0 0
0 �t 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (97)
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�
r/a
S,e = ∓ı

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 �S 0
0 0 0 �S

⎞
⎟⎟⎠, (98)

so they are 4 × 4 matrices in impurity-spin space and they are
not of full rank. The dressed central GFs can then be computed
from the Dyson equation

Gr/a
C,e = [(E ± ıηimp)1 − HC,e − �

r/a
t,e − �

r/a
S,e

]−1
, (99)

with the regularization factor ηimp, which can again be chosen
as zero, as in the single-impurity case. To compute the compo-
nents, we also need the scattering rate matrices �t ≡ �(�a

t,e )
and �S ≡ �(�a

S,e). Finally, the scattering matrix then follows
from the Fisher-Lee relation using the 4 × 4 dressed central
GFs, namely

se(E ,V ) =
(
re t′e
te r′e

)
= ρ3σ0 − 2ı

(
�

1/2
t + ı�

1/2
S

)
Gr

C,e

(
�

1/2
t + ı�

1/2
S

)
,

(100)

where ρ3 is the third Pauli matrix in lead space. For the hole
part of the scattering matrix, it holds that

sh(E ,V ) = σ2se(−E ,V )Tσ2, (101)

and the total scattering matrix reads

s(E ,V ) = diag(se(E ,V ), sh(E ,V )). (102)

B. Results

The calculation of the Keldysh action in this double-
impurity case is very similar to that of a single impurity
discussed in Sec. VII. Again, we have to treat the problem
in the Floquet language and resort to numerics to compute the
charge-resolved probabilities. On a conceptual level, the main
differences are that the scattering matrix has a different energy
dependence and it is nondiagonal in spin space. Therefore, it
can be shown that the CGF in this case reads

At0 (χ ) = t0
2h

∫ eV

−eV
dE ln

[ ∞∑
n=−∞

Pn(E ,V )eınχ

]
, (103)

where Pn(E ,V ) corresponds to the probability of transferring
n charges across the junction and E is the Floquet energy. No-
tice the absence of the spin index, when compared to Eq. (67).
We can then compute the current and the noise, which are
given by the standard formulas of a multinomial distribution

I (V ) = e

2h

∫ eV

−eV
dE

∞∑
n=−∞

nPn(E ,V ), (104)

S(V ) = e2

h

∫ eV

−eV
dE

{ ∞∑
n=−∞

n2Pn(E ,V )

−
( ∞∑

n=−∞
nPn(E ,V )

)2}
. (105)

To make a connection with the experiments of
Refs. [25,26], we shall mainly focus here on the analysis of the

results in the regime of weak coupling between the impurities
in which the transport properties are mainly determined by
the tunneling of quasiparticles. Moreover, we shall assume
that the two superconducting electrodes are identical and the
corresponding gap is given by �. To illustrate the results
in the weak-coupling regime, we consider an example
in which the different model parameters are given by:
�S,t = 100�, Jt = 60�, Ut = 0, JS = 60�, US = 60�. With
these parameters, the YSR energies are εt = 0.48� for the SC
tip and εS = 0.64� for the substrate. The Dynes’ parameter is
chosen to be the same for both SCs ηt,S = 0.001�. Moreover,
we choose the impurity coupling v = � such that the normal
state conductance is relatively low (≈4 × 10−4G0) and the
quasiparticle tunneling dominates the transport. Finally, the
spin-mixing angle is chosen as θ = π/2, which has been
shown to reproduce the experimental results [26]. Actually,
this value was interpreted as a way to describe the average
transport properties in a situation in which the two spins
are freely rotating, see Ref. [26] for details. The results for
the current, shot noise, and Fano factor as a function of
the bias voltage are shown in Fig. 15 for two cases: zero
temperature (kBT = 0) and kBT = 0.2�. Let us first discuss
the zero-temperature results. The main salient feature in the
current is the appearance of very pronounced peaks (with
a huge negative differential conductance) inside the gap
region at voltages given by eV = ±|εS + εt| ≈ ±1.12�,
see Fig. 15(a), which reproduces the main observation
in Refs. [25,26]. As explained in Refs. [25,26,73], these
current peaks are due to the resonant quasiparticle tunneling
between the lower and upper YSR states of the impurities
in the tip and substrate, as we illustrate in Fig. 15(g).
Such a tunneling process, which we shall refer to as direct
Shiba-Shiba tunneling, can occur at any temperature and
it only requires the impurity spins to be nonparallel (i.e.,
θ �= 0), otherwise it would be forbidden due to the full spin
polarization of the YSR states. Notice that in Fig. 15(a) we
compare the exact result taking into account any possible
contribution (also from Andreev reflections) and the result
only including single-quasiparticle tunneling (n = ±1).
Such a comparison shows that the current is dominated
in this case by quasiparticle tunneling. With respect to
the shot noise, see Fig. 15(b), it exhibits the same voltage
dependence as the current and it shows two pronounced
peaks at eV = ±|εS + εt| as a result of the direct Shiba-Shiba
tunneling. Again, the noise is dominated by the contribution
of single-quasiparticle tunneling. Turning now to the Fano
factor, see Fig. 15(c), the main feature is the strong reduction
at the voltages of the direct Shiba-Shiba tunneling. In this
particular case, the Fano factor reaches a value around 0.5 that
actually depends on the bias polarity. Notice that the Fano
factor reduction is also dominated by single-quasiparticle
tunneling. Obviously, the origin of this pronounced reduction
of the Fano factor must be due to the resonant character of
this tunneling process between the two individual YSR states.
This will be explained below. Notice, on the other hand,
that the Fano factor is close to 1 away from the resonant
voltage and it reaches values above 1 inside the gap due to the
contribution of Andreev reflections.

