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2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France

P. S. Venkataram and A.W. Rodriguez

Department of Electrical Engineering,
Princeton University, Princeton, New Jersey 08544, USA

J. C. Cuevas

Departamento de Física Teórica de la Materia
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Many-body physics aims to understand emergent properties of systems made of many interacting
objects. This review examines recent progress on the topic of radiative heat transfer in many-body
systems consisting of thermal emitters interacting in the near-field regime. Near-field radiative heat
transfer is a rapidly emerging field of research in which the cooperative behavior of emitters gives rise
to peculiar effects that can be exploited to control heat flow at the nanoscale. Using an extension of the
standard Polder and van Hove stochastic formalism to deal with thermally generated fields in N-body
systems, along with their mutual interactions through multiple scattering, a generalized Landauer-like
theory is derived to describe heat exchange mediated by thermal photons in arbitrary reciprocal and
nonreciprocal multiterminal systems. In this review, this formalism is used to address both transport
and dynamics in these systems from a unified perspective. The discussion covers (i) the description of
nonadditivity of heat flux and its related effects, including fundamental limits as well as the role of
nanostructuring and material choice; (ii) the study of equilibrium states and multistable states; (iii) the
relaxation dynamics (thermalization) toward local and global equilibria; (iv) the analysis of heat
transport regimes in ordered and disordered systems composed of a large number of objects, density,
and range of interactions; and (v) the description of thermomagnetic effects in magneto-optical
systems and heat transport mechanisms in non-Hermitian many-body systems. The review concludes
with a listing of outstanding challenges and promising future research directions.
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I. INTRODUCTION

Heat transfer in a given system is in its simplest sense [i.e.,
ignoring any cross-coupling between the different irreversible
transport processes (Onsager, 1931)] thermal energy in transit
due to a spatial temperature difference (Bergman et al., 2011).
There are three basic heat-transfer modes: conduction, con-
vection, and radiation. In the case of a stationary medium,
which could be a solid or a fluid, conduction refers to heat
transfer through local agitation of atoms or charges that occurs
across the medium in response to a temperature difference.
Ultimately, the carriers responsible for heat conduction are
phonons, molecular vibrations, or electrons or ions in the case
of electrical conductors. The second mode of transport is
convection and refers to heat transfer that occurs between a
surface and a moving fluid when they are at different
temperatures (or by advection inside the fluid itself).
Finally, the third heat-transfer mechanism is thermal radia-
tion, which is the topic of this review. All bodies at a finite
temperature emit energy in the form of electromagnetic waves
(or photons). Hence, even in the absence of an intervening
medium, there is always heat transfer via thermal radiation
between bodies at different temperatures. This makes thermal
radiation one of the most ubiquitous physical phenomena and
its understanding of critical importance in many different

areas of science and engineering (Zhang, 2007; Modest, 2013;
Howell, Mengüç, and Siegel, 2016).
Traditionally, our understanding of thermal radiation is

based on Planck’s law (Planck, 1914), which establishes that a
blackbody (an object that absorbs all the radiation that
impinges on it) emits thermal radiation following a broadband
distribution that depends only on the body’s temperature.
Planck’s law provides a unified description of a variety of
thermal-radiation phenomena and, in particular, it sets an
upper limit (Stefan-Boltzmann’s law) for the radiative heat
transfer (RHT) between bodies. However, Planck’s law was
derived using ray optics, and hence it is expected to fail when
the spatial dimensions in a thermal problem are smaller than or
comparable to the thermal wavelength λTh defined by Wien’s
displacement law (∼10 μm at room temperature) (Planck,
1914). In particular, Planck’s law fails to describe RHT
between objects separated by distances ≲λTh; for a detailed
discussion, see Pendry (1999) and Volokitin and Persson
(2007). In this near-field regime, RHT can be dominated by
evanescent waves (or photon tunneling), not taken into
account in Planck’s law, and the Planckian (or blackbody)
limit can be greatly overcome by bringing objects sufficiently
close; see Fig. 1. This phenomenon was first predicted within
the rigorous framework of fluctuational electrodynamics (FE)

FIG. 1. (a) Far-field radiative heat transfer between two infinite
parallel plates (media 1 and 2) separated by a vacuum gap. In this
scenario, the gap size d is much larger than the thermal wavelength
λTh, and the two plates exchange heat only via propagating waves.
The evanescentwaves generated in thevacuumgap by total internal
reflection are not able to reach the second plate and do not
contribute to the heat transfer. (b) When d < λTh the tunneling
of evanescent waves can give a significant contribution to the
radiative heat transfer and in this way the Planckian (or blackbody)
limit can be greatly overcome in this near-field regime.
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(Rytov, Kravtsov, and Tatarskii, 1989) by Polder and van
Hove in the early 1970s (Polder and van Hove, 1971); see
Sec. II. This near-field radiative heat transfer (NFRHT)
enhancement was first hinted at in several experiments in
the late 1960s (Hargreaves, 1969; Domoto, Boehm, and Tien,
1970), but it was not firmly confirmed until the 2000s (Kittel
et al., 2005; Hu et al., 2008; Narayanaswamy, Shen, and
Chen, 2008; Rousseau et al., 2009; Shen, Narayanaswamy,
and Chen, 2009). Since then, numerous experiments exploring
different aspects of NFRHT have been reported and have
boosted the field of thermal radiation (Ottens et al., 2011;
Guha et al., 2012; Kralik et al., 2012; Shen et al., 2012; van
Zwol, Ranno, and Chevrier, 2012; van Zwol et al., 2012; Shi
et al., 2013; Worbes, Hellmann, and Kittel, 2013; St-Gelais
et al., 2014, 2016; Ito et al., 2015; Kim et al., 2015; Lim, Lee,
and Lee, 2015; Song et al., 2015, 2016; Bernardi, Milovich,
and Francoeur, 2016; Ito et al., 2017; Králík et al., 2017; Lang
et al., 2017; Fiorino et al., 2018; Fiorino, Thompson et al.,
2018; Fiorino, Zhu et al., 2018; Ghashami et al., 2018;
DeSutter, Tang, and Francoeur, 2019; Musilová et al., 2019;
Salihoglu et al., 2020). These experiments have, in turn,
generated hope that NFRHT may have an impact on different
technologies such as heat-assisted magnetic recording, ther-
mal lithography, scanning thermal microscopy, coherent
thermal sources, near-field-based thermal management, ther-
mophotovoltaics, and other energy-conversion devices; see
Basu, Zhang, and Fu (2009), Song, Fiorino et al. (2015),
Cuevas and García-Vidal (2018), and Komiyama (2019) and
references therein.
In parallel to these experimental advances, over the last two

decades there has been a significant amount of theoretical
activity. Initially, attention was devoted to the importance of
choice of materials and the elucidation of the different
mechanisms of near-field thermal radiation. In that regard,
polar dielectrics exhibiting polaritonic resonances that lead to
surface modes have played a prominent role in this field
(Mulet et al., 2002). Then, following nanophotonics concepts,
a lot of work has been devoted to assess the possibility of
further enhancing NFRHT and to tune its spectral properties
by using nanostructures such as thin films and multilayer
systems (Biehs, 2007; Biehs, Reddig, and Holthaus, 2007;
Volokitin and Persson, 2007; Francoeur, Mengüç, and Vaillon,
2008; Ben-Abdallah et al., 2009a; Maslovski, Simovski, and
Tretyakov, 2013), photonic crystals and gratings (Ben-
Abdallah, Joulain, and Pryamikov, 2010; Biehs et al.,
2011; Rodriguez et al., 2011; Guérout et al., 2012;
Messina, Noto et al., 2017), and metasurfaces (Liu and
Zhang, 2015a; Dai et al., 2016; Fernández-Hurtado et al.,
2017). The investigation of the use of metamaterials for
further enhancing NFRHT (Joulain, Drevillon, and Ben-
Abdallah, 2010; Biehs et al., 2011; Biehs, Tschikin, and
Ben-Abdallah, 2012; Guo et al., 2012) or low-dimensional
materials like graphene or phosphorene to tune NFRHT
(Volokitin and Persson, 2011; Ilic et al., 2012a; Svetovoy,
van Zwol, and Chevrier, 2012; Liu, Zhang, and Zhang, 2014a;
Rodriguez-Lopez, Tse, and Dalvit, 2015; Zhang, Yi, and Tan,
2018; Liu, Shen, and Xuan, 2019) has also attracted signifi-
cant attention. Another topic of great importance has been the
study of the active control of NFRHT by different means,
including the use of phase-transition materials (van Zwol,

Joulain, Ben Abdallah, Greffet, and Chevrier, 2011; van Zwol,
Joulain, Ben-Abdallah, and Chevrier, 2011; Menges et al.,
2016), the application of an external magnetic field (Moncada-
Villa et al., 2015), or the regulation of chemical potentials for
photons with an external bias (Chen et al., 2015). There are
also several theoretical proposals for functional devices that
make use of NFRHT for thermal management (Otey, Lau, and
Fan, 2010; Ben-Abdallah and Biehs, 2015), thermophotovol-
taics (Narayanaswamy and Chen, 2003; Laroche, Carminati,
and Greffet, 2006; Basu, Chen, and Zhang, 2007; Zhao, Chen
et al., 2017), and other energy applications (Chen et al., 2015;
Chen, Santhanam, and Fan, 2016). On a more fundamental
level, quantum approaches based on the Huttner-Barnett
model, quantum Langevin equations, the nonequilibrium
Green’s function method, and the master-equation approach
for open quantum systems have been proposed (Janowicz,
Reddig, and Holthaus, 2003; Biehs and Agarwal, 2013a;
Sääskilahti, Oksanen, and Tulkki, 2014; Barton, 2016; Wang
and Peng, 2017; Sasihithlu and Agarwal, 2018).
From a broader perspective, a new general picture of RHT

has emerged in recent years with profound similarities to other
heat and charge transport phenomena, including phonon
conduction in nanoscale systems and coherent electronic
transport in mesoscopic devices (Cuevas and Scheer, 2017).
In particular, RHT is now routinely described in terms of the
Landauer formula, originally proposed in the context of
electronic mesoscopic systems (Datta, 1997; Imry and
Landauer, 1999), where the energy and charge transport are
determined mainly by the transmission function describing the
transfer probability of the carriers. Moreover, techniques
employed to compute transmission functions (scattering
approaches, Green’s function techniques, etc.) are concep-
tually similar in all those contexts. This connection between
RHT and conduction not only allows us to profit from the
experience in other fields but can also serve as the starting
point for a unified description of different heat-transfer modes
in situations where different types of carriers may compete or
even interfere. An example of this type of situation is realized
in the context of the heat transfer in subnanometer gaps where
recent experiments have reported conflicting observations in
an intermediate regime where the contribution of different
carriers (photons, phonons, and electrons) may be comparable
(Cui, Jeong, Fernández-Hurtado et al., 2017; Kloppstech
et al., 2017). While the situation seems to be clear in the
limiting cases where either conduction (Cui, Jeong, Hur et al.,
2017; Mosso et al., 2017; Cui et al., 2019) or NFRHT (Kim
et al., 2015) is expected to dominate, the description of the
crossover between them might require novel theories where
different carriers are treated on an equal footing (Chiloyan
et al., 2015; Venkataram et al., 2018).
Conceptually speaking, a major advance in the field in the

last decade has been the development of theoretical models of
RHT in many-body systems, which is the central topic of this
review. Such a theory deals with radiative heat exchange in
systems composed of multiple thermal emitters able to
cooperatively interact. The collective behaviors in these
systems give rise to singular phenomena that we discuss in
this review. Until 2011, FE had been primarily used to
describe RHT between two bodies, but the situation changed
with the report of the first version of a many-body theory of
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RHT describing a collection of small dipolar particles (Ben-
Abdallah, Biehs, and Joulain, 2011). Soon after, this many-
body theory was generalized to deal with bodies of arbitrary
size and shape (Messina and Antezza, 2011a; Krüger et al.,
2012), and new refinements of the theory are constantly being
reported to deal with more complex optical materials. Again,
there is an analogy here with developments in mesoscopic
physics, where Büttiker’s extension of the Landauer formal-
ism to multiterminal systems laid down the basis for the
understanding of numerous charge and energy transport
phenomena in mesoscopic systems (Datta, 1997). As we
discuss in this review, the many-body theory of NFRHT
opened the door for predicting and analyzing a plethora of
novel physical phenomena with no analogs in two-body
systems. Thus, for instance, it became possible to explore
thermal analogs of intrinsic many-body phenomena like the
Hall effect (Ben-Abdallah, 2016) and heat persistent current
(Zhu and Fan, 2016). It has also made it possible to propose a
wide range of thermal functional devices that are intrinsically
many body in nature, such as the thermal transistor (Ben-
Abdallah and Biehs, 2014). This theory also allowed us to
understand for the first time the different heat propagation
regimes in disordered systems involving a large collection of
objects and paved the way for hydrodynamic modeling of
transport in these media. Although recent experimental works
have explored the possibility of tuning radiative heat transfers
in many-body systems (Thompson et al., 2020) by actively
changing the relative position of nearby objects, to our
knowledge many-body systems have yet to be experimentally
investigated in the purely near-field regime.
The field of NFRHT has been the subject of different

reviews over the years. Reviews by Joulain et al. (2005) and
Volokitin and Persson (2007) covered the FE theory and basic
concepts of NFRHT but do not include crucial theoretical and
experimental advances achieved in recent years. Reviews by
Basu, Chen, and Zhang (2007) and Ben-Abdallah and Biehs
(2019) focused on potential applications of near-field thermal
radiation in thermophotovoltaics. There are recent reviews like
that of Song, Fiorino et al. (2015) that already presented some
of the most recent advances and, in particular, described the
main experimental techniques developed in recent years. The
review by Cuevas and García-Vidal (2018) provided an
interesting and updated perspective of the field but did not
contain an in-depth description of theoretical developments.
This review focuses on the theory of NFRHT in many-body
systems, which has not been covered thus far in a self-
contained and unified framework. This topic is becoming a
central focus of the field of thermal radiation, as it promises an
entirely new generation of thermal-radiation applications, and
its understanding is likely to determine the future of RHT as a
forefront research line.
The structure of the review is as follows. In Sec. II, we set

the stage for this review by discussing NFRHT in two-body
systems. Here we put the emphasis on the modern view of
NFRHTand review the most important theoretical advances in
this topic, as well as the experimental state of the art.
Specifically, we begin by recalling the basics of the theory
of FE and then discussing its application to the important case
of two parallel plates (Sec. II.A). This basic configuration is
used to illustrate the critical role of material choice (Sec. II.B),

including a preliminary discussion of nonreciprocal materials
in Sec. II.C. Section II.D is devoted to an analysis of the role
of nanostructuring in tailoring and, most importantly, enhanc-
ing NFRHT, including recent works focused on multilayer
structures, photonic crystals, metamaterials, gratings, metasur-
faces, graphene sheets, and surface roughness. We then move
beyondplanar structures inSec. II.E to discussNFRHTbetween
objects of arbitrary size and shape. General-purpose numerical
methods developed to date for the description of NFRHT in
arbitrary geometries are then discussed inSec. II.F.We conclude
this first part of the review in Sec. II.G with an in-depth
discussion of recently derived limits on the largest NFRHTrates
that could ever be realized by an optimal choice of material and
geometric configuration. Specifically, we highlight the prohibi-
tive role that multiple scattering (a critical feature ofmany-body
physics that is further discussed in subsequent sections) plays in
limiting heat-transfer enhancements that may be achieved
through nanostructuring, resulting in optimal flux rates not
much larger than what is observed in planar polaritonic
materials, at least in the context of two-body heat exchange.
Section III constitutes the bulk of this review and covers a

variety of aspects of the theory of near-field thermal radiation
in many-body systems. We first discuss the problem of light
absorption with a set of nonemitting objects that collectively
interact and show that these systems can be treated as a whole
with a dressed susceptibility that takes into account both
cooperative interactions and the resonant response of indi-
vidual objects. Next a generalized Landauer formula is
derived to describe radiative heat transfer in the general
situation in which all objects are emitting, using transmission
coefficients describing the pairwise efficiency of coupling
between any two objects. Using this theoretical framework,
we highlight the singular aspects of heat transport in these
systems compared to those seen in two-body systems. We
illustrate these peculiarities in Secs. III.A.3 and III.B.2, where
we prove the nonadditivity of heat flux, a fundamental feature
of these systems. We also show that N-body interactions can
amplify heat flux or lead to saturation mechanisms close to the
contact without the need to introduce nonlocality in material
responsivity. In Sec. III.B.3, we discuss equilibrium condi-
tions for any given system and show that equilibrium states are
generally not unique and can be, along with their stability,
identified and characterized by standard perturbative tech-
niques. We also show that multistable systems can be
exploited to make a Boolean treatment of information with
thermal photons or build thermal self-oscillators. In Sec. III.C,
we address the problem of heat transport in various complex
systems using both a kinetic approach, based on the approxi-
mate Boltzmann transport equation for the resonant modes
supported by the system, and a generalized Landauer theory
that takes into account all modes in the continuum. Several
physical effects (radiative drag effect, heat-flux focusing, heat
pumping, and long-range heat transport) inherent to many-
body systems are then introduced and discussed. In
Sec. III.C.4, we address the relaxation problem of many-body
systems and show that the temperature field can evolve at
different timescales, depending on the nature of the inter-
actions. Furthermore, we discuss the current solutions pro-
posed to dynamically control the heat flux exchanged in these
systems by modulating either geometrical configuration or
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optical properties or via adiabatic control of their temperature.
In Sec. III.C.6, we analyze various heat transport regimes in
systems consisting of a large number of objects and show that
RHT can be described as a generalized random walk with a
non-Gaussian probability distribution function. For a situation
unlike that of solid-state physics for heat conduction in bulk
materials, we demonstrate the existence of anomalous heat
transport regimes and highlight that these regimes closely
depend on the system dimension, drastically changing from
dilute to dense systems. The next few sections are devoted to
nonreciprocal systems. Unlike reciprocal systems, in these
non-Hermitian systems the classical notion of Lorentz reci-
procity is violated, giving rise to specific heat-transfer
mechanisms. After extending in Secs. III.D.2 and III.D.3
the theoretical framework to deal with heat exchange in such
systems, we discuss in Sec. III.D.4 several thermomagnetic
effects (magnetoresistance, permanent currents, and the Hall
effect) that take place in magneto-optical systems, and we
underline in Sec. III.D.5 the link between these effects and the
topological structure of the Poynting field. We also stress in
Sec. III.D.7 the potential of these systems to efficiently tune
the direction of heat flow. We conclude this review by listing
outstanding challenges and a broader outlook of potential
future research directions.

II. TWO-BODY SYSTEMS

Most theoretical work on the topic of NFRHT is primarily
based on Rytov’s FE theory. Developed in the 1950s (Rytov,
Kravtsov, and Tatarskii, 1989), FE is a semiclassical theory
that assumes that thermal radiation is generated by random,
thermally activated electric currents inside the bodies. Thus,
the technical problem in the description of RHT between
different objects boils down to the solution of the stochastic
Maxwell’s equations, with random electric currents as radi-
ation sources. To illustrate the idea, we consider two optically
isotropic and nonmagnetic bodies separated by a vacuum gap;
see Fig. 2. In the framework of FE, the RHT problem is
completely specified by the temperature distributions TiðrÞ
(i ¼ 1; 2) and the dielectric functions of the materials ϵiðr;ωÞ.
The macroscopic Maxwell’s equations to be solved adopt the
following form in the frequency domain:

∇ × Eðr;ωÞ ¼ iωμ0Hðr;ωÞ; ð1Þ

∇ ×Hðr;ωÞ ¼ −iωϵ0ϵðr;ωÞEðr;ωÞ þ Jðr;ωÞ; ð2Þ

where E and H are the electric and magnetic fields, r is the
position vector, and ϵ0 and μ0 are the vacuum permittivity and
permeability, respectively. In Eq. (2), the fluctuating current
density distributions Jðr;ωÞ within the bodies are the sources
of the thermal radiation. The statistical average of these
currents vanishes, i.e., hJi ¼ 0, but their correlations are finite
and given by the fluctuation-dissipation theorem (Eckhardt,
1984; Rytov, Kravtsov, and Tatarskii, 1989; Joulain et al.,
2005)

hJðr;ωÞ ⊗ J�ðr0;ωÞi ¼ 4ℏω2ϵ0
π

Imfϵðr;ωÞg
× n(ω; TðrÞ)δðr − r0Þ; ð3Þ

where ℏ is the Planck constant and nðω; TÞ ¼
1=ðexp½ℏω=kBT� − 1Þ is the Bose function. In simple terms,
the calculation of the radiative power exchanged by bodies 1
and 2 is done by first solving the Maxwell equations with the
appropriate boundary conditions defined by geometries of the
bodies and assuming that the random electric currents occupy
the entire body 1. Then, with the solution for the fields around
body 2, the statistical average of the Poynting vector is
computed: hSðr;ωÞi ¼ 2RehEðr;ωÞ ×Hðr;ωÞi. Finally, the
results are integrated over frequency and over a closed surface
enclosing body 2. To evaluate the net RHT, one needs to
calculate in a similar way the heat transferred from body 2 to
body 1.
This innocent-looking problem is, however, challenging in

general, and analytical solutions are known in only a handful of
situations. One of the main goals of the rest of this section is to
present the solution in cases of increasing complexity focusing
on two-body systems. Asmentioned in the Introduction, the net
power Pnet exchanged via thermal radiation between two
objects of homogeneous temperatures T1 and T2 can always
be expressed via means of the Landauer formula, as one can
easily understand with the following heuristic argument. The
net radiative power is the balance between the heat power
transferred from one body to the other Pnet ¼ P1→2 − P2→1,
where the individual contributions are given by

Pi→j ¼
Z

∞

0

dω
2π

ℏωnðω; TiÞT jiðωÞ: ð4Þ

Here ℏω is the energy of an electromagnetic mode of frequency
ω and the Bose function nðω; TÞ is describing the thermal
occupation of that mode and T jiðωÞ is the total transmission
coefficient that corresponds to the sum of the probabilities over
all themodes of frequencyω that can be transferred from body i
to body j. In the case of a two-body systemwith no environment,
detailed balance imposes that T 21ðωÞ ¼ T 12ðωÞ ¼ T ðωÞ and
the expression of the net power reduces to the Landauer formula
(Polder and van Hove, 1971; Ben-Abdallah and Joulain, 2010;
Biehs and Greffet, 2010a)

FIG. 2. Fluctuational electrodynamics. Schematic of radiative
heat transfer in a two-body system. The two bodies of volumes V1

and V2 have temperature profiles T1ðrÞ and T2ðrÞ and frequency-
dependent dielectric functions ϵ1ðr;ωÞ and ϵ2ðr;ωÞ. Electromag-
netic fields E andH are generated by the random currents J in the
bodies due to their nonvanishing correlations given by the fluc-
tuation-dissipation theorem. The net power exchanged by the two
bodies is determined by the total transmission T that can be
expressed as a sum of individual transmission coefficients τn.
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Pnet ¼
Z

∞

0

dω
2π

ℏω½nðω; T1Þ − nðω; T2Þ�T ðωÞ: ð5Þ

Following the spirit of the Landauer approach in mesoscopic
physics, the total transmission can be analyzed in terms of
radiation channels and can be expressed as

T ðωÞ ¼
X
n

τnðωÞ; ð6Þ

where the τ’s are the individual transmission probabilities of the
different open channels (bounded between 0 and 1). This point
is particularly useful to establish simple upper bounds for RHT,
as we discuss later in this review.

A. Parallel plates

As mentioned in the Introduction, the importance of the
contribution of evanescent waves in the RHT between two
objects and the possibility of overcoming the Planckian limit
in the near-field regime was first put forward in around 1970
by Cravalho, Tien, Domoto, Caren, and Boehm (Cravalho,
Tien, and Caren, 1967; Boehm and Tien, 1970; Domoto and
Tien, 1970). Polder and van Hove (1971) were the first to use
the rigorous framework of fluctuational electrodynamics to
calculate the NFRHT rate between two infinite parallel plates,
a geometry that has become the workhorse of NFRHTand that
is schematically represented in Fig. 1. We refer to the upper
plate as medium 1 and the lower plate as medium 2 and
assume that they are at constant temperatures T1 and T2,
respectively. In the case of optically isotropic and nonmag-
netic materials, Polder and van Hove showed that the radiative
power per unit area, i.e., the heat flux Φ, between the parallel
plates is given by Eq. (5) with the following replacement of
the transmission coefficient with a transmission coefficient per
unit area:

T ðωÞ →
Z

∞

0

dκ
2π

κτðω; κ; dÞ: ð7Þ

Here κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the magnitude of the wave vector

parallel to the plates [see coordinate system in Fig. 1(a)], d is
the gap size, and τðω; κ; dÞ is the total sum over polarizations
transmission probability of an electromagnetic mode of
frequency ω and parallel wave vector κ. In the case of
isotropic materials, this total transmission is equal to
τðω; κ; dÞ ¼ τsðω; κ; dÞ þ τpðω; κ; dÞ, where the contributions
of s- and p-polarized waves (or, alternatively, TE and TM
waves) are given by (α ¼ s; p)

ταðω; κ; dÞ ¼
8<
:

ð1−jrα
1
j2Þð1−jrα

2
j2Þ

jDαj2 ; κ < k0;

4Imðrα
1
ÞImðrα

2
Þe−2jqv jd

jDαj2 ; κ > k0;
ð8Þ

where k0 ¼ ω=c is the wave number in vacuum and Dα ¼
1 − rα1r

α
2e

2iqvd, c is the speed of light, qv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − κ2

p
is the

perpendicular component of the wave vector in the vacuum

gap, and rαi are Fresnel (or amplitude reflection) coefficients
given by

rsi ¼
qv − qi
qv þ qi

; rpi ¼ ϵiqv − qi
ϵiqv þ qi

: ð9Þ

Here ϵiðωÞ is the dielectric function of medium i ¼ 1; 2,
assumed to depend only on frequency (local media),
and qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵik20 − κ2

p
.

The key point of this result is that the integral in Eq. (7) is
carried out over all possible values of κ, and therefore it
includes the contribution of both propagating waves (κ < k0)
and evanescent waves (κ > k0). The latter are not taken into
account in Stefan-Boltzmann’s law. The contribution of the
evanescent waves decays exponentially with the gap size [see
Eq. (8)], and it becomes negligible in the far-field regime
(d ≫ λTh). However, in the near-field regime (d < λTh) the
contribution of evanescent waves, often referred to as photon
tunneling, can become significant and, for sufficiently small
gaps, it may completely dominate the heat transfer. The
blackbody result is obtained from Eq. (7) by ignoring
the evanescent waves and assuming perfect transmission
for the propagating waves for all frequencies and wave
vectors. In that case, the radiative power per unit area is
given by Stefan-Boltzmann’s law ΦBB ¼ σðT4

1 − T4
2Þ, where

σ ¼ 5.67 × 10−8 W=ðm2 K4Þ.

