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Abstract We study theoretically the electronic and transport properties of a diffu-
sive superconductor-normal metal-superconductor (SNS) junction in the presence of
a perpendicular magnetic field. We show that the field dependence of the critical
current crosses over from the well-known Fraunhofer pattern in wide junctions to a
monotonic decay when the width of the normal wire is smaller than the magnetic
length ξH = √

Φ0/H , where H is the magnetic field and Φ0 the flux quantum. We
demonstrate that this behavior is intimately related to the appearance of a linear array
of vortices in the middle of the normal wire, the properties of which are very similar to
those in the mixed state of a type II superconductor. This novel vortex structure is also
manifested in a strong modulation of the local density of states along the transversal
dimension, which can be measured with existing experimental techniques.

PACS 74.45.+c · 74.50.+r · 74.25.Qt

1 Introduction

When a Josephson tunnel junction is subjected to a perpendicular magnetic field, the
superconducting phase difference varies along the barrier splitting up the junction
into regions in which the current through it has opposite signs, and the critical cur-
rent is thus greatly reduced [1]. In the case of a rectangular and uniform tunnel junc-
tion, the field dependence of the critical current is given by a Fraunhofer diffraction
pattern formula, which in particular means that the supercurrent vanishes every time
that the magnetic flux enclosed in the junction, Φ , is a multiple of the flux quantum
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Φ0 = h/2e. This effect was first observed by Rowell [2] in the context of tunnel junc-
tions and since then it has been reported in many other weak links [3, 4]. In particular,
this behavior has also been found by many authors in the case of diffusive SNS junc-
tions [5–10], where the Josephson coupling is established by the so-called proximity
effect [11], in which Cooper pairs from the superconducting banks diffuse into the
normal metal. In this sense, it came to a surprise the recent experimental results of
Angers et al. [12] that showed that diffusive junctions with dimensions comparable
or smaller than the superconducting coherence length exhibit a monotonic decay of
the critical current with magnetic field, i.e. the absence of magnetic interference pat-
terns. These puzzling results have motivated us to revisit the question of what is the
magnetic field dependence of the critical current of diffusive SNS junctions [13]. The
goal of this work is provide a detailed answer to this question.

It is worth mentioning that the influence of the width of the normal wire in the
shape of interference patterns of SNS junction has already been discussed in the con-
text of ballistic junctions. A few years ago, Heida et al. [14] measured the critical
current as a function of a perpendicular magnetic field in ballistic SNS junctions of
comparable length and width and found a periodicity close to 2Φ0, instead of the
standard Φ0 of the Fraunhofer pattern. This was qualitatively explained in Refs. [15,
16] in terms of the classical trajectories associated with current-carrying Andreev
states in a normal clean wire.

In Ref. [13] we have shown that the resolution of the experimental puzzled ex-
plained above is intimately related to the issue of the formation of a magnetic vortex
structure in the normal conductor. Since Abrikosov’s prediction of the existence of
vortices in type II superconductors [17, 18], their physics has attracted a huge at-
tention in the last five decades. In particular, vortex matter in mesoscopic supercon-
ductors has been an active field in the last years [19]. It has been shown that basic
properties such as critical fields [20] and the magnetization [21] depend crucially on
the size and topology of mesoscopic samples, which in turn determine the vortex
structure. There is also a great interest in the study of nucleation of superconductivity
and vortex matter in hybrid structures [22]. However, little attention has been paid to
the formation of vortices inside non-superconducting materials. Our goal here is to
answer the following fundamental questions: Is it possible to induce a vortex struc-
ture in a normal wire by proximity to a superconductor? If so, what are the properties
of such proximity vortices and their influence on the dc Josephson effect?

