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Multiband Josephson effect in an atomic scale Pb tunnel junction
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Multiband superconductivity plays an important role in many emergent novel superconductors and has
attracted great interest over the years. Various related experimental aspects have been intensely researched,
but a quantitative understanding on the Cooper-pair transport remains still elusive, despite its fundamental and
technological importance. We study a Josephson junction with a scanning tunneling microscope (STM), where
both tip and sample are Pb, a prototypical type I two-band superconductor. We map the properties of the junction
across a wide range of normal state conductances revealing in-gap features originating from multiple Andreev
reflections (MARs) and the Josephson effect. We present the theoretical framework to extract the transmission
through the transport channels and describe the Cooper-pair tunneling with quantitative precision through two
superconducting bands. This paves the way for the understanding of increasingly complicated superconductors.
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I. INTRODUCTION

Josephson junctions form the basis of many emerging
quantum technologies. A number of promising implementa-
tions of quantum computers, in particular, rely on Josephson
junctions for their qubit architectures [1–4]. Applications
of the Josephson effect are currently limited to elemental
superconductors at sub-Kelvin temperatures [5–7]. Energy
efficient and sustainable quantum technologies will require a
broader spectrum of available materials with higher critical
temperatures.

However, the electronic structure of compounds with
higher critical temperatures is often complex. In many cases,
more than a single band participates in their superconduc-
tivity, which is called multiband superconductivity (MBSC)
[8–10]. A thorough understanding of Josephson junctions in
MBSC materials is essential to the development of relevant
quantum technologies [11–15]. Nevertheless, their complex
material nature makes them challenging for fundamental
studies.

As an elemental Bardeen-Cooper-Schrieffer (BCS) super-
conductor with two gaps [16,17], Pb is a rare example and thus
an excellent model system to investigate Josephson tunneling
in a multiband context. Although the double-gap features in
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Pb junctions are well documented since the 1960s [18–20],
a more detailed understanding on their origin in MBSC was
confirmed by means of scanning tunneling microscopy (STM)
only rather recently [21,22]. Nevertheless, the interplay be-
tween multiband superconductivity and Cooper-pair transport
remains elusive.

In this paper, we investigate the Josephson effect in a
MBSC environment by studying the tunneling between a Pb
tip and Pb(110) surface in an STM. We analyze our exper-
imental data using a quantitative theory, which allows us
to disentangle the gap parameters of the single-crystalline
sample and the amorphous tip. Combining this with measure-
ments of multiple Andreev reflections (MARs) and including
different broadening mechanisms, we extract different trans-
port channels from quasiparticle reference spectra. We use
these independently extracted transport channel transmis-
sions to consistently model the Josephson effect, where we
reach excellent agreement with quantitative precision with the
Josephson measurement. We also assume that the transport
channels are in phase.

II. RESULTS AND DISCUSSION

The tunnel junction consists of a sharp amorphous Pb tip
and a Pb(110) surface [Fig. 1(b)]. Pb is a conventional type I
BCS superconductor featuring a critical temperature of 7.19 K
[23,24], much higher than our experimental temperature of
310 mK [25]. We study the tunneling through such a Pb-Pb
junction across a wide range of normal state conductance
values by controlling the tip-sample distance [Fig. 1(a)].

At low conductance, the differential conductance (dI/dV )
spectra reveal the convolution of the tip and sample density
of states (DOS) without the effects of higher-order tunneling
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FIG. 1. (a) Schematics of the STM setup with a Pb tip on a
Pb(110) surface where the tip-sample distance is varied to change
the normal state conductance GN. (b) Density of states as a function
of energy in the tip (left) and the sample (right) vertically offset by
the bias voltage. (c) Current as a function of bias voltage for different
GN values. (d) Differential conductance dI/dV as a function of bias
voltage for different GN values. The two pairs of large peaks at the
gap edge are the coherence peaks showing the two-band nature of
Pb. With increasing conductance, the Josephson effect emerges as
an increasingly prominent peak at zero bias voltage. The curves are
offset vertically by 10 µS for better visibility. The color bar indicates
the junction transmission τ = GN/G0 for both panels (c) and (d),
where G0 = 2e2/h is the conductance quantum.

