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Abstract. The exact expression for the phase-dependent linear conductance of a weakly
damped superconducting quantum point contact is obtained. The calculation is performed by
summing the complete perturbative series in the coupling between the electrodes, thus taking into
account all possible multiple Andreev reflections inside the gap. The failure of any finite-order
perturbative expansion in the limit of small voltage and small quasiparticle damping is analysed
in detail. In the low-transmission regime this nonperturbative calculation yields a result which
is at variance with standard tunnel theory. Our result exhibits an unusual phase dependence at
low temperatures in qualitative agreement with the available experimental data.

In the last few years there has been renewed interest in the theory of superconducting weak
links associated with the increasing technological capability for the fabrication of nanoscale
superconducting devices. This opens up the possibility for a closer comparison between
theoretical models and clean experiments involving a few quantum conducting channels [1].
On the theoretical side and especially since the work of Klapwijket al [2], the crucial role
played by multiple Andreev reflections (MAR) in the transport properties of superconducting
contacts has become well established. However, quantitative results for the small-bias
regime are difficult to obtain due to the increasing number of MAR taking place within
the subgap region for decreasing voltages [3]. A more complete theoretical description
of the stationary and nonstationary transport properties of superconducting contacts with
arbitrary transparency at small bias voltages is therefore desirable. In this direction, there
have been a number of recent studies analysing the transport properties of a single-channel
superconducting quantum point contact (SQPC) [4].

In this paper we present a theoretical approach for the calculation of the dc and ac
currents of an SQPC for arbitrary values of the contact transparency, bias voltage and
temperature. We shall concentrate on the limitV/1 → 0 for which we obtain an exact
analytical expression of the total current. The nondissipative part of this current agrees with
previously known results in both the tunnel and the ballistic regimes. From the dissipative
part we extract an expression for the phase-dependent linear conductance which, in the limit
of small barrier transparency, differs from the standard tunnel theory result and is consistent
with the available experimental data.

We consider a short weak link as represented schematically in figure 1. It consists
of two wide electrodes connected by a narrow constriction of lengthLc much smaller
than the superconducting coherence lengthξ0, and having a width comparable to the
Fermi wavelengthλF . For simplicity we shall consider the case of a single quantum
conducting channel. In previous work we have analysed the dc transport properties of such
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Figure 1. Schematic representation of our discretized point contact model.

a system by solving self-consistently the Bogoliubov–de Gennes equations written in a local
representation [5]. These equations can be derived from a Hamiltonian having the form [5]

Ĥ =
∑
i,σ

(εi − µ)c
†
iσ ciσ +

∑
i 6=j,σ

tij c
†
iσ cjσ +

∑
i

(1∗
i c

†
i↓c

†
i↑ + 1ici↑ci↓) (1)

where the indexesi and j run over the discrete sites describing the system. As shown in
[5] for the case of a short weak link (Lc � ξ0) the self-consistent order parameter profile
can be well approximated by a step function. Thus for a symmetrical contact we have
|1L| = |1R| = 1 andφ = φL − φR, where1 is the gap parameter,φL andφR being the
superconducting phases on each of the electrodes.

Under these conditions and in the presence of an applied bias voltageeV = µL−µR, the
system dynamics can be studied by analysing the following time-dependent Hamiltonian:

Ĥ (τ ) = ĤL + ĤR +
∑

σ

(teiφ(τ)/2c
†
Lσ cRσ + te−iφ(τ)/2c

†
Rσ cLσ ) (2)

whereHL andHR describe the regions where the order parameter is homogeneous while the
hopping term describes the charge transfer through the quantum channel coupling the two
electrodes. The coupling parametert fixes the normal-transmission coefficient of the contact
[6] and φ(τ) = φ0 + 2eV τ/h̄. Notice that within this representation the time-dependent
phase only appears in the phase factors multiplying the hopping elements [7].

We would like to emphasize that starting from this simple contact model a unified
description of N–N [6], N–S [8] and S–S [5] contacts can be obtained. The definition of
the normal-transmission coefficientα in terms of the microscopic parameters of the model
allows us to establish a complete correspondence with the scattering approach [9].