Turning now to the high-temperature case (kBT = 0.2�),
the main novelty in the current is the presence of two
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FIG. 15. Zero-temperature current (a), shot noise (b), and Fano factor (c) as a function of the voltage for the case of two impurities coupled
to their respective superconducting electrodes at zero temperature. The two superconductors are assumed to be identical and have a gap equal
to �. The model parameters used in this example are: �t = �S = 100�, Jt = 60�, Ut = 0, JS = 60�, US = 60�, ηt = ηS = 0.001�, v = �,
and θ = π/2. With these parameters the junction has a normal state conductance of 4 × 10−4G0 and the YSR energies are εt = 0.48� and
εS = 0.64�. In the different panels, the black lines correspond to the exact results (including all possible contributions) and the red lines to
the contribution of single-quasiparticle tunneling. The dotted vertical lines indicate the position of the voltages eV = ±|εS + εt| of the direct
Shiba-Shiba tunneling. [(d)–(f)] The same as in panels (a)–(c), but for a temperature kBT = 0.2� with additional dotted vertical lines indicating
the position of the voltages eV = ±|εS − εt| of the thermal Shiba-Shiba tunneling. [(g),(h)] Schematic representation of the tunneling processes
between the two YSR states. Here, the left electrode is a magnetic impurity coupled to a SC tip and the right one is another impurity coupled to
a superconducting substrate both featuring YSR states. The green shaded areas represent the corresponding Fermi functions of both electrodes.
The diagrams follow the same convention as in Fig. 2. Panel (g) corresponds to the direct Shiba-Shiba tunneling enabled by a finite spin-mixing
angle θ and panel (h) to the thermal Shiba-Shiba tunneling enabled by a finite temperature and a spin-mixing angle θ �= π .

additional current peaks inside the gap that appear at eV =
±|εt − εS| ≈ 0.16�, see Fig. 15(d). These current peaks,
which were in fact experimentally observed [25,26], are due
to the thermally activated tunneling between the two upper
(or excited) YSR states, as we illustrate in Fig. 15(h). As ex-
plained in Refs. [25,26,73], this thermally activated tunneling
process, which we shall refer to as thermal Shiba-Shiba tun-
neling, can occur when the temperature is high enough to have
a partial occupation of the excited YSR states and it requires
that the impurity spins are not antiparallel (i.e., θ �= π ), other-
wise it would be forbidden due to the full spin polarization
of the YSR states. Again, we note that the current in this
case is also dominated by single-quasiparticle tunneling, see
Fig. 15(d). The thermal Shiba-Shiba tunneling is also visible
in the shot noise in the form of two peaks at eV = ±|εt − εS|.
In the case of the Fano factor, the values at the voltages
eV = ±|εt + εS| associated to direct Shiba-Shiba tunneling
have increased as compared to the zero-temperature case,
while there is no visible feature at the biases of the thermal
Shiba-Shiba tunneling because in this example it is masked
by the rapid increase of the thermal noise that dominates the
low-bias regime in the Fano factor at finite temperatures.