B. Metals versus dielectrics

The parallel-plate configuration allows us to illustrate not
only the impact of evanescent waves in the near-field regime
but also the importance of the choice of materials. There are
two main classes of materials when it comes to NFRHT,
namely, metals (or related materials with free carriers like
doped semiconductors) and dielectrics (especially polar
dielectrics that exhibit polaritonic resonances like SiO2,
SiN, and SiC). As an example of the results for these two
types of materials, we show in Figs. 3(a) and 3(c) the gap
dependence of the room-temperature heat-transfer coefficient,
i.e., the radiative heat conductance per unit area, for two
parallel plates made of Au and SiO2. In those panels we also
show the individual contributions of propagating and evan-
escent waves for TE and TM polarizations. Notice that in both
cases the Planckian limit (indicated with an horizontal line) is
largely overcome for sufficiently small gaps. This is particu-
larly noteworthy in the silica case, where for d ¼ 1 nm the
heat flux is almost 5 orders of magnitude larger than the
blackbody limit. Notice also that there are clear differences
between Au and SiO2. For Au, the NFRHT rate is dominated
by TE evanescent waves, which originate from eddy currents
inside the Au plates (Polder and van Hove, 1971; Chapuis,
Volz et al., 2008). This typically leads to a saturation of the
heat-transfer coefficient for small gaps. On the contrary, in the
silica case NFRHT is dominated by TM evanescent waves that
can be shown to stem from surface phonon polaritons
(SPhPs): quasiparticle excitations that arise from the strong
coupling of electromagnetic fields with the optical phonon
modes of polar dielectrics (Mulet et al., 2002). These surface
electromagnetic waves are hybrid or cavity modes that reside
in both plates and have a penetration depth that is of the order
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of the gap size (Basu and Zhang, 2009), which implies that
they are increasingly confined to the surfaces as the gap is
reduced (Song et al., 2015). The increase of the density of the
states of theses modes (Ben-Abdallah and Joulain, 2010;
Biehs and Greffet, 2010a) upon reducing the gap size is
reflected in a characteristic 1=d2 dependence of the heat-
transfer coefficient for polar dielectrics.
Apart from enhancing NFRHT, evanescent waves are also

responsible for a drastic modification of the spectral heat flux
(or heat conductance per unit frequency); see Figs. 3(b) and 3
(d). Thus, in the SiO2 case the spectral heat flux is dominated
by two peaks that appear at the frequencies of the SPhP
resonances of this polar dielectric. This is dramatically
different than the broadband Planck’s distribution and is also
due to the fact that NFRHT in this case is dominated
by SPhPs.
In principle, the previously discussed plate-plate configura-

tion is ideally suited to experimentally investigating NFRHT
because some of the largest enhancements in this regime are
expected to occur in this setting. However, this configuration is
difficult to realize in practice because it is very complicated to
achieve and maintain good parallelism between macroscopic
plates at nanometer separations. In recent years several groups
have overcome this hurdle and developed novel techniques to
explore the plate-plate configuration in the near-field regime,
and they have been able to confirm the results of the FE theory.
Some of those experiments have made use of macroscopic
(approximately centimeter × centimeter) planar surfaces (Hu
et al., 2008; Ottens et al., 2011; Bernardi, Milovich, and

Francoeur, 2016; Ghashami et al., 2018; DeSutter, Tang, and
Francoeur, 2019), while others are based on microscopic plates
(50 × 50 μm2) (St-Gelais et al., 2014, 2016; Song et al., 2016;
Fiorino, Thompson et al., 2018). The use ofmacroscopic planar
surfaces is conceptually simple, but in practice it is more
difficult to ensure the parallelism and to have clean and smooth
surfaces over such large areas. For this reason, the smallest gaps
achieved with this strategy are still above 100 nm (DeSutter,
Tang, and Francoeur, 2019). On the other hand, the use of
microdevices facilitates the parallelization of the systems and
the characterization of the surfaces. With this approach, it has
become possible to explore gaps as small as 30 nm (Fiorino,
Thompson et al., 2018), as we illustrate in Fig. 4. In this
example, amicrodevice comprising aPt resistor that heats up the
emitter and measures its temperature was used to measure the
NFRHT rate between two SiO2 surfaces down to gaps of about
30 nm. For these small gaps, it was found that the heat
conductance was about 1200 times larger than in the far-field
regime and about 700 times larger than the blackbody limit, in
agreement with the theory results based on FE. Recently it has
even been claimed that distances below 10 nm are reachable
(Salihoglu et al., 2020).

C. Nonreciprocal materials

A special class of materials that has attracted significant
attention in the context of thermal radiation is that of
nonreciprocal materials. These materials do not satisfy

FIG. 3. (a) Heat-transfer coefficient at room temperature
(300 K) as a function of the gap size for two infinite thick
parallel plates made of Au. The different lines correspond to the
total contribution (black solid line) and to the contributions of
propagating and evanescent waves for TE and TM polarizations.
The horizontal line shows the result for two black bodies:
6.124 W=ðm2 KÞ. (b) The spectral heat flux (or conductance
per unit area and frequency) as a function of the radiation
frequency corresponding to the case in (a). The solid lines
correspond to three different values of the gap size in the
near-field regime, while the blue dashed line is the result for
two black bodies. (c),(d) The same as in (a),(b) for SiO2.

FIG. 4. (a) Schematic illustration of NFRHT measurement
configuration used by Fiorino, Thompson et al. (2018). The
emitter microdevice is composed of a square mesa and Pt heater
or thermometer suspended on a thermally isolated island. The
receiver is a macroscopically large (1 × 1 cm2) plate. (b) The
corresponding heat flux vs gap size in the case of an emitter and
an receiver made of SiO2. Measured data (red squares) are
compared to the theoretical result (solid black line) obtained
within FE. From Fiorino, Thompson et al., 2018.
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Lorentz reciprocity (Caloz et al., 2018) and, in practice, are
optically anisotropic materials with dielectric tensors that are
nonsymmetric. A paradigmatic example is that of magneto-
optical (MO) materials where the nonreciprocity is induced
either by an internal magnetization as in ferromagnets or by an
external magnetic field as in doped semiconductors. Part of
the attention is due to the suggestion that these materials might
violate Kirchhoff’s law (Zhu and Fan, 2014), which estab-
lishes the equality of thermal emissivity and absorptivity.
Although it has been shown that this is not the case in a two-
body situation (one body could be an environment) (Ekeroth,
García-Martín, and Cuevas, 2017), this class of materials does
give rise to countless novel thermal-radiation phenomena in
the context of many-body systems, as discussed later in this
review.
In the context of NFRHT in two-body nonreciprocal

systems, most of the work thus far has focused on the analysis
of MO materials and, in particular, on the study of the use of
an external magnetic field as a way to actively control thermal
radiation. Special attention has been devoted to doped semi-
conductors, which in the presence of an external magnetic
field exhibit strong MO activity in the infrared. The first
theoretical study of this kind was reported by Moncada-Villa
et al. (2015), who analyzed the magnetic-field dependence of
the heat-transfer coefficient of two parallel plates made of
doped semiconductors (InSb or Si). These materials become
optically anisotropic and nonreciprocal in the presence of an
external magnetic field. Thus, the problem is computing the
RHT between two anisotropic parallel plates. This generic
problem was addressed by Bimonte (2009) and Biehs et al.
(2011) and, as in the isotropic case discussed in Sec. II.A, the
net power per unit area or heat fluxΦ is given by the Landauer
formula of Eq. (5) with the substitution

T ðωÞ →
Z

dκ
ð2πÞ2 τðω; κ; dÞ: ð10Þ

Here κ ¼ ðkx; kyÞt (and therefore dκ ¼ dkxdky) is the wave
vector parallel to the surface planes and τðω; κ; dÞ is the
transmission probability of the individual electromagnetic
waves. Notice that the integral in Eq. (10) is now carried
out over all possible directions of κ [τ is no longer isotropic in
κ space (Fan et al., 2020)] and, as usual, it includes the
contribution of both propagating and evanescent waves. The
transmission coefficient τðω; κ; dÞ can be expressed as

τðω; κ; dÞ ¼
�
Trf½1 − R1R

†
1�D†½1 − R†

2R2�Dg; κ < k0;

Trf½R1 −R†
1�D†½R†

2 − R2�Dge−2jqvjd; κ > k0;

ð11Þ

where the 2 × 2 matrices Ri (with i ¼ 1; 2) are the reflection
matrices characterizing the two interfaces. These matrices
have the following generic structure:

Ri ¼
�
rssi rspi
rpsi rppi

�
; ð12Þ

where rαβi , with α; β ¼ s; p, is the reflection amplitude for the
scattering of an incoming α-polarized plane wave into an
outgoing β-polarized wave. In particular, the off-diagonal
elements describe the polarization conversion, which does not
occur for isotropic materials. Finally, the 2 × 2 matrix D in
Eq. (11) is defined as

D ¼ ½1 − R1R2e2iqvd�−1: ð13Þ

The different reflection matrices appearing in Eq. (12) can be
computed within standard approaches for anisotropic multi-
layer systems.
This formalism was used by Moncada-Villa et al. (2015) to

show that the NFRHT rate between two parallel plates made
of doped InSb and Si can be strongly affected by the
application of a static magnetic field, and relative changes

FIG. 5. (a) Heat-transfer coefficient for two parallel plates made
of n-doped InSb at room temperature (300 K) as a function of the
gap size for different values of a magnetic field applied parallel to
the surfaces of the plates (x direction). Inset: ratio between the
zero-field coefficient and the coefficient for different values of the
field in the near-field region. (b) The corresponding spectral heat
flux as a function of the frequency (and wavelength) for a gap of
d ¼ 10 nm and different values of the parallel field. From
Moncada-Villa et al., 2015.

S.-A. Biehs et al.: Near-field radiative heat transfer in many-body …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025009-8



of up to 700% were predicted for fields of a few teslas. These
results are illustrated in Fig. 5 for the case of a magnetic field
oriented parallel to the plates. More recently Moncada-Villa
and Cuevas (2020) also showed that NFRHT between two
parallel plates made of MO materials can be modulated by
simply changing the orientation of the external magnetic field,
which is the thermal analog of well-known phenomenon of
anisotropic thermal magnetoresistance in the field of spin-
tronics. This and other thermomagnetic phenomena in the
context of small MO particles are discussed in more detail in
Sec. III.D.

D. Nanostructuring, roughness, and materials

Following ideas and concepts of nanophotonics, many
groups have explored nanostructuring as a strategy to further
enhance NFRHT and to tune its spectral properties. Here we
review some of the ideas put forward in recent years in the
context of NFRHT in nanostructured planar systems and also
discuss the impact of deviations from planarity.

1. Multilayer structures and photonic crystals

A natural extension of the previously discussed plate-plate
configuration is to replace the plates by planar multilayer
structures or 1D photonic crystals (Biehs, 2007; Biehs,
Reddig, and Holthaus, 2007; Francoeur, Mengüç, and
Vaillon, 2008, 2010a, 2011; Ben-Abdallah et al., 2009a,
2009b; Ben-Abdallah, Joulain, and Pryamikov, 2010; Basu
and Francoeur, 2011; Maslovski, Simovski, and Tretyakov,
2013; Miller, Johnson, and Rodriguez, 2014; Jin, Messina,
and Rodriguez, 2017a; Iizuka and Fan, 2018). A central idea
in this case is to incorporate thin films in layered systems to
make better use of surface electromagnetic modes. In practice,
the RHT rate between two planar multilayer bodies compris-
ing an arbitrary number of layers can be formally described
with the same formulas as in the plate-plate case [see Eqs. (7)
and (8)], but in this case rα1 and r

α
2 have to be interpreted as the

reflection coefficients of the two subsystems (including their
complete layered structures); see Bimonte (2009) and Ben-
Abdallah, Joulain, and Pryamikov (2010). To give a concrete
example, we follow Song et al. (2015) and consider the
multilayer structure shown in the inset of Fig. 6, where the first
body is an infinite SiO2 plate (medium 1) and the second body
features a SiO2 film of thickness t (medium 3) deposited on a
semi-infinite layer of Au (medium 4), while medium 2 is the
vacuum gap of size d. In this case, rα2 in Eq. (8) has to be
replaced by (Biehs, 2007)

Rα ¼ rα23 þ rα34e
2iq3t

1 − rα34r
α
32e

2iq3t
; ð14Þ

which is the reflection coefficient of the subsystem formed by
media 3 and 4. Here, as usual, rαij are the Fresnel coefficients
of the different interfaces:

rsij ¼
qi − qj
qi þ qj

; rpij ¼
ϵjqi − ϵiqj
ϵjqi þ ϵiqj

; ð15Þ

where qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵik20 − κ2

p
. Finally, the Fabry-Perot denominator

in Eq. (8) now adopts the form Dα ¼ 1 − rα21R
αe2iq2d.

In Fig. 6 we show representative results of the gap
dependence of the heat-transfer coefficient of this multilayer
structure for different values of the thickness of the silica film,
ranging from 50 nm to bulk. We also show the result with no
SiO2 film for comparison. Notice that for small gaps
(d < 100 nm) the results are independent of the silica film
thickness, which shows that the extraordinary NFRHT
enhancements that occur in the bulk systems made of polar
dielectrics are also possible in thin-film structures as long as
the gap size is smaller than the film thickness (Biehs, 2007;
Biehs, Reddig, and Holthaus, 2007). As previously explained,
the physical origin of these results can be traced back to the
fact that NFRHT is dominated by electromagnetic cavity
modes arising from SPhPs whose penetration depth scales
with the gap size. Thus, when the gap is sufficiently small, all
the heat transfer comes from a shallow region on the surface of
the two bodies and NFRHT becomes independent of the film
thickness. These qualitative predictions were subsequently
experimentally confirmed by Song et al. (2015) using a
53-μm-diameter silica sphere as an emitter, instead of the
silica plate used in the calculations of Fig. 6. The finite
curvature of the sphere results in smaller NFRHT enhance-
ments relative to the planar structure, as is easily understood
with the standard proximity approximation; see Song et al.
(2015) for details. The validity of this approximation for the
description of NFRHT has been amply discussed in the
literature; see Otey and Fan (2011) and references therein.
To increase NFRHT beyond bulk systems, different groups

have proposed combining several thin films to make use of the
hybridization of the surface modes in different interfaces
(Biehs, 2007; Francoeur, Mengüç, and Vaillon, 2008, 2011;
Ben-Abdallah et al., 2009a; Jin, Messina, and Rodriguez,
2017a; Iizuka and Fan, 2018). Another proposed strategy to

FIG. 6. Computed heat-transfer coefficient as a function of gap
size for the multilayer system shown in the inset at room
temperature (300 K). This structure comprises a thick, semi-
infinite silica surface separated by a vacuum gap of size d from a
silica thin film coating on a semi-infinite Au surface. Different
curves correspond to different thicknesses of the silica coating.
Adapted from Song et al., 2015.
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outperform bulk systems relies on the use of 1D photonic
crystals (Ben-Abdallah, Joulain, and Pryamikov, 2010;
Tschikin, Ben-Abdallah, and Biehs, 2012). In this case the
heat-transfer mechanism involves the surface Bloch state
coupling supported by these media.

2. Metamaterials

Another topic that has been extensively studied in the
context of NFRHT between nanostructured systems is the use
of metamaterials, i.e., artificial structures with subwavelength
features designed to exhibit complex optical properties that are
difficult to find in naturally occurring bulk materials. In
particular, special attention has been devoted to hyperbolic
metamaterials, which are a special class of highly anisotropic
media whose electromagnetic modes have a hyperbolic
dispersion relation. To be precise, they are uniaxial materials
for which one of the principal components of either the
permittivity or the permeability tensor is opposite in sign to
the other two principal components. These systems have been
primarily fabricated based on designs involving hybrid metal-
dielectric superlattices and metallic nanowires embedded in
dielectric hosts (Poddubny et al., 2013). The interest in these
metamaterials in the context of NFRHT lies in the fact that
they have been predicted to behave as broadband super-
Planckian thermal emitters (Nefedov and Simovski, 2011;
Biehs, Tschikin, and Ben-Abdallah, 2012; Guo et al., 2012).
This behavior originates from the fact that these metamaterials
can support large wave vector frustrated modes that are
evanescent in a vacuum gap, but that are propagating inside
the material. This leads to broadband enhancement of the
transmission efficiency of the evanescent modes (Biehs,
Tschikin, and Ben-Abdallah, 2012). From the computational
point of view, the heat transfer between hyperbolic metamate-
rials can be described using either the scattering approach for
multilayer media described in Sec. II.D.1 or the more general
method discussed in Sec. II.D.3 and applicable to laterally
periodic patterned structures. In the latter case, and for appro-
priate subwavelength periodicities, it is typical to expoit an
effective medium theory in order to reduce the problem to one
involving planar but optically anisotropic materials, allowing
application of the approach described in Sec. II.C.
The special properties of hyperbolic metamaterials have

spurred many theoretical investigations of their use in the
context of NFRHT (Biehs et al., 2013; Guo and Jacob, 2013,
2014; Liu, Zhang, and Zhang, 2013, 2014b; Tschikin et al.,
2013; Lang et al., 2014; Miller, Johnson, and Rodriguez,
2014). These works have in turn demonstrated that metama-
terials do not outperform thin-film-based structures exhibiting
SPhPs, as their increased density of states is compensated for
by a decrease in the strength of the evanescent fields (Miller,
Johnson, and Rodriguez, 2014). Nevertheless, metamaterials
exhibit other interesting properties: for instance, the long
penetration depth of the hyperbolic modes can be advanta-
geous for applications in near-field thermophotovoltaics
(Simovski et al., 2013).

3. Gratings and metasurfaces

Also inspired by nanophotonic concepts, NFRHT between
periodically patterned systems has been intensively

investigated from a theoretical point of view, both in one
dimension (gratings) and in two dimensions (photonic crystals
and periodic metasurfaces). Again, the goal of such nano-
structuring is to tune the spectral heat transfer and enhance net
NFRHT. Technically speaking, the previously discussed
Landauer formula can be straightforwardly generalized to
deal with periodic systems by making use of Bloch’s theorem.
This was first done by Bimonte; see Bimonte (2009) for
technical details. Using that generalized formula in combi-
nation with different techniques for the computation of
reflection coefficients in periodic systems, typically via the
rigorous coupled wave analysis method, several groups have
reported calculations of NFRHT between periodic metallic
nanostructures in both one dimension (Guérout et al., 2012;
Dai, Dyakov, and Yan, 2015; Dai et al., 2016; Messina, Noto
et al., 2017) and two dimensions (Dai, Dyakov, and Yan,
2016; Jin et al., 2019). The key idea in this case is to use
nanostructuring to create new surface modes, referred to as
spoof plasmons (Pendry, Martin-Moreno, and Garcia-Vidal,
2004), whose frequencies can be adjusted by tuning the length
scales of these periodic systems so that their surface modes
can be thermally populated at the desired working temper-
ature. The reported results have demonstrated the possibility
of enhancing NFRHT over the corresponding planar bulk
materials. However, NFRHT in these periodically patterned
metallic structures continues to be smaller than that observed
in simple (unstructured) planar polar dielectrics, with few
exceptions (Jin et al., 2019).
There has also been significant theoretical work on the topic

of NFRHT between dielectric photonic crystals and meta-
surfaces (Rodriguez et al., 2011; Liu, Zhao, and Zhang, 2015;
Liu and Zhang, 2015a). Again, these structured systems
exhibit enhanced NFRHT with respect to their bulk counter-
parts, but the resulting NFRHT rates are again much smaller
than those of planar polar dielectrics. In this regard, it has been
predicted that metasurfaces can indeed provide a way to
enhance NFRHT between extended structures (Fernández-
Hurtado et al., 2017). To be precise, it has been shown that Si-
based metasurfaces featuring two-dimensional periodic arrays
of holes (see Fig. 7) can exhibit a room-temperature near-field
radiative heat conductance larger than that of any unstructured
material to date. This enhancement relies on the possibility of
largely tuning the spectral properties of the surface plasmon
polaritons that dominate NFRHT in these structures. In
particular, nanostructuring enables the appearance of broad-
band and lower-frequency surface modes, increasing their
contribution and occupation at room temperature, which
constitutes one of the main strategies being pursued to
enhance NFRHT. We conclude here by noting that, to our
knowledge, no experiment thus far has probed NFRHT
between patterned structures.

4. Graphene

Two-dimensional materials are revolutionizing material
science and they also hold promise in the field of NFRHT.
In particular, graphene has attracted much attention, as it can
support delocalized surface plasmon polaritons (SPPs) that
can contribute to NFRHT in spite of graphene’s ultrasmall
(one-atom) thickness (Volokitin and Persson, 2011; Ilic et al.,
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2012a). What makes these surface modes so attractive
compared to SPhPs in polar dielectrics is the possibility of
modulating them electronically (Messina, Hugonin et al.,
2013), which can be achieved by controlling graphene’s
chemical potential by means of a nearby gate electrode.
Such a mechanism provides an ideal strategy to actively
control NFRHT in graphene-based structures (Papadakis et al.,
2019). On the other hand, several theoretical studies have
shown that coating structures with graphene sheets may lead
to a substantial increase in NFRHT (Svetovoy, van Zwol, and
Chevrier, 2012; Lim, Lee, and Lee, 2013; Messina, Ben-
Abdallah et al., 2017). In this case, the idea is that appropriate
engineering of the coupling of graphene’s SPPs with other
surface modes, like SPPs in doped Si or SPhPs in polar
dielectrics, may increase the efficiency of heat exchange in the
near-field regime. Another topic of great interest that has been
theoretically investigated is the use of graphene-based

structures in thermophotovoltaics (Ilic et al., 2012b;
Messina and Ben-Abdallah, 2013; Svetovoy and
Palasantzas, 2014). Furthermore, the role of graphene in
NFRHT has been theoretically studied in a wide variety of
hybrid structures (Liu, Zhang, and Zhang, 2014b; Liu and
Zhang, 2015b; Shi, Bao, and He, 2017; Zhao, Guizal et al.,
2017; Shi et al., 2018; Shi, Bao et al., 2019).
From an experimental perspective, recent works have

confirmed that graphene enables enhanced NFRHT between
polar dielectrics (van Zwol et al., 2012; Shi, Sun et al., 2019)
and between Si substrates (both insulating and conductive)
(Yang et al., 2018). In particular, Shi, Sun et al. (2019)
measured the NFRHT flux between two identical graphene-
coated SiO2 heterostructures with millimeter-scale surface
area and reported a 64-fold enhancement relative to the
corresponding blackbody limit for a gap size of 170 nm;
see Fig. 8. Moreover, Shi, Sun et al. (2019) showed theo-
retically that the physical mechanism behind this large
NFRHT enhancement is indeed the coupling between gra-
phene’s SPPs and silica’s SPhPs. The first experimental
demonstration of NFRHT modulation by electronic gating
of a graphene field-effect heterostructure was only recently
reported (Thomas et al., 2019).

5. Surface roughness

Most calculations of NFRHT in planar structures assume
that the corresponding surfaces are perfectly flat. Such an
idealization ignores practical considerations such as surface
roughness. The impact of surface roughness on NFRHT was
addressed theoretically by Biehs and Greffet (2010b) in a
plate-plate configuration. Using a form of perturbation theory,
they showed that, assuming reasonable values for the height of
the roughness profile (∼5 nm), corrections to the heat-transfer

FIG. 8. Comparison of the NFRHT rate between
graphene ðGrÞ=SiO2 pair (red solid line) and SiO2 pair (blue
solid line) with various gap sizes. The temperatures of the
emitter and the receiver are 323.2 and 301.5 K, respectively.
Lines show the calculated values and spheres are the average
values of four repeated measurements at each point. Inset:
schematic illustration of the Gr=SiO2 heterostructure. The
blackbody limit has been plotted for comparison (black dashed
line). From Shi, Sun et al., 2019.

FIG. 7. (a) Schematic of two doped-Si metasurfaces made of 2D
periodic arrays of square holes placed on semi-infinite planar
substrates and held at temperatures T1 and T2. (b) Room-temper-
ature heat-transfer coefficient as a function of the gap size for the
doped-Si metasurfaces of (a) with a ¼ 50 nm and a filling factor
of 0.9 (black line). For comparison, the plot also includes the
results for the Si metasurfaces computed with an effective
medium theory (orange dashed line), SiO2 parallel plates (blue
line), and doped-Si parallel plates (red line). The horizontal
dashed line shows the blackbody limit. From Fernández-Hurtado
et al., 2017.
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coefficient due to roughness can lead to roughly the same
order of magnitude difference compared to perfectly flat
surfaces when the gap size is of the order of a few tens of
nanometers, for both metals and polar dielectrics. Moreover,
they showed that proximity approximations previously used
for describing rough surfaces are highly inaccurate when gap
sizes become much larger than the correlation length of the
surface roughness, even when the heat transfer is dominated
by the coupling of surface modes. We also note that the
influence of surface roughness has also been studied by way
of the finite-difference time-domain method in combination
with the Wiener chaos expansion approach (Chen and Xuan,
2015), along with its interplay with surface curvature (Krüger
et al., 2013).