The relation between the behavior of a Josephson junction in a magnetic field
and that of type II superconductor has been discussed by many authors. Such re-
lation depends on the transverse dimensions of the weak link, the normal wire in
our case, relative to the so-called Josephson penetration depth, which is given by
λJ = √

�/2μ0ejcd , where jc is the critical current per unit area and d is the effec-
tive length of the junction including the London penetration depths in the leads. This
length scale is of the order of 1 mm in ordinary tunnel junctions. In the case in which
the width of the junction is smaller than λJ, which is the limit of interest for this work,
the Josephson currents are unable to screen the external magnetic field. In this case,
as explained above, the local value of the Josephson current oscillates sinusoidally
with the position along the junction transverse direction alternating its sign. The net
current cancels to zero over each complete cycle. These cycles are sometimes re-
ferred to as “Josephson vortices” because they carry no net current [4], but it must be
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stressed that they do not share other properties with the Abrikosov vortices. Finally,
the presence of these “vortices” gives rise to the Fraunhofer pattern. In the case in
which the transversal dimensions are larger than λJ and for weak applied fiels, the
supercurrent tends to screen the field from the interior of the junction. Then, above
some critical field, flux completely penetrates the junction, but the Josephson vor-
tices are no longer sinusoidal. Instead, they acquire a solution character forming a
one-dimensional vortex-like structure, whereas in a type II supeconductor Abrikosov
vortices form a two-dimensional lattice. But again, the nature of the vortex is also
different, since there is no normal core. For a detailed discussion of this latter limit
see Chap. 5 of Ref. [3] and Ref. [23].

In order to answer the questions posed above, in this work we study theoreti-
cally the supercurrent of a diffusive SNS junction in the presence of a perpendicular
magnetic field, H . By solving the full two-dimensional Usadel equations [24], we
are able to describe the condensate function induced in the normal region as well
as the critical current for arbitrary length (L), width (W ), temperature and quality
of the SN interfaces. We find that when W is smaller than the magnetic length de-
fined as ξH = √

Φ0/H , the field just acts as a pair-breaking mechanism that supresses
monotonically the superconductivity in the normal wire. This implies in practice that
the critical current decays roughly in a exponential manner with the field and thus,
there is no interference pattern. As the width increases we find the appearance of
a linear array of vortices located exactly in the middle of the normal wire. These
vortices have similar properties to those in the mixed state of a type II superconduc-
tor [17, 18]. In particular, they exhibit normal cores, circulating currents around the
cores and quantization of the circulation of the phase of the superconducting corre-
lations. The consequence of this vortex structure is the appearance of an interference
pattern in the critical current that tends to the Fraunhofer pattern in the wide-junction
limit (W � L,ξH). This peculiar vortex structure is also manifested in a strong mod-
ulation of the local density of states (DOS) in the normal wire. As one moves along
the transversal direction, the local DOS becomes that of the normal state in the center
of the vortices and exhibits a minigap between them, which depends on the value of
local gauge-invariant superconducting phase difference and on the Thouless energy
εT = �D/L2, where D is the diffusion constant. This local DOS constitutes an un-
ambiguous signature of the existence of this novel vortex structure and it is amenable
to measurements with the existent experimental techniques.

The rest of the paper is organized as follows. In the next section we present the
general formalism based on the quasiclassical theory of superconductivity, which
will be used throughout this work to compute the electronic and transport properties
of diffusive SNS junctions. Then, in Sect. 3 we study the limit of weak proximity
effect, where the general equations can be greatly simplified and one can obtain ana-
lytical results for both the vortex structure and the critical current in different limits.
Section 4 is devoted to the analysis of highly transparent junctions. In this case, we
concentrate ourselves in the analysis of the local density of states and pair correlations
in the normal wire and in the magnetic field dependence of the critical current for ar-
bitrary aspect ratio. Finally, we conclude in Sect. 5 by summarizing our main results,
discussing their comparison with recent experiments and proposing the realization of
new ones to confirm our predictions.
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2 The Quasiclassical Formalism