From the discussion of the example of Fig. 15 it is obvi-
ous that the most important feature related to the tunneling
between two YSR states is the Fano factor reduction at the
resonant bias of the direct Shiba-Shiba tunneling. To under-
stand its origin and magnitude we first need to analyze more
systematically how this reduction depends on the different
parameters of the model. In particular, the Fano factor related
to the direct Shiba-Shiba tunneling is expected to depend on
the relative value between the effective tunneling rate (related
to the hopping element v) and the broadening (or lifetime) of
the bound states. In fact, this issue is very much related to
another interesting observation reported in Ref. [25], namely
the fact that the height of the direct Shiba-Shiba current peaks
(and their area) undergoes a crossover between a linear regime
at very low transmission (or normal state conductance) and
a sublinear regime at higher transmission when the STM tip
with its impurity was brought closer to the impurity on the
substrate. To understand the impact of the junction transmis-
sion, we considered the zero-temperature example of Fig. 15
and computed the value of the current, noise, and Fano factor
at the direct Shiba-Shiba voltage eV = |εS + εt| as a func-
tion of the hopping matrix element v describing the coupling
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FIG. 16. (a) Zero-temperature current and shot noise at the direct
Shiba-Shiba energy eV = |εS + εt| as a function of the coupling
v. The rest of the parameters of the model correspond to those of
Fig. 15. The solid lines correspond to the exact results, while the
dotted lines were computed taking only into account the contribution
of the tunneling of single quasiparticles. (b) The corresponding Fano
factor F ∗. The black line corresponds to the exact results and the red
line to the contribution of single-quasiparticle tunneling.

between the impurities, while the rest of the parameters are
kept constant. The results are displayed in Fig. 16, where
we show both the exact results and those computed taking
only into account the contribution of single-quasiparticle pro-
cesses. As it can be seen in panel (a), the peak height indeed
exhibits the type of crossover observed experimentally. For
small values of v, i.e., deep into the tunnel regime, the current
peak height increases linearly with the transmission (which in
this regime is proportional to v2) and it crosses over to a sub-
linear regime at higher couplings. Moreover, this crossover is
mainly about the quasiparticle current and only at high enough
couplings (v � �) we start to see additional contributions due
to Andreev reflections. Interestingly, the shot noise exhibits a
similar crossover, but with an important difference, namely
the fact that it enters the sublinear regime more quickly than
the current and even exhibits a local minimum at a certain
value of v. This peculiar behavior is clearly reflected in the
evolution of Fano factor, see Fig. 16(b). The Fano factor for
very small couplings is equal to 1, as expected from stan-
dard (nonresonant) tunneling, it is progressively reduced as
the coupling increases reaching a minimum value of around
(∼0.22), and it increases again monotonically for even higher
couplings. Notice also that the quasiparticle contribution dom-
inates the Fano factor up to coupling values clearly beyond
that at which the minimum takes place.

To understand the origin of this crossover, the existence
and magnitude of the Fano factor minimum, and whether this
behavior is universal, we put forward the following toy model.
We consider two energy levels εt and εS that are coupled to
their respective electron reservoirs. Due to this coupling, the
quantum levels acquire a broadening, which we assume to be
equal for both levels and given by ηS = ηt = η. Additionally,
these two levels are coupled via a tunnel coupling veff . This
model is illustrated in Fig. 17(a). Notice that we do not even
need to invoke the existence of superconductivity. The energy
and bias-dependent electron transmission in this toy model is
given by [63]

T (E ,V ) = 4π2v2
effρt (E − eV )ρS(E )∣∣1 − v2
effgt (E − eV )gS(E )

∣∣2 , (106)

where gt,S(E ) are advanced GFs related to both energy levels
and given by

gt,S(E ) = 1

E − εt,S − ıη
, (107)

and ρt/S(E ) = (1/π )�(gt/S) are the DOS associated to those
two levels. Without loss of generality, we choose εt < 0, εS >

0, and a positive bias. Since we want to emulate the transport
properties at the direct Shiba-Shiba energy, we shall set from
now on eV = |εt| + |εS|. At this bias, the transmission adopts
the form

T (E ) = 4v2
effη

2

[(E − εS − veff )2 + η2][(E − εS + veff )2 + η2]

= 4γ 2[(E−εS
η

− γ
)2 + 1

][(E−εS
η

+ γ
)2 + 1

] , (108)

where γ = veff/η. Within this model, the corresponding zero-
temperature current and noise are given by

I = 2e

h

∫ eV

0
T (E ) dE , (109)

S = 4e2

h

∫ eV

0
T (E )[1 − T (E )]dE . (110)

Assuming that η � |εt,S| and veff < |εt| + |εS|, one can com-
pute analytically the previous integrals to obtain

I =
(

2e

h

)
2πη

γ 2

γ 2 + 1
, (111)

S =
(

4e2

h

)
2πη

[
γ 2

γ 2 + 1
− γ 4(γ 2 + 5)

2(γ 2 + 1)3

]
. (112)

The corresponding Fano factor is then given by

F ∗ = S

2eI
= γ 4 − γ 2 + 2

2(γ 2 + 1)2
. (113)