E. Impact of geometry

Thus far, we have discussed NFRHT mainly in planar
geometries in which the translational symmetry greatly
simplifies the resolution of Maxwell’s equations. In what
follows, we turn to the analysis of the impact of geometry
(heat exchange between structured bodies) and discuss how
the aforementioned RHT formulas can be generalized to
handle objects of arbitrary size and shape.
The Polder–van Hove formula expressing T ðωÞ in terms of

Fresnel reflection coefficients or generalized reflection matri-
ces is well suited for calculations of heat transfer in systems
with translational symmetry, including the aforementioned
uniform planar slabs, thin films, gratings, photonic crystals,
and periodic metamaterials. However, this leaves out a large
class of systems of experimental and theoretical interest that
do not exhibit such translational symmetries, particularly
compact bodies like spheres or structured nanoparticles whose
finite dimensions are relevant to the analysis of radiative heat
transfer. Typically, in such cases it is incumbent to exploit
general-purpose techniques to compute field response quan-
tities entering T ðωÞ, for the geometry in question, in terms of
the system’s Green’s function. One such powerful general
scattering formalism was developed by Krüger et al. (2012)
and Bimonte et al. (2017), arriving at the general formula (for
reciprocal media)

T ðωÞ ¼ 4Tr½R�
2W1;2R1W�

2;1� ð16Þ

in terms of the radiation operator Rp ¼ G0½ImðTpÞ −
TpImðG0ÞT�

p�G�
0 and scattering operator Wpq ¼ G−1

0 ð1 −
G0TpG0TqÞ−1 for bodies p; q ∈ f1; 2g defined in terms of
the scattering T operators Tp, which depend on the material
properties and shape of the bodies and the Green’s function
operator G0 in vacuum. The strength of this formulation lies in
its broad applicability, as it generalizes beyond systems with
discrete or continuous translational symmetry: it can in
principle be used for arbitrary geometries, including compact
bodies whose finite sizes in each dimension are relevant, with
faster numerical convergence for appropriate choices of basis
functions. Additionally, while this T-operator formalism casts
thermal radiation in terms of volumetric scattering quantities,
related contemporaneous surface-integral equation formula-
tions (Rodriguez, Reid, and Johnson, 2013) can similarly

recover known semianalytical results for uniform planar
media and be computationally amenable to general compact
or extended geometries by casting thermal radiation purely in
terms of surface unknowns, vastly reducing the computational
complexity of calculations.
Furthermore, beyond simply aiding in generalizations of

computations beyond extended media with translational
symmetry, the T-operator formalism can shed further light
on the number of contributing transmission channels to T ðωÞ.
In the operators of Eq. (16), an operator of particular interest
(Miller, 2000, 2007; Miller, Johnson, and Rodriguez, 2015;
Molesky et al., 2020; Venkataram et al., 2020) is the off-
diagonal block G0ð2;1Þ of the Green’s function connecting
points r0 restricted to the volume of body 1 and r restricted to
the volume of body 2. At first glance, the ability of
electromagnetic fields to propagate through vacuum, or
equivalently the coupling of all pairs of volumetric degrees
of freedom in each of the different bodies, suggests that the
number of channels will scale like the volume of each body.
However, the electromagnetic surface equivalence theorem
(Harrington, 1989; Rengarajan and Rahmat-Samii, 2000;
Reid, White, and Johnson, 2013; Rodriguez, Reid, and
Johnson, 2013; Otey et al., 2014; Reid and Johnson, 2015)
shows that the electromagnetic fields radiated by any volu-
metric polarization distribution to the exterior of some
fictitious bounding surface can be exactly reproduced in that
exterior region by an equivalent surface current distribution,
therefore suggesting that the rank of G0ð2;1Þ actually scales
with the surface area of each body; as shown by Polimeridis,
Reid, Jin et al. (2015), it is indeed the effective rank of this off-
diagonal scattering operator that determines the number of
contributing transmission channels τn.
Based on the scattering approach and the standard Green’s

function formalism, there have been many studies of the heat
flux between a sphere and a plane, as shown in Fig. 9, and
between two spheres (Narayanaswamy, Shen, and Chen,
2008; Krüger, Emig, and Kardar, 2011; Otey and Fan,
2011; Sasihithlu and Narayanaswamy, 2011). Reviews high-
lighting other studies of NFRHT in nonplanar geometries
were given by Otey et al. (2014) and Bimonte et al. (2017).
Early studies of heat transfer between compact bodies
typically focused on high-symmetry objects with simple
shape. However, there have been far fewer studies of
NFRHT in nanostructured compact bodies than of extended
media (including the previously discussed gratings, photonic
crystals, and metasurfaces) because the former, unlike the
latter, does not easily succumb to semianalytical expressions
for arbitrary geometries in the absence of symmetries like
continuous or discrete translational invariance. Because of
that, we discuss in Sec. II.F the development of various
numerical methods to compute radiative heat transfer in a
broad array of systems.

F. Numerical methods

Advances in computational hardware and numerical algo-
rithms have led to an explosion of computational methods to
study radiative heat transfer. The facts that the Landauer form
of the radiative heat-transfer power depends only on the Bose
function nðω; TÞ and the Landauer energy transmission
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spectrum T ðωÞ, and that the latter in Eq. (16) depends only on
classical electromagnetic scattering quantities, means that
standard computational techniques may be readily applied
to studying radiative heat transfer. These methods, illustrated
schematically with examples in Fig. 10, essentially fall into
one of two categories, depending on the choice of either a
spectral or a localized basis expansion (Reid, Rodriguez, and
Johnson, 2013; Otey et al., 2014; Song, Fiorino et al., 2015;
Bimonte et al., 2017; Cuevas and García-Vidal, 2018), each of
which brings a set of benefits and drawbacks.

1. Spectral methods

Techniques based on spectral expansions (Krüger et al.,
2012; Bimonte et al., 2017) express the T operators of each
individual body in terms of delocalized spectral functions
(such as spherical vector waves). These basis functions
include but are not limited to plane waves (Fourier basis)
(Bimonte, 2009; Messina and Antezza, 2011b; Messina
and Ben-Abdallah, 2013; Messina, Jin, and Rodriguez,
2016; Jin, Messina, and Rodriguez, 2017a), Bloch waves
(Narayanaswamy and Chen, 2005; Francoeur, Mengüç, and
Vaillon, 2009; Ben-Abdallah, Joulain, and Pryamikov, 2010;
Tschikin, Ben-Abdallah, and Biehs, 2012; Messina, Noto
et al., 2017), and spherical or cylindrical harmonics
(Narayanaswamy, Shen, and Chen, 2008; Krüger, Emig,
and Kardar, 2011; Otey and Fan, 2011; McCauley et al.,
2012). The use of these basis functions is most convenient
when the geometries involved exhibit discrete or continuous
symmetries, like translation or rotation, as that can make the
resulting matrix expressions for the relevant operators nearly
diagonal, making computations far more efficient. However,
in the absence of such symmetries, or when different bodies
have shapes of different symmetries, not only are the resulting
matrices dense, but also the convergence with respect to
increasing numbers of basis functions slows dramatically.
Furthermore, we note that with few exceptions, such as work

on graphene sheets (Wunsch et al., 2006; Neto et al., 2009;
Ilic et al., 2012a; Sernelius, 2012), most applications of these
spectral techniques have in practice focused on simple local
isotropic homogeneous susceptibilities χðωÞ.

2. Decomposition methods

By contrast, techniques based on localized expansions
(Otey et al., 2014; Song, Fiorino et al., 2015; Cuevas and
García-Vidal, 2018) express either T operators or Maxwell
Green’s functions in terms of localized basis functions. One
such technique is the finite-difference frequency domain
method (Wen, 2010; Jin et al., 2019), in which Maxwell’s
equations in the frequency domain are discretized on a lattice
of grid points. In the context of RHT, fields in response to
individual dipolar sources embedded in the radiating objects
can be computed independently and then summed according
to weights determined by the fluctuation-dissipation theorem;
alternatively, the uncorrelated nature of dipolar sources at
different spatial positions means that all such fluctuating
sources can be simultaneously introduced and modeled as
stochastic, random sources with correlation functions given by
the fluctuation-dissipation theorem (requiring ensemble aver-
ages over many source realizations to reduce noise, as in
Monte Carlo integration). The latter interpretation lends itself
to a direct Langevin or stochastic time-domain simulation of
Maxwell’s equations (Rodriguez et al., 2011). This last class
of time-domain method has the added benefit that discretized
spatial differential operators are represented as sparse matrices
and allows representations of select classes of nonlocal
(spatially dispersive) susceptibility models (particularly those
arising in metals) in terms of spatial differential operators,
such as the hydrodynamic model (Klimchitskaya and
Mostepanenko, 2015; Xiao et al., 2016), all the while being
applicable to arbitrary body shapes. On the other hand,
multiscale or large problems become particularly challenging
to simulate, as the propagation of electromagnetic fields
through vacuum means that the entire space between bodies
must also be discretized, even if the separation is much larger
than relevant body feature sizes, so the resulting convergence
with respect to resolution can be prohibitively slow.
A related class of technique is the so-called volume-integral

formulation of Maxwell’s equations (Polimeridis, Reid, Jin
et al., 2015; Jin, Polimeridis, and Rodriguez, 2016; Jin,
Messina, and Rodriguez, 2017b), of which the discrete dipole
approximation (DDA) (Edalatpour and Francoeur, 2014,
2016; Edalatpour, DeSutter, and Francoeur, 2016; Ekeroth,
García-Martín, and Cuevas, 2017) may be thought of as a
special case. In general, volume-integral formulations use
various classes of localized basis functions as basis expan-
sions for T operators and G0. Unlike finite-difference meth-
ods, these techniques have the advantage of requiring basis
functions only within the volumes of material bodies, with the
full scattering problem represented by expressing the full
Green’s function in terms of the individual materials’ scatter-
ing matrices and the analytically known free-space Green’s
function of the corresponding intervening medium. As
expected, however, different choices of basis function offer
challenges and trade-offs with respect to numerical conver-
gence. As further elucidated later, DDA is effectively a

FIG. 9. Transferred power Hs by NFRHT between a SiO2

sphere with radius R ¼ 5 μm at 300 K and a SiO2 plane at
0 K as a function of distance d. The transferred power is
normalized to the power emitted by a blackbody with a
surface area given by the cross section of the sphere. From
Krüger, Emig, and Kardar, 2011.
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volume-integral formulation in which each body is discretized
into point dipolar particles with equivalent Clausius-Mossotti
polarizabilities: this approximation typically yields accurate
results for dielectric media but suffers from poor convergence
when simulating metals with highly delocalized plasmons. In
contrast, volume-integral formulations guaranteed to converge
require a so-called Galerkin discretization of the problem
based on the use of either voxel (Polimeridis, Reid, Johnson
et al., 2015) or Schaubert-Wilton-Glisson tetrahedral (Reid
et al., 2017) basis functions. In either case, the basis functions

may be identical and displaced on a regular grid or lattice
covering each body, in which case the matrix representation of
G0 may be sparse (and therefore computationally easier to
handle) due to the translational symmetries inherent in G0,
although this often comes at the cost of computing matrix
elements of G0 for regions where no materials are present or of
losing flexibility over discretizing certain regions more finely
than others (Polimeridis, Reid, Jin et al., 2015). Exactly the
opposite trade-off occurs if the volumes are discretized in an
irregular manner, with different weights given to different

FIG. 10. Collage of selected computational methods. Schematics of basis functions, along with selected results, for spectral (Messina
and Antezza, 2011b; McCauley et al., 2012; Bimonte et al., 2017; Messina, Noto et al., 2017), finite-difference (Rodriguez et al., 2011;
Werner, Bauer, and Cary, 2013; Jin et al., 2019), volume-integral (Polimeridis, Reid, Jin et al., 2015), and surface-integral (Reid, White,
and Johnson, 2013; Rodriguez, Reid, and Johnson, 2013; Rodriguez et al., 2013) methods.
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basis functions (Reid et al., 2017): it then becomes possible to
discretize certain regions more finely than others, which is of
particular relevance to near-field radiative heat transfer
between large bodies where only a few fine features are close
to one another, but at the cost of the matrix representation of
G0 becoming dense due to the loss of obvious symmetries in
the representation. Furthermore, in all cases volume-integral
formulations can model inhomogeneous and anisotropic
susceptibilities and even temperature gradients (Polimeridis,
Reid, Jin et al., 2015; Jin, Polimeridis, and Rodriguez, 2016),
but modeling nonlocal susceptibilities has proven to be more
of a challenge.
A class of techniques related to the volume-integral

formulation are those based on the surface-integral formu-
lation (Rodriguez, Reid, and Johnson, 2013; Rodriguez et al.,
2013) of Maxwell’s equations. These techniques compute the
Landauer energy transmission spectrum T according to a
formula that looks superficially similar to Eq. (16) but whose
derivation and implementation require a different set of
techniques. In particular, surface-integral formulations make
consistent use of the surface equivalence theorem (Harrington,
1989; Rengarajan and Rahmat-Samii, 2000; Reid, White, and
Johnson, 2013; Rodriguez, Reid, and Johnson, 2013; Otey
et al., 2014; Reid and Johnson, 2015) to recast all free
polarization sources and total electromagnetic fields in terms
of equivalent surface currents, with the relevant operators
being the Green’s functions of the homogeneous susceptibil-
ities composing each body, as well as the surface-integral
operator relating incident fields to induced equivalent surface
currents. In principle, the operators relevant to the surface-
integral formulation can be expanded in a spectral basis
(Rodriguez, Reid, and Johnson, 2013), but, as in the T-
operator formulation, convergence suffers for bodies that do
not exhibit requisite symmetries. Instead, it is more common
to expand the relevant operators in a localized basis like the
Rao-Wilton-Glisson basis (Rodriguez, Reid, and Johnson,
2013; Rodriguez et al., 2013) of tetrahedral functions.
Finally, we point out that any of these frequency domain

methods could have instead been cast in the time domain. In
the context of computational electromagnetism, this is most
commonly achieved by using the finite-difference time-
domain method (Luo et al., 2004; Rodriguez et al., 2011).
This has many of the same benefits and detriments of the
aforementioned finite-difference frequency domain method.
Techniques based on molecular dynamics have also been used
to compute radiative heat transfer in systems comprising
nanoparticles (Domingues et al., 2005), although the scaling
of the volume with the cube of the number of atoms makes
computations unwieldy in practice for large nanoparticles. For
both of these time-domain techniques, the main advantages
are their generality with respect to materials, the simple
computational implementation (as the temporal evolution
operators are represented as sparse matrices), the ability to
extract dynamical information, and their ability in principle to
incorporate nonlinear material response. In the case of
molecular dynamics, susceptibilities can be simulated fairly
generally, as the method is based on simulating classical
Newtonian particle dynamics, though interactions other than
harmonic or Coulomb couplings are typically based on
empirical rather than ab initio models. The main

disadvantages for both sets of techniques are losses in
computational efficiency from needing to explicitly simulate
fluctuating polarization sources obeying fluctuation-dissipa-
tion statistics, which requires that averages be taken over a
large ensemble of calculations.

G. Upper bounds on near-field heat transfer

As previously noted, the Stefan-Boltzmann formula or
blackbody limit was derived over a century ago under the
assumptions of ray optics, and it consequently fails to provide
an upper bound of the maximum heat flux that can be
extracted from an object in the near-field regime. While it
is known that, as in far-field emission, the appropriate choice
of object geometry (nanostructuring) and materials can
enhance NFRHT, the lack of such a limit applicable in the
near field begs the question: how much more room for
improvement can be expected from either of these design
criteria? Over the past few decades, there have been several
successful attempts at addressing this fundamental question,
starting with analyses of maximum NFRHT achievable in
planar geometries (where the main design criterion is the
choice of material) (Volokitin and Persson, 2004; Ben-
Abdallah and Joulain, 2010; Biehs, Tschikin, and Ben-
Abdallah, 2012) and followed more recently by limits
applicable to arbitrary nanostructures and materials (Miller,
Johnson, and Rodriguez, 2015; Venkataram et al., 2020).
Technically speaking, upper limits to the heat flux are
determined by bounds on the transmission coefficient T ðωÞ
per unit area in Eq. (5), which is itself determined by the per-
channel transmission factors τnðωÞ entering Eq. (6). The aim
of arriving at a bound on RHT is therefore to discern the
maximum number and contribution of tranmission channels
that may be excited by a yet unknown optimal choice of
material and geometry.
In the case of two planar bodies, the maximum heat flux is

determined by the bounds on the transmission coefficient
T ðωÞ per unit area in Eq. (7), which is determined by the
transmission factor ταðω; κÞ ∈ ½0; 1� corresponding to trans-
versal waves of frequency ω, lateral wave vector κ, and
polarization α ¼ s; p. We then see that T ðωÞ can be maxi-
mized if the transmission factor ταðω; κÞ is maximal over a
broad frequency and lateral wave vector range. For example,
when assuming that at a given frequency all transversal waves
contribute a maximal transmission factor of unity up to some
threshold value κmax, the upper bound for the transmission
coefficient per unit area between two planar bodies can be
written as

T plðωÞ ≤ 2

Z
κmax

0

dκ
2π

κ ¼ NðωÞ; ð17Þ

where NðωÞ may be interpreted as the number of contributing
transmission modes or channels per unit area (Ben-Abdallah
and Joulain, 2010; Biehs and Greffet, 2010a). By definition,
the contribution of propagating waves is restricted to κ < k0.
Hence, setting κmax ¼ k0 one obtains the maximum value of
T ðωÞ ¼ k20=2π for propagating waves. Inserting this maxi-
mum value into Eq. (7), one finds that the largest heat flux
Φmax

pr that can ever be carried by propagating waves is
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precisely the blackbody value ΦBB given by Stefan-
Boltzmann’s law (Planck, 1914; Bergman et al., 2011).
Thus, it is the additional contribution coming from evanescent
waves with κ ≥ k0 and not accounted for in Stefan-
Boltzmann’s law that allows NFRHT to surpass the blackbody
limit.
At first glance, it may appear that there is no upper bound to

κmax in the evanescent sector, at least within the scope of local
continuum electromagnetism, suggesting that T plðωÞ is
unbounded. However, even simple considerations imply
otherwise. For instance, inside a dielectric the largest possible
lateral wave vector allowed is given by the edge of the
Brillouin zone π=a, where a is the lattice constant of the
medium. Hence, only waves up to wave vectors κmax ≈ π=a
contribute heat flux. Ignoring possible band degeneracies and
physical constraints imposed by material and geometric
considerations, this gives the following idealized upper bound
on the maximum possible heat flux between two dielectrics
(Volokitin and Persson, 2004):

Φmax
pl;ideal ≈

k2Bπ
2

24ℏa2
ðT2

1 − T2
2Þ: ð18Þ

Assuming a wave vector cutoff set by a lattice constant of the
order of the atomic scale (a ≈ 10−10 m) and room-temperature
operation (T1 ¼ 300 K and T2 ¼ 0 K) yields a heat flux of
the order of 1013 Wm−2 that is unrealistically large compared
to the blackbody value of about 460 Wm−2. Taking into
account the nature of evanescent waves within the vacuum gap
between the two planar materials, one may derive a more
sensible upper bound. For instance, the field amplitude of
evanescent waves of a given κ in the quasistatic regime drops
exponentially as expð−κzÞ with respect to the distance z from
the interface. As a consequence, one can expect that only
evanescent waves having 1=κ ≈ z > d or κ < 1=d can mean-
ingfully contribute to the heat flux between two planar
interfaces a distance d apart, suggesting that κmax ≈ 1=d.
Ben-Abdallah and Joulain (2010) argued that only evanescent
modes with 1=κ ≈ z > d=2 overlap significantly and contrib-
ute, so a distance-dependent cutoff κmax ≈ 2=d is used to
provide an estimate of the upper limit for T ≤ 2=πd2, leading
to the following gap-dependent upper bound on the net heat
flux (Ben-Abdallah and Joulain, 2010):

Φmax
pl;gap ¼

k2B
6ℏd2

ðT2
1 − T2

2Þ: ð19Þ

The choice of κmax ¼ 1=d would decrease this estimate by a
factor of 1=4. Note that this cutoff is consistent with the fact
that T scales as expð−2κdÞ with the separation distance d. A
similar simple and general, albeit material-independent,
expression for the upper limit of the heat-flux contribution
has also been found in the case of two hyperbolic metama-
terials (Biehs, Tschikin, and Ben-Abdallah, 2012).
Material considerations further constrain the allowed heat

flux between planar media. In particular, Biehs and Greffet
(2010a) derived a more realistic frequency-dependent cutoff
κmax ¼ ln½2=ImðχÞ�=d that accounts for the impact of material
absorption through the material-specific loss rate Im½χðωÞ�,

where χ is the medium’s susceptibility. In particular, knowl-
edge of the analytical form of the reflection coefficients at an
interface can be used to show that the maximum flux occurs
for materials satisfying the surface-mode resonance condition
Reð1=χÞ ¼ −1=2. The fact that in the quasistatic regime the
heat flux scales like 1=d2 can be understood from the fact that
the number of contributing evanescent modes per unit area
scales like 1=d2 (Ben-Abdallah and Joulain, 2010; Biehs and
Greffet, 2010a; Biehs, Tschikin, and Ben-Abdallah, 2012).
Generalizations of related analyses to bound the performance
of planar metasurfaces (nanstructured materials with subwa-
velength systems) have recently been made (Biehs, Tschikin,
and Ben-Abdallah, 2012; Miller, Johnson, and Rodriguez,
2014), showing for instance that metasurfaces cannot signifi-
cantly enhance NFRHT beyond planar thin films.
Efforts aimed at identifying the number and relative

contribution of transmission channels that may arise in non-
planar media require a different framework. Recently Miller,
Johnson, and Rodriguez (2015) recast radiative heat transfer
between two bodies as a series of independent absorption and
emission problems (ignoring additional constraints posed by
the presence of multiple scattering among the two objects) to
obtain bounds that depend only on the bodies’ material
susceptibilities and separation. In particular, recent work
showed that, given an incident field on an object of suscep-
tibility χðωÞ, the maximum polarization field that can arise at
any point inside the object at a frequency ω depends on the
“material response factor” (Miller et al., 2016)

ζðωÞ ¼ jχðωÞj2
Im½χðωÞ� . ð20Þ

Such a figure of merit yields a measure of the resistivity or
dissipation of the medium and thereby captures the impact of
losses on the resonant optical response of a body. The
material response factor arises from the optimal magnitude
of the T operator for maximal absorption in isolation (Miller
et al., 2016) and encodes electromagnetic many-body and
multiple-scattering effects within the body in isolation; this
optimal magnitude is achievable at a polaritonic resonance,
determined by the value of Reð1=χÞ, which in turn can be
tailored through nanostructuring. Exploiting the maximum
polarization responsivity of a medium in combination
with electromagnetic reciprocity, Miller et al. (2016)
found an upper bound on the net transmission T ≤
4ζ1ζ2

R
V1

dr0
R
V2

dr
P

i;j jG0ðω; r; r0Þj2 that depends quad-
ratically on the effective loss rate of the system
ζ ¼ ffiffiffiffiffiffiffiffiffi

ζ1ζ2
p

, with ζ1 and ζ2 denoting the material factors
of the bodies, and on the integral of the vacuum Green’s
function over volumes V1 and V2 representing any conven-
ient domain that may contain bodies 1 and 2, respectively.
Such a double integral may be cast as a Frobenius norm of
the off-diagonal matrix G0ð2;1Þ, which was previously iden-
tified in related works by Miller (2000, 2007) on optical
communication limits. However, such an analysis crucially
depends on the assumption that each body is capable of
simultaneously and optimally emitting electromagnetic
fields in the absence of the other, and of optimally absorbing
electromagnetic fields in the presence of the other, which
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effectively neglects additional physical constraints arising
from the unavoidable impact of multiple scattering between
the two bodies. As a result, the limits have been shown to be
tight in situations where multiple scattering can be neglected,
namely, quasistatic media subject to relatively large material
losses (Jin et al., 2019). This problem becomes particularly
acute in the context of bounds on extended structures, where
the inability to account for tighter bounds on the trans-
mission eigenvalues causes the quadratic dependence on ζ to
far outstrip the observed logarithmic dependence on ζ seen in
polaritonic planar media near the resonance condition
Reð1=χÞ ¼ −1=2 (and predicted by the previous planar
bounds), suggesting more room for enhancements in
NFRHT through nanostructuring than has been observed
in practice.
In recent work, Molesky et al. (2020) and Venkataram et al.

(2020) developed a set of algebraic techniques to derive
tighter bounds on NFRHT that incorporate not only con-
straints on material response but also multiple scattering.
Specifically, the transmission coefficient for two arbitrarily
shaped bodies at any given frequency ω was found to be
bounded above by

T arbðωÞ ¼
X
n

τnðωÞ

≤
X
n

8<
:

1; ζ1ζ2g2n ≥ 1;
4ζ1ζ2g2n

ð1þζ1ζ2g2nÞ2 ; ζ1ζ2g2n < 1;
ð21Þ

where the dependence on ω inside the various factors has
been deprecated. These bounds depend on not only the
resistivity ζiðωÞ of each body i ¼ f1; 2g at the given
frequency but also a set of “radiative efficacy” coefficients
gnðωÞ denoting the singular values of the vacuum off-
diagonal Maxwell Green’s function G0ð2;1Þ connecting
dipoles in one object to the resulting fields on the other,
and thereby quantifying how strongly these two volumes
may be coupled by electromagnetic waves. Moreover, the
bounds move beyond simply identifying the set of channels
able to contribute to heat transfer, previously estimated on
the basis of the effective rank of G0ð2;1Þ, and instead exploit
the specific singular values of G0ð2;1Þ in combination with the
loss rate of the medium to quantitatively determine the
maximum possible transmission for each channel. Once the
set of channels that could possibly contribute (having non-
zero radiative coupling gn) is identified, the ability of each
transmission channel to saturate the Landauer upper bound
of unity (τn ≤ 1) is determined by the degree to which the
radiative rate of energy transport is able to overcome material
losses, captured by the condition ζ1ζ2g2n ≥ 1; the per-channel
bound is less than unity for those channels unable to meet
such a condition. In addition to correctly reproducing the
transition and eventual saturation in the growth of NFRHT
between dipolar nanoparticles, from material-loss-dominated
growth in the polarization response to the Landauer tran-
mission bounds of unity, these limits reveal that extended
nanostructured bodies cannot significantly outperform res-
onant planar polaritonic slabs even in principle. Specifically,
evaluation of the radiative efficacies for any set of

nanostructures contained within semi-infinite half-space
domains yields a limit on the net transmission of

T arbðωÞ × d2=A

≤
1

2π
×

8>><
>>:

ln
�
1þ ζ1ζ2

4

�
; ζ1ζ2 < 4;

1
2
lnðζ1ζ2Þ þ 1

8

h
ln
�
ζ1ζ2
4

�i
2
; ζ1ζ2 ≥ 4;

ð22Þ

which exhibits a weak squared-logarithmic dependence on ζ,
in line with the observed logarithmic peak value of T for
planar slabs at a polaritonic resonance (Biehs and Greffet,
2010a; Miller, Johnson, and Rodriguez, 2015).
Based on this recent analysis, it is evident that the observed

inability of nanostructuring to significantly enhance the
amplitude of T at any given frequency beyond what is
achievable with resonant planar materials is a “feature” of
the underlying physics of NFRHT, not a “bug” in sampling a
limited design space: the maximum channel able to saturate
the Landauer transmission limit of unity for any nanostructure
scales logarithmically as ð1=2dÞ ln ðζ1ζ2=4Þ provided that the
system is in the underdamped resonant regime ζ1ζ2 ≥ 4.
Intuitively, this result may be seen as dissonant with the
established utility of nanostructuring for enhancing far-field
electromagnetic absorption and scattering, and the signifi-
cantly stronger enhancements of local densities of states that
can arise in the vicinity of structured materials. However, the
channels of radiative heat transfer between two separable
bodies in proximity have little to do with the channels that
carry energy away from a body (or an aggregate two-body
system), so there is no reason to believe that enhancement of
the latter transmission channel contributions would neces-
sarily increase the former.
The transition from a quadratic (Miller, Johnson, and

Rodriguez, 2015) to a much weaker logarithmic
(Venkataram et al., 2020) dependence of the bounds on
material conductivity once multiple-scattering constraints
are introduced illustrates the restricted and prohibitive nature
of nanostructuring in tailoring mutual scattering across a wide
range of resonant channels. Such a trade-off precisely explains
why the success of nanostructuring in enhancing local fields
does not readily translate into equivalent enhancements in
NFRHT. As reviewed in Secs. II.B and II.D, metallic nano-
structures can indeed greatly enhance heat exchange com-
pared to their planar counterparts, but, as these limits suggest,
not much more than what may be achieved with planar polar
dielectrics. Finally, while multiple scattering ultimately ham-
pers the maximum heat exchange that any two bodies can
experience, as we see in Sec. III, it underlies several important
transport effects in many-body systems.