The transport properties of this model can be analysed using nonequilibrium Green
functions technique [3, 5, 10] with the time-dependent coupling term treated as a
perturbation. The most relevant quantity in this formalism is the nonequilibrium distribution
function G+,−, which in a superconducting broken-symmetry (Nambu) representation is
defined by

Ĝ+−
i,j (τ, τ ′) = i

( 〈c†
j↑(τ ′)ci↑(τ )〉 〈cj↓(τ ′)ci↑(τ )〉

〈c†
j↑(τ ′)c†

i↓(τ )〉 〈cj↓(τ ′)c†
i↓(τ )〉

)
.
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In terms of these functions the current through the contact can be written as

I (τ ) = 2e

h̄

[
t̂ (τ )Ĝ+−

RL (τ, τ ) − t̂†(τ )Ĝ+−
LR (τ, τ )

]
11

(3)

where t̂ is the matrix hopping element in the Nambu representation

t̂ =
(

teiφ(τ)/2 0
0 −te−iφ(τ)/2

)
. (4)

Within this perturbative approach the standard tunnel theory expression for the current
I = IJ sinφ + G0(1 + ε cosφ)V [11] can be obtained to the lowest order int . The
conductanceG(φ) = G0(1+ε cosφ) thus obtained becomes a divergent quantity in the limit
V → 0 [12]. In order to ensure the existence of a linear regime, a finite-energy relaxation
rate η must be introduced into this superconducting mean-field theory (η represents the
damping of the quasiparticle states, which in a real system is always present due to inelastic
scattering processes). As we shall see, according to the value ofη and the normal-
transmission coefficientα, two different regimes can be identified: the weakly damped
regime, for whichη � α1, and the strongly damped case, whereη � α1. In this work
we are mostly concerned with the analysis of the first regime, where the most interesting
effects appear.

A remarkable fact about the perturbative expansion in the weakly damped situation
is that contributions corresponding to higher-order processes turn out to be increasingly
divergent in the zero-bias limit [13]. In particular, it can be easily demonstrated that
contributions to the total current of ordert2n, n > 2, diverge like∼ t2n/ηn−1 (the lowest-
order contribution diverges as∼ t2 ln η). This result is a direct consequence of the increasing
contribution from the superconducting gap edge singularities. Therefore, a correct answer
cannot be found in principle by means of a finite-order perturbative expansion. This fact
has been usually considered as the main drawback of the Hamiltonian approach [14].

One could draw a formal analogy with the case of a high-density electron gas, where
the diagrammatic expansion in the bare Coulomb potential is also increasingly divergent.
As in that case, the solution can be found by ‘dressing’ the perturbative potential, i.e.t̂ . In
the present problem the dressed quantities (left–right coupling, propagators) can be exactly
obtained in the zero-voltage limit by evaluating the complete perturbative series. To this
end, we find it convenient to express all quantities in terms of a renormalized left–right
coupling element which satisfies the following Dyson equation:

T̂ a,r (τ, τ ′) = t̂ (τ ) δ(τ − τ ′) + t̂ (τ )ĝ
a,r
R (τ − τ1)t̂

†(τ1)ĝ
a,r
L (τ1 − τ2)T̂

a,r (τ2, τ
′) (5)

where ĝ
a,r
L and ĝ

a,r
R represent the (advanced, retarded) Green functions of the uncoupled

left and right electrodes respectively (integration over internal times is implicitly assumed).
From equation (5), the relation between the renormalized couplingT̂ and the exact (advanced
and retarded) Green functions is easy to obtain. In the same way, the nonequilibrium
distribution functionĜ+−, which is related toĜr and Ĝa, can be written in terms of
T̂ [15].