These expressions nicely summarize the type of crossover that
we discussed above and show that it is simply controlled by
the parameter γ , i.e., ratio between the tunnel coupling and the
level width. Before comparing with the actual results of the
two impurity system, let us analyze the Fano factor in different
limiting cases. First, in the weak-coupling regime γ � 1, the
Fano factor becomes 1, which is the expected result for non-
resonant tunneling situations. Second, in the high-coupling
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FIG. 17. (a) Schematic representation of the model used to describe the tunneling between two bound states. (b) Zero-temperature current
and shot noise computed with the model of panel (a) (dotted lines) as a function of the ratio veff/η. The solid lines correspond to the exact
results taken from Fig. 16 and using the expression of veff of Eq. (116). The vertical line indicates the case veff = η. (c) The corresponding
Fano factor computed with the model (dotted line) and the results of Fig. 16(b) (both exact and single-quasiparticle contributions). The solid
horizontal line indicates a Fano factor equal to 7/32, while the the horizontal dashed line corresponds to the Fano factor equal to 1/4.

regime γ � 1, the Fano factor tends to 1/2, which is the
generic expected result for two very narrow energy levels. We
shall see that this regime cannot be easily achieved with the
YSR states because for very large v the Fano factor is altered
by the Andreev reflections. More interestingly, the Fano factor
can be much smaller than 1/2. Thus, for instance, for γ = 1
the Fano factor is exactly 1/4. In particular, the shot noise
exhibits a local minimum at this value of γ , which we propose
as a method to extract the intrinsic lifetime of the states.
However, the Fano factor of 1/4 does not mark the lowest
Fano factor. It is easy to show that the minimum Fano factor
value is achieved when γ = √

5/3 > 1, which results in a
Fano factor equal to 7/32. This is a unique value that, to our
knowledge, is not found in any other generic situation.

To establish a quantitative comparison between the toy
model and the direct tunneling between YSR states, we still
need to identify the effective tunneling coupling in the latter
situation. In the presence of YSR states the effective coupling
must take into account both the spin-mixing angle θ and the
coherent factors that determine the height of the DOS associ-
ated to the YSR states. These coherent factors are given in our
model by

u2
j = 2Jj�

2
j � j[

�2
j + (Jj + Uj )2

]3/2[
�2

j + (Jj − Uj )2
]1/2 , (114)

v2
j = 2Jj�

2
j � j[

�2
j + (Jj − Uj )2

]3/2[
�2

j + (Jj + Uj )2
]1/2 . (115)

with j = t, S. Thus, the effective tunnel coupling veff describ-
ing the direct Shiba-Shiba tunneling can be expressed in terms
of the bare v hopping matrix element as follows:

veff = v sin(θ/2) ×
{

utvS for V > 0
uSvt for V < 0 . (116)

Finally, we are in position to establish the desired compari-
son, which is shown in Figs. 17(b) and 17(c). There we present

both the analytical results obtained with the toy model for the
current, noise, and Fano factor at the resonant bias, as well
as the exact results shown in Figs. 16(a) and 16(b) where the
tunnel coupling has been renormalized according to Eq. (116).
The results are presented as a function of the ratio veff/η. No-
tice that the toy model is able to quantitatively reproduce the
results of our two-impurity model over a broad range of values
of that ratio. In particular, the toy model nicely reproduces the
crossover in all transport properties up to coupling values in
which Andreev reflections start playing a role. Interestingly,
we now can see that the local minimum in the shot noise
exactly corresponds to the case veff = η when the effective
coupling is equal to the broadening of the YSR states. More-
over, the minimum of the Fano factor is shown to reach the
value 7/32 predicted by the toy model, and the Fano factor
becomes 1/4 exactly when the shot noise is locally minimal.
On the other hand, notice that the prediction of the toy model
of a Fano factor equal to 1/2 when veff � η is not reached
in the direct Shiba-Shiba tunneling case due to the onset of
the Andreev reflections, as one can see in Fig. 17(c). Finally,
the most important conclusion of the impressive agreement
with the toy model is the universality of the results when
considered as a function of the the ratio veff/η, as long as
the transport is dominated by the tunneling of single quasi-
particles. This universality is illustrated in Ref. [71] where we
present the results for this crossover for different sets of values
of the model parameters, see Fig. S15 within SM [71].

It is important to stress that our FCS approach is valid for
arbitrary junction transparency and can also describe situa-
tions in which the transport is dominated by MARs. Actually,
this is a very interesting subject since, as it has been the-
oretically shown in Ref. [73] for the current, the transport
properties are expected to exhibit an extremely rich subgap
structure due to the occurrence of a variety of different types
of MARs, some of which have no analog in the single-
impurity case. However, due to the richness of that physics,
and to keep the length of this manuscript under control, we
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shall postpone the analysis of that regime to a forthcoming
publication. In any case, we have included some examples of
the high-transparency regime in Ref. [71] to illustrate once
more the power of our FCS approach, see Figs. S10–S14
within SM [71].