III. MANY-BODY SYSTEMS

Until the past decade, theoretical and experimental work on
the topic of near-field radiative heat transport was primarily
relegated to the study of heat exchange between two objects,
while transport in systems composed of objects in mutual
interactions remained largely unexplored and out of the reach
of classical FE. Ben-Abdallah, Biehs, and Joulain (2011) laid
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out the theoretical foundations for studying NFRHT in simple
many-body systems made of small interacting objects in the
dilute regime, paving the way for a new research direction on
the topic of nanoscale heat-transfer. Since 2011, numerous
works have revealed new many-body effects, including the
emergence of new physical and transport behaviors, and
unraveling a large number of potential applications in domains
such as nanoscale thermal management, energy-conversion
technology, and information processing. In Secs. III.A–III.D,
we describe these peculiarities.

A. Heat flux in dipolar many-body systems

Understanding the mechanisms that drive light matter
interactions is one of the main goals of optics. In the
following, we address the problem of light absorption and
thermal emission by a set of small objects in which co-
operative interactions as well as heat exchange take place.

1. Light absorption in dipolar systems

To start we consider the case of nonemitting objects that are
able to scatter and absorb light only from an external source,
i.e., we are neglecting thermal radiation at this stage. In the
simplest case of a small isolated particle located at position r0

in vacuum, the optical response of this particle can be
described by the response to a simple permanent dipolar
electric moment pðr0Þ.
The electric field produced at point r around this dipole

takes the following form:

EpðrÞ ¼ ω2μ0G0ðr; r0Þpðr0Þ: ð23Þ

Here (Novotny and Hecht, 2006)

G0ðr; r0Þ ¼
expðik0ρÞ

4πρ

��
1þ ik0ρ − 1

k20ρ
2

�
1

þ 3 − 3ik0ρ − k20ρ
2

k20ρ
2

ρ̂ ⊗ ρ̂

	
ð24Þ

is the free-space Green tensor defined with the unit vector
ρ̂≡ ρ=ρ, ρ ¼ r − r0, k0 ¼ ω=c is the wave vector, 1 denotes
the unit dyadic tensor, and μ0 denotes the vacuum permeabil-
ity. When this particle is illuminated by an incident field Einc,
the local electric field Eloc measured at any point r is the
superposition of the incident field and the field generated
(scattered) by the dipole. Therefore, according to Eq. (23), this
field decomposes into

ElocðrÞ ¼ EincðrÞ þ ω2μ0G0ðr; r0Þpðr0Þ: ð25Þ

The electromagnetic power P dissipated in the particle can be
calculated from the rate of work

Pabs ¼
1

2

Z
V

dV Reðj� · ElocÞ ð26Þ

done by the electromagnetic field in a volume V including the
particle. Here j denotes the local electric current density in the
volume V. In the dipolar approximation jðr0Þ ¼ −iωpδðr −
r0Þ so that

Pabs ¼
1

2
Reðiωp� ·ElocÞ ¼ −

ω

2
Imðp� ·ElocÞ: ð27Þ

Using the relation

pðr0Þ ¼ ϵ0αEincðr0Þ ð28Þ

between the incident field and the dipolar moment, where α is
the electric polarizability, the power dissipated in the particle
reads (Tretyakov, 2014)

Pabs ¼
ωjEincj2ϵ0

2

�
Im½α� − k0

6π
jαj2

�
: ð29Þ

It is common to quantify light absorption using the absorption
cross section defined as the ratio

σabs ¼
Pabs

F inc
ð30Þ

of this dissipated power by the incident flux

F inc ¼
cϵ0
2

jEincj2: ð31Þ

For a collection of dipoles located at the position ri
(i ¼ 1;…; N) the multiscattering process between the par-
ticles must be taken into account (Langlais et al., 2014). Under
an external illumination by an incident field Einc, the local
electric field Eloc measured at any point results from the
superposition of the incident and all scattered fields as

ElocðrÞ ¼ EincðrÞ þ ω2μ0
XN
j¼1

G0ðr; rjÞpj: ð32Þ

When we introduce the notation pi ¼ pðriÞ, Eloc;i ¼ ElocðriÞ,
and Einc;i ¼ EincðriÞ the total power absorbed by this set of
dipoles takes the general form (Hugonin, Besbes, and Ben-
Abdallah, 2015)

Pabs ¼
ω

2

�XN
i¼1

Imðpi · E�
inc;iÞ −

XN
i;j¼1

Imðp�
iDijpjÞ

�
; ð33Þ

where we have introduced the N × N block matrix

Dij ¼ μ0ω
2G0ðri; rjÞ: ð34Þ

Equation (34) generalizes Eq. (29) to arbitrary systems of
coupled dipoles. For isotropic and homogeneous particles the
generalized vector field of dipolar moments reads
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0
BB@

p1

..

.

pN

1
CCA ¼ A

0
BB@

Eloc;1

..

.

Eloc;N

1
CCA; ð35Þ

introducing the block matrix

Aij ¼ ϵ0δijα¼i
; ð36Þ

where α
¼i

is the electric polarizability tensor associated with

the particle i. Using Eq. (32), this expression can be
reformulated with respect to the vectorial incident field as

0
BB@

p1

..

.

pN

1
CCA ¼ AT̃−1

0
BB@

Einc;1

..

.

Einc;N

1
CCA; ð37Þ

with

T̃ij ¼ δij1 − ð1 − δijÞk20G0ðri; rjÞα¼j
: ð38Þ

This block matrix T̃−1 defines the interplay between all
dipoles and the block matrix

αdr ¼
1

ϵ0
AT̃−1; ð39Þ

also called dressed polarizability (Castanié et al., 2012),
results from the multiscattering process in the set of dipoles.
Using the slightly different block matrix

Tij ¼ δij1 − ð1 − δijÞk20α¼i
G0ðri; rjÞ; ð40Þ

it can also be expressed as

αdr ¼
1

ϵ0
T−1A ð41Þ

because TA ¼ AT̃ and T−1A ¼ AT̃−1. This dressed polar-
izability shows that two types of resonances play a role in the
interaction of light with the set of coupled dipoles. The first
ones are the resonances of the isolated particles themselves
(i.e., the poles of α

¼i
), while the second ones (i.e., the poles of

the determinant of αdr or T−1) are configurational resonances
(see Fig. 11) and they depend on the spatial distribution of
dipoles. Therefore, the 3N dipolar resonances that are degen-
erate for spherical nanoparticles couple and form a band of 3N
resonances in general. Depending on the symmetry in the
configuration some of the resonances remain degenerate
despite the coupling. A simple example is a chain of nano-
particles. There one findsN twofold degenerate vertical and N
longitudinal resonances (Weber and Ford, 2004) forming
bands of coupled modes. A general consequence of this
dressing due to the coupling is a broadening of the absorption
spectrum in a coupled N-dipole system.

2. Exchanged power and Poynting vector

Now we consider the most general situation where the
particles are also emitting heat radiation. The fundamental
relations to describe heat exchange in a system of N dipoles
having temperatures T1;…; TN within the framework of the
FE were first derived by Ben-Abdallah, Biehs, and Joulain
(2011). Messina, Tschikin et al. (2013) generalized the
relations for the heat exchange to also treat the interaction
of the N dipolar objects with an environment or background in
thermal equilibrium at some temperature Tb (i.e., the temper-
ature of the surrounding radiation field), but only for isotropic
dipolar objects. Subsequently, these expressions were
extended to anisotropic and nonreciprocal systems by also
taking the radiation correction into account (Nikbakht, 2014;
Ekeroth, García-Martín, and Cuevas, 2017), and the expres-
sion for the mean Poynting vector of such an N-dipole system
has been determined to quantify its far-field thermal emission
(Ekeroth, García-Martín, and Cuevas, 2017). Finally, Ott et al.
(2019a) and Ott and Biehs (2020) used the method of
Messina, Tschikin et al. (2013) to determine the general
expressions for the mean Poynting vector and the exchanged
heat in a system of N dipoles immersed in an environment at
temperature Tb that can also be nonreciprocal. A further
generalization that takes the possibility of magnetic polar-
izabilities into account was given byManjavacas and de Abajo
(2012) and Dong, Zhao, and Liu (2017a). Here we review
mainly the derivation of the heat exchange and the mean
Poynting vector for N dipolar objects described by an electric
polarizability tensor α

¼
within the framework of Messina,

Tschikin et al. (2013). This approach is valid for nanoparticles
with a size much smaller than the thermal wavelength and for
interparticle distances and distance between the particles and

FIG. 11. (a) Absorption cross section of spherical silver nano-
particles with respect to the wavelength. (b) Orthogonal and
parallel configurational resonance frequencies for a dimer of
silver nanoparticles (R ¼ 10 nm) in vacuum with respect to their
separation distance d. The red horizontal line represents the
plasmon resonance of an isolated particle. (c),(d) Absorption
cross sections for a dimer of silver nanoparticles (R ¼ 10 nm)
normalized by the absorption of a single particle. From Raj, Van
de Voorde, and Mahajan, 1995.
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interfaces of the environment larger than twice the diameter
(Narayanaswamy and Chen, 2008; Otey and Fan, 2011;
Becerril and Noguez, 2019).
To derive the exchanged power and the mean Poynting

vector in an N-dipole system, we consider the total electric
and magnetic fields

Eðr;ωÞ ¼ ω2μ0
XN
i¼0

GEEðr; riÞpi þ Ebðr;ωÞ; ð42Þ

Hðr;ωÞ ¼ ω2μ0
XN
i¼0

GHEðr; riÞpi þHbðr;ωÞ; ð43Þ

which are generated by the fluctuational background fields
EbðrÞ and HbðrÞ and the induced and fluctuational dipoles of
all particles (i ¼ 1;…; N)

pi ¼ pind
i þ pfl

i ; ð44Þ

where the induced dipole moments

pind
i ¼ ϵ0α¼i

EðriÞ ð45Þ

can be expressed in terms of the polarizability tensor α
¼i

of the

ith dipole. Here we have introduced the electric and magnetic
Green’s functions GEE and GHE generated by electric dipole
moments as defined by Eckhardt (1984), which are now not
necessarily the vacuum Green’s functions, but rather the
general Green’s functions taking the geometry and material
properties of the background into account. As a consequence
the total electric field Ei ¼ EðriÞ at the position of the ith
dipole is given by the field contributions due to the fluctuating
dipole moments pfl

j of all other dipoles j ≠ i and the back-
ground field Eb

i ¼ EbðriÞ including direct thermal emission
and multiple scattering. It can be written as (Messina, Tschikin
et al., 2013)

0
BB@

E1

..

.

EN

1
CCA ¼ DT−1

0
BB@

pfl
1

..

.

pfl
N

1
CCAþ ð1þ DT−1AÞ

0
BB@

Eb
1

..

.

Eb
N

1
CCA: ð46Þ

Similarly the induced dipole moments pi for each particle i
can be expressed in terms of the fluctuating dipole moments of
all other particles and the background field (Messina, Tschikin
et al., 2013)

0
BB@

p1

..

.

pN

1
CCA ¼ T−1

0
BB@

pfl
1

..

.

pfl
N

1
CCAþ ðT−1AÞ

0
BB@

Eb
1

..

.

Eb
N

1
CCA: ð47Þ

The auxiliary (3N × 3N)-block matrices D, A, and T are
defined as in Eqs. (34), (36), and (40) but with the vacuum
Green’s function G0ðri; rjÞ replaced by GEE

ij ¼ GEEðri; rjÞ
and 1ij ¼ δij1.

Equipped with this set of expressions it is now possible to
derive the dissipated heat in a given dipole i and the mean
Poynting vector in a general N-dipole system. Analogous to
Eq. (26) the mean power received by the ith dipole is defined
as the power dissipated in dipole i

Pi ¼


dpiðtÞ
dt

· EiðtÞ
�

¼ 2Im
Z

∞

0

dω
2π

ωhpiðωÞ ·E�
i ðωÞi: ð48Þ

Hence, by definition the dissipated power inside dipole i, i.e.,
the heat flowing into that dipole, is positive. The mean
Poynting vector due to the dipoles and the background fields
is given by

hSðrÞi ¼ hEðtÞ ×HðtÞi

¼ 2Re
Z

∞

0

dω
2π

hEðr;ωÞ ×H�ðr;ωÞi: ð49Þ

These expressions already include the fact that the fluctua-
tional fields and dipole moments are stationary so that the
mean power and mean Poynting vector do not depend on time.
They can be evaluated by assuming that the fluctuational
dipole moments and the background fields are in local thermal
equilibrium at temperatures Ti (i ¼ 1;…; N) and Tb. Then the
mean values for the power and Poynting vector that are given
by the correlation functions of the fields and the dipole
moments can be evaluated by employing the fluctuation-
dissipation theorem (Kubo, 1966) and assuming that the
background fields and the dipole moments are statistically
independent, i.e., correlation functions between the back-
ground field and the fluctuating dipoles hEb ⊗ pii vanish. For
the fields the fluctuation-dissipation theorems are (Agarwal,
1975a)

hEb
i ⊗ Eb�

j i ¼ 2ω2μ0ℏ

�
nb þ

1

2

�
GEE
ij − GEE

ji
†

2i
; ð50Þ

hEb
i ⊗ Hb

j i ¼ 2ω2μ0ℏ

�
nb þ

1

2

�
GEH
ij − GHE†

ji

2i
ð51Þ

using the notation GEH
ij ¼ GEHðri; rjÞ and GHE

ij ¼ GHEðri; rjÞ,
nb ¼ nðω; TbÞ. Analogously, for the dipole moments the
fluctuation-dissipation theorem is determined by (Messina,
Tschikin et al., 2013)

hpfl
i ⊗ pfl

j
�i ¼ 2ϵ0ℏδijðni þ 1

2
Þχ
¼i
: ð52Þ

The generalized susceptibility of the ith particle is given by
(Messina, Tschikin et al., 2013; Ekeroth, García-Martín, and
Cuevas, 2017; Herz and Biehs, 2019)

χ
¼i

¼
α
¼i

− α
¼
†
i

2i
− k20α¼i

GEE
ii − GEE

ii
†

2i
α
¼
†
i
: ð53Þ
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The first term of the generalized susceptibility describes
simply the intrinsic absorptivity of the dipole, whereas the
second term is a radiation correction taking into account the
fact that the dipole is coupled to the environment that modifies
its absorptivity. In free space this second term simply reads
−k30=ð6πÞα¼α¼

† (Ekeroth, García-Martín, and Cuevas, 2017).

Hence, upon comparison with Eq. (29) we see that with χ
¼i

we

retrieve the absorptivity of a dipole i placed in vacuum for the
isotropic case α

¼i
¼ αi1.

Inserting the expressions for the fields and dipole moments
into Eq. (48) one obtains for the mean power received by
particle i (Ott and Biehs, 2020)

Pi ¼ 3

Z
∞

0

dω
2π

ℏω
XN
j¼1

ðnj − nbÞT ij; ð54Þ

where the transmission coefficients are defined as

T ij ¼ 4
3
ϵ0ImTr½T−1

ij χ¼j
ðDT−1Þ†ij�: ð55Þ

Equation (54) is the general expression for the dissipated
power or heat flowing into a dipole at temperature Ti
surrounded by N − 1 dipoles at temperatures Tj (j ≠ i)
described by an anisotropic or even nonreciprocal polar-
izability immersed in a general environment or background

at temperature Tb that can itself be anisotropic or nonrecip-
rocal, properties that are taken into account via the polar-
izability and the Green’s function. In general, if the dipole or
the background or both are nonreciprocal, one has T ij ≠ T ji

(Zhu, Guo, and Fan, 2018; Herz and Biehs, 2019). Note that in
the literature a variety of different equivalent expressions for
the transmission coefficients T ij can be found (Ben-Abdallah,
Biehs, and Joulain, 2011; Messina, Tschikin et al., 2013;
Nikbakht, 2014; Ekeroth, García-Martín, and Cuevas, 2017;
Ott et al., 2019a; Ott and Biehs, 2020). Finally, when
replacing nj − nb with nj − ni þ ni − nb Eq. (54) can be
recast into the more intuitive form (Messina, Tschikin et al.,
2013)

Pi ¼ 3

Z
∞

0

dω
2π

ℏω

�X
j≠i

ðnj − niÞT ij þ ðnb − niÞT ib

�
;

ð56Þ

with T ib ¼
P

j T ij. Equation (56) has the advantage that it
expresses the power dissipated into dipole i by the power
exchanged between dipole i and all the other dipoles and the
power of dipole i exchanged with the environment.
Similarly, by starting with the definition of the mean

Poynting vector in Eq. (49) one obtains for the spectral heat
flux for the N fluctuating dipoles immersed in a background
(Ott and Biehs, 2020)

hSω;αi ¼ 4ℏω2μ0k20
X

β;γ¼x;y;z

ϵαβγRe

�XN
j¼1

ðnj − nbÞ
XN
i¼1

ðGEE
0i T

−1
ij Þχ¼j

XN
k¼1

ðGHE
0k T

−1
kj Þ†

þ nb
2i

XN
i;j¼1

½GEE
0i T

−1
ij α¼j

GEH
j0 − ðGHE

0i T
−1
ij α¼j

GEE
j0 Þ†� þ

nb
k20

�
GEH

00 − GHE†

00

2i

�	
βγ

; ð57Þ

where ϵαβγ is the Levi-Civita tensor and GEE
0i ¼ GEEðr; riÞ,

GEE
00 ¼ GEEðr; rÞ, etc. The first term describes the heat flux

emitted by the particles into the background, the last term
describes the heat flux of the background fields without the
dipoles, and the second term describes the interference of
the background fields due to the presence of the dipoles. In
the case in which the background geometry fulfills Lorentz
reciprocity (Caloz et al., 2018), the last term vanishes since
then GEH

ij
† ¼ −GHE

ji
�. This simply means that if we have no

dipoles, the mean heat flux in the background hSbi ¼
hEbðtÞ ×HbðtÞi that is at local thermal equilibrium van-
ishes. On the other hand, as shown by Silveirinha (2017)
for a nonreciprocal background, there can be a nonvanish-
ing mean Poynting vector even in thermal equilibrium.
In certain cases the heat flux between the dipolar objects

is dominant so that the emission into the background is
negligibly small. If the dipoles are placed into a vacuum at
temperature Tb, then the power exchanged between the
dipoles is for distances much smaller than the thermal
wavelength, i.e., in the near-field regime, much larger than
the power exchange with the background (Messina,

Tschikin et al., 2013). When placing the dipolar objects
close to a substrate, the interdipole heat exchange still
dominates if the distance between the dipoles is much
smaller than the distance to the substrate (Ott and Biehs,
2020). In such situations, the N-dipole system can also be
treated as a closed system. This can be done by neglecting in
the previous expressions the heat exchange between the
dipoles and the background and the heat flux due to the
background fields so that

Pi ¼ 3

Z
∞

0

dω
2π

ℏω
X
j≠i

ðnj − niÞT ij ð58Þ

and

hSω;αi ¼ 4ℏω2μ0k20
X

β;γ¼x;y;z

ϵαβγ
XN
j¼1

nj

× Re

�XN
i¼1

ðGEE
0i T

−1
ij Þχ¼j

XN
k¼1

ðGHE
0k T

−1
kj Þ†

	
βγ

: ð59Þ
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Note that, even though Pi contains only the power dissi-
pated in dipole i due to the heat exchange with all other
dipoles, the mean Poynting vector also includes the thermal
radiation of all dipoles into their background, which is
assumed to have zero temperature. To be fully consistent
with the assumption that the background is simply removed
from the description, the second term in the generalized
susceptibility χ

¼j
in Eq. (53) might be neglected. For systems

where the dipole approximation is valid this term is typically
small and can therefore often be neglected anyway.
The same equations can be obtained by neglecting in the

derivation right from the start any contribution from the
background fields. In this case Pi can also be obtained by
considering only the power exchanged between all pairs of
dipoles, as originally done in many works, including that of
Ben-Abdallah, Biehs, and Joulain (2011). To this end, the heat
dissipated in dipole i due to a fluctuational field Eij ¼
ðDT−1Þijpfl

j generated by a fluctuational dipole pfl
j is consid-

ered as the power flow from dipole j to i yielding

Pj→i ¼


dpiðtÞ
dt

·EijðtÞ
�

¼ 3

Z
∞

0

dω
2π

ℏωnjT ijðωÞ: ð60Þ

Then the power dissipated by the ith dipole is just the sum of
the power flowing between dipole i and the other objects

Pi ¼
X
j≠i

ðPj→i − Pi→jÞ

¼
X
j≠i

3

Z
∞

0

dω
2π

ℏω½njT ijðωÞ − niT jiðωÞ�: ð61Þ

Since in thermal equilibrium Pi ¼ 0 we can derive the
condition (Latella and Ben-Abdallah, 2017; Ott et al., 2019a)

X
j≠i

T ijðωÞ ¼
X
j≠i

T jiðωÞ: ð62Þ

Equation (62) simply expresses the fact that, even though
T ij ≠ T ji in general, the heat flux from i to all other dipoles
[rhs of Eq. (62)] must be the same as the heat flow from all
other dipoles to i [lhs of Eq. (62)] in equilibrium. By inserting
this equilibrium condition into the second term of Eq. (61) we
retrieve Eq. (58).

3. Nonadditivity in many-dipole systems

Before we discuss the nonadditivity of the power exchange
in an N-dipole system based on Eq. (60), we focus on the
power exchange between two dipoles (N ¼ 2). The first
derivation of the heat exchange between two dipolar objects
within the framework of FE was given by Volokitin and
Persson (2001) and was extended to take magnetic dipole
moments into account (Chapuis, Laroche et al., 2008a;
Manjavacas and de Abajo, 2012), as well as multipolar
contributions (Pérez-Madrid, Rubi, and Lapas, 2008;
Becerril and Noguez, 2019). A quantum dynamical

description was given by Biehs and Agarwal (2013a) and
Barton (2016), and discussions of different prefactors found
were conducted by Dedkov and Kyasov (2011) and Sasihithlu
(2018). Using our expression in Eq. (60) for N ¼ 2 and
temperatures T1 ≠ 0 K and T2 ¼ 0 K, we obtain for the
power received by dipole 2

P1→2 ¼ 3

Z
∞

0

dω
2π

ℏωn1T 21: ð63Þ

The transmission coefficient T 12 can be expressed as

T 21 ¼ 4
3
k40ImTr½D−1G21χ¼1

ðD−1G21Þ† χ̃¼2

�; ð64Þ

with D ¼ 1þ k40G21α¼1
G12α¼2

introducing the generalized

susceptibility

χ̃
¼2

¼
α
¼2

− α
¼
†
2

2i
− k20α¼

†
2

G22 − G†
22

2i
α
¼2
: ð65Þ

Note that this general susceptibility differs only slightly from
Eq. (53), whereas for isotropic dipoles the two definitions
coincide. This is the most general expression of the trans-
mission coefficient for two dipolar objects in a given envi-
ronment of any shape. The appearance of the terms D−1 in the
transmission coefficient are due to multiple interactions
between the dipoles. Therefore, the hybridization of any
localized dipole resonance due to the strong coupling for
small distances is accounted for in this expression. Note that
Eq. (64) resembles Eq. (36) of Ekeroth, García-Martín, and
Cuevas (2017), but with the slight difference that they used χ

¼2

instead of χ̃
¼2

. On the other hand, the form of the transmission

coefficient (64) was also used by Krüger et al. (2012) and
Herz and Biehs (2019) within the scattering approach of
Krüger et al. (2012). However, within the range of validity of
the dipole approximation the second term in χ

¼
or χ̃

¼
typically

can be neglected and many researchers simply use

χ
¼i

≈ χ̃
¼i

¼
α
¼i

− α
¼
†
i

2i
: ð66Þ

When adding a third dipole at T3 ¼ 0 K, we still can use
Eqs. (63) and (64) to quantify the power exchanged between
dipoles 1 and 2. The main difference is that T−1

12 now also
contains the coupling with the third dipole. Hence, the sheer
presence of the third particle changes the transmission
coefficients due to the fact that it changes the mode structure,
which is for dipoles with a localized resonance again due to
the hybridization for three dipoles this time (see Fig. 13)
responsible for the broadening of the absorption spectrum, as
discussed in Sec. III.A.1. As a consequence, the presence of a
third dipole changes the power exchange P1→2, proving that
the heat exchange in an N-dipole system is nonadditive. This
formalism is valid only for interparticles distances larger than
4R, with R the radius of the particles. It can be extended to
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smaller distances by including multipolar contributions
(Czapla and Narayanaswamy, 2019).
This many-body effect can be exploited to enhance the

exchanged power between two dipolar objects 1 and 2 by
bridging the distance via a third dipole that is placed between
1 and 2, as shown by Ben-Abdallah, Biehs, and Joulain
(2011); see Fig. 12. However, keep in mind that the heat flux
between two dipoles in an N-dipole system cannot be
arbitrarily enhanced. As discussed by Ben-Abdallah, Biehs,
and Joulain (2011), it can be easily shown that each of the
conductances between two dipoles can be at most 3 times the
quantum of thermal conductance. Nonetheless, this upper
limit is difficult to achieve, leaving much room for optimi-
zation. Several researchers have shown that it is possible to
tailor the interdipole heat flux via a third dipole or third object.
Messina, Tschikin et al. (2013) studied the relaxation dynam-
ics for the three-body configuration, and Dong, Zhao, and Liu
(2017a) also included the possibility of having a magnetic
polarizability as needed to describe metallic nanoparticles in
the infrared. Furthermore, using prolate (Incardone, Emig, and
Krüger, 2014; Nikbakht, 2014, 2015) or oblate (Choubdar and
Nikbakht, 2016) spheroidal nanoparticles, it has been dem-
onstrated that by changing the relative orientation of the
nanoparticles and, in particular, an intermediate nanoparticle
the heat flux can be switched and enhanced efficiently; see
also Fig. 31. Furthermore, the coupling of two nanoparticles
via the surface modes of an interface or intermediate medium
has been studied, as discussed in Sec. III.C.3. Finally, the
nonadditivity of the heat exchange has consequences for the
transport properties in nanoparticle chains and complex
nanoparticle networks, as discussed in Sec. III.C.2.

