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ABSTRACT: The discovery that the near-field radiative heat
transfer enables to overcome the limit set by Planck’s law holds
the promise to have an impact in different nanotechnologies
that make use of thermal radiation, and the challenge now is to
find strategies to actively control and manipulate this near-field
thermal radiation. Here, we predict a huge anisotropic thermal
magnetoresistance (ATMR) in the near-field radiative heat
transfer between magneto-optical particles when the direction of
an external magnetic field is changed with respect to the heat
current direction. We illustrate this effect with the case of two
InSb particles where we find that the ATMR amplitude can
reach values of up to 800% for a magnetic field of 5 T, which is
many orders of magnitude larger than its spintronic analogue.
This thermomagnetic effect could find broad applications in the field of ultrafast thermal management as well as magnetic and
thermal remote sensing.
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In 1857, Thomson discovered that the resistivity of bulk
ferromagnetic metals depends on the relative angle, θ,

between the electric current and the magnetization direction.1

This phenomenon, known as anisotropic magnetoresistance
(AMR), plays nowadays a central role in the field of
spintronics2 and it is the basis of sensors for magnetic
recording.3,4 The AMR originates from the anisotropy of
electron scattering due to the spin−orbit interaction.4 In bulk
samples, the rotation of the magnetization leads to a relative
change in the resistance that varies as cos2 θ with an amplitude
on the order of 1%, while it has been recently shown that this
amplitude can be increased by an order of magnitude in atomic-
scale ferromagnetic junctions.5−10 In this work we predict the
existence of a thermal analogue of AMR in the context of
radiative heat transfer between magneto-optical (MO) particles.
In particular, we predict that, in the near-field regime, this effect
can be several orders of magnitude larger than its spintronic
counterpart.
In recent years, the field of thermal radiation has received a

new impetus from the confirmation that the radiative heat

transfer between two closely placed objects can greatly
overcome the far-field limit set by the Stephan-Boltzmann
law.11−24 This enhanced thermal radiation stems from the
contribution of evanescent waves (photon tunneling) that
dominate the near-field regime. At present, one of the central
challenges in this field is to actively control the near-field
radiative heat transfer (NFRHT). In this respect, several
interesting ideas have been put forward in recent years. One of
them is based on the use of phase-change materials,25,26 where
a change of phase, induced by applying an electric field or by
changing the temperature, results in a change in the radiative
heat transfer. A possibility that has been also theoretically
explored is the use of chiral materials with magnetoelectric
coupling in which the NFRHT can be tuned by ultrafast optical
pulses.27 Another idea to actively control the NFRHT is to use
ferroelectric materials under an external electric field,28
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although the predicted changes are rather small (<17%). More
recently, it has also been proposed that the heat flux in systems
involving semiconductors can be controlled by regulating the
chemical potential of photons by means of an external bias.29,30

On the other hand, magneto-optical (MO) objects have been
put forward as a promising avenue to control the NFRHT with
an external magnetic field.31 In particular, in the last two years
several thermomagnetic effects have been predicted, such as a
near-field thermal Hall effect,32 the existence of a persistent
heat current,33 or a giant thermal magnetoresistance.34

However, most of the attention has been devoted to the role
of the magnitude of the field. In this work, we show that the
NFRHT between two MO particles can be efficiently
controlled by changing the direction of the magnetic field, in
the spirit of the AMR in spintronics. This phenomenon, which
we term anisotropic thermal magnetoresistance (ATMR),
stems from the anisotropy of the photon tunneling induced
by the magnetic field. We discuss this effect through the
analysis of the radiative heat exchange between two InSb
particles, see Figure 1, and show that the ATMR can reach

amplitudes of 100% for fields on the order of 1 T and up to
1000% for a magnetic field of 6 T. These values are several
orders of magnitude larger than in standard spintronic
devices.3,4 More importantly, this thermomagnetic effect
paves the way for exploring heat transfer physics at pico- and
even subpicosecond time scales, which are even shorter than
the relaxation time of heat carriers. Moreover, we show that the
heat flux is very sensitive to the magnetic field direction, which
makes this effect very promising for the development of a new
generation of thermal and magnetic sensors.