IX. DISCUSSION AND CONCLUSIONS

As explained in Sec. I, the concept of FCS has already
been used to understand the transport properties of several
basic superconducting junctions. However, the Keldysh ac-
tion described in Sec. III [60,61], which has remained fairly
unnoticed, puts this concept at a whole new level because it
allows us to describe the coherent transport in situations where
the scattering matrix of the system may depend on energy,
spin, and even involve an arbitrary number of superconducting
terminals. Here, we have shown how this action can be used
in practice by combining it with model Hamiltonians, and we
have illustrated its power in the several examples concerning
the spin-dependent transport in hybrid superconducting sys-
tems that exhibit YSR states. Such a combination opens up
the possibility to shed new light on the coherent transport in
numerous superconducting nanostructures. Thus, for instance,
among the natural extensions of this paper we can mention the
study of Majorana physics in magnetic atomic chains from
the FCS point of view [34–40]. In fact, it has been recently
suggested that shot-noise tomography in hybrid magnetic-
superconducting wire systems could be used to distinguish
Majorana modes from other trivial fermionic states [74]. An-
other context in which one could straightforwardly apply
our FCS approach is that of superconductor-semiconductor
nanowire junctions in which one can realize single and
double quantum dot systems that exhibit YSR states; see
Refs. [75–77] and references therein. An interesting situa-
tion in which it would be very interesting to apply the FCS
approach is that of microwave-irradiated junctions [78–80].
It has been recently shown that one can gain some new
insight into the interplay between YSR states and Andreev
transport by studying the single-impurity systems discussed
in this paper with the assistance of a microwave field [81–83].
Probably the most exciting possibility of the approach put
forward in this paper is the analysis of multiterminal super-
conducting systems. As mentioned above, the Keldysh action
described here is valid for arbitrary number of terminals. In
this sense, we are very much interested in extending this paper
to study different aspects of superconducting multiterminal
systems that are currently attracting a lot of attention such
as the generation of Cooper quartets [84–88], the study of
the Josephson effects [89–92], or the possibility to engineer
Andreev bound states with interesting topological properties
[93–104]. Last but not least, nothing prevents us from using
this FCS approach in the case of junctions involving uncon-
ventional superconductors.

It is worth remarking that our whole analysis of the FCS
in these impurity systems has been done making use of mean-
field models. In that regard, it would be interesting, albeit very
challenging, to investigate the role of electronic correlations
or spin fluctuations in the transport properties discussed in
this paper, most notably in the noise. This clearly goes beyond
the scope of this paper and it cannot be done with the action

of Eq. (9) used here as starting point. The success of these
mean-field models is indeed quite remarkable, as we have
shown in Sec. VI and has been demonstrated in numerous
publications [9,23,25–27,73,81–83]. So, it will be interesting
to see if future shot noise experiments reveal the presence of
significant correlation effects.

To summarize the present paper, let us say that we have
shown here that the FCS approach can be extended to describe
the spin-dependent transport in systems involving magnetic
impurities coupled to superconducting leads. In particular,
with the analysis of different situations we have illustrated
how the concept of FCS provides an unprecedented insight
into the interplay between YSR states and electronic trans-
port. Among the lessons and predictions put forward here,
we can highlight the following ones. First, in the case of
single-impurity junctions with only one superconducting elec-
trode, we have shown that the whole subgap transport can
be understood as a competition between single-quasiparticle
tunneling and a resonant Andreev reflection. Such a competi-
tion is especially reflected in the shot noise and Fano factor,
which allow us to access energy scales that are out of the scope
of conventional conductance measurements, most notably the
YSR lifetimes. In particular, we have illustrated this fact with
the analysis of very recent experiments that have reported
shot noise measurements in these hybrid atomic-scale systems
[49]. Second, in the case of single-impurity junctions with two
superconducting leads, we have shown how the FCS concept
allows us to unambiguously identify the contribution of all the
tunneling processes, including multiple Andreev reflections.
In particular, this has helped us to correct common misin-
terpretations on the origin of certain features in the subgap
structure of the conductance. In particular, we have discussed
the unique signatures of the so-called resonant multiple An-
dreev reflections (multiple versions of the known lowest-order
resonant Andreev reflection), which should enable their ex-
perimental identification, something that to our knowledge
has not been reported thus far. Moreover, we have presented
extensive predictions on how the occurrence of these resonant
Andreev reflections, and YSR-mediated Andreev reflections,
are reflected in the shot noise and Fano factor. Finally, in
connection to recent experiments on the tunneling between
two individual YSR states in two-impurity systems [25,26],
we have shown that such a tunneling leads to an unambiguous
signature in the Fano factor in the form of a strong reduction
at the resonant bias voltage at which the two YSR states are
aligned. In particular, we have demonstrated that the direct
Shiba-Shiba tunneling at low temperatures can exhibit a Fano
factor as small as 7/32, which results from the resonant quasi-
particle tunneling between two YSR states. This constitutes a
significant result in quantum transport that has not been real-
ized in any other system. So, in short, we think that these ex-
amples and predictions will motivate other theoretical groups
to use the concept of FCS to provide a different point of
view on the superconducting transport in numerous situations.
Moreover, our paper clearly shows the importance of going
beyond conductance measurements to truly understand the
Andreev transport in the presence of superconducting bound
states. In this sense, we are convinced that this paper will trig-
ger off the realization of new shot noise measurements in these
atomic-scale superconducting systems exhibiting YSR states.
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APPENDIX A: KELDYSH GREEN FUNCTION
FORMALISM