4. Application: Thermal discrete dipole approximation

The expressions for the heat exchange in systems with N
dipolar objects in Eq. (58) without the contribution of the
background derived by Ben-Abdallah, Biehs, and Joulain
(2011) were employed first by Edalatpour and Francoeur
(2014) to determine the heat exchange between macroscopic
objects with isotropic and later by Ekeroth, García-Martín,
and Cuevas (2017) for macroscopic objects with anisotropic
and magneto-optical material properties. The idea is to replace
the macroscopic objects with a large number N of small cubes
of volume Vi (i ¼ 1;…; N) that can be approximated as
dipoles with the corresponding polarizabilities. The polar-
izability including the radiative corrections, as rederived by
Albaladejo et al. (2010) and originally also used by Draine
(1988), was written by Ekeroth, García-Martín, and Cuevas
(2017) as

α
¼i

¼
�
1 − i

k30
6π

α
¼0i

�
−1
α
¼0i

ð67Þ

in terms of the quasistatic polarizability

α
¼0i

¼ 3Viðε − 1Þðεþ 21Þ−1: ð68Þ

Note that Edalatpour and Francoeur (2014) used another
expression for the dressed polarizability known as the strong
form of the coupled dipole method. A detailed discussion on

FIG. 12. Power flow exchanged between two SiC nanoparticles
at T1 ¼ 300 K (red line) and at T2 ¼ 0 K (blue line) in the
presence of a third SiC nanoparticle at temperature T3 ¼ 0 K
(gray line) and normalized by the power exchanged between two
isolated particles, i.e., φ�

12 ¼ P1→2ðT1; T2; T3Þ=P1→2ðT1; T2Þ.
From Ben-Abdallah, Biehs, and Joulain, 2011.

FIG. 13. Transmission coefficient T 21 (a) between two SiC
nanoparticles and (b) between two SiC nanoparticles in the
presence of a third SiC nanoparticles as in Fig. 12 for d ¼ 0.
The dashed line marks the region where the particles would
touch. The unphysical region beyond this line is shown to
illustrate the hybridization mechanism of dipolar resonances,
which can be seen in that region. From Ben-Abdallah, Biehs,
and Joulain, 2011.
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the different expressions of the dressed polarizabilities in the
context of classical coupled dipole method (Purcell and
Pennypacker, 1973) was given by Lakhtakia (1992).
Known as DDA, this method for describing thermal-

radiation phenomena between macroscopic objects is called
(Edalatpour and Francoeur, 2014) thermal discrete dipole
approximation (TDDA). It has been successfully employed to
determine the heat flux between macroscopic reciprocal and
nonreciprocal cubes and spheres (Edalatpour and Francoeur,
2014; Edalatpour et al., 2015; Ekeroth, García-Martín, and
Cuevas, 2017; Ekeroth et al., 2018), and also for the heat flux
between a sharp conical tip and a planar substrate (Edalatpour
and Francoeur, 2016), as shown in Fig. 14. In principle this
method can also be used to determine the heat flux between
two macroscopic objects in arbitrary many-body systems. As
discussed by Edalatpour et al. (2015), the large number of
dipolar subvolumes needed to describe macroscopic objects or
have a convergent numerical result sets a certain limit on this
numerical method. See also the discussion in Sec. II.F.

Finally, the TDDA method also allows one to determine
the thermal emission of macroscopic objects by calculation
of the mean Poynting vector from Eq. (59) in the far-field
regime (Ekeroth, García-Martín, and Cuevas, 2017). This
can also be done with a standard DDA by determining the
absorptivity discussed in Sec. III.A.1 of the macroscopic
object modeled by an assembly of dipoles and then using the
Kirchhoff law to determine the emissivity. The main
advantage of the TDDA is that it allows one to attribute
to each volume element a given temperature. Hence, TDDA
opens up the possibility of calculating thermal emission of
macroscopic objects with a given temperature distribution,
whereas the standard DDA can handle only emission of
isothermal objects or dipolar assemblies. Note that the
assumption of local thermal equilibrium sets strict bounds
on the spatial variation of temperature distributions
(Eckhardt, 1984).

B. Heat flux in macroscopic many-body systems

In Sec. III.A we described a formalism allowing one to
account for the heat exchange in an arbitrary set of dipolar
particles. As previously clarified, although formally and
computationally simpler, this framework is limited in terms
of distance between the particles. For this reason, in the past
decade several theoretical schemes have been developed to
account for the heat transfer in configurations of two or more
macroscopic bodies. The purpose of these techniques is to
address bodies with in principle arbitrary geometry and optical
properties. As we saw in Secs. II.E and II.F, several techniques
have been introduced to successfully treat this problem. We
focus here on scattering-matrix techniques, where each
macroscopic body is described in terms of its scattering
operators, accounting for its response to an incoming electro-
magnetic field.

1. Scattering-matrix formalism

Two closely related formalisms based on this approach
were introduced between 2009 and 2011 by Bimonte (2009),
Krüger, Emig, and Kardar (2011) and Krüger et al. (2012),
and Messina and Antezza (2011a, 2011b). The main differ-
ence between the these works is that Krüger et al. derived
expressions that are suitable to any choice of basis for the
electromagnetic field, while Messina and Antezza explicitly
used a plane-wave basis, thus providing more explicit (albeit
less general) expressions in terms of the individual scattering
operators. To define these operators, the electric field in any
region of the system is decomposed in plane waves as

Eϕðr; tÞ ¼ 2Re

�X
p

Z þ∞

0

dω
2π

Z
d2κ
ð2πÞ2 exp½ik

ϕ · r�

× exp½−iωt�ϵ̂ϕpðκ;ωÞEϕ
pðκ;ωÞ

	
; ð69Þ

where ω is the frequency, κ ¼ ðkx; kyÞ is the projection of the
wave vector on the x-y plane, p is the polarization index
taking values 1 (transverse electric) and 2 (transverse mag-
netic), and ϕ is the propagation direction along the z axis.

FIG. 14. (a) Spectral conductance as a function of the energy for
InSb cubes with a cube side of 1 μm separated by a 500 nm gap at
T ¼ 300 K, and for various values of the magnetic field H
applied along the z direction. Inset: discretization geometry. The
number of dipoles per cube is 4913 (each one has an edge length
of 59 nm). From Ekeroth, García-Martín, and Cuevas, 2017.
(b) Spectral heat flux between a silica probe and a silica surface.
From Edalatpour and Francoeur, 2016.
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Moreover, kϕ ¼ ðκ;ϕkzÞ is the full wave vector, while the unit
polarization vectors are defined as follows:

ϵ̂ϕTEðκ;ωÞ ¼ ẑ × κ̂ ¼ 1

κ
ð−kyx̂þ kxŷÞ;

ϵ̂ϕTMðκ;ωÞ ¼
c
ω
ð−κẑþ ϕkzκ̂Þ: ð70Þ

Each body is described in terms of four scattering operators
RϕðωÞ and T ϕðωÞ (ϕ ¼ þ;−), connecting the amplitudes
Eϕ
pðκ;ωÞ of the incoming and scattered fields as (suppressing

the frequency arguments)

EðreÞϕ
p ðκÞ ¼

X
p0

Z
d2κ0

ð2πÞ2 hp; κjR
ϕjp0; κ0iEðinÞ−ϕ

p0 ðκ0Þ;

EðtrÞϕ
p ðκÞ ¼

X
p0

Z
d2κ0

ð2πÞ2 hp; κjT
ϕjp0; κ0iEðinÞϕ

p0 ðκ0Þ; ð71Þ

where each mode ðω; κ; pÞ of the scattered field has in general
components from each mode ðω; κ0; p0Þ of the incoming field,
with the frequency ω conserved since we are addressing only
stationary processes. The action of these operators is sche-
matically represented in Fig. 15.
At this stage, we sketch the main steps and assumptions

leading to the expression of the radiative heat flux on each
body, which can be summarized as follows:

(1) The fields generated by the fluctuating charges inside
each body are identified as the source fields, along
with the environmental field in which the system is
embedded.

(2) The correlation functions of the individual source
fields are deduced from the assumption of local
thermal equilibrium.

(3) The total field in each region is explicitly written, in
terms of the source fields, as a result of the scattering
reflection and transmission processes occurring due to
the presence of the bodies.

(4) The correlation functions of the total field in each
region can be deduced.

(5) These are used for the calculation of the average value
of the Poynting vector.

We stress that in (2) the assumption of local thermal
equilibrium is equivalent to stating that the statistical proper-
ties of the field emitted by each body are the same as wewould
have if the body were at thermal equilibrium at its own

temperature. Details about the derivation of such correlation
functions were given by Messina and Antezza (2011b). This
step leads to a source correlation function equivalent to
Eq. (52) that was already seen in the case of dipoles, with
the difference that in this case the scattering operator,
accounting for the geometric and optical properties of the
body, explicitly appear.
These steps allow us to explicitly write the power absorbed

by each body i under the form

Pi ¼ Tr

�
ℏω

�X
j≠i

ðnj − niÞT ij þ ðnb − niÞT ib

�	
; ð72Þ

which is analogous to Eq. (56), already encountered in the
dipolar case, where the trace operator is defined as

TrA ¼
X
p

Z
d2κ
ð2πÞ2

Z þ∞

0

dω
2π

hp; κjAjp; κi: ð73Þ

We focus here on the contribution to the heat flux on body 1
associated with the presence of body 2. The corresponding
transmission coefficient T 12 reads

T 12 ¼ Uð2;1Þχ2Uð2;1Þ†χ̃1; ð74Þ

where Uð2;1Þ ¼ ð1 −Rð2Þ−Rð1ÞþÞ−1 is the operator describing
the infinite series of reflections inside the cavity formed by
bodies 1 and 2 and the generalized susceptibilities are defined
as

χ2 ¼ f−1ðRð2Þ−Þ − T ð2Þ−PðpwÞ
−1 T ð2Þ−†; ð75Þ

χ̃1 ¼ f1ðRð1ÞþÞ − T ð1Þ−†PðpwÞ
1 T ð1Þ−; ð76Þ

by means of the auxiliary functions

fαðRÞ¼
8<
:PðpwÞ

−1 −RPðpwÞ
−1 R†þRPðewÞ

−1 −PðewÞ
−1 R†; α¼−1;

PðpwÞ
1 −R†PðpwÞ

1 RþR†PðewÞ
1 s−PðewÞ

1 R; α¼1.

ð77Þ

The operators PðpwÞ
n and PðewÞ

n are defined (for any integer n)
as

hp; κjPðpw=ewÞ
n jp0; κ0i ¼ knz hp; κjΠðpw=ewÞjp0; κ0i; ð78Þ

where ΠðpwÞ ¼ Θðω − ckÞ and ΠðewÞ ¼ Θðck − ωÞ are the
projectors on the propagative and evanescent sectors, respec-
tively. The transmission coefficient T 12 has the same form as
in Eq. (64) for two dipolar objects. By choosing the T operator
for dipolar objects or using the plane-wave expansion of the T
operators, both forms of transmission coefficients can be
obtained from the general T-operator expression given by
Krüger et al. (2012) and Herz and Biehs (2019).
This approach was later generalized to the case of three

arbitrary bodies (Messina and Antezza, 2014). The Landauer-
like expression (72) of the power absorbed by each body

FIG. 15. Definition of reflection and transmission operators
associated with an individual body. From Messina and Ante-
zza, 2011b.
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remains valid, meaning that the flux on body 1 has contri-
butions coming from bodies 2 and 3, as well as from the
environment. We now investigate the expression of the
transmission coefficient T 12 between bodies 1 and 2 in this
three-body configuration. It reads

T 12 ¼ Uð23;1Þ½f−1ðRð23Þ−Þ − T ð2Þ−Uð3;2Þf−1ðRð3Þ−Þ
× Uð3;2Þ†T ð2Þ−†�Uð23;1Þ†χ̃1; ð79Þ

in which a two-body reflection operator (and the associated
multireflection operator Uð23;1Þ) appears, defined as

Rð23Þ− ¼ Rð2Þ− þ T ð2Þ−Uð3;2ÞRð3Þ−T ð2Þþ: ð80Þ

We immediately see that Eqs. (74) and (79) are different. The
important message behind this comparison is that, as for the
dipolar case discussed in Sec. III.A.3, the presence of body 3
not only introduces an additional source for the energy
transfer on body 1 but also modifies the transmission
coefficient T 12, and consequently the way bodies 1 and 2
exchange heat. In other words, the third body in the system
acts both as a source or sink of radiation and as a scatterer
(independently of its temperature), modifying the transmis-
sion amplitudes of other channels. We conclude that Eq. (79)
is by itself a proof and a quantitative evaluation of the
nonadditive nature of RHT, in the simplest possible many-
body system made of three bodies.
The same approach described in Sec. III.B and applied to

both two- and three-body systems was generalized some years
later to the case of N bodies (Latella et al., 2017). In this case,
for simplicity only planar bodies, i.e., parallel slabs of finite
thickness separated by vacuum gaps, have been considered.
This assumption has two main advantages: first, the plane-
wave development is particularly convenient for this configu-
ration since it fully suits its symmetry; moreover the trans-
lational invariance along the transverse coordinates makes all
the scattering operators diagonal with respect to both p and κ,
significantly simplifying all the expressions. We stress that,
since we are dealing here with infinite systems, the power on
each body has to be replaced with the heat flux Φ that it
receives (power per unit surface).

2. Nonadditivity in many-body systems

In Sec. III.B.1, we analytically showed the nonadditivity of
RHT. In the simplest case of three bodies, the appearance of
the third one modifies the transmission amplitude T 12,
namely, the way in which bodies 1 and 2 exchange energy.
This is shown by the comparison of Eqs. (74) and (79). In
addition to making this formal comparison, we can quanti-
tatively address the modification to the energy flux between
bodies 1 and 2 due to the introduction of a third body in the
system. This analysis has been performed analogous to the
configuration discussed in Sec. III.A.3 by Müller et al. (2017),
where they generalize the formalism developed by Krüger
et al. (2012), which was already valid in the scenario of N
bodies, to the case of the presence of a nonabsorbing back-
ground medium. In this work, Müller et al. (2017) applied
their formalism to the calculation of RHT between two SiC

planar slabs (bodies 1 and 2) separated by a vacuum gap of
thickness d, when a pointlike particle or atom of polarizability
α (assumed to be nondispersive and real) is placed between
them at distance d1 from body 1. The system is depicted
in Fig. 16.
The heat flux is evaluated after linearizing the general

expressions with respect to the particle polarizability while
assuming that the scattering contribution is weak. As a result,
the heat flux Φ (power P per unit area) is expressed as

Φ ¼ Φvac þ ΔΦ; ð81Þ

where Φvac is the well-known heat flux between two slabs
separated by a vacuum gap, and the correction term ΔΦ
(proportional to α in the linearized approximation) is a direct
description of the nonadditivity of radiative heat flux.
The nonadditive correction is numerically evaluated for slab

temperatures of 301 and 300 K in two different configurations:
for a slab-slab distance d ¼ 10 nm (near field) and for d ¼
10 μm (far field), as a function of the particle position d1; see
Fig. 16. The results are shown in Fig. 17. In both configu-
rations we observe the expected symmetry with respect to the
central particle position d1 ¼ d=2. In the near field, we
observe that the effect is maximized when the atom is close
to one of the two slabs. This reflects, apart from the symmetry
of the system, the typical exponentially decreasing behavior of
heat flux in the near field, which is in turn a consequence of
the dominating contribution of the evanescent waves. The
situation is different in the far field. The effect is several orders
of magnitude smaller that in the near field. Moreover, the
external positions d ¼ 0; d1 are now minima of the effect,
which oscillates with respect to d1. These oscillations are due
to the interferences between propagating waves (dominating
in this scenario), reflected between the two plates and
scattered by the particle inside the cavity, which change the
local density of states (Dorofeyev, Fuchs, and Jersch, 2002;
Francoeur, Mengüç, and Vaillon, 2010b) at the particle’s
position, which is also known from the context of spontaneous
emission of atoms and molecules within such a configuration
(Danz et al., 2002).
Another consequence of three-body effects in NFRHT was

discussed by Zheng and Xuan (2011) and Messina, Antezza,
and Ben-Abdallah (2012). They considered a system made of
three parallel slabs, as shown in the inset of Fig. 18. The
intermediate slab, of thickness δ, is placed at distance d from
the external slabs, which are assumed to have infinite thick-
ness. This configuration is compared to the standard two-body

FIG. 16. Two planar slabs (bodies 1 and 2) are placed at distance
d and separated by vacuum. A particle of polarizability α is
placed at distance d1 from slab 1. From Müller et al., 2017.
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scenario, shown in the inset of Fig. 18, where the intermediate
slab is removed and d is now the distance between the external
slabs. We stress that in both systems the minimum distance
between adjacent slabs, a relevant parameter in a near-field
configuration, is the same. Moreover, for a chosen couple of
temperatures (specifically, 400 and 300 K), the temperature of
the intermediate slab is taken as the equilibrium one, i.e., the
one at which the net flux on it vanishes. Based on this
assumption, adding the third intermediate slab has no impact
on the energy balance of the system, and thus the third body is
acting only as a passive relay added to the two-body system.
The heat-flux amplification, defined as the ratio
Φ3sðd; δÞ=Φ2sðdÞ between the three- and two-body fluxes,
is shown in Fig. 18. The figure shows that the flux can be
amplified for reasonable values (hundreds of nanometers) of
both d and δ, and that this amplification factor goes up to a
maximum value of around 70% for small distances. This
amplification for d ≈ δ is reminiscent of the superlens effect
(Pendry, 2000; Biehs, Menon, and Agarwal, 2016), which
leads to an optimal energy transfer between two atoms that are
separated by a superlens if the distance d to the interface of the
superlens coincides with the thickness of the superlens δ. Here
it is a purely three-body effect, which is confirmed by the
spectral and mode analysis performed by Messina, Antezza,
and Ben-Abdallah (2012). More recently patterned

intermediate media (Kan, Zhao, and Zhang, 2019), two-
dimensional atomic systems (Simchi, 2017), and hyperbolic
media (Song et al., 2018) have also been considered to
enhance the transfers. The use of such three-body control of
heat flux was proposed to design many-body heat engines
(Latella et al., 2015), with thermodynamic performances
better than their two-body counterpart and the thermal
analog of the transistor (Ben-Abdallah and Biehs, 2014)
driven by photons. In the proposed scheme, the combination
of many-body effects and the presence of a phase-change
material playing the role of the gate or base of the transistor
allow one to switch, amplify, and modulate the heat flux
between the source or emitter and the drain or collector; see
also Fig. 32.
The role of a third thermally interacting body can also be

played by a thermal bath, described as a body far from the rest of
the system and emitting as a blackbody surface at a given
temperature. This was recently shown by Latella et al. (2020),
where the heat flux between two planar slabs or between a slab
and a particlewas considered in the presence of a thermal bath. It
was shown that, in virtue of many-body interactions taking
place in these three-body systems, the flux exchanged between
the two slabs (or the slab and the particle) saturates to a constant
value when the distance goes to zero even at a relatively large
separation distance where the nonlocal optical effects are
negligible, as shown in Fig. 19 for the case of two SiC slabs.

3. Steady-state temperatures and multistable states

In arbitrary many-body systems consisting of N objects at
temperatures T1;…; TN the time evolution reads
(i ¼ 1;…; N)

FIG. 18. Heat-flux amplification Φ3sðd; δÞ=Φ2sðdÞ in a three-
body configuration compared to a two-body configuration shown
in the inset as a function of distance d and thickness of the
intermediate slab δ. The black dashed line corresponds to the
constant value Φ3sðd; δÞ=Φ2sðdÞ ¼ 1. From Messina, Antezza,
and Ben-Abdallah, 2012.

FIG. 17. Nonadditive correction to the two-body heat flux
ΔH1→2 ¼ ΔΦ [see Eq. (81)] in the presence of an atomic, i.e.,
pointlike, particle of polarizability α. The upper curve corre-
sponds to the near-field configuration d ¼ 10 nm, while the
lower curve corresponds to the far field (d ¼ 10 μm). From
Müller et al., 2017.
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Ii
dTi

dt
¼ PiðT1;…; TN ; tÞ; ð82Þ

where I1 ¼ ρiCiVi is the termal inertia defined by the heat
capacity per unit mass Ci, the volume Vi, and the mass density
ρi of object i, while Pi is the net power received by this object.
Following expressions in Eqs. (72) and (56) the latter can be
broken into

PiðT1;…; TN ; tÞ ¼
X
j≠i

PijðT1;…; TN ; tÞ þ PibðtÞ; ð83Þ

where Pij is the power exchanged between objects j and i and
Pib is the power exchanged between object i and the back-
ground, which can also be an external heat bath or thermostat
connected to object i. If all Pi are linear functions of the
temperatures, which is generally the case close to the global
equilibrium or nonequilibrium steady state (in the following,
for notation simplicity we use the abreviation Teq for the
steady-state temperatures), i.e., for small temperature
differences jTi − Tjj ≪ minðT1;…; TNÞ, the system of equa-
tions can be linearized by introducing the conductances

Gij ¼
∂Pij

∂Tj
: ð84Þ

For multilayer systems with infinitely large interfaces
Eqs. (82)–(84) can be used as well by simply replacing the
quantities by the corresponding quantities normalized to a
surface area A so that the thermal inertia becomes the thermal
inertial per area Ii → Ii=A, the dissipated power becomes the
heat flux Pi → Pi=A≡Φi, and the conductance becomes the
heat-transfer coefficient Gij → Gij=A≡Hij.
When assuming that no energy is added to or removed from

outside of the system, the thermal steady state is a solution of
the system of equations (i ¼ 1;…; N)

PiðT1;…; TNÞ ¼ 0: ð85Þ

The local thermal equilibrium of object i is reached when
PiðT1;…; TNÞ ¼ 0. This equation defines a hypersurface in
temperature space. The intersection of the hypersurfaces
associated with all local equilibria defines the global steady
state of the system. In the specific case where the system is
composed of two objects, the local equilibrium state of each
object corresponds to a curve in the two-dimensional space of
temperatures ðT1; T2Þ, and the intersection of the two local
equilibrium lines defines the global steady-state temperatures.
If all Pi are linear functions of the temperatures, which is

generally the case close to the global equilibrium or steady
state and when the conductances Gij can be considered as
independent of the temperatures, i.e., when, in particular, the
material properties can be considered as temperature inde-
pendent, the system has a unique solution ðTeq

1 ;…; Teq
N Þt.

Conversely, when the optical properties of materials are
temperature dependent Pi become nonlinear with respect to
the temperatures. In this case, the system of equations (85)
might admit more than one steady-state solution. Among these
temperature solutions one finds in general stable and unstable
solutions. The stability of these temperatures can be assessed
by following a perturbative approach. Starting from a steady
state α with temperature ðTeq

1;α;…; Teq
N;αÞt and adding a small

perturbation then the dynamics is described by the following
linearized system:

d
dt

0
BB@

δT1;αðtÞ
..
.

δTN;αðtÞ

1
CCA ¼ J

0
BB@

δT1;αðtÞ
..
.

δTN;αðtÞ

1
CCA; ð86Þ

where δTi;αðtÞ ¼ Ti − Teq
i;α (i ¼ 1;…; N) is the perturbation

from the steady state α and

J ¼

0
BBB@

∂P1∂T1
… ∂P1∂TN

..

. ..
.

∂PN∂T1
… ∂PN∂TN

1
CCCA ð87Þ

is the Jacobian matrix associated with the dynamical sys-
tem (82). As in any linear dynamical system the sign of the
eigenvalues of J allows us to draw a conclusion on the
stability of the thermal state.
The demonstration of multistable thermal behaviors in

many-body systems shown in Fig. 20 has opened the
possibility of designing thermal analogs of volatile electronic
memories (Kubytskyi, Biehs, and Ben-Abdallah, 2014; Ben-
Abdallah and Biehs, 2015, 2017; Dyakov et al., 2015b;
Khandekar and Rodriguez, 2017), logic gates (Ben-
Abdallah and Biehs, 2016; Kathmann et al., 2020) (see
Fig. 21), and self-oscillating systems (Dyakov et al.,
2015a) that allow one to switch from one global equilibrium
to another and that can potentially be interesting for a practical
realization of heat engines (Latella et al., 2014, 2015).

FIG. 19. Heat flux exchanged between two slabs immersed in a
thermal bath with respect to their separation distance d. Slab 1 has
a fixed temperature of T1 ¼ 400 K, while the thermal bath is at
T3 ¼ 300 K. The second slab, of thickness δ, thermalizes to the
equilibrium temperature at which the net flux it receives vanishes.
From Latella et al., 2020.
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C. Heat transport and heat-flux dynamics

In the 2000s the first attempts at treating heat transfer in N-
body systems were made in order to quantify the contribution
of plasmonic modes to the thermal conductance in one-
dimensional arrays of nanoparticles in nanofluids (Ben-
Abdallah, 2006; Ben-Abdallah et al., 2008). Inside these
simple networks (Fig. 22) all inner nanoparticles are assumed
to be at zero temperature, while the two particles at either end

of the chain are connected to two thermostats. In these systems
heat carried by photons is simply scattered between the two
thermostats. But in contrast to Polder and van Hove’s
theoretical framework, which is based on the FE theory, in
these works a kinetic approach has been followed. The main
features and limitations of this approach are discussed in
Sec. III.C.1.

FIG. 21. Left panels: AND gate made with two SiO2 membranes
(gates) suspended between a thermal SiO2 source and a VO2

drain. The color map represents the output temperature TD of the
drain with respect to the two input temperatures TG1 and TG2 of
the two gates. At the bottom is the truth table for the AND gate.
From Ben-Abdallah and Biehs, 2016. Right panels: NOR gate
designed using a coupling of SiC and V02 nanoparticles. From
Kathmann et al., 2020.

FIG. 20. (a) Phase portrait (i.e., trajectories of temperatures) in a
bistable system consisting of two membranes of SiO2 and VO2 in
interaction with two thermal baths for different initial conditions.
The green (red) points denote the stable (unstable) global steady-
state temperatures. From Kubytskyi, Biehs, and Ben-Abdallah,
2014. (b) Self-oscillation of the temperature of a VO2 membrane
in the vicinity of a SiO2 substrate when adding a specific external
constant power Fext. From Dyakov et al., 2015a.