Integral equations like equation (5) adopt a simpler form when Fourier transformed with
respect to their temporal arguments [3, 15]. Defining the Fourier componentsT̂n,m(ω) as

T̂n,m =
∫

dτ

∫
dτ ′ e

−i

(
nφ(τ)−mφ(τ ′)

)
/2

e−iω(τ−τ ′)T̂ (τ, τ ′) (6)

the total current can be expressed in the form

I (τ ) =
∑
m

Im exp imφ(τ)/2
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where the complex coefficients,Im, do not depend onφ(τ) and are given by

Im = 2e

h

∫
dω

∑
n

[
T̂ r

0,nĝ
+−
Rn,n

T̂ r†
n,mĝa

Lm,m
− ĝr

L0,0
T̂ r

0,nĝ
+−
Rn,n

T̂ r†
n,m

+ĝr
R0,0

T̂
a†

0,nĝ
+−
Ln,n

T̂ a
n,m − T̂

a†
0,nĝ

+−
Ln,n

T̂ a
n,mĝa

Rm,m

]
11

. (7)

It can be seen from equation (5) thatT̂n,m = 0 for evenn − m and therefore only
even Fourier components of the current are different from zero. The componentsT̂n,n+m

correspond to processes where at least(|m| − 1)/2 Andreev reflections are involved.
For the following analysis it is useful to decompose the total current into dissipative

and nondissipative contributions. The supercurrent part, given by

IS = −2
∑
m>0

Im(Im) sin[mφ(τ)]

tends to a finite value in the limitV → 0. On the other hand, the dissipative part is given
by

ID = I0 + 2
∑
m>0

Re(Im) cos[mφ(τ)]

and goes to zero asID ∼ G(φ)V , G(φ) being the zero-voltage conductance. The linear
term can be straightforwardly derived from equation (7) by expanding the Fermi functions
appearing inĝ+−

L,R [16] up to first order inV and evaluating the remaining factors at zero
voltage.

In this limit the Fourier components satisfŷTn,m = T̂0,m−n ≡ T̂m−n, and can be shown
to obey the simple recursive relations

T̂n+2(ω) = z(w)T̂n(ω)

T̂−n−2(ω) = z(ω)T̂−n(ω) (n > 1)
(8)

where z(ω) is a scalar complex function generating an extra Andreev reflection. In the
weakly damped regime and within the energy interval1 > |ω| > 1

√
1 − α this function

reduces to a phase factorz(ω) = exp iϕ(ω), where

ϕ(ω) = arcsin

(
2

α12

√
12 − ω2

√
ω2 − (1 − α)12

)
. (9)

This clearly shows that within this energy interval all multiple-scattering processes
(which correspond to MAR) become equally important. Therefore, all Fourier components
contribute to the renormalized coupling in this region, giving rise to singularities which are
associated with the existence of interface bound states. In fact, the renormalized coupling
in this energy region can be easily obtained from equations (8) and (9), giving∑

n

T̂neinφ/2 = T̂1eiφ/2ei(ϕ+φ)

1 − ei(ϕ+φ)
+ T̂−1e−iφ/2ei(ϕ−φ)

1 − ei(ϕ−φ)

which exhibits singularities atϕ(ω) = ±φ. From equation (9) it follows that these
singularities correspond to simple poles at

ωS = ±1

√
1 − α sin2(φ/2).

These are the interface bound states inside the gap of a superconducting point contact, as
derived by different authors [17, 18].

In the same way, the complete harmonic series must be evaluated in order to obtain the
contributions to both the dissipative and the nondissipative parts of the current coming from
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the energy range1 > |ω| > 1
√

1 − α. Again, these infinite summations can be easily
performed making use of the recursive relations of equation (8). It is then found that the
integrand for both parts of the current becomes singular atω = ±ωS . The contribution of
these poles yields

IS(φ) = e1

2h̄

α sinφ√
1 − α sin2(φ/2)

tanh

(
βωS

2

)
(10)

and

ID(φ) = 2e2

h

π

16η

[
1α sinφ√

1 − α sin2(φ/2)
sech

(
βωS

2

)]2

βV. (11)

In equation (10) the previously known result for the zero-bias supercurrent is recovered
[19, 5]. This expression interpolates between the Ambegaokar–Baratoff result for the tunnel
limit [20] and the Kulik–Omel’yanchuk one for the ballistic (α → 1) regime [17].

The expression for the dissipative current given above is the main result of this work.
The linear conductance thus obtained depends onη as ∼ 1/η, i.e. is proportional to the
number of MAR taking place before the quasiparticles are inelastically scattered (roughly
given byα1/η). This means that for a weakly damped contact MAR dominates over single-
quasiparticle tunnelling [21]. This is also reflected in theα2-dependence of equation (11).