(e.g., Andreev reflections or the Josephson effect) [see
Fig. 1(b)]. The measured current and dI/dV spectra are
shown as function of bias voltage V in Figs. 1(c) and 1(d) for
different normal state conductance values, respectively. Since
two bands with different superconducting gap parameters
contribute to the superconductivity in Pb, two pairs of peaks
at the gap edge are expected in the single-crystalline sample
DOS, with gap parameters �s1,2. On the other hand, the
tip is amorphous [26], so we expect to have only one pair
of peaks in the DOS with a gap parameter �t because of
interband scattering, which will be discussed in more detail
below. This is evidenced by the observation of only two pairs
of coherence peaks in the dI/dV spectra [Fig. 1(d)]. The
position and surface dependence of the pairs of peaks has
been discussed previously [21].

The quasiparticle current for different values of the junc-
tion transmission τ = GN/G0, where GN is the normal state
conductance and G0 = 2e2/h is the conductance quantum, is
plotted in Fig. 1(c). The junction transmission τ is the sum
over the individual transport channel transmissions τi, i.e.,
τ = ∑

i τi. For tunneling between two superconductors at low
temperature and low conductance, a current will flow only
if the voltage drop between tip and sample exceeds the sum
of tip and sample gap parameter [see Fig. 1(c)]. Also, in the

dI/dV spectra in Fig. 1(d), a gap around the Fermi level with
sharp coherence peaks at eV = ±(�s1,2 + �t ) is observed.
At higher conductance values, higher-order tunneling features
appear inside the gap. These are MARs, which are the (mul-
tiple) reflections of electrons as holes at the superconducting
electrodes effectively transferring multiple charges across the
junction [27,28]. The lowest-order Andreev reflections give
rise to peaks in the dI/dV at eV = ±�t , ±�s1 and ±�s2.
In addition, we observe the Josephson effect, which is the
tunneling of Cooper pairs. In the STM, the Josephson effect
is strongly influenced by the dynamical Coulomb blockade
(DCB) [29–31], which will be described in more detail be-
low. Both processes, Josephson effect and MARs, are clearly
visible in gap at high conductance values in Fig. 1(d).

McMillan model for disordered superconductivity. Despite
Pb being a MBSC material, the amorphous tip results in a
single superconducting gap parameter. We can account for
this by employing the McMillan framework for MBSC where
disorder facilitates coupling and scattering between the bands
participating in superconductivity. This leads to a coupling of
their gap parameters [32].

In the presence of interband scattering, the gap parameters
become interdependent as given by

�i(E ) = �0
i − �i j

�i(E ) − � j (E )√
�2

j (E ) − E2
, (1)

where �i(E ) is the energy-dependent gap parameter of the ith
band, �0

i is the gap parameter of the ith band in absence of
interband scattering, �i j is the coupling parameter describing
interband scattering, and E is the energy. For bulk crystalline
Pb, previous studies have found negligible scattering ampli-
tudes �i j and thus the spectrum can be approximated by a
sum of the two BCS DOSs with two independent unperturbed
gap parameters �s1,2 = �0

1,2 [21].
Amorphous Pb tips show only a single gap because of

strong interband scattering as a result of the disordered struc-
ture in the tip. This can be nicely explained by the McMillan
formalism assuming a strong interband scattering �i j � �0

i .
As a result, the coupled equations in Eq. (1) can be solved
analytically as shown in Ref. [32], which reduces the two gap
parameters to a single effective gap parameter given by