FIG. 22. Top panels: dispersion curves (real part) of collective
plasmonic modes along a chain of copper nanoparticles (10 nm
radius) dispersed in vacuum in the case of dipolar moments
(l ¼ 1), and for the multipolar moments of order l ¼ 5. Bottom
panel: thermal conductance G of linear chains of copper
particles calculated from the kinetic theory for different multi-
pole orders l vs the separation distance d normalized to the
particle diameter 2a. Inset: enlargement of the near-contact
region. From Ben-Abdallah et al., 2008.
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1. Kinetic approach versus exact calculations

This approximate theory is based on the solution of a
Boltzmann transport equation

∂f
∂t þ vgðkÞ

∂f
∂z ¼

�∂f
∂t

	
coll

ð88Þ

for the distribution function f of thermal photons inside a
given system. Here vgðkÞ is the group velocity of the mode k
and the rhs of the equation stands for the collision term, which
can be simplified within the relaxation time approximation.
When assuming that one thermostat is at temperature T and
the other one at zero temperature, the power P flowing
through this system results from the calculation of first-order
moment associated with the photonic equilibrium distribution
function f ¼ nðω; TÞ (Dye-Zone, Narayanaswamy, and Chen,
2005; Ben-Abdallah et al., 2008),

P ¼
X∞
l¼1

Z
∞

0

dk
2π

ℏωlðkÞvg;lðkÞn(ωlðkÞ; T); ð89Þ

where ωlðkÞ is the dispersion relation of resonant multipole
modes l supported by the structure. The conductance is then
defined as G ¼ ∂P=∂T. Note that only the eigenstates of the
system are assumed to play a role in the heat transport process.
Since these preliminary studies, more complex systems like
chains of ellipsoidal polaritonic particles (Ordonez-Miranda
et al., 2015), nanoparticle crystals (Ordonez-Miranda et al.,
2016; Tervo et al., 2016), nanoresonator inclusions (Tervo,
Gustafson et al., 2019), and chains of graphene disks
(Ramirez and McGaughey, 2017) have been investigated
using this kinetic approach (see Fig. 23), as have multilayer
photonic crystals (Lau et al., 2008; Lau, Shen, and Fan, 2009).
But, as shown recently within a full FE calculation based on
the N-body theory introduced in Sec. III.A.2, the kinetic
approach fails in describing heat exchanges in systems where
heat is also carried by nonresonant modes over a broad

spectral band (Kathmann et al., 2018). This result was recently
confirmed (Tervo, Cola, and Zhang, 2020). Further studies of
conductance within two- and three-dimensional dipolar sys-
tems based on the fluctational electrodynamic calculations
were recently published (Tervo, Francoeur et al., 2019), which
opens the possibility of testing the validity of the kinetic
approach in systems such as those studied by Ordonez-
Miranda et al. (2016) and Tervo et al. (2016). A discussion
of the conductance within multilayer photonic crystals within
the FE approach on the role of surface phonon polaritons was
conducted by Narayanaswamy and Chen (2005) and Tschikin,
Ben-Abdallah, and Biehs (2012).

2. Heat transfer in complex networks

Based on the FE approach we now address the heat flux in
arbitrary systems. The thermal behavior of fractal structures
and the heat exchanges between fractal clusters of nano-
particles has also been theoretically investigated. These
studies have revealed (Dong, Zhao, and Liu, 2017b;
Nikbakht, 2017) that the (self-)conductance increases as
RDf , where R is the gyration radius of the structure and Df

is its fractal dimension; see Fig. 24(a). When two of these
structures interact in near field the thermal conductance of the
heat exchange between metallic clusters increases with the
fractal dimension, as can be seen in Fig. 24(b). Moreover, in
contrast to ordered media, the localization of plasmons or
phonon-polaritons in fractal structures could be responsible
for a significant reduction of the self-conductance in fractal
structures, although no clear evidence about this claim has
been presented thus far. However, a recent study (Luo et al.,
2019) revealed that the heat transfer between fractal structures
does not depend on their fractality at a separation distance
larger than the localization lengths, which tends to confirm
this statement.
In addition to their original thermal properties several

physical effect inherent to many-body systems have been
highlighted in complex plasmonic structures. Among these

FIG. 23. (a) Thermal conductance of colloidal crystals made up
of spheroidal SiC nanoparticles as a function of their horizontal
radius. (b) Thermal conductivity of coplanar disk arrays for
different diameters and separations at temperature T ¼ 300 K.
From Ordonez-Miranda et al., 2016, and Ramirez and
McGaughey, 2017.

FIG. 24. (a) Thermal conductance of Vicsek fractal structures as
a function of the normalized gyration radius. From Nikbakht,
2017. (b) Thermal conductance between two Ag nanoparticle
clusters at various fractal dimensions. From Luo et al., 2019.
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effects, a thermal analog of the Coulomb drag effect in
nanoparticle networks was recently predicted theoretically
(Ben-Abdallah, 2019a). The configuration is sketched in
Fig. 25. As in its electric counterpart, where interactions at
close separation distances (compared to the range of
Coulombic interactions) of free charge carriers between two
electric conductors give rise to a drag current in a passive
conductor when a bias voltage is applied along the so-called
drive conductor, a radiative heat flux in a many-body systems
can be induced in a given region by a primary flux generated
by a temperature gradient in another region of the system. In
the case of two parallel chains of nanoparticles as sketched in
Fig. 25(b), where the extremities of the first chain are held at
fixed temperature with two external thermostats while all other
particles can relax to their own local equilibrium temperature,
the magnitude and the direction of drag flux can be calculated
using the following procedure.
In the steady state the net power received by each particle

vanishes, which allows one to determine unknown temper-
atures ðT2;…; TN−1; TNþ1;…; T2NÞ (T1 and TN are fixed by
the thermostats) and the power P1 and PN coming from the
external thermostats in order to keep the temperatures of
particle 1 and N fixed. Then the heat current in the upper chain
in Fig. 25(b)

J ¼ PN − P1 ð90Þ

as well as the induced heat current in the lower chain in
Fig. 25(b)

JD ¼ P2N − PNþ1 ð91Þ

can be determined. Finally, the thermal drag resistance

RD ¼ TNþ1 − T2N

J
ð92Þ

quantifies the frictional effect induced by the electromagnetic
interactions between the different regions inside the system. In
hybrid polar-metal systems this friction can be negative (Ben-
Abdallah, 2019a), proving the existence of regions within

these systems where heat can locally flow in the opposite
direction of the applied temperature difference.
In addition to this generation of heat flux by the frictional

effect in many-body systems, the temperature of the par-
ticles in particle networks can be individually addressed
with a subwavelength accuracy (Yannopapas and Vitanov,
2013) by using external excitations such as chirped pulses
and can be controlled using adaptive optimization tech-
niques at the timescale of thermal relaxation processes. The
interplay between nano-objects can also be used to focus
and even pump heat (Ben-Abdallah, 2019b) outside of the
system itself. The heat flux radiated through an oriented
surface by a collection of emitters held at different temper-
atures Ti (i ¼ 1;…; NÞ can be calculated from Eq. (59). By
tuning the temperature of three thermal emitters in the
vicinity of a substrate as shown in Fig. 26, the heat flux can
be locally focused and even amplified in small regions that
are much smaller than the diffraction limit and even smaller
than the regions heated with a single emitter (Ben-Abdallah,
2019b). This control of flux lines by a collection of nano-
sources can be used to tailor the heat flux at the nanoscale or
to analyze and change the local temperature of solid surfaces
at this scale.

FIG. 25. (a) Illustration of the classical Coulomb drag effect. A
drag electric current Id in a passive conducting wire is induced by
a primary current I flowing in a driving conductor placed close
by. (b) Radiative drag effect in a many-body system: a drag heat
flux Jd carried by thermal photons between two particles is
induced by a heat flux J exchanged between two thermostatic
objects in a many-body system. From Ben-Abdallah, 2019a.

FIG. 26. (a) Schematic of a multitip SThM platform with three
tips. Nanospheres (thermal emitters) are grafted on single scan-
ning probe tips and held close to a substrate. Their temperatures
and positions are individually controlled. (b) Normal component
hSzi of the Poynting vector radiated through the substrate surface
at z ¼ 0 by a three-tip SThM setup with glass nanoemitters at
T ¼ 300 K. (c) Similar to (b) but with T2 ¼ T3 ¼ 350 K (red
curve) and T1 ¼ 300 K (blue curve). Inset: flux at z ¼ 0 for a
single particle at T ¼ 300 K. (d),(e) Magnitude of Poynting
vector field in the ðx; zÞ plane radiated by a multitip setup in (d)
for an angular opening of θ ¼ 20° and in (e) for an angular
opening θ ¼ 80°. From Ben-Abdallah, 2019b.
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3. Long-range heat transport and amplification of heat flux

Instead of enhancing the heat flux between two nano-
particles or two slabs by introducing an intermediate nano-
particle or slab as discussed in Secs. III.A.3 and III.B.2, it is
possible to guide the radiative heat flux over a long distance
by exploiting the properties of specific modes such as surface
or hyperbolic modes supported by some structures. This
guiding can be done by bringing two nanoparticles close to
a planar interface as sketched in Fig. 27(a), which supports a
surface polariton in the infrared. Then the hot nanoparticle can
directly couple to this surface mode and subsequently transfer
its heat to the second (cold) particle over relatively long
distances.
Such a transport was first investigated by Sääskilahti,

Oksanen, and Tulkki (2014) between polar nanoparticles
above single polaritonic surfaces and inside cavities formed
of two mirrors or made with slabs supporting surface modes.
This and more recent studies (Asheichyk and Krüger, 2018;
Dong, Zhao, and Liu, 2018; Messina, Biehs, and Ben-
Abdallah, 2018) showed that the heat current between dipoles
placed in a cavity can be enhanced by several orders of
magnitude relative to the free-space heat current with a similar
interparticle distance. In particular, Messina, Biehs, and Ben-
Abdallah (2018) showed that a similar enhancement and long-

range heat transport can be also observed between metallic
particles when a graphene sheet covers a SiC interface. In this
case the heat flux can be enhanced by several orders of
magnitude at an interparticle distance of about 1–10 μm, as
shown in Fig. 27(b), suggesting that the near-field enhanced
thermal radiation can be brought to distances comparable to
the thermal wavelength. Similar enhancement effects were
reported for the heat flux along chains of nanoparticles close
to a phonon-polaritonic interface (Dong, Zhao, and Liu,
2018), between two nanoparticles mediated by an intermedi-
ate macroscopic phonon-polaritonic sphere (Asheichyk,
Müller, and Krüger, 2017), using an anisotropic metasurface
made of graphene stripes (Zhang, Antezza et al., 2019) or a
stack of graphene sheets (He, Qi, Ren et al., 2019). As shown
by Ott and Biehs (2020) the distance at which the maximum
heat-flux enhancement occurs is connected to the propagation
length of the surface modes (Ott and Biehs, 2020). Hence, the
enhancement mechanism for the heat flux is reminiscent of the
enhancement of Förster resonance energy transfer between
atoms, molecules, or quantum dots that are brought into close
vicinity to a plasmonic interface where a maximal enhance-
ment is also found at distances coinciding with the propaga-
tion length of the surface modes involved in the energy
transport (Velizhanin and Shahbazyan, 2012; Biehs and
Agarwal, 2013b; Bouchet et al., 2016; Poudel, Chen, and
Ratner, 2016), allowing for a long-range energy transfer.
Motivated by the promising properties of hyperbolic

metamaterials for long-range Förster energy transfer (Biehs,
Menon, and Agarwal, 2016; Deshmukh et al., 2018; Newman
et al., 2018), another strategy has been explored to transport
the near-field heat flux over long distances using such
hyperbolic guides. Hence, it has been shown that the large
wave vector surface waves supported by polaritonic materials
can be converted into propagating hyperbolic modes inside
such media, such that the usual ultrasmall penetration depth of
near-field heat flux (Basu and Zhang, 2009) can become large
(tens to hundreds of nanometers) (Lang et al., 2014; Tschikin
et al., 2015; Biehs and Ben-Abdallah, 2017), as does the net
amount of heat they can transport (Biehs et al., 2015; Liu and
Narimanov, 2015). Since the hyperbolic media can support
hyperbolic modes over a broad spectral band, the flux that
they can transport can be high. It even seems possible to
achieve with hyperbolic metamaterials a radiative thermal
conductivity that can in principle be comparable to the
phononic conductivity (Biehs et al., 2015; Liu and
Narimanov, 2015). Recently first experimental steps were
made to verify this claim (Salihoglu et al., 2019), but
the experimental results are not yet convincing, because the
measurement is not clearly demonstrating the impact of the
radiative part. In a more detailed study it could be demon-
strated that the near-field heat flux between two slabs can be
guided through a hyperbolic waveguide over distances larger
than the thermal wavelength so that larger heat fluxes than the
blackbody value are achievable for far-field distances
(Messina et al., 2016). On the other hand, it could also be
shown that the guiding performance greatly depends on the
dissipative properties of the waveguide material and also that
for long-distance guiding low-loss infrared materials like Ge
would already have good long-range guiding properties
(Messina et al., 2016). The long-range guiding effect has

FIG. 27. (a) Heat flux between two nanoparticles at interparticle
distance d using coupling via the surface modes of an interface.
From Dong, Zhao, and Liu, 2018. (b) Conductance ratio G=Gð0;0Þ

(G conductance with interface and Gð0;0Þ without interface) as a
function of d between two Au nanoparticles placed at distance
z ¼ 150 nm from a SiC substrate. The four lines correspond to
the absence of graphene (black solid line), and to configurations
with graphene having μ ¼ 0.1 eV (red dashed line), 0.3 eV (blue
dot-dashed line), and 0.5 eV (orange dotted line). Inset: spectral
conductance associated with the four same configurations. From
Messina, Biehs, and Ben-Abdallah, 2018.
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also been predicted for the heat flux between two nano-
particles through hyperbolic multilayer structures (Zhang, Yi
et al., 2019), as shown in Fig. 28.
Even though the enhancement of the heat flux due to

coupling to the surface modes of the phonon-polaritonic or
plasmonic structures can be several orders of magnitude, it has
to be kept in mind that the aforementioned studies consider the
steady-state heat flux between the nanoparticles and that the
enhancement is relative to the case where the interface is
removed. Hence, even by increasing the heat flux by several
orders of magnitude at a distance of 1 μm the absolute value of
the heat flux is still small because the heat flux between the
nanoparticles follows the 1=d6 law in the near-field regime
(Volokitin and Persson, 2001). Furthermore, it should be kept
in mind that by bringing the nanoparticles into close vicinity
of an interface not only the heat flux between the particles but
also the thermal emission of the hot particle increases into the
substrate so that the hot particle will tend to cool by thermal
emission into the substrate rather than by heating the cooler
nanoparticle. However, the first thermal relaxation study
showed (Ott and Biehs, 2020) that, by wisely choosing the
distances between the nanoparticles and between the nano-
particles and the interface, a substantial heating of the cold
nanoparticle can be observed. Similar considerations also hold
for the heat flux though a structure. Hence, it will be useful to
focus in future studies on heat fluxes and the thermal
relaxation or actual heating or cooling performance as well.

4. Relaxation dynamics

The temporal dynamics of any many-body system in
interaction with an external environment or with local thermo-
stats is simply driven by the competition between its thermal
inertia and the strength of the thermal link with the external
environment and these thermostats. Close to the thermal
equilibrium, the time evolution of temperatures T ¼
ðT1;…; TNÞ in Eq. (83) is driven by the linear dynamical
system

I
dT
dt

¼ −CTðtÞ þ CbTb; ð93Þ

where I ¼ diagðI1;…; INÞ is the diagonal inertia matrix that
depends on the mass density, heat capacity, and size of each
element, Tb ¼ ðTb1;…; TbNÞ is the temperature of the exter-
nal bath and reservoirs with which each element interacts,
Cb ¼ diagðG1b;…; GNbÞ, with Gib the thermal conductance
between element i and the bath or a thermostat, while C is the
general conductance matrix with components

Cij ¼
�X

k≠i
Gik þ Gib

�
δij − ð1 − δijÞGij; ð94Þ

with Gij the conductance between element i and j defined as
follows:

Gij ¼ 3

Z
∞

0

dω
2π

ℏω
∂n
∂T

����
T¼Tj

T ijðωÞ: ð95Þ

A corresponding definition can be used for slabs. Note that
this definition is valid only in the absence of temperature
dependence for optical properties of the materials involved.
When the conductance matrix is independent of time the
thermal state of the system reads

TðtÞ ¼ exp½−I−1Ct�Tð0Þ

þ
Z

t

0

exp½−I−1Cðt − τÞ�I−1CbTbðτÞdτ; ð96Þ

with Tð0Þ the initial state. Hence, the relaxation dynamic is
driven by the set fΓig of eigenvalues of the matrix I−1C, and
the dominant relaxation time is given by τ ¼ 1=minðΓiÞ (C is
a strictly diagonally dominant matrix with positive diagonal
elements).
Generally speaking the relaxation process takes place at

different scales (Messina, Tschikin et al., 2013). When the
separation distance between the different elements is sub-
wavelength they are first thermalized in the near-field regime
at the same temperature. This generally happens in a few
milliseconds (Wang and Wu, 2016) for objects of nanometric
size (Fig. 29) and even in hundreds of microseconds for two-
dimensional nanosystems (Zundel and Manjavacas, 2020). In
the second step each element and therefore the entire system
thermalizes in far field toward the bath temperature.
This difference in the timescales for the relaxation dynam-

ics can also be studied in a simpler system when considering a
single nanoparticle at temperature T1 close to a sample with a

FIG. 28. (a) Sketch of heat flux between two nanoparticles
through a hyperbolic multilayer metamaterial. (b) Exchanged
power Φ as a function of interparticle distance L normalized to
the exchanged power Φ0, where the hyperbolic multilayer
metamaterial has been replaced by vacuum. The numbers in
the brackets give the distance L (in μm) and the amplification
factor Φ=Φ0 at the maximum. From Zhang, Yi et al., 2019.
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fixed background temperature Tb. Equation (93) then
reduces to

dT1

dt
¼ G1b

I1
ðTb − T1Þ ð97Þ

or, equivalently,

dΔT
dt

¼ −ΓΔT; ð98Þ

where I1 ¼ ρCpV is the thermal inertia of the nanoparticle and
ΔT ¼ T1 − Tb and the relaxation rate Γ ¼ G1b=I1. The
solution to this differential equation is simply ΔTðtÞ ¼
ΔTð0Þ expð−ΓtÞ or T1ðtÞ ¼ ½T1ð0Þ − Tb� expð−ΓtÞ þ Tb.
Hence, the relaxation time in this case is the inverse of the
relaxation rate τ ¼ Γ−1, which is itself determined by the
thermal inertia and the heat conductance between the nano-
particle and the sample.
The heat conductance for this configuration has been

studied for spherical dielectric and metallic nanoparticles
close to a sample with a flat surface (Dorofeyev, 1998;
Mulet et al., 2001; Volokitin and Persson, 2002; Dedkov
and Kyasov, 2007; Chapuis, Laroche et al., 2008b), between a
spherical dielectric nanoparticle and a structured or rough
surface (Biehs, Huth, and Rüting, 2008; Kittel et al., 2008;
Biehs and Greffet, 2010c; Rüting et al., 2010), and between
dielectric and metallic ellipsoidal particles and a flat or
structured surface (Biehs et al., 2010; Huth et al., 2010).
Here we focus on a spherical nanoparticle with radius R in a
distance d over a planar interface. For d ≫ R it can be shown
(Dorofeyev, 1998; Mulet et al., 2001; Volokitin and Persson,
2002; Dedkov and Kyasov, 2007; Chapuis, Laroche et al.,
2008b) that G1b is proportional to the electric (magnetic)
photonic local density of states DEðω; dÞ (DH), as defined by
Agarwal (1975b) and Eckhardt (1982) for dielectric (mag-
netic) nanoparticles above a dielectric (magnetic) substrate.
Hence, when disregarding mixed cases such as those consid-
ered by Manjavacas and de Abajo (2012) and Dong, Zhao,

and Liu (2017a), the relaxation rate can be written as (Tschikin
et al., 2012)

Γ ¼ 1

I1

X
i¼E;H

Z
∞

0

dω 2ℏω2ImðαiÞDiðω; dÞ dn
dT

����
Tb

; ð99Þ

where αE is its electric and αH is its magnetic polarizability.
The latter takes into account the magnetic moments due to
eddy currents, which play an important role for thermal
emission of metallic nanoparticles (Martynenko and Ognev,
2005; Tomchuk and Grigorchuk, 2006; Dedkov and Kyasov,
2007; Chapuis, Laroche et al., 2008b). Hence, we find that in
comparison to the spontaneous emission of an atom or
molecule above a substrate (Novotny and Hecht, 2006), where
the emission rate is proportional to the local density of states
for the transition frequency, the thermal emission rate is given
by a spectral average of the local density of states with respect
to ℏωdn=dT. Hence, the thermal relaxation rate reassembles
the spontaneous emission rate if the nanoparticles have a
narrow band emission spectrum.
In Fig. 30 it can be seen that the thermal relaxation time

changes by orders of magnitude when going from the far-field
into the near-field regime, which is due to the strong increase

FIG. 29. Time evolution of thermal state in a single-body (red
curve), a two-body (black curve), and a three-body system (blue
curve) of SiC nanoparticles with radii of 50 nm in a bath at
temperature T ¼ 300 K. The distance between particles 1 and 2
is 400 nm, while the distances (solid line for dipole 1, dashed line
for dipole 2, and dot-dashed line for dipole 3). From Messina,
Tschikin et al., 2013.

FIG. 30. Distance dependence of the relaxation time τ ¼ Γ−1 of
a nanoparticle above a substrate with temperature Tb ¼ 300 K
(top panel) for a gold nanoparticle above a gold surface,
and (bottom panel) for a SiC nanoparticle above a SiC surface.
We use ρAuCAu

p ¼ 2.404 × 106 Jm−3 K−1 and ρSiCCSiC
p ¼

2.212 × 106 Jm−3 K−1. From Tschikin et al., 2012.
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in G1b, i.e., the local density of states, in the near-field regime
(Joulain et al., 2003; Dorofeyev and Vinogradov, 2011). There
is also a large difference for metallic and dielectric nano-
particles due to the fact that thermal radiation is more efficient
for dielectrics than for metals. Furthermore, it can be seen that
for SiC oscillations in the transition region between the near-
field and far-field regimes, which can be interpreted as the
photonic counterpart of the Friedel oscillations (Joulain et al.,
2003). These oscillations are due to the oscillations in the local
density of states, which average out for the gold nanoparticle
(broadband thermal emission spectrum) but remain for the SiC
nanoparticle (narrow band thermal emission spectrum). A
detailed discussion was given by Tschikin et al. (2012).

5. Dynamical control

A control of the magnitude of heat flux was highlighted in
layered many-body systems (He, Qi, Li et al., 2019) coated by

graphene sheets simply by tuning the doping level of
graphene. Beyond this control several principles have been
introduced during the last decade to dynamically control both
the magnitude and the direction of heat flux at nanoscale with
many-body systems. For example, by changing the shape and
orientation of elements (Nikbakht, 2014) the heat flux can be
modulated by several orders of magnitude with anisotropic
particles, as shown in Fig. 31(a). Another example for a
dynamical modulation that can by realized by electrical gating
is the heat-flux splitter sketched in Fig. 31(b). It enables one to
control the direction of the heat flux in the near-field regime.
The design is based on a network of tunable graphene pallets
(Ben-Abdallah et al., 2015) that allow us to spatially control
the near-field interactions and therewith the direction of heat
flux by dynamically tuning the graphene plasmons. A similar
control was also performed with polar particles covered by
graphene (Song et al., 2019).
By 2014 it could already be demonstrated that the flux

exchanged between two solids can even be amplified through
a transistor effect (Ben-Abdallah and Biehs, 2014) by using a
phase-change material like VO2 for an intermediate relay also
called the gate between two SiO2 slabs functioning as source
and drain at temperatures TS ¼ 360 K and TD ¼ 300 K, as
illustrated in Fig. 32. Since this configuration corresponds to
two oppositely connected heat radiation diodes (Ben-
Abdallah and Biehs, 2013; Yang, Basu, and Wang, 2013;
Ito et al., 2014; Gu, Tang, and Tao, 2015; Fiorino et al., 2018),

FIG. 31. (a) Normalized heat flux between two spheroidal
nanoparticles with respect to the orientation of a third particle
placed in between. From Nikbakht, 2014. (b) Graphene-based
heat-flux splitter. Three graphene disks with different Fermi
levels controlled by external gating exchange thermal energy in
the near-field through many-body interactions. The magnitude of
heat flow from 1 to 2 and 1 to 3 can be controlled by an
appropriate tuning of the Fermi level of the graphene disks 2 and
3. The thermal power exchanged in the near-field between
graphene disks of 100 nm radius vs the separation distance in
a three-body system. From Ben-Abdallah et al., 2015.

FIG. 32. (a) Radiative thermal transistor made of a three-
terminal system composed of a SiO2 source, a VO2 gate, and
a SiO2 drain. The gate is a layer based on a phase-change material
and its temperature can be actively controlled around its local
equilibrium value Teq

G by an external thermostat, while the
temperatures TS ¼ 360 K and TD ¼ 300 K of source and drain
are fixed so that TS > TD. (b) Radiative fluxes ΦS, ΦD, and ΦG
exchanged between the different parts inside the transistor.
(c) Amplification factor with respect to the gate temperature.
From Ben-Abdallah and Biehs, 2014.
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this transistor corresponds to a bipolar transistor so that the
terminology emitter, base, and collector would be more
appropriate, but this has no impact on the physics involved.
In the region of the phase transition around its critical
temperature Tc ≈ 340 K, even though the temperature differ-
ence between the gate and the drain is increased a drastic
reduction of flux ΦD received by the drain takes place. This
arises due to the strong change in the optical properties of the
VO2 gate from a dielectric to a metallic response shielding the
heat flux from the source toward the drain, as can be seen in
Fig. 32(b). This variation corresponds to the presence of a
negative differential thermal conductance or resistance (Li,
Wang, and Casati, 2006) RD ¼ ð∂ΦD=∂TGÞ−1 induced by the
phase transition. In the transition region, the amplification
factor

a ¼
���� ∂ΦD

∂ΦG

���� ð100Þ

of the flux received by the drain ΦD compared to the heat flux
ΦG removed or added to the gate can be defined. It can also be
recast in terms of the thermal resistances of the source and the
drain as

a ¼
���� RS

RS þ RD

����; ð101Þ

with the positive resistance RS ¼ −ð∂ΦS=∂TGÞ−1. This
expression shows that the amplification factor can become
larger than 1 only if RD is negative, so a negative thermal
resistance is a necessary condition for obtaining an amplifi-
cation. For the thermal transistor the amplification factor is
larger than 1 in the phase-change temperature region, as can
be seen Fig. 32(c). Note that the peaks at the edges of the
phase transition are an artifact of the effective medium model
used to model the transition of the optical properties of VO2 at
the edges of the transition region, which was due to a lack of
experimental data at these edges. Investigations of the same
effect in the far-field regime as impacts the hysteresis of the
transistor were conducted by Joulain et al. (2015) and
Prodhomme et al. (2016, 2018), while the dynamical response
of transistors was addressed by Latella et al. (2019).
The principle of negative thermal resistance further plays an

important role in so-called radiative heat shuttling, which was
recently proposed (Latella, Messina et al., 2018). In a system
consisting of only two parallel slabs, it was shown that the
periodic modulation of the temperature and/or chemical
potential of the two bodies can be exploited to control the
heat flux between them. More specifically, it was proven that
in order to thermally insulate them a negative thermal differ-
ential resistance is required. A further step in this direction
was taken by Messina and Ben-Abdallah (2020), who tailored
the heat flux between two particles by periodically modulating
the temperature T3 and the position x3 of a third particle in a
three-particle system, as sketched in the inset of Fig. 33. This
many-body configuration allows for controlling the direction
and amplitude of the heat exchanged between the two particles
1 and 2, even when they are kept at the same temperature and
(unlike the previously mentioned shuttling effect) in the

absence of a negative thermal differential resistance
(Messina and Ben-Abdallah, 2020). This possibility can be
anticipated by performing a Taylor expansion up to second
order, around the middle position x3 ¼ 0 and the equilibrium
temperature T3 ¼ T3;eq of particle 3. This gives

P1 ≃ P1ð0; T3;eqÞ þ
∂P1

∂x3 x3 þ
∂P1

∂T3

ðT3 − T3;eqÞ

þ 1

2

∂2P1

∂x23 x23 þ
1

2

∂2P1

∂T2
3

ðT3 − T3;eqÞ2

þ ∂2P1

∂x3∂T3

x3ðT3 − T3;eqÞ: ð102Þ

For a time variation of the form T3ðtÞ ¼ T3;eq þ ΔT sinðωtÞ
and x3ðtÞ ¼ Δx sinðωtþ ϕÞ and in the specific case
T1 ¼ T2 ¼ T3;eq, the time average over a period reads

hP1it ≃
ΔT
2

�
Δx

∂2P1

∂x3∂T3

cosϕþ ΔT
2

∂2P1

∂T2
3

�
. ð103Þ

Equation (103) shows that magnitude of the first term can be
easily modulated simply by changing the dephasing ϕ
between x3 and T3, paving the way to an active heat pumping
mechanism. The sign can be changed as well so that the heat

FIG. 33. Radiative heat pumping by modulation of control
parameters in a three-particle system that is sketched in the inset.
The three particles are made of SiC. In this case, particles 1 and 2
are thermostated at temperature T1 ¼ T2, while the temperature
T3 and the x3 coordinate of particle 3 can be modulated with
respect to time. Powers P1 and P2 absorbed by particles 1 (solid
red line) and 2 (dashed black line) as a function of time for the a
periodic variation of the coordinate and temperature of particle 3
of frequency ω ¼ 2π s−1 and amplitudes Δx ¼ 100 nm and
ΔT ¼ 5 K around x3¼0 and T3¼300K. We have d¼600 nm
and y3 ¼ 300 nm, and the radius of the particle is R ¼ 50 nm.
Inset: geometrical configuration of a three-particle system where
the position of particle 3 is periodically modulated. FromMessina
and Ben-Abdallah, 2020.
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can flow from cooler to warmer regions. A numerical
example of this modulation for a vanishing dephasing ϕ ¼
0 is shown in Fig. 33, where the averages over a period of the
powers P1 and P2 absorbed by particles 1 and 2 (having
temperatures T1 ¼ T2 ¼ 300 K) are positive and negative,
respectively.