One ingredient for the Keldysh action in Eq. (9) are the
Green’s functions (GFs) of the leads, which are described in
the framework of the Keldysh formalism [105]. We provide a
more in-depth discussion of these functions in this Appendix.
The retarded and advanced GFs of a BCS superconductor
(SC) in spin-Nambu space are given by

ḡr/a(E ) = σ0 ⊗ −ı√
�2 − (E ± ıη)2

(
(E ± ıη) �eıφ

−�e−ıφ −(E ± ıη)

)

= σ0 ⊗
(

gr/a f r/a

fr/a −gr/a

)
, (A1)

where we have used the spinor basis (�†
↑, �↓, �

†
↓,−�†) and

the Pauli matrices σi in spin space, σ0 being the identity. Note
that we already eliminated the k dependence by summing it
out. The bar (¯ ) indicates that a quantity is expressed in spin-
Nambu space. The SC is described by a gap � > 0 and the
phase of the SC condensate φ. The regularization parameter
η should in principle tend to zero in these expressions, but
it can be kept constant to describe in simple terms inelastic
mechanisms that tend to broaden the electronic states (Dynes’
parameter). Note that we are using here GFs subjected to the
normalization condition ḡr/aḡr/a = 1̄, where 1̄ is the identity
in spin-Nambu space. Notice also that the GFs are block-
diagonal in spin space

ḡr/a(E ) =
(

gr/a
⇑ (E ) 0

0 gr/a
⇓ (E )

)
, (A2)

where gr/a
⇑ (E ) is the GF in the spinor basis �⇑ = (�†

↑, �↓),
including spin-up electrons and spin-down holes, whereas
gr/a

⇓ (E ) is the GF in the spinor basis �⇓ = (�†
↓,−�↑), de-

scribing spin-down electrons and spin-up holes. We shall
assume in this paper that g⇑ = g⇓ (no net spin polarization
in the electrodes).

In the case of a normal metal (� = 0), the GFs reduce to

ḡr/a
N (E ) = ±σ0 ⊗ τ3, (A3)

where we have used the Pauli matrices τi in Nambu space.

To deal with nonequilibrium situations, we consider the
Keldysh GFs of a SC given by

ǧ(E ) =
(

ḡ−− ḡ−+
ḡ+− ḡ++

)
= 1

2

(
ḡa + ḡr + ḡk ḡa − ḡr + ḡk

ḡa − ḡr − ḡk ḡa + ḡr − ḡk

)
,

(A4)
with the retarded and advanced GF in spin-Nambu basis from
Eq. (A1) and the Keldysh component of the GF ḡk = (ḡr −
ḡa )(1 − 2 f ) with the Fermi function of the superconductor
f (E ) = 1/(eE/kBT + 1) with the temperature T and the Boltz-
mann constant kB. The index ( ˇ ) indicates that the GF is
expressed in Keldysh-spin-Nambu space. The Keldysh GF
can be brought into the time-domain by a Fourier transfor-
mation as follows:

ǧ(trel ) =
∫

dE ǧ(E )eıEtrel , (A5)

where trel = t − t ′ is the relative time. If a reservoir is voltage
biased, the voltage can be gauged onto the GF. Namely, for
a constant bias voltage V , the SC phase is given by φ(t ) =
2eV t/h̄ [where the dc phase φ0 is already included in the GF
in Eq. (A1)]. The voltage-dependent GF is then obtained via

ǧ(t, t ′) = eıφ(t )(ν0⊗σ0⊗τ3 )/2ǧ(trel )e
−ıφ(t ′ )(ν0⊗σ0⊗τ3 )/2, (A6)

where the Pauli matrices in Keldysh νi, spin σi, and Nambu
τi space and their respective identities ν0, σ0, and τ0 are used.
Similar to the voltage, the counting field χ can be gauged onto
the SC GF

ǧ(χ, t, t ′) = e−ıχ (ν3⊗σ0⊗τ3 )/2ǧ(t, t ′)eıχ (ν3⊗σ0⊗τ3 )/2. (A7)