■ RESULTS AND DISCUSSION
For illustrative purposes, we consider here two identical
spherical MO particles of radius r embedded in vacuum and
separated by a gap d, as sketched in Figure 1. We assume that
these particles are held at temperatures T + ΔT and T with ΔT
≪ T (linear response regime), and they are subjected to a
magnetic field H that forms an angle θ with the axis linking the
two particles, see Figure 1. To describe the radiative heat
transfer between these two particles within the framework of
fluctuational electrodynamics,35 we use the thermal discrete
dipole approximation (TDDA) of ref 36. This method allows
us to compute numerically the thermal radiative properties of
MO particles of arbitrary size and shape by discretizing the
objects in terms of point dipoles in the spirit of the DDA
approach.37,38 Within the TDDA approach, the radiative

thermal conductance between two objects is given by the
following Landauer-like formula
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where Θ(ω, T) = ℏω/[exp(ℏω/kBT) − 1] is the mean energy
of an harmonic oscillator in thermal equilibrium at temperature
T and ω θH( , , ) is the transmission coefficient that depends
on the frequency ω, the magnitude of the field H and its
direction. In general, this transmission coefficient has to be
computed numerically with the TDDA approach and we refer
to ref 36 for the technical details. To get some analytical insight,
we shall also make use of the dipolar approximation in which,
when the particles are small in comparison with the thermal
wavelength, λTh = ℏc/(kBT), they can be considered as single
point dipoles. In this case, the transmission coefficient
appearing in eq 1 adopts the form36
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Here, k0 = ω/c and α̂ is the polarizability tensor of the particles
that is given by α̂ = [α̂0

−1 − i1 ̂k03/(6π)]−1, where α̂0 = 3V(ϵ ̂ −
1 ̂)(ϵ ̂ + 21̂)−1 is the quasistatic polarizability tensor.39 Here, V =
(4/3)πr3 is the volumen of the particles and ϵ ̂ is the
corresponding permittivity tensor. Finally, ̂ is the dyadic
Green tensor given by40
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where r1,2 are the positions of the point dipoles, ρ = r1 − r2, ρ =
|r1 − r2|, and ⊗ denotes the exterior product.
As an example of a MO material, we consider n-doped InSb,

a polar semiconductor, that when subjected to an external
magnetic field becomes MO. For a magnetic field lying on the
xz plane and forming an angle θ with the z-axis, see Figure 1,
the permittivity tensor of InSb adopts the form41
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where

Figure 1. Sketch of the system with two identical magneto-optical
particles of radius r held at different temperatures and separated by a
gap d. A magnetic field H lying in the xz-plane is applied in a direction
forming an angle θ with the heat transport direction (z-axis).
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Here, ϵ∞ is the high-frequency dielectric constant, ωL is the
longitudinal optical phonon frequency, ωT is the transverse
optical phonon frequency, ωp

2 = ne2/(m*ϵ0ϵ∞) defines the
plasma frequency of free carriers of density n and effective mass
m*, Γ is the phonon damping constant, and γ is the free-carrier
damping constant. Finally, the magnetic field enters in these
expressions via the cyclotron frequency ωc = eH/m*. In what
follows, we shall consider the following set of parameters taken
from ref 41: ϵ∞ = 15.7, ωL = 3.62 × 1013 rad/s, ωT = 3.39 ×
1013 rad/s, Γ = 5.65 × 1011 rad/s, γ = 3.39 × 1012 rad/s, n =
1.07 × 1017 cm−3, m*/m = 0.022, and ωp = 3.14 × 1013 rad/s.
Let us start the discussion of the results by analyzing the

effect of the magnitude of the magnetic field in the radiative
heat transfer. In Figure 2a we show the spectral conductance,
defined as conductance per unit of photon energy, for two InSb
particles of radius 250 nm and a gap of 500 nm. The different
curves correspond to different values of the magnetic field that
is directed along the transport direction (z-axis). These results
were computed with the TDDA method of ref 36 discretizing
each particle in 1791 cubic dipoles, which was checked to be
enough to converge the results (see Section 1 in the Supporting
Information). As seen in Figure 2a, the spectral conductance in
the absence of field is dominated by two peaks that, as we shall
show below, are related to the localized plasmons of these
particles. As the field increases, new peaks appear that disperse
with the field following the magnetic-field-induced localized
plasmons of these particles (see below). Notice that in some
energy regions the magnetic field has a dramatic effect and it
changes the spectral conductance by more than 2 orders of
magnitude. Let us remark that the spectral conductance and the
transmission coefficient, see eq 1, have basically the same
energy dependence because at room temperature the thermal
factor ∂Θ(ω, T)/∂T is almost constant in the energy region of
interest.
Let us now explore the role of the field direction. For this