6. Heat transport regimes

It is commonly admitted that heat conduction inside a bulk
solid is governed by a normal diffusion process. Heat carriers
that are electrons or phonons move through the atomic lattice
following a usual random walk that is driven by a Gaussian
distribution function as in Fig. 34(a). In this section we
discuss how heat carried by thermal photons is transported in
many-body systems. We demonstrate the existence of
anomalous regimes of transport as in Fig. 34(b). In dilute
systems we show that heat can spread out following a
superdiffusive process (Lévy, 1937; Shlesinger, Zaslavsky,
and Frisch, 1995), while in dense systems it can be
ballistically transported.
To start this analysis, we consider a network of small

objects at temperature Ti that are distributed inside a back-
ground or environment at temperature Tb. When the separa-
tion distance between two arbitrary objects in this network is
much larger than their characteristic size and that their size is
small enough relative to the thermal wavelengths
λTi

¼ cℏ=ðkBTiÞ, this network can be modeled as a set of
simple dipoles located at positions ri in mutual interaction and
in interaction with the surrounding bath. In the near-field
regime the power exchanged with the bath is negligible, as
discussed in Sec. III.C.4, compared to the internal exchanges.
Then the time evolution of objects temperature is governed by
Eq. (93) while neglecting the heat exchange with the back-
ground yielding

Ii
dTi

dt
¼

X
j≠i

GijðTj − TiÞ; ð104Þ

where Ii represents the thermal inertia of object i while Gij

stands for the thermal conductance between dipole j and i as
defined in Eq. (95), which depends only on the distance
between the dipoles

Gij ≡ Gðjri − rjjÞ. ð105Þ

In the continuous limit the energy balance equation (104)
can be recast as (Ben-Abdallah et al., 2013)

∂Ti

∂t ¼
Z
Rd
drpðri; rÞ

Tðr; tÞ
τðrÞ −

Tðri; tÞ
τðriÞ

; ð106Þ

where the integration is done over the entire space of
dimension d. Equation (106) is formally an analog to a
Chapman-Kolmogorov master equation that drives a gener-
alized Markov process. The temperature field Tðr; tÞ is a
passive scalar that evolves by following a generalized random
walk of probability distribution function (PDF)

pðr; r0Þ ¼ Gðjr − r0jÞR
Rd dr0Gðjr − r0jÞ ð107Þ

and the rate of jumps between two collision events

τðrÞ ¼
�Z

Rd
dr0Gðjr − r0jÞ

�
−1
: ð108Þ

Hence, by analyzing the spatial variation of the PDF and
therefore of the conductance as well between two points inside
the system, we can identify the regime of heat transport. If the
asymptotic behavior of the PDF pðxÞ (where we set
x ¼ jr − r0j) is Gaussian, all its moments MðnÞ ¼R
xnpðxÞdx are finite, so the regime of transport is diffusive.

On the other hand, if it decays algebraically, i.e., pðxÞ ¼
Oð1=xγÞ and hence GðxÞ ¼ Oð1=xγÞ, then there is a given
order ñ beyond which MðnÞ diverges for any n > ñ. In this
case, the heat transport regime becomes superdiffusive; see the
right trajectory in Fig. 34. In this case the continuous energy
balance equation takes the form (Ben-Abdallah et al., 2013)

I
∂T
∂t ¼ −κð−ΔÞðγ−dÞ=2TðrÞ; ð109Þ

where κ is a parameter that depends on the dimension d and
ð−ΔÞα=2 denotes the fractional Laplacian (Shlesinger,
Zaslavsky, and Frisch, 1995)

ð−ΔÞα=2TðrÞ ¼ cd;αPV
Z
Rd
dr0

TðrÞ − Tðr0Þ
jr − r0jdþα ; ð110Þ

with

cd;α ¼
2−απ1þd=2

Γð1þ α=2ÞΓ½ðdþ αÞ=2� sinðαπ=2Þ . ð111Þ

FIG. 34. Types of heat transport regimes in an N-body system.
When an element (red) is heated up its heat spreads through the
system by either (a) a classical Gaussian diffusion process or
(b) an anomalous process. The trajectories correspond to random
walks with a Gaussian and a non-Gaussian probability distribu-
tion function, respectively. Here the non-Gaussian process is a
Levy flight with an algebraic PDF.
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PV stands for the principal value. Note that Eq. (109) is
general and can be applied to describing the energy balance in
arbitrary dipolar or macroscopic systems. When γ → dþ 2
the fractional Laplacian degenerates into its classical form,
i.e., ð−ΔÞα=2 ¼ ð−ΔÞ, and the transport regime is diffusive.
On the other hand, when γ → d the fractional Laplacian
approaches the identity operator and the transport becomes
ballistic. Finally, when d < γ < dþ 2 the regime is
superdiffusive.
In Figs. 35 and 36 we show the existence of those regimes

in two simple many-body systems: (1) linear chains of
nanoparticles periodically dispersed in vacuum and (2) multi-
layer periodic systems. In the first system [see Fig. 35(a)], the
thermal conductance GðΔxÞ between a central particle and
another particle at a distance Δx is calculated for different
filling factors 2R=h. For any filling factor, we see that G

decays asymptotically at long separation distance as 1=Δx2,
i.e., γ ¼ 2, showing (according to our previous discussion)
that the regime of heat transport is superdiffusive. In the
example plotted in Fig. 35(a) the long-range interactions that
give rise to this anomalous regime come from the presence of
collective electromagnetic modes supported by the entire
structure. In the case of a chain made with SiC particles,
these modes result from the coupling of surface phonon
polaritons localized on each particle (Ben-Abdallah et al.,
2013; Ordonez-Miranda et al., 2015; Kathmann et al., 2018;
Tervo, Cola, and Zhang, 2020).
A similar superdiffusive regime is observed in dilute

multilayer systems [see Fig. 35(b)] where the heat-transfer
coefficient hl;j between layers l and j decays algebraically and
scales as 1=z2.5l;j , where zl;j is the distance between layers l and
j so that γ ¼ 2.5. On the other hand, in a dense multilayer
system such as the one considered in Fig. 35(b) a transition
occurs between this superdiffusive regime and a ballistic
regime (Latella, Biehs et al., 2018; He, Qi, Wang et al., 2019).
In this case we see that hl;j scales as 1=zl;j, meaning that the
transport becomes ballistic and the temperature profile inside
the structure submitted to a temperature difference is constant,
as can be seen in Fig. 37, having a value T� that is close to the
Casimir temperature TC ¼ ðT1 þ TNÞ=2. This regime of heat
transport seems to be inconsistent with the previous arguments
about the collective modes supported by the structure, but it
occurs due to the fact that the coupling of the inner dense
multilayers is much stronger than the coupling to the two outer
baths when d ≪ D. For D ¼ d, on the other hand, the
temperature profile in Fig. 37 is reminiscent of a quasiballistic
temperature distribution. Although the transition mechanism
remains partially elusive today, it was shown by Latella, Biehs
et al. (2018) that the mechanism is related to a change of
channel for heat exchanges in dense systems from TM-
dominated to TE-dominated heat transfer; see the inset of
Fig. 36. For this TE polarization state the slabs no longer
support surface waves.

FIG. 36. Heat-transfer coefficient hl;j with respect to the
normalized separation zl;j=zN in a dense multilayer system made
with 200 nm thick SiC layers separated by a distance d ¼ 5 nm at
T ¼ 300 K. Inset: hl;j decomposed into TE and TM polarization
contributions. From Latella, Biehs et al., 2018.

FIG. 35. Top panel: thermal conductance G in log-log scale
along a chain of SiC spherical particles of 100 nm radius with
different interparticle distances h and different particle numbers
N as a function of the separation distance Δx ¼ jr − r0j at
temperature T ¼ 300 K. From Ben-Abdallah et al., 2013.
Bottom panel: heat-transfer coefficients hl;j with respect to the
normalized separation zl;j=zN in a dilute multilayer system made
with 200 nm thick SiC layers separated by a distance d ¼ 40 nm
at T ¼ 300 K. From Latella, Biehs et al., 2018.
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D. Nonreciprocal systems

In electromagnetics, a nonreciprocal system is defined as a
system that exhibits different received-transmitted field ratios
when a source and a detector are interchanged. This concept is
also closely related to a time reversal symmetry breaking of
Maxwell’s equation. In this case the classical Lorentz’s
reciprocity is violated (Caloz et al., 2018). Here we discuss
first the general formulation of radiative power exchange
between nonreciprocal objects and then show how RHT is
taking place in nonreciprocal many-body systems made for
sets of simple nonreciprocal nanoparticles.

1. General discussion

As a first step, we consider only two objects 1 and 2 having
temperatures T1 and T2, respectively, which are immersed into
a background or environment having another temperature Tb.
Under the assumption that the objects and the environment
can be considered to be in local thermal equilibrium, the
power absorbed by object 1 can be determined with the
conventional FE approach analogous to Eq. (54) as (Latella
and Ben-Abdallah, 2017; Herz and Biehs, 2019)

P1 ¼ 3

Z
∞

0

dω
2π

ℏω½ðn1 − nbÞT 11 þ ðn2 − nbÞT 12�; ð112Þ

where n1=2 ¼ nðT1=2Þ and nb ¼ nðTbÞ. The transmission
coefficients T 11=12 were explicitly given in terms of the T
operators of the objects by Herz and Biehs (2019), who
derived them within the scattering approach (Krüger et al.,
2012). Here we give explicitly only the expression for T 21,
which is given by (Herz and Biehs, 2019)

T 12 ¼ 4
3
Tr½D−1Gχ2ðD−1GÞ†χ̃1�; ð113Þ

where Tr is the operator trace, G is the operator for the Green’s
function D ¼ ð1 − GT2GT1Þ written in terms of the T

operators T1=2 of both objects, and the generalized suscep-
tibilities are defined as

χ2 ¼
T2 − T †

2

2i
− T2

G − G†

2i
T †
2; ð114Þ

χ̃1 ¼
T1 − T †

1

2i
− T†

1

G − G†

2i
T 1: ð115Þ

Note that Eqs. (114) and (115) are formally equivalent to
Eqs. (64) and (74). Analogous expressions were also given by
Zhu, Guo, and Fan (2018) and more explicitly for spherical
nanoparticles by Ott and Biehs (2020). The corresponding
expression for the absorbed power P2 in object 2 can be
obtained by exchanging 1 ↔ 2 in Eqs. (112) and (113). First,
it can now be seen in Eq. (112) that in global thermal
equilibrium the overall absorbed power is zero. Second, when
setting T1 ¼ Tb, Eq. (112) can describe only the absorbed
power in object 1 due to the heat flow coming from or going
toward object 2. Thus, T 12 can be identified as the trans-
mission coefficient describing the heat flow from object 2 to 1.
Third, when assuming that T2 ¼ Tb Eq. (112) describes the
heat flow from object 1 to the environment and to object 2, or
vice versa. Therefore, we can identify T 11 as the transmission
coefficient standing for the so-called self-emission of object 1
(Krüger et al., 2012). Finally, when one takes T1 ¼ T2

Eq. (112) describes the power flowing from the environment
toward object 1 either directly or via object 2. Therefore,
T 11 þ T 12 equals the transmission coefficient T 1b, as we also
discussed for N dipolar objects when deriving Eq. (56). These
observations allow us to rewrite Eq. (112) as

P1 ¼ 3

Z
∞

0

dω
2π

ℏω½n1T 11 þ n2T 12 − nbT 1b�

≡ P1→1ðT1Þ þ P2→1ðT2Þ þ Pb→1ðTbÞ ð116Þ

while introducing

P1→1ðT1Þ ¼ þ3

Z
∞

0

dω
2π

ℏωn1T 11; ð117Þ

P2→1ðT2Þ ¼ þ3

Z
∞

0

dω
2π

ℏωn2T 12; ð118Þ

Pb→1ðTbÞ ¼ −3
Z

∞

0

dω
2π

ℏωnbT 1b; ð119Þ

where the first term stands for the self-emission of body 1, the
second term is the emission toward body 2, and the last term is
the power coming from the bath. Notice that when the two
bodies are set at the same temperature we can make a
connection between the transmission coefficient T b→1 and
the thermal emissivity ϵ ¼ σabs=S (Biehs and Ben-Abdallah,
2016). More specifically, T b→1 can be expressed as a function
of its absorption cross section (30), its geometrical cross
section S, and the absorbed power as follows:

FIG. 37. Temperature profile as a function of the normalized
position zj=zN along a multilayer made with 200 nm thick N ¼
60 SiC layers for different separation distances d and at a fixed
distance D ¼ 500 nm from the thermostats. From Latella, Biehs
et al., 2018.
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T b→1ðωÞ ¼
A
6π

ϵðωÞω
2

c2
¼ A

6π

σabsðωÞ
S

ω2

c2
; ð120Þ

where A is the surface of the object (assumed convex).
The self-emission term P1→1 appearing in Eq. (117) must

balance the energy flow from the other object 2 and the
environment described by P2→1 and Pb→1 to establish global
equilibrium so that this term describes the power needed to
keep the temperature of object 1 constant in thermal equilib-
rium. Hence, when taking T1 ¼ T2 ¼ Tb we have P1 ¼ 0 and
therefore

P1→1ðTbÞ ¼ −P2→1ðTbÞ − Pb→1ðTbÞ: ð121Þ

This equation relates P1→1 to P2→1 and Pb→1 and therefore
allows us to eliminate the background term Pb→1ðTbÞ from
the expression for the overall absorbed power giving (Krüger
et al., 2012)

P1 ¼ P1→1ðT1Þ − P1→1ðTbÞ
þ P2→1ðT2Þ − P2→1ðTbÞ: ð122Þ

This elimination of the background term is clear from the
previous definitions, showing that T 1→b can also be expressed
by T 1→1 and T 2→1, and the implementation of the equilibrium
condition brings us back to Eq. (112). As described by Krüger
et al. (2012) this expression for P1 can now be generalized to
the case of N objects in a given environment. In this case
(i ¼ 1;…; N)

Pi ¼
XN
j¼1

½Pj→iðTjÞ − Pj→iðTbÞ�: ð123Þ

This is the general N-body formula for the power absorbed by
object i, of which Eq. (54) can be considered a special case for
dipolar objects. For an explicit calculation of the absorbed
power it is necessary to determine the transmission coeffi-
cients for the studied configuration. Before focusing on the
heat flow in some specific cases, we want to discuss in
Sec. III.D.2 the impact of the nonreciprocity in a similarly
general way.

2. General impact of nonreciprocity

For Lorentz-reciprocal objects and their environment the
corresponding response functions, i.e., the permittivity tensor,
polarizability tensor, T operator, Green’s function, etc., are
symmetric (Caloz et al., 2018). Consequently, in this case we
have symmetric transmission coefficients T 12 ¼ T 21 or more
generally for N objects T ij ¼ T ji (i ≠ j). This means that we
have detailed balance for the heat flux between any two
objects (Krüger et al., 2012). In contrast, for configurations
where the objects or the environment do not fulfill the
conditions for Lorentz reciprocity it was explicitly proven
by Herz and Biehs (2019) that in general T 12 ≠ T 21. More
precisely, T 12 ¼ T 21 if and only if the objects and their
environment are both reciprocal. Therefore nonreciprocity
introduces in general a directionality for the heat flow.

One of the astonishing consequences is that in nonrecip-
rocal systems one has P12 ≠ P21 in general so that the heat-
flux-related expressions for the reciprocal case fulfilling
detailed balance need to be generalized to nonreciprocal cases
where detailed balance is broken (Zhu and Fan, 2014) like the
Green-Kubo relation for heat radiation (Golyk, Krüger, and
Kardar, 2013; Herz and Biehs, 2019). This asymmetry in the
heat flow from object 1 to object 2 and from 2 to 1 exists even
in global thermal equilibrium, suggesting that there might be a
net heat flow even though there is no temperature difference.
However, by looking at Eq. (112) one sees that although the
heat flux from object 1 toward object 2 is different than the
heat flux from object 2 to 1 there is no net heat flow in global
equilibrium because P1 ¼ P2 ¼ 0 in that case. The same is
also true for N objects, where due to nonreciprocity one has in
general Pi→j ≠ Pj→i (i ≠ j). As we later discuss in more
detail, this can result in a so-called persistent heat current in an
N-body configuration in global thermal equilibrium (Zhu and
Fan, 2016; Zhu, Guo, and Fan, 2018; Ott et al., 2019a).
In many works on the radiative heat exchange between two

objects the contribution of the environmental field is
neglected. In that case, as pointed out by Latella and Ben-
Abdallah (2017), the global equilibrium can be achieved only
if the transmission coefficients fulfill the condition

X
j≠i

½T ij − T ji� ¼ 0: ð124Þ

In particular, this implies that when having only two objects
T 12 ¼ T 21. Hence, for two isolated objects the nonreciprocity
has no impact and therefore at least three objects are necessary
to observe a broken detailed balance. From this general
finding it can be understood that Zhu and Fan (2014) had
to consider three nonreciprocal thermal emitters to show that
detailed balance can be broken for thermal radiation and that
Zhu and Fan (2016) had to consider three nonreciprocal
nanoparticles to observe the persistent heat current. On the
other hand, the heat exchange between two nonreciprocal
half-spaces will not show any rectification effect (Moncada-
Villa et al., 2015; Fan et al., 2020). Note that the symmetry
relation T 12ðκ;ωÞ ¼ T 21ð−κ;ωÞ for the transmission coef-
ficient of the heat flux between two planar reciprocal media
will be violated if at least one medium is nonreciprocal, which
allows one to distinguish the reciprocal from the nonreciprocal
case (Fan et al., 2020). Finally, when considering two objects
with an environment, the environment can be regarded as a
third object. This explains why in general for only two objects
in a given environment the transmission coefficients can be
asymmetric (T 1→2 ≠ T 2→1) so that we have here no contra-
diction of the previous discussion.

3. Magneto-optical nanoparticles

In the following we review the results obtained for the RHT
in many-body systems consisting of subwavelength nano-
particles. Most of the works neglected the coupling to the
background, which can be justified in steady-state situations
when the distance between the objects is much smaller than
the thermal wavelength so that the near-field coupling
dominates over the coupling to the environment (Messina,
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Tschikin et al., 2013). Therefore, we work here with Eq. (58)
together with the transmission coefficients T ij defined in
Eq. (55). Neglecting the radiation correction it can also be
written as

T ijðωÞ ¼
4

3
Tr

�
α
¼
−1T−1

ij

α
¼
− α

¼
†

2i
ðα
¼
−1T−1

ij Þ†
α
¼
− α

¼
†

2i

	
; ð125Þ

assuming that all particles have the same polarizability α
¼

defined for spherical nanoparticles by means of the permit-
tivity in Eq. (68) with the volume V ¼ 4πR3=3 (Lakhtakia,
Varadan, and Varadan, 1991)

α
¼
¼ 4πR3ðϵ

¼
− 1Þðϵ

¼
þ 21Þ−1: ð126Þ

The transmission coefficients in Eq. (125) are equal to the
expressions given by Ben-Abdallah, Biehs, and Joulain (2011)
and Ekeroth, García-Martín, and Cuevas (2017) for spherical
nanoparticles within the so-called weak-coupled dipole limit
(Lakhtakia, 1992), where the radiation correction can be
neglected (Albaladejo et al., 2010). They can also be derived
from the general T-operator expressions obtained within the
scattering approach for the reciprocal (Krüger et al., 2012) and
the nonreciprocal case (Zhu, Guo, and Fan, 2018; Herz and
Biehs, 2019).
As already done in Sec. II.C we consider InSb as magneto-

optical material for which the permittivity tensor becomes
asymmetric (ϵ

¼
t ≠ ϵ

¼
); i.e., the material properties are nonre-

ciprocal when a magnetic field is applied. As a consequence,
the polarizability tensor then has the same asymmetry α

¼
≠ α

¼
t.

Furthermore, owing to the applied field the threefold degen-
eracy of the dipolar localized plasmon resonances, the
solution of the transcendental equation detðϵ

¼
þ 21Þ ¼ 0 with

magnetic quantum number m ¼ −1; 0;þ1 is lifted (Weick
and Weinmann, 2011; Pineider et al., 2013). In particular,
there is a redshift of the resonance with m ¼ þ1 and a
blueshift of the resonance with m ¼ −1. The size of the
splitting is proportional to the cyclotron frequency
ωc ¼ eB=m�, with m� the effective mass of electrons
(Weick and Weinmann, 2011; Pineider et al., 2013). To be
more precise, in the regime where the dissipation can be
neglected we find the resonances (Ott, Ben-Abdallah, and
Biehs, 2018)

ωm¼∓1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

ϵ∞ω
2
p

ϵ∞ þ 2
þ ω2

c

4

�s
� ωc

2
;

ωm¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∞ω

2
p

ϵ∞ þ 2

s
; ð127Þ

which are determined by the poles of the polarizability tensor.
Therefore, for small magnetic fields the two circular reso-
nances withm ¼ �1 are shifted by∓ ωc=2with respect to the
unaffected resonance for m ¼ 0.

4. Giant magnetoresistance

Because of the strong dependence of dipolar resonances of
particles on the magnetic field, the heat flux emitted by a
magneto-optical particle can drastically change by tuning this
field (Latella and Ben-Abdallah, 2017; Ekeroth et al., 2018). It
turns out that the thermal magnetoresistance

RijðBÞ ¼
�
3

Z
∞

0

dω
2π

ℏω
∂n
∂T T ijðω;BÞ

�
−1

ð128Þ

between two particles in a many-body system is strongly
dependent on the magnitude of the applied magnetic field, as
can be seen in Fig. 38(a). Variations of about 50% along
nanoparticle chains have been highlighted with magnetic
fields of a magnitude of about 500 mT (Latella and Ben-
Abdallah, 2017). This sensitivity to the magnetic field is of the
same order of magnitude as the giant electric magnetoresist-
ance reported in ferromagnetic–normal metal multilayers
(Baibich et al., 1988). This resistance can also be tuned by
changing the direction of the applied magnetic field (Ekeroth
et al., 2018). In this case we speak of an anisotropic
magnetoresistance. As shown in Fig. 38(b), for certain
orientations of the magnetic field the heat flux can drop by
more than 90%. These effects open up the opportunity to
control or modulate the amplitude of the heat flux between
nanoparticles by external means. More detailed discussions
were given by Latella and Ben-Abdallah (2017), Ekeroth et al.
(2018), and Ott et al. (2019a).