Our theory yields a phase-dependent linear conductance which strongly deviates from
the tunnel theory result. In the limit of low barrier transparency, equation (11) predicts
G(φ) ∼ 1 − cos(2φ) instead of the formG(φ) ∼ 1 + ε cosφ of standard tunnel theory.
Therefore, the tunnel theory linear conductance can never be recovered in the weakly
damped regime. On the other hand, with increasing values ofη MAR are progressively
damped (the functionz(ω) is no longer a phase factor, decaying exponentially withη);
eventually, whenη � α1 only the lowest-order processes contribute to the current and the
tunnel theory expression is recovered. Figures 2(a) and 2(b) illustrate in an explicit way
the transition from the weakly to the strongly damped regimes, allowing one to establish
precisely the range of validity of our equation (11) forG(φ). In figure 2(a) the ratio between
the exact linear conductance, obtained by solving equations (5) and (7) numerically, and
the analytical expression for equation (11), are plotted as functions ofη/1 for increasing
values ofα. As can be observed, this ratio tends to unity forη/1 sufficiently small, within
the range whereη < α1. On the other hand, the validity of standard tunnel theory in
the strongly damped regime is illustrated in figure 2(b), where the ratio between the exact
numerical conductance and the tunnel theory (O(t2)) conductance is represented against
η/1. From this figure it is clear that tunnel theory becomes valid only for sufficiently small
α, provided thatα � η/1. In a real contact, where the inelastic scattering rateη can be
expected to be a small fraction of1, our expression forG(φ) will be valid provided that
the transparency is not extremely low.

It is worth mentioning that the strong sensitivity of the dissipative current to a
phenomenological inelastic scattering rate was pointed out by several authors during the
1970s. This fact was used for trying to reach an agreement between the standard tunnel
theory conductance and the experimental results (for a review on the discrepancy between
standard tunnel theory and experiments, usually referred to as the ‘cos(φ)-problem’, see
[12] and [22]). However, as shown above, when the conditionη < α1 holds, the standard
tunnel theory cannevergive the correct result.

Another interesting limiting case of equation (11) corresponds to the ballistic regime. In
this case and forT ∼ TC , G(φ) behaves approximately as 1− cosφ, in agreement with the
result given by Zaitsev [10]. However, the most unusual phase dependence ofG(φ) appears



454 A Levy Yeyati et al

Figure 2. The transition between the weakly and strongly damped regimes. The ratio between
the exact numerical conductance and: (a) the analytical expression given in equation (11); and
(b) the tunnel theory (O(t2)) conductance, plotted againstη/1. The values ofα considered are
(i) 0.15, (ii) 0.48, (iii) 0.64, (iv) 0.78, (v) 0.88, (vi) 0.95 and (vii) 0.99. In all cases the phase
is the one corresponding to the maximum supercurrent.

for high values of the transmission and low temperatures (kBT < 1). This is illustrated in
figure 3, whereG(φ) is plotted for two different temperatures and increasing values of the
transmission.

The only experiment where the full phase dependence ofG(φ) was measured, as far as
we know, is that of [23]. Their measuredG(φ) strongly deviates from a cosφ-like form,
being almost negligible for small values ofφ and exhibiting a large increase at around
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Figure 3. The phase dependence of the linear conductance given by equation (11) for two
different temperatures and increasing values of the normal-transmission coefficient (G(φ) is
normalized to its maximum value).

φ ∼ π/2. As can be observed in figure 3, this behaviour is in qualitative agreement
with our results for sufficiently large transmission. However, a detailed comparison would
require a more exhaustive experimental study ofG(φ) for different barrier transparencies
and temperature regimes. We believe that these measurements are now becoming feasible
with recent advances in the fabrication of nanoscale superconducting contacts [1].

In conclusion, it has been shown that a nonperturbative calculation is needed for
obtaining the total current through a weakly damped superconducting point contact in the
linear regime. Using a simple model Hamiltonian we are able to obtain exactly the phase-
dependent linear conductance. The resulting expression is in good agreement with the
available experimental data and we believe that it can provide motivation for more detailed
experimental studies.
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