Since we only consider two-terminal settings in this paper, we
only need a single counting field (the other one can be gauged
away). Additionally, the nondiagonal entries in Nambu space
result in a dependence of the GF on the average time tav =
(t + t ′)/2. We can thus express the GF as a function of relative
time trel and average time tav = (t + t ′)/2, namely ǧ(trel, tav).
For a normal metal, the off-diagonal entries in Nambu space
are zero and the GFs only depend on the relative time trel.
Then, the GFs can be trivially Fourier transformed back with
respect to trel to the energy space. However, because of the
occurrence of tav, this is not possible in the SC case. Hence,
we introduce the Wigner representation of the GFs following
Ref. [106]. The nth moment of the Keldysh GF is defined by

ǧn(E ) ≡
∫
R

dtrel
1

τ

∫ τ/2

−τ/2
dtaveıEtrel+ın�tav ǧ(trel, tav), (A8)

where � = 2eV is the fundamental energy (periodicity of
the average time argument) and τ = 2π/� is the corre-
sponding period. This way, we restrict the Floquet energy to
the first Floquet Brillouin zone, namely E ∈ [−�/2,�/2] =
[−eV, eV ]. From the Wigner representation of the GF, one can
compute the components of the so-called Floquet matrix G,
which are given by

(G)mn(E ) ≡ ǧmn(E ) ≡ ǧm−n(E + (m + n)eV ), (A9)
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which explicitly written out for the case of the voltage-biased SC GF in Keldysh space reads (we omit the spin structure as the
GF is identity in spin space)

ǧmn =

⎛
⎜⎜⎜⎜⎜⎝

g−−
2m+1δm,n e−ıχ f −−

2m+1δm+1,n e−ıχg−+
2m+1δm,n f −+

2m+1δm+1,n

eıχ f−−
2m−1δm,n+1 −g−−

2m−1δm,n f−+
2m−1δm,n+1 −eıχ g−+

2m−1δm,n

eıχg+−
2m+1δm,n f +−

2m+1δm+1,n g++
2m+1δm,n eıχ f ++

2m+1δm+1,n

f+−
2m−1δm,n+1 −e−ıχg+−

2m−1δm,n e−ıχ f++
2m−1δm,n+1 −g++

2m−1δm,n

⎞
⎟⎟⎟⎟⎟⎠, (A10)

where we have used the notation gn ≡ g(E + neV ). Hence, the GF is an infinitely large matrix in Floquet space with each entry
being an 8 × 8 Keldysh-spin-Nambu GF. In the case of a constant voltage, there are off-diagonal contributions in the Floquet
space, characterized by factors of δm+1,n and δm,n+1. In the case when the SC is not voltage biased, there are no off-diagonal
entries in Floquet space and we obtain

ǧmn
SC(χ,ω) =

⎛
⎜⎜⎜⎜⎜⎝

g−−
2m e−ıχ f −−

2m e−ıχ g−+
2m f −+

2m

eıχ f−−
2m −g−−

2m f−+
2m −eıχ g−+

2m

eıχg+−
2m f +−

2m g++
2m eıχ f ++

m

f+−
2m −e−ıχ g+−

2m e−ıχ f++
2m −g++

m

⎞
⎟⎟⎟⎟⎟⎠δm,n (A11)

so the Floquet GF is diagonal in Floquet space. In the case of a
normal metal, gr/a

N = ±1 and f r/a = fr/a = 0 and the voltage-
biased normal metal Floquet GF follows easily by taking these
limits in Eq. (A10). In particular, the voltage-biased normal
metal Floquet GF is diagonal in Floquet space. Let us remark
that in the case of a normal metal and one SC, the voltage
can be gauged onto the normal metal. Hence, both of the
Floquet GFs are fully diagonal in Floquet space and the prob-
lem can be treated by just integrating over the whole energy
range.

The other ingredient for the action in Eq. (9) is the normal
state scattering matrix. The structure of the scattering matrix
is explained in detail in Sec. IV for the single-impurity case
and in Sec. VIII for the double-impurity case. The scattering
matrix is a function of the energy E . Thus, upon a Fourier
transformation, the scattering matrix only depends on relative
time s̃ = s̃(trel ) where ( ˜ ) signifies that the quantity is ex-
pressed in lead-Keldysh-spin-Nambu space. Thus, its Wigner
representation is trivial and its Floquet matrix S̆ is diagonal in
Floquet space. In particular, the element (n, m) of the Floquet
matrix is given by

(S̆)mn ≡ s̃mn(E ) = s̃(E + 2 meV)δm,n, (A12)

with the energy-dependent scattering matrix in lead-Keldysh-
spin-Nambu space.