�eff = �12�
0
1 + �21�

0
2

�12 + �21
, (2)

where �12,21 are hopping parameters between the two bands
satisfying γ = �21/�12 = n2/n1 with n1,2 being the normal
electronic DOS of bulk Pb near the Fermi level. The DOS
is still BCS-like, which means that the order parameter is
energy independent and isotropic [cf. Eq. (2)] as opposed to
an effectively energy-dependent order parameter as in Eq. (1).
From first-principle calculations, we determine that γ = 2.4
with band 1 accommodating a nearly spherical Fermi surface
surrounding the � point of the Brillouin zone hosting the
smaller superconducting gap [16,21]. Consequently,

�t = �s1 + γ�s2

1 + γ
(3)

with �s1 < �s2.
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FIG. 2. (a) Zoom in of the double coherence peaks in the dif-
ferential conductance data of Fig. 1(d) at positive bias voltage for
different junction transmissions τ . The graphs are offset vertically
with a distance of 10 µS for better visibility. (b) Zoom in of lowest-
order Andreev reflection peaks in the differential conductance data of
Fig. 1(d) at positive bias voltage eV = �t,s1,s2 for different junction
transmissions τ without vertical offset. Because of the close vicinity
of the peaks and experimental broadening, the expected peaks merge
into one prominent feature with small shoulders on the sides. The
red-dashed lines are Gaussians, which act as guide to the eye to
illustrate, where the peaks are located. The color bar on the right-
hand side shows the junction transmission τ for both panels.

Extracting the multiband gap parameters. The multiband
gap parameters �s1,s2,t are essential for the quantitative anal-
ysis of MARs and the Josephson effect. Usually, to obtain
the gap parameters in tip and sample, the simplest method
is to read them directly from the positions of the lowest-
order Andreev reflection peaks at eV = ±�t,s [33]. Here,
however, such peaks overlap given the similar values of the
three gap parameters �t,s1,s2 and the experimental broadening
[Fig. 2(b)]. In fact, only one main peak with a small shoulder
on its low-voltage side is observed, making it not possible to
disentangle all three values precisely just from the Andreev
reflection.

Taking into account the coherence peak positions
[Fig. 2(a)], we obtain values for �s1,2 + �t. Given the
theoretical relation in Eq. (3) between �t and �s1,2, we ex-
tract the following gap parameters, which are the basis for
all further analysis: �t = 1.39 meV,�s1 = 1.28 meV,�s2 =
1.44 meV. This result is fully consistent with the lowest-order
Andreev reflection peak positions [Fig. 2(b)] corroborating
the above theoretical treatment [Eq. (3)].

Josephson effect at low conductances and the dynami-
cal Coulomb blockade. Tunnelling through low-capacitance
junctions at low temperatures (T < 1 K) occurs in the DCB
regime, where tunneling is sequential and the supercon-
ducting phase is no longer a good quantum number [31].
The interaction of tunneling electrons with the electromag-
netic environment becomes important and the Josephson
effect is modelled through the P(E ) function, which quanti-
fies the energy exchange with the surrounding environment
[29,30,33–35]. The I (V ) characteristics for the Josephson cur-
rent in the tunneling limit is given by [31,35]

I (V ) = πeE2
J

h̄
(P(2eV ) − P(−2eV )), (4)

where EJ = h̄IC
2e is the Josephson energy, IC is the critical

current and the function P(E ) describes the probability of the

FIG. 3. Low-conductance fits of the Josephson current and the
differential conductance spectrum. (a) Fit of the Josephson current by
P(E ) theory [see Eq. (4)] at a low junction transmission of τ = 0.014
to obtain the parameters of the P(E ) function. (b) Quasiparticle fit of
the differential conductance spectrum at a very low junction trans-
mission of τ = 3 × 10−4, where all higher-order tunneling processes
are absent.

tunneling Cooper pair to exchange a photon of energy E with
the environment. The critical current IC and correspondingly
the Josephson energy EJ are given by the Ambegaokar-
Baratoff formula, which depends linearly on the normal-state
conductance in the low-conductance regime [36]. We model
the environmental impedance of the instrument using a phe-
nomenological transmission line model [31]. The parameters
in the P(E ) function, such as temperature and junction con-
ductance can be obtained through fitting the Josephson current
at lowest conductance (τ = 0.014) in the tunneling regime
[Fig. 3(a)]. Below, we will extend Eq. (4) to arbitrary con-
ductances, where the P(E ) parameters obtained from the fit at
lowest conductance will be used as they are assumed to be in-
dependent of conductance. In the next step, we disentangle the
different transport channels and their respective transmission
(i.e., conductance).