purpose, we show in Figure 2b the dependence of the spectral
conductance on the angle between the magnetic field and the
transport direction for a fixed field magnitude of H = 5 T. As
one can see, the rotation of the field strongly modulates the
height of the spectral conductance peaks, but it does not change
their position in energy. This modulation is the essence of the
ATMR effect and originates from the magnetic-field-induced
anisotropy in the photon tunneling. To quantify this effect we
define the ATMR ratio G(θ)/G(θ = 0) between the
conductance at a given angle θ and the conductance when
the field points along the transport direction (θ = 0). The
numerical results obtained with TDDA for this ATMR ratio for
the example of Figure 2 are shown in Figure 3a for different

Figure 2. (a) Room temperature spectral conductance as a function of
the photon energy for two InSb spheres of radius 250 nm separated by
a gap of 500 nm for different values of the magnetic field point along
the z-direction, see inset. (b) Corresponding spectral conductance for
a magnetic field magnitude of 5 T and different angles between the
magnetic field and the transport direction, see inset. The dashed line
corresponds to the case for zero field.

Figure 3. (a) Room-temperature thermal conductance as a function of
the angle θ between the magnetic field and the transport direction for
two InSb particles of radius 250 nm, a gap of 500 nm and different
values of the magnetic field magnitude. The conductance is normalized
by the conductance at θ = 0. (b) The same as in panel (a), but
calculated with the dipolar approximation.
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values of the field amplitude. As one can see, the conductance is
strongly modulated by the field direction and it is symmetric
around θ = 90°. Notice also that, irrespective of the field value,
the conductance is maximum at θ = 0. Moreover, for low fields
the conductance reaches a minimum at θ = 90°, while at higher
fields (above 1 T) the conductance exhibits two minima away
from 90°. More importantly, the ATMR ratio reaches, for
example, a minimum of 0.51 for H = 1 T and of 0.127 for H = 5
T. In terms of a thermal resistance, R = 1/G, these ATMR
ratios imply relative changes [R(θ) − R(θ = 0)]/R(θ = 0) of
approximately 95% and 700%, respectively, which are truly
remarkable when we compare them with the 1% relative change
in the resistance of spintronic devices for similar fields.4

In order to understand these results, we now resort to the
dipolar approximation in which each particle is considered to be
a single dipole. Using eqs 1−5, we have computed the ATMR
for the same parameters, as in Figure 3a, and the results are
shown in panel (b) of that figure. As one can see, the dipolar
approximation qualitatively reproduces all the salient features
discussed in the previous paragraph and this, in turn, justifies
the use of this approximation to elucidate the underlying
physics. As a next step, we want to understand the origin of the
peaks in the spectral conductance, see Figure 2a. For this
purpose, we investigate the electromagnetic modes supported
by a single dipole. A convenient way to reveal the frequency
and field dependence of these modes is to plot the total spectral
emissivity of a single dipole, which in turn is equal to the total
absorption cross section (its sum over the three spatial
d i r e c t i o n s ) . T h i s em i s s i v i t y i s g i v e n b y 3 6

ω χ= ̂H k( , ) (1/3) Tr{ }0 , and it is shown in Figure 4a as a
function of the photon energy and the magnetic field amplitude
for a particle radius of 250 nm. Notice that the maxima of the
emissivity nicely correspond to the peaks in the spectral
conductance in Figure 2a. These maxima reveal the existence of
two electromagnetic modes at zero field, which become up to
six at finite field. In fact, from an analysis of the quasistatic
polarizability, α̂0, one can show that these resonant modes can
be obtained from the solutions of

ωϵ̂ + ̂ = = ϵ + ϵ + − ϵHdet( ( , ) 21) 0 ( 2)[( 2) ]3 1
2

2
2

(8)

At zero field, ϵ1 = ϵ3 = ϵ and ϵ2 = 0, and the previous condition
reduces to the well-known condition for localized plasmons:42