APPENDIX B: MORE ON THE KELDYSH ACTION

In the following, we want to go through the derivation of
the Keldysh action in the Floquet representation in detail. We
start by the Keldysh action

A(χ ) = 1

2
Tr ln

⎡
⎢⎢⎢⎣ 1̂ + Ĝ(χ )

2
+ Ŝ

1̂ − Ĝ(χ )

2︸ ︷︷ ︸
Q̂(χ )

⎤
⎥⎥⎥⎦− 1

2
Tr ln Q̂(0),

(B1)

where Ŝ is the normal-state scattering matrix and Ĝ(χ ) =
diag(GL(χ ), GR ) is a block-diagonal matrix containing the
lead GFs GL/R. In this formalism, the reservoir GFs are ex-
pressed as infinitely large matrices in time space. Namely,
the element (t, t ′) of the GF GL/R(χ ) is the Keldysh GF
ǧL/R(χ, t, t ′) from Eq. (A7). In addition, the scattering matrix
is expressed in the same way as a matrix Ŝ with its element
(t, t ′) being the scattering matrix s̃(t, t ′). Note that by express-
ing the GFs and scattering matrix as infinitely large matrices
in time space, the trace and logarithm in Eq. (B1) imply
convolutions over intermediate arguments. In particular, it
holds

(GLGR)t,t ′ = (ǧL ⊗ ǧR)(t, t ′), (B2)

where GLGR describes a matrix multiplication in time-
Keldysh-spin-Nambu space between two GFs GL and GR in
time-Keldysh-spin-Nambu space. The subindex (t,t ′) refers
to extracting the element (t, t ′). As a reminder, the Floquet
matrix representation of the GFs GL is GL(E ) with its ele-
ment (n, m) being the Keldysh matrix ǧnm

L (E ) from Eq. (A10)
and equivalently for the GF GR and its Floquet matrix GR.
An important mathematical relation of the Floquet matrix
representation in Eq. (A9) is that upon mapping the GFs in
time space to the Floquet space, the algebraic structure of a
generalized convolution is preserved [106],

(ǧL ⊗ ǧR)(t, t ′) = (GLGR)t,t ′

⇔
∞∑

l=−∞
ǧml

L (E )ǧln
R (E ) = (GL(E )GR(E ))mn, (B3)

where ǧml
L and ǧln

R are the components of the Floquet matrices
of the Keldysh functions ǧL and ǧR respectively. It is seen that
a multiplication of two Keldysh functions in time-Keldysh-
spin-Nambu-space can just be translated into a multiplication
of Floquet matrices in Floquet-Keldysh-spin-Nambu-space.
Thus we can rewrite the action in Eq. (B1) using Floquet
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matrices

A(χ ) =1

2
Tr ln

⎡
⎢⎢⎢⎣ 1̆ + Ğ(χ, E )

2
+ S̆(E )

1̆ − Ğ(χ, E )

2︸ ︷︷ ︸
Q̆(χ,E )

⎤
⎥⎥⎥⎦

− 1

2
Tr ln Q̆(0, E ), (B4)

where the GF Ğ(χ, E ) = diag(GL(E ), GR(χ, E )) is block-
diagonal in lead space with GL/R(χ, E ) the Floquet matrices
of the GFs GL/R and the Floquet matrix S̆(E ) of the scattering
matrix Ŝ. Hence, the Keldysh action is form invariant un-
der the transformation. The infinitely large uncountable time
space is mapped onto an infinitely large uncountable energy
argument E and an infinitely large countable Floquet index.
Hence, the trace is mapped from time space to a trace over
the Floquet index and an integral over the Floquet energy
E ∈ [−eV, eV ],

A(χ ) = 1

2

∫ eV

−eV
dE

(
ln det

[
1̆ + Ğ(χ, E )

2

+S̆(E )
1̆ − Ğ(χ, E )

2

]
− ln det Q̆(0, E )

)
. (B5)

Practically, the Floquet matrices cannot be expressed as
infinitely large matrices. Thus, when computing the deter-
minant in Eq. (B5) numerically, one introduces a cutoff
in the Floquet index large enough for the cumulants to
converge.

In the case of single-impurity junctions, the matrix Q̆ is

block-diagonal in spin space, thus det Q̆ = det Q̆
⇑

det Q̆
⇓

and
the charge- and spin-resolved tunneling probabilities are com-
puted using the inverse Fourier transformation

Pσ
n (E ,V ) = 1

2π

∫ 2π

0
dχ

(
det Q̆

σ
(χ, E )

det Q̆
σ

(0, E )

)
e−ınχ (B6)

for σ =⇑,⇓. In the two-impurity case, the matrix Q̆ is not
block-diagonal in spin space and the charge-resolved tunnel-
ing probabilities can be obtained as follows:

Pn(E ,V ) = 1

2π

∫ 2π

0
dχ

(
det Q̆(χ, E )

det Q̆(0, E )

)
e−ınχ . (B7)
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