Disentangling the transport channels through MAR fitting.
Quantum transport in the atomic limit proceeds via a small set
of conductance channels linking the tip and sample electrodes.
The total number of transport channels and their respective
transmissions have a profound influence on the junction, es-
pecially at high conductance, and must be included in the
analysis. Such channel information may be extracted from
the subgap structure of MARs as well as the excess current
outside of the gap by fitting them to a nonequilibrium Green’s
function model accounting for MARs as well as multiple
transport channels [27,37–41]. Each transport channel couples
to a band in the tip and the sample, which leads to four
combinations. Because of the different gaps in the sample we
have to account for the different DOSs contributing to the
different transport channels. In the tip, the DOS is the same
in both bands. Treating the transport channels as independent,
we model the spectra by two distinctly different signals from
the transport channels going to the differently gapped bands,
which are superimposed in the measurement. Even though the
tip states can be modeled by a single gap, the DOSs are still
doubly degenerate owing to the two-gap nature of Pb.

In this analysis, we use the Dynes parameter η to account
for the effective experimental broadening. To obtain η, we fit
the quasiparticle spectrum at very low conductances where
all higher-order processes, including the Josephson effect and
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FIG. 4. (a) Multichannel fits of the quasiparticle tunneling cur-
rent for different junction transmissions τ . The color of each I (V )
plot represents their junction transmission τ as shown in the color
bar. The respective multichannel fits are plotted on top in orange.
(b) Channel transmissions τi through each of the doubly degenerate
channels τ1 = τ2 for the small gap and τ3 = τ4 for the large gap, as a
function of the junction transmission τ .

MARs, are absent [Fig. 3(b)]. Here, we assume that η for both
the tip and sample is the same for simplicity.

Using the parameters obtained from the reference spectra,
we perform the transport channel analysis and find the best
fits corresponding to a set of two doubly degenerate channels
through each of the two bands, resulting in a total of four con-
duction channels τ1 = τ2 for the small gap and τ3 = τ4 for the
large gap. Changing the number of conduction channels leads
to dramatically worse results. This result differs from previ-
ous measurements [42,43], but we want to point out that the
number of transport channels in a tunnel junction can strongly
differ depending on the atomic scale properties of the junc-
tion. Since these measurements did not mention any multigap
superconductivity in Pb, we assume that the measurements
were done with polycrystalline Pb in both electrodes. Fits
to the data and the corresponding channel transmissions as
a function of conductance are shown in Figs. 4(a) and 4(b),
respectively. We found that at the moderate junction transmis-
sions presented here, the accuracy of the fit relies more on the
excess current outside of the gap than the Andreev reflections
inside the gap, which allows us to still obtain reliable results.
In addition, the two distinct gaps along with the correspond-
ing coherence peaks allow for a precise determination of the
transport channels also at low transparencies.

Extending the Josephson current model in the DCB
regime to arbitrary conductances. At higher conductances,
the Ambegaokar-Baratoff formula and Eq. (4) break down
because the current phase relation becomes nonsinusoidal. In
addition, the gap parameters in tip and sample are not equal,
so that a more generalized approach is needed. To take these
aspects into account, the current phase relation for an asym-
metric junction at arbitrary transmission for a single channel
contact is generally expressed as [40,44]

I (φ) = 8e

h
t2 sin φ

∫ ∞

−∞
dE Im

[
fs ft

D(φ)