5. Persistent heat flux, angular momentum, spin, and heat
current

As shown by Ott, Ben-Abdallah, and Biehs (2018), the
circular plasmonic resonances for m ¼ �1 of a single particle

FIG. 38. (a) Giant thermal magnetoresistance along linear
chains of InSb and InSb/Ag nanoparticles at T ¼ 300 K as a
function of the strength of an external magnetic field B applied in
the direction orthogonal to the chain axis. From Latella and Ben-
Abdallah, 2017. (b) Anisotropic magnetoresistance between two
InSb nanoparticles with respect to the orientation of the magnetic
field. From Ekeroth et al., 2018.
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responsible for magnetic circular dichroism (Pineider et al.,
2013) and the “inverse Faraday effect” (Gu and Kornev, 2010)
are connected with a circular mean heat flux

hSi ¼ hE ×Hi ð129Þ

emitted by the nanoparticle in planes perpendicular to the
applied magnetic field. This results in a certain spectral
angular momentum density hJωi ¼ hLiω þ hSdiω, which
can be divided into an orbital angular momentum density
hLiω and a spin angular momentum density hSdiω defined as
(Bliokh and Nori, 2015)

hLiω ¼ r × hPiω; ð130Þ

hSdiω ¼ g
2
Im

�
hE� × Ei þ μ0

ϵ0
hH� ×Hi

�
; ð131Þ

with g ¼ ϵ0=ω and the canonical spectral momentum density
given by

hPiω ¼ g
2
Im

�
hE�ð∇ÞEi þ μ0

ϵ0
hH�ð∇ÞHi

	
; ð132Þ

adopting the notation of Bliokh and Nori (2015) that
X⃗ðY⃗ÞZ⃗ ¼ P

i XiY⃗Zi. Using these definitions together with
FE the persistent angular momentum close to the walls of a
cavity was first evaluated and discussed by Silveirinha (2017)
and the angular momentum and spin for a thermally emitting
nanoparticle by Ott, Ben-Abdallah, and Biehs (2018). A more
detailed study of the angular momentum and spin close to a
planar interface was published recently (Khandekar and
Jacob, 2019a).
That there is a finite angular momentum and spin of the

thermally emitted radiation is not surprising, because the
Lorentz force constrains the electrons in the nanoparticles on a
circular orbit so that the dipolar resonance is rotating in the
plane perpendicular to the magnetic field that is the micro-
scopic origin of the circular heat flux (Fig. 39) and the total
angular momentum. The right-hand rule determines the
direction of the circular heat flux in the near-field regime
(Ott, Ben-Abdallah, and Biehs, 2018). Note that the angular
momentum of the m ¼ þ1 (m ¼ −1) resonance is oriented in
the same (opposite) direction of the magnetic field, as one
would expect, whereas the spin of the m ¼ −1 (m ¼ þ1) is
oriented in the same (opposite) direction of the magnetic field
in the near-field regime. From this perspective the splitting of
the m ¼ �1 resonances can also be understood as a Zeeman
splitting, where m ¼ −1 (m ¼ þ1) is blueshifted (redshifted)
because the near-field direction of the spin is in the same
(opposite) direction as the magnetic field, but the correct
quantity determining the Zeeman splitting is the magnetic
momentum of the dipolar resonance itself (Gu and Kornev,
2010). The presence of a finite spin means that the thermal
emission of the nonreciprocal nanoparticle will be circularly
polarized in general, as is well known for solid matter within a
magnetic field like semiconductors (Kollyukh et al., 2005),
but also white dwarfs (Kemp, 1970; Kemp et al., 1970). More
recently, circularly polarized thermal emitters based on chiral

metasurfaces (Dyakov et al., 2018) and nanoantennas
(Khandekar and Jacob, 2019b) were proposed.
It turns out that these three quantities (mean heat flux,

orbital angular momentum, and spin) persist in global equi-
librium if α

¼
≠ α

¼
t and therefore are a direct consequence of the

nonreciprocity of the permittivity or polarizability. Even
though it might seem strange to have a nonzero mean heat
flux in global equilibrium circulating around the nanoparticle,
this does not pose any problem from the thermodynamical
point of view, since it can be shown that∇ · hSpersi ¼ 0, which
means that there is no heat flux through any closed surface
including the nanoparticle (Ott, Ben-Abdallah, and Biehs,
2018). In other words, no heat is finally emitted. Similar
conclusions have been made for the thermal-radiation field of
the nonreciprocal surface modes on planar interfaces
(Silveirinha, 2017; Khandekar and Jacob, 2019a).
Instead of a persistent heat flux, i.e., a nonzero heat flux in

global thermal equilibrium, as observed from the mean
Poynting vector around a nonreciprocal nanoparticle or in
the vicinity of a planar interface of a nonreciprocal sample,
there can be a persistent heat current, as first discussed by Zhu
and Fan (2016) for the thermal radiation exchanged by three
nanoparticles, but it exists also for more than three particles
(Zhu, Guo, and Fan, 2018). We know from the previous
discussion that, when neglecting the contribution of the
environment of the nanoparticles, it follows from the con-
straint in Eq. (124) that for only two nanoparticles T 12 ¼ T 21,
and consequently P1→2 ¼ P2→1 if T1 ¼ T2. Therefore, it is
necessary to have at least three nanoparticles to have
T 12 ≠ T 21. For three particles as in Fig. 40 the constraint
in Eq. (124) demands that T 12 ¼ T 23 ¼ T 31 and T 13 ¼
T 32 ¼ T 21 due to the C3 symmetry. If the three nanoparticles
are now nonreciprocal, then it can be shown from the
definition of the transmission coefficient in Eq. (125) that
T 12 ≠ T 21, and hence

P1→2 ¼ P2→3 ¼ P3→1 ≠ P1→3 ¼ P3→2 ¼ P2→1: ð133Þ

FIG. 39. Normalized mean Poynting vector hSi of thermal
radiation emitted by an InSb nanoparticle at the origin of the
coordinate system with radius of 300 nm at a temperature of
300 K into a cold environment (vacuum) at Tb ¼ 0 K when a
magnetic field is applied in z direction. This circular heat flux
persists in global thermal equilibrium. From Ott, Ben-Abdallah,
and Biehs, 2018.
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This means there is a clockwise heat flow exchanged by the
nanoparticles that is different from the heat flow in the
counterclockwise direction even if T1 ¼ T2 ¼ T3, and there-
fore there is a persistent heat current in either the clockwise or
the counterclockwise direction, depending on which of the
two heat flows is larger. This persistent heat flow or better heat
current (Zhu and Fan, 2016) is the many-body analog of the
persistent heat flux, which also exists in the three-body
configuration. Note from Eq. (124) that, in a nonreciprocal
system at temperature T, the bodies i and j still exchange a
power (Latella and Ben-Abdallah, 2017)

Peq
i↔j ¼ Peq

j→i − Peq
i→j

¼
Z

∞

0

dω
2π

ℏω nðω; TÞ½T ij − T ji�; ð134Þ

although the net power Peq
j ¼ P

i≠j P
eq
i↔j vanishes so that

the persistent heat flux does not lead to any heating or
cooling. Hence, the magnitude of asymmetry of trans-
mission coefficient spectra (Fig. 41) and the value of the
equilibrium temperature are directly responsible for the
value of the persistent current. Today the measurement of
this current is still a challenging problem. Recently a setup
was proposed by Khandekar and Jacob (2019a) that might
be able to access the current in the vicinity of a magneto-
optical planar sample.

6. Hall effect for thermal radiation

The asymmetry in the exchanged heat flux in many-body
configurations observed in global equilibrium, i.e., the per-
sistent heat current, has directly measurable consequences
when driving the system out of global equilibrium. A
consequence is the Righi-Leduc or Hall effect for thermal
radiation (Ben-Abdallah, 2016). Classically, the Righi-Leduc
effect (Leduc, 1887; Righi, 1887) is simply the thermal analog
of the Hall effect (Hall, 1879). When applying a temperature
difference in a metallic sample together with a magnetic field,
the heat current by the electrons is deflected due to the Lorentz

force acting on the electrons such that a temperature difference
perpendicular to the initially applied temperature difference
builds up in steady state. Such an effect has also been
highlighted for other heat carriers in solids like magnons
and spinons (Fujimoto, 2009; Katsura, Nagaosa, and Lee,
2010; Onose et al., 2010), or even phonons (Strohm, Rikken,
and Wyder, 2005; Inyushkin and Taldenkov, 2007).
When considering heat radiation exchanged between four

nanoparticles in a C4 symmetric configuration as in Fig. 42
and applying a temperature difference ΔT ¼ TL − TR
between particle L (left) and R (right), in the steady state
of the system a temperature difference Tst

B − Tst
T between

particle B (bottom) and T (top) can build up when using
nonreciprocal InSb nanoparticles and applying a magnetic
field perpendicular to the particle plane. Hence, one observes a
Righi-Leduc or Hall effect for thermal radiation (Ben-
Abdallah, 2016). Again, the effect can be understood as the
Lorentz force acting on the electrons in the nanoparticles.
However, here the electrons do not serve as heat carriers but
introduce a circular heat flux leading to an asymmetric heat
flow, and finally to the Righi-Leduc effect. Its magnitude and
directionality can be measured by the relative Hall temper-
ature difference or Righi-Leduc-like coefficient

RT ¼ Tst
B − Tst

T

TL − TR
; ð135Þ

FIG. 40. Normalized mean Poynting vector hSi and its magni-
tude (Wm−2 in color scale) of thermal radiation emitted by three
InSb nanoparticles with a radius of 300 nm having the same
temperatures T1 ¼ T2 ¼ T3 ¼ 300 K when a magnetic field is
applied in the z direction. From Ott et al., 2019a.

FIG. 41. Heat-transfer spectra in a many-body system con-
sisting of six InSb nanospheres placed at the vertices of a
regular hexagon on the x-y plane without (reciprocal) and with
(nonreciprocal) an externally applied magnetic field in the z
direction. From Zhu and Fan, 2016, and Zhu, Guo,
and Fan, 2018.
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which is shown in Fig. 43. Written in terms of thermal
conductances, this coefficient reads (Ben-Abdallah, 2016; Ott,
Biehs, and Ben-Abdallah, 2020)

RT ¼ GLB −GBL

GLB þ GBL þ 2GBT
: ð136Þ

We see that, depending on the magnitude of the magnetic
field, the effect will change its directionality and there is a
maximum for a magnetic-field amplitude of about 0.5 T for
the considered configuration. The effect is not strong and high
field amplitudes are needed to have a maximum effect.
However, it strongly depends on the configuration and
material parameters (Ott et al., 2019b), and therefore its
magnitude can be optimized by changing the spatial

distribution of the particles or their physical properties. An
experimental proof of photon thermal Hall effect remains a
challenging problem. However, a direct measurement of the
Hall temperature difference with measurements of electrical
resistance variations with a high accuracy (St-Gelais et al.,
2014) in magneto-optical nanowire networks seems feasible.
Besides the “normal” thermal Hall effect, anomalous effects

also called anomalous thermal Hall effects (Ferreiros, Zyuzin,
and Bardarson, 2017; Huang, Han, and Stone, 2020), a
thermal analog of the anomalous Hall effect (Karplus and
Luttinger, 1954; Nagaosa et al., 2010), have also been
described for the heat transport with electrons or phonons
in ferromagnetic materials and in semimetals. Recently a
similar effect in Weyl semimetal nanoparticle networks for
thermal photons was predicted (Ott, Biehs, and Ben-Abdallah,
2020). Since Weyl semimetals can exhibit a strong nonrecip-
rocal response in the infrared, this effect allows for a direc-
tional control of heat flux by simply locally tuning the
magnitude of the temperature field without changing the
direction of the temperature gradient.

7. Heat-flux rectification with nonreciprocal surface waves

For most of the nonreciprocal effects discussed thus far the
environment does not play a decisive role. Now, instead of
using only the intrinsical nonreciprocal properties of the
nanoparticles to achieve a directional heat flux, the non-
reciprocity of the environment can be exploited as first shown
by Ott et al. (2019a). As we saw in Sec. III.C.3, the heat flux
between two nanoparticles, or more generally between two
objects brought into close vicinity to an interface of a sample,
can be enhanced by transporting the heat via the surface
modes of the interface (Sääskilahti, Oksanen, and Tulkki,
2014; Asheichyk, Müller, and Krüger, 2017; Dong, Zhao, and
Liu, 2018; Messina, Biehs, and Ben-Abdallah, 2018; He, Qi,
Ren et al., 2019; Zhang, Antezza et al., 2019). If the material
properties of the planar sample are nonreciprocal, then the
presence of a magnetic field will affect the surface modes
(Chiu and Quinn, 1972).
To be more specific, within the Voigt configuration shown

in Figs. 44(a) and 44(b) the dispersion relation for the surface
modes at the interface of the substrate traveling to the right and
left will be different (Chiu and Quinn, 1972). As in the case of
the localized mode inside an InSb nanoparticle, the degen-
eracy of the surface modes for kx > 0 and kx < 0 is lifted and
there is a splitting of the surface-mode resonance frequency
(Chiu and Quinn, 1972). Since the spin associated with the
surface modes (Bliokh and Nori, 2012) shows a spin
momentum locking (Van Mechelen and Jacob, 2016), mean-
ing that the waves with kx > 0 and kx < 0 have different spin
directions, the splitting can again be understood as a Zeeman
splitting (Van Mechelen and Jacob, 2016; Khandekar and
Jacob, 2019a).
Now, considering the situation in Figs. 44(a) and 44(b), the

thermally excited localized modes of the hot nanoparticle can
directly couple to the localized modes of the cold nanoparticle
leading to a direct heat transfer between the particles. The
thermally excited localized modes of the hot particle can
couple to the surface modes of the substrate, travel along the
interface of the substrate, and then couple to the localized

FIG. 43. Magnetic-field strength dependence of the Righi-
Leduc-like coefficient defined in Eq. (135) for four spherical
InSb nanoparticles with a radius of 100 nm in a C4-symmetric
configuration as depicted in Fig. 42 choosing an interparticle
distance of opposite particles of da ¼ 500 and 700 nm. From
Ott et al., 2019a.

FIG. 42. Photon thermal Hall effect. A four-terminal junction
with magneto-optical particles forming a square with C4 sym-
metry is submitted to an external magnetic field B in the direction
orthogonal particle plane. When a temperature gradient ΔT ¼
TL − TR is applied between the particles L and R, a Hall flux
transfers heat transversally between particles B and T, thus
bending the overall flux (red arrow) toward the top or the bottom.
In this case the heat Pi→j and Pj→i exchanged between two
particles i and j is not symmetric.
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modes of the cold nanoparticle so that in this case the heat is
transferred between the two nanoparticles via the surface
modes. Because of the nonreciprocity of the substrate the heat
flow P2 in the forward direction in Fig. 44(a) and the heat flow
P1 in the backward direction in Fig. 44(b) will be different,
leading to a rectification effect (Ott et al., 2019a). A detailed
analysis showed (Ott and Biehs, 2020) that there is a spin-
selective coupling so that the localized modes couple prefer-
ably to the surface modes with the spin in the same direction.
For example, the m ¼ −1 (m ¼ þ1) resonance couples
preferably to the surface modes with kx > 0 (kx < 0), provid-
ing the main heat-flux channel in the forward (backward)
direction as shown in Fig. 44(c) [Fig. 44(d)]. This can be also
understood by a matching of the circularity of the particle

resonances and the directionality of the interface resonances.
The resulting rectification coefficient

η ¼ P1 − P2

P1

ð137Þ

shown in Fig. 45 can be rather high even for relatively small
magnetic fields. It should be kept in mind that when bringing
the nanoparticles close to a substrate most of the heat will go
to the substrate rather than the other nanoparticle.
Nonetheless, the rectification effect can result in a measurable
heating of the cold nanoparticle (Ott and Biehs, 2020).

IV. OUTLOOK AND OPEN QUESTIONS

While the heat transport mechanisms mediated by thermal
photons in 1D and 3D systems have been intensively studied
during the last decade, they remain unknown in 2D systems.
Can we observe a diverging radiative conductivity with
respect to system size as has already been predicted for the
phononic conductivity in 2D anharmonic lattices? To answer
this question and also identify different heat transport regimes
in these systems, we must analyze the scaling laws of radiative
thermal conductance. Another fundamental problem is the
crossover from 1D to 2D and 3D to 2D systems. The spatial
confinement of evanescent photons in these systems should
play a key role in those transitions.
To date dense many-body systems and effects like weak and

strong localization for thermal radiation remain largely unex-
plored. In these strongly correlated systems, heat is typically
carried through multiple connected channels associated with
different heat carriers like electrons, phonons, and photons,
which raises the question: under which conditions can one or
more of these heat carriers dominate heat transport? As
highlighted in the Introduction of this review, progress in
unifying various transport mechanisms is beginning to be
made, yet a complete theory capable of describing multi-
channel heat exchange in large many-body systems remains a
challenge for understanding possible transport effects asso-
ciated with coupling across such different channels.
As the number of bodies in an interaction becomes large,

the general formalism described in this review becomes
numerically prohibitive. This is a serious issue to investigate
heat transport in many-body systems in the presence of long-
range interactions. A continuous description of heat transport
in these systems could make the study of these systems
feasible and could at the same time be a powerful tool to study
the NFRHT in mesoscopic physics or to make calculations of
NFRHT between objects of arbitrary shape. Using the
Chapman-Kolmogorov equation for the local temperature
field, a Fokker-Planck equation can be derived and written
in the hydrodynamic limit as an advection-diffusion equation
that depends on directly measurable macroscopic quantities
like the effective diffusion coefficient and that could be easily
solved with standard numerical methods.
When it comes to recent exploration of the spin and angular

momentum of thermally fluctuating fields, nearly all inves-
tigations have focused on single particles or semi-infinite
materials. However, a corresponding general N-body theory
should be straightforwardly derived using the general

FIG. 45. Rectification coefficient from Eq. (137) for two InSb
nanoparticles with a 100 nm radius 500 nm above an InSb
substrate, as sketched in Fig. 44, as a function of the interparticle
distance d for different magnetic-field amplitudes. See also Ott
and Biehs (2020).

FIG. 44. (a) Sketch of the diode in the forward direction. Two
InSb nanoparticles above an InSb substrate. The left particle is
heated with respect to the other particle and the environment.
(b) Sketch of the diode in the backward direction. (c) Normalized
mean spectral in-plane Poynting vector and its amplitude (Jm−2;
colorbar) for the m ¼ þ1 particle resonance for the diode in the
forward direction. (d) Similar to (c) but for the backward case and
the m ¼ −1 particle resonance. See also Ott and Biehs (2020).
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framework presented in this review. This extension could pave
the way to studies of thermal-field spin and angular momen-
tum transport in atomic and molecular systems. Since mag-
neto-optical effects based on the use of magneto-optical
materials or Weyl semimetals reported thus far have been
relatively small, further studies aimed at enhancing these
effects should be considered in the future, for instance, by
exploiting ferromagnetic or more strongly magnetic materials.
Non-Hermitian physics has attracted significant interest

over the past decade from a variety of fields in classical
physics due to its mathematical equivalence with the
Schrödinger equation, thus allowing one to mimic non-
Hermitian wave physics with classical systems. Bipartite
plasmonic and phonon-polaritonic many-body systems pro-
vide a natural platform to investigate such physics. Among
their many peculiarities, one might point to the existence of
original topological states that give rise to Berry-like phases
and that may lead to the development of new materials such as
topological insulators. These states and their consequences for
thermal management (active control of heat flux, heat pump-
ing, and heat-flux focusing) remain largely unexplored in
many-body systems.
Out-of-equilibrium thermodynamics of many-body systems

and its connections to information theory are also future fields
of investigation. In systems with long-range interactions,
classical thermodynamic theory fails to describe the evolution
of state variables since they cannot be sequenced in small
independent parts. Normally, to calculate thermodynamic
properties it is necessary to determine the microscopic states
of a given system. However, a phenomenological approach
analogous to Landau’s transition theory may be employed to
study the thermodynamic behavior of these systems by
considering macroscopic quantities. Hence, mechanisms such
as phase transitions in magneto-optical systems could be
investigated by analyzing the dependence of quantities like the
thermal conductance or the entropy flux with order parameters
such as the magnitude or orientation of a magnetic field.
The peculiarities of heat transfer in many-body systems

have given rise to numerous developments in the emerging
field of thermotronics to manipulate heat flux in analogy with
electric currents in electric circuits. This radical change of
paradigm opens the way to a new generation of devices for
active thermal management, to innovative wireless sensors
using heat as their primary source of energy, and to low-
electricity technologies capable of information processing. In
these devices, infrared emission coming from various systems
(people, machines, and electric devices) may be captured by
active thermal components to launch a sequence of logical
operations in order to control the heat propagation (modulate,
amplify, or split), trigger specific actions (opto-thermome-
chanical coupling with MEMS, thermal energy storage, etc.),
or even process information. Hence, the development of
thermal logical circuits such as neural networks could open
the door to a low-power or even zero-power communication
technology for the Internet of things, allowing machine-to-
machine communication with heat. The design of thermal
metamaterials such as thermal insulators, topological insula-
tors, and superdiffusive solids is also a promising challenge.
Finally, building experimental platforms based on multitip

scanning thermal microscopy (SThM) setups, suspended

membranes, or even networks of electromechanical systems
interacting at the nanometer scale will be one of the most
important challenges in the next few years to measure the
NFRHT in many-body systems, prove all already predicted
effects, and develop operational devices. To be able to access
conductance variations of a few nWK−1, highly sensitive heat-
flux sensors must be developed. This will require the
fabrication of thermometers able to work at the nanoscale
and measure temperatures with an accuracy < 10 mK.
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Deck-Léger, 2018, Phys. Rev. Applied 10, 047001.
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41001.

Inyushkin, A. V., and A. N. Taldenkov, 2007, JETP Lett. 86, 379–382.
Ito, K., A. Miura, H. Iizuka, and H. Toshiyoshi, 2015, Appl. Phys.
Lett. 106, 083504.

Ito, K., K. Nishikawa, H. Iizuka, and H. Toshiyoshi, 2014, Appl.
Phys. Lett. 105, 253503.

Ito, K., K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, 2017,
Nano Lett. 17, 4347.

Janowicz, M., D. Reddig, and M. Holthaus, 2003, Phys. Rev. A 68,
043823.

Jin, W., R. Messina, and A.W. Rodriguez, 2017a, Opt. Express 25,
14746.

Jin, W., R. Messina, and A.W. Rodriguez, 2017b, Phys. Rev. B 95,
161409.

Jin, W., S. Molesky, Z. Lin, and A.W. Rodriguez, 2019, Phys. Rev. B
99, 041403.

Jin, W., A. G. Polimeridis, and A.W. Rodriguez, 2016, Phys. Rev. B
93, 121403.

Joulain, K., R. Carminati, J.-P. Mulet, and J.-J. Greffet, 2003, Phys.
Rev. B 68, 245405.

Joulain, K., J. Drevillon, and P. Ben-Abdallah, 2010, Phys. Rev. B
81, 165119.

Joulain, K., Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, 2015,
Appl. Phys. Lett. 106, 133505.

Joulain, K., J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet,
2005, Surf. Sci. Rep. 57, 59.

Kan, Y. H., C. Y. Zhao, and Z. M. Zhang, 2019, Phys. Rev. B 99,
035433.

Karplus, R., and J. M. Luttinger, 1954, Phys. Rev. 95, 1154.
Kathmann, C., R. Messina, P. Ben-Abdallah, and S.-A. Biehs, 2018,
Phys. Rev. B 98, 115434.

Kathmann, C., M. Reina, R. Messina, P. Ben-Abdallah, and S.-A.
Biehs, 2020, Sci. Rep. 10, 3596.

Katsura, H., N. Nagaosa, and P. A. Lee, 2010, Phys. Rev. Lett. 104,
066403.

Kemp, J. C., 1970, Astrophys. J. 162, 169.
Kemp, J. C., J. B. Swedlund, J. D. Landstreet, and J. R. P. Angel,
1970, Astrophys. J. 161, L77.

Khandekar, C., and Z. Jacob, 2019a, New J. Phys. 21, 103030.
Khandekar, C., and Z. Jacob, 2019b, Phys. Rev. Applied 12, 014053.

S.-A. Biehs et al.: Near-field radiative heat transfer in many-body …

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025009-48

https://doi.org/10.1088/0022-3727/48/30/305104
https://doi.org/10.1088/0022-3727/48/30/305104
https://doi.org/10.1103/PhysRevB.98.235416
https://doi.org/10.1103/PhysRevB.72.155435
https://doi.org/10.1103/PhysRevB.72.155435
https://doi.org/10.1007/BF01640357
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevE.91.063307
https://doi.org/10.1016/j.jqsrt.2015.12.027
https://doi.org/10.1016/j.jqsrt.2015.12.027
https://doi.org/10.1016/j.jqsrt.2013.08.021
https://doi.org/10.1016/j.jqsrt.2013.08.021
https://doi.org/10.1103/PhysRevB.94.045406
https://doi.org/10.1021/acsphotonics.7b01223
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.101.085407
https://doi.org/10.1103/PhysRevLett.118.203901
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1021/acs.nanolett.8b00846
https://doi.org/10.1038/s41565-018-0172-5
https://doi.org/10.1021/acsnano.8b01645
https://doi.org/10.1063/1.2963195
https://doi.org/10.1063/1.2963195
https://doi.org/10.1016/j.jqsrt.2009.05.010
https://doi.org/10.1016/j.jqsrt.2009.05.010
https://doi.org/10.1088/0022-3727/43/7/075501
https://doi.org/10.1088/0022-3727/43/7/075501
https://doi.org/10.1063/1.3294606
https://doi.org/10.1063/1.3294606
https://doi.org/10.1103/PhysRevB.84.075436
https://doi.org/10.1103/PhysRevB.84.075436
https://doi.org/10.1103/PhysRevLett.103.047203
https://doi.org/10.1103/PhysRevLett.120.175901
https://doi.org/10.1103/PhysRevB.88.155117
https://doi.org/10.1103/PhysRevB.88.155117
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.058
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.058
https://doi.org/10.1364/JOSAB.27.002165
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1021/nl301708e
https://doi.org/10.1021/nl301708e
https://doi.org/10.1063/1.4754616
https://doi.org/10.1063/1.4754616
https://doi.org/10.1364/OE.21.015014
https://doi.org/10.1063/1.4883243
https://doi.org/10.2307/2369245
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1163/156939389X00016
https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.082
https://doi.org/10.1063/1.5132995
https://doi.org/10.1063/1.5132995
https://doi.org/10.1364/OE.27.00A953
https://doi.org/10.1209/0295-5075/127/44001
https://doi.org/10.1063/1.2905286
https://doi.org/10.1063/1.2905286
https://doi.org/10.1103/PhysRevB.101.125201
https://doi.org/10.1103/PhysRevB.101.125201
https://doi.org/10.1103/PhysRevB.91.180202
https://doi.org/10.1103/PhysRevB.91.180202
https://doi.org/10.1051/epjap/2010027
https://doi.org/10.1051/epjap/2010027
https://doi.org/10.1103/PhysRevLett.120.063901
https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1364/OE.20.00A366
https://doi.org/10.1103/RevModPhys.71.S306
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1134/S0021364007180075
https://doi.org/10.1063/1.4913692
https://doi.org/10.1063/1.4913692
https://doi.org/10.1063/1.4905132
https://doi.org/10.1063/1.4905132
https://doi.org/10.1021/acs.nanolett.7b01422
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1103/PhysRevA.68.043823
https://doi.org/10.1364/OE.25.014746
https://doi.org/10.1364/OE.25.014746
https://doi.org/10.1103/PhysRevB.95.161409
https://doi.org/10.1103/PhysRevB.95.161409
https://doi.org/10.1103/PhysRevB.99.041403
https://doi.org/10.1103/PhysRevB.99.041403
https://doi.org/10.1103/PhysRevB.93.121403
https://doi.org/10.1103/PhysRevB.93.121403
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevB.81.165119
https://doi.org/10.1103/PhysRevB.81.165119
https://doi.org/10.1063/1.4916730
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1103/PhysRevB.99.035433
https://doi.org/10.1103/PhysRevB.99.035433
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRevB.98.115434
https://doi.org/10.1038/s41598-020-60603-4
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1086/150643
https://doi.org/10.1086/180574
https://doi.org/10.1088/1367-2630/ab494d
https://doi.org/10.1103/PhysRevApplied.12.014053


Khandekar, C., and A.W. Rodriguez, 2017, Appl. Phys. Lett. 111,
083104.

Kim, K., et al., 2015, Nature (London) 528, 387.
Kittel, A., W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and
M. Holthaus, 2005, Phys. Rev. Lett. 95, 224301.

Kittel, A., U. Wischnath, J. Welker, O. Huth, F. Rüting, and S.-A.
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