ϵ(ω) = −2. In this case, the low-frequency resonance is,
roughly speaking, mainly due to a localized plasmon, while the
high-frequency one is more related to the optical phonons of
InSb. In the presence of magnetic field, the particles become
optically anisotropic. Then, each zero-field mode splits into
three modes, giving a total of six. Within each group of three,
one of the modes remains equal to the zero-field mode, while
the other two can be seen as the “left circular” and “right
circular” modes, being the “circular” ones those with a
dependence on the intensity of the magnetic field. Notice
that the condition of eq 8 is independent of θ, as expected since
we are dealing with an overall property of a spherical particle.
This explains why the peak positions in the spectral
conductance in Figure 2b do not depend on the field direction.
Now, to understand the angular dependence of the ATMR,

we use the fact that in the relevant frequency range the
polarizability can be approximated by the quasistatic polar-
izability (α̂ ≈ α̂0). With this idea, and neglecting multiple
scattering, that is, using ̂ ≈ ̂C in eq 4, it is straightforward to

show that the ATMR ratio in the dipolar approximation adopts
the form

θ
θ

θ θ
=

= + +G
G

A B
( )

( 0)
1 sin sin2 4
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where A < 0 and B > 0 (with B < |A|) are two coefficients that
depend on the magnetic field amplitude and the gap. Moreover,
one can show that at low fields (below 0.1 T), the relative
change in the conductance goes as [G(θ) − G(θ = 0)]/G(θ =
0) ∝ − H2 sin2(θ), that is, it is quadratic with the field. Figure 2
in the Supporting Information illustrates the quadratic behavior
of the conductance with the magnetic field within the rigorous
TDDA framework. Equation 9 describes very accurately the
angular dependence shown in Figure 3, for both the exact
results and those obtained with the dipolar approximation. This
also explains why at low fields there is a single minimum at θ =
90° and two minima for higher fields. Physically, this angular
dependence arises from the anisotropic thermal emission of
these particles induced by the external magnetic field. This
anisotropy leads in the near-field regime to the corresponding
anisotropy in the photon tunneling.
The strong modulation of the ATMR is quite generic and it

appears in a wide range of parameters. We illustrate this fact in
Figure 4b, where we show the ATMR ratio computed within
the dipolar approximation as a function of both θ and the gap
size ranging from 500 nm to 50 μm for particles of radius 250

Figure 4. (a) Total spectral emissivity of a InSb dipole of radius 250
nm as a function of the photon energy and the magnitude of the
magnetic field. The emissivity is normalized by the geometrical cross
section πr2. (b) Room-temperature thermal conductance as a function
of the angle θ between the magnetic field and the transport direction
and as a function of the gap for two InSb spheres of radius 250 nm and
a field magnitude H = 5 T. The conductance is normalized by the
conductance at θ = 0 for every gap and the calculations were done
using the dipolar approximation.
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nm. As one can see, the angular dependence of the ATMR ratio
remains rather constant in the near-field regime, that is, for gaps
below 10 μm, and its amplitude diminishes in the far-field
regime. In all cases, this dependence is accurately described by
eq 9. Additionally, in Figure 3 in the Supporting Information
we show how robust the ATMR is under variations of the free-
electron damping in eq 7.
Let us now discuss some potential applications of the ATMR

effect. For small changes in the field direction, the heat
conductance varies quadratically with the angle θ, which shows
that the heat flow can be efficiently modulated with a small
variation of the magnetic field. The operational speed of such a
modulation is only limited by the induction mechanisms used
to tune the magnetic field so that the ATMR effect could be
used to investigate heat transfer at few picoseconds scale. Thus,
it could be used to investigate out-of-equilibrium heat transfer
processes at the time scale of heat carrier relaxation. In addition,
the ATMR effect could be implemented to make local
measurements of temperature gradient as well as a thermal
sensing of magnetic field orientation.
So in summary, we have predicted a thermal analogue of the

AMR that is widely used in spintronics and proposed its use for
an active control of near-field radiative heat transfer between
MO objects. We have illustrated this effect with the case of two
InSb particles and shown that the amplitude of the modulation
of the magnetoresistance can be orders of magnitude larger
than in electronic devices. This effect paves the way for an
ultrafast thermal management with external magnetic fields.
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