]
nF(E ), (5)

where t is the tunnel hopping between sample and tip, φ =
φs − φt is the superconducting phase difference between sam-
ple and tip, fs,t are the anomalous Green’s functions of the
sample and tip, D(φ) = det[1 − t2σ3ĝtσ3ĝs], σ3 is a Pauli
matrix, ĝs,t are the Green’s functions of sample and tip in
2 × 2 Nambu space, and nF(E ) is the Fermi function. The

anomalous Green’s function for a BCS superconductor is
fi(E ) = ni�i/

√
E2 − �2

i . The diagonal part of the Green’s
function is gi(E ) = niE/

√
E2 − �2

i , so the Green’s function
becomes ĝi = ( gi fieiφi

f ∗
i e−iφi gi

). Note that for a clean BCS-BCS
junction, the normal state conductance depends on t through
τ = GN/G0 = 4t2nsnt

(1+t2nsnt )2 where ns,t are the normal state DOS
near the Fermi level of the sample and tip [45,46]. There-
fore, the current-phase relation is a function of conductance
GN. At high conductance, the current phase relation becomes
nonlinear in conductance as well as nonsinusoidal, because of
the t and φ dependency of D(φ) in the denominator. As the
tunnel junction of the STM operates in the DCB regime, it is
more convenient to express the current-phase relation I (φ) in
terms of charge transfer. Correspondingly, we calculate the
Fourier components of the current-phase relation, which is
given by

I (φ) =
+∞∑

m=−∞
Imeimφ. (6)

Using the Fourier components of the current-phase rela-
tion, the general I (V ) curve for the Josephson current can be
written as (see [40])

I (V ) = 2π h̄
+∞∑
m=1

|Im|2
2me

[Pm(2 meV) − Pm(−2 meV)], (7)

where Pm(2 meV) is the probability for an inelastic process
when m Cooper pairs exchanging 2 meV energy with the
environment, which is an indicator for multiple Cooper-pair
tunneling.

Multichannel Josephson effect at arbitrary transmission.
Since our transport channel analysis shows the existence of
four transport channels, we need to extend Eqs. (6) and (7)
to a multichannel situation, where the energy phase relation
becomes a sum over different channels [47]

Im =
n∑

c=1

I (c)
m , (8)

in which c denotes the channel number, n is the total number
of channels (we assume n = 4 here), and m is the number of
Cooper pairs being transferred. The Fourier component I (c)

m
is then calculated with Eqs. (5) and (6) using the transport
channel transmissions from the transport channel analysis
performed previously. We note that the transport channel
transmissions used in the calculation of the Josephson current
are no longer fit parameters, but they are the values from
the multichannel fit of the quasiparticle tunneling current
in Fig. 4.

In the low-transmission limit, the current-phase relation is
sinusoidal and only the m = 1 term in Eq. (7) survives. A
comparison with Eq. (4) shows that the first-order Fourier
component of the energy phase relation satisfies E1 = EJ/2,
given the general relation between the mth Fourier compo-
nents of the energy phase relation and the current phase
relation Em = h̄

2ime Im. Indeed, Fig. 5(a) shows that the Fourier
components of the two bands for first order m = 1 are close
to the respective EJ/2 owing to the still comparatively low
conductance in the whole measurement range.
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FIG. 5. (a) The first-order Fourier components compared to the
Josephson energy EJ/2 as a function of junction transmission τ .
The blue and the yellow lines as well as the red and the purple
lines lie nearly on top of each other. (b) Comparison of the mea-
sured Josephson current and the calculation including higher-order
Fourier components. The switching current IS is indicated. (c) The
switching current IS as a function of junction transmission τ showing
good agreement between data and calculation. (d) Relative devia-
tion of the switching current between calculation and measurement,
showing only small discrepancies throughout the whole transmission
range.

To account for the correction at higher conductances, we
use the Fourier components of the current-phase relation up to
order m = 4 as a function of GN to directly calculate the full
bias voltage-dependent Josephson current [high conductance
see Fig. 5(b)]. The calculation agrees with the data well. One
important quantity here is the switching current IS, which is
the maximum of the bias voltage-dependent Josephson current
[see Fig. 5(b)].

We compare IS, which was extracted from the experimen-
tal data with the values from the model as a function of
normal-state conductance GN, which is shown in Fig. 5(c)
To quantify the difference between model and data, we plot
the relative deviation in Fig. 5(d). The averaged relative de-
viation over the whole conductance range is only 2.87 %.
This is small considering that the measurement ranges over
about two orders of magnitude in GN, which demonstrates the
quantitative precision of our analysis of the MBSC Josephson
effect.

III. CONCLUSIONS

In summary, we provide a quantitative understanding of
Cooper-pair tunneling processes in a multichannel multi-
band Josephson junction, which enables the extraction of
previously inaccessible microscopic properties of the sys-
tem. Values that have previously often been combined to
single effective values can now be disentangled into their
separate contributions. We can distinguish the different gap
parameters of the tip and sample bands, and characterize
how the supercurrent is distributed over multiple conduction

FIG. 6. Topography of the Pb(110) surface. The measured area
is representative of the surface and very low in surface defects. The
measurements were done on one of the atoms along the lines.

channels through multiple bands. We have reduced the de-
grees of freedom in the transport channel transmissions by
fitting these values from independent quasiparticle current
spectra and using them to calculate the Josephson current
providing an overall consistent picture.

The agreement between theory and experiment over a wide
range of normal state conductance values exhibits a high level
of accuracy. The consideration of higher-order P(E ) theory,
MARs, transport channel analysis, and the above separations
of contributions brings the experimental confirmation of the
theory to a new level. This improves the understanding of
Cooper-pair transport not only through protected quantum
states in MBSC [48,49] but also in even more complicated
superconductor configurations and their technical applications
in the future.

IV. MATERIALS AND METHODS

Sample and tip preparation. The Pb(110) single crystal
sample was prepared in situ by multiple cycles of alternating
between sputtering and annealing. Sputtering was done at
an Ar pressure of 5 × 10−6 mbar to 6 × 10−6 mbar for about
one to two hours. Afterwards, for annealing, the sample was
preheated in vacuum for about 6 min until it reached a temper-
ature of 250 °C. This temperature was kept for a duration of
approximately 30 min. The surface cleanliness was confirmed
by measuring a topography as in Fig. 6. The Pb tip was cut
from a Pb wire. It was shaped by voltage pulses and dipping
the tip into the Pb surface. All measurements were performed
in a commercial USM1300 STM system by Unisoku with a
base temperature of 310 mK.

Fit parameters for the P(E) function. We are using the P(E )
function along with a finite transmission line impedance as
outlined in Ref. [31]. The junction capacitance is CJ = 27 fF,
the principal resonance frequency is h̄ω0 = 54.3 µeV, the ef-
fective damping parameter is α = 0.4, the dc resistance is
Rdc = 84.6 �, and the temperature is T = 310 K. In addition,
we included a broadening caused by the lock-in amplifier
with an amplitude of 10 µeV as well as a general Gaus-
sian voltage broadening with a full width at half maximum
of 65.7 µ eV.

Band structure calculations. We calculate the band struc-
ture of Pb by performing ab initio density functional theory
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(DFT) as implemented in the Quantum ESPRESSO code
[50,51], where a plane-wave basis set is used to expand
the wave function. Pseudopotentials and the corresponding
suggested cutoff energy from Standard solid-state pseudopo-
tentials (SSSP) library are used [52,53]. We use the exchange
correlation functional with the generalized gradient approx-
imation (GGA) [54] in the PBE form [55]. The Pb bulk
is modeled using a face-centered cubic (fcc) unit cell with
periodic boundary condition, where the lattice constant has
been fully relaxed until the difference in total energy be-
tween consecutive steps is below 10−8 Rydberg together
with an electronic convergence threshold of 10−10 Rydberg.

For self-consistent calculation a k mesh of [12 × 12 × 12]
is used.
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