We consider a SNS junction as the one depicted in Fig. 1, where N is a diffusive
normal metal of length L and width W coupled to two identical superconducting
reservoirs with an energy gap Δ. The normal film lies in the xy-plane, where x ∈
[0,L] and y ∈ [−W/2,W/2] and is subjected to an uniform external field H = Hẑ

perpendicular to the film. For the sake of simplicity, we assume that the thickness of
the normal wire is smaller than the London penetration depth, which implies that the
field penetrates completely in the normal region. We also neglect both the suppression
of the pair potential in the leads near the interfaces and the inelastic interactions
in the normal wire. Additionally, we shall assume that the field does not affect the
superconductivity in the electrodes.

In order to describe the electronic and transport properties of these junctions we
use the quasiclassical theory of superconductivity in the diffusive limit [24, 25],
where the mean free path is much smaller than the superconducting coherence length
in the normal metal, ξ = √

�D/Δ, where D is the diffusion constant. Since we shall
only deal with equilibrium quantities, this theory can be formulated in terms of mo-
mentum averaged retarded Green’s function ĜR(R, ε), which depends on position R
and an energy argument ε. This propagator is a 2×2 matrix in electron-hole (Nambu)
space

ĜR =
(

gR f R

f̃ R g̃R

)
, (1)

which satisfies the stationary Usadel equation, which in the N region reads [25]

�D

π
∇ · (ĜR∇̌ĜR) + ε[τ̂3, Ĝ

R] = ieD

π
A · [τ̂3, Ĝ

R∇̌ĜR]. (2)

Here, A is the vector potential, ∇̌ = ∇1̂ − (ie/�)Aτ̂3 and τ̂3 is the Pauli matrix in
electron-hole space. In the previous equation we have already used the Coulomb
gauge ∇ · A = 0. Equation (2) is supplemented by the normalization condition
(ĜR)2 = −π21̂. In general, the Usadel equation has to be solved together with the
Maxwell equation ∇ × H = μ0j in a self-consistent manner. However, we are in-
terested here in the case where the width W is smaller than the Josephson penetra-
tion length λJ. In this case, one can ignore the screening of the magnetic field by
the Josephson currents and the field is equal to the external one (for a discussion of
this issue, see Ref. [3]). Finally, we have to provide the boundary conditions for (2).

Fig. 1 (Color online) Top view
of the diffusive SNS junction
under consideration, where the
normal wire has a length L and
a width W . The wire thickness
is assumed to be much smaller
than the London penetration
depth. The magnetic field is
applied perpendicular to the
plane of the page (H = Hẑ)
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For the two SN interfaces we use the boundary conditions introduced in Refs. [26,
27], which allow us describing the system for arbitrary transparency of the inter-
faces. These conditions for an spin-conserving interface are expressed in terms of the
Green’s functions as follows

rĜR
β

(
∂x 1̂ − ie

�
Axτ̂3

)
ĜR

β = 2π2[ĜR
β , ĜR

α ]
4π2 − τ({ĜR

β , ĜR
α } + 2π2)

, (3)

where ĜR
β(α) refers to the retarded Green’s functions on side β(α) of the interface and

τ is the normal transmission coefficient of the interface conduction channels. Here,
we assume that all the channels have the same transparency and define r = GN/GB as
the ratio between the normal state conductance of the wire, GN, and the conductance
of the barriers, GB, which we assume to be identical. For the case of transparent
interfaces, i.e. for r = 0, these conditions simply reduce to the continuity of Green’s
functions in both SN interfaces. On the other hand, for the metal-vacuum lower and
upper borders in the normal wire, the appropriate conditions are(

∂y 1̂ − ie

�
Ayτ̂3

)
ĜR|y=±W/2 = 0̂, (4)

which simply express the fact that the current density in the y-direction vanishes at
the edges of the sample.

We are interested in different physical properties that can be conveniently ex-
pressed in terms of the quasiclassical Green’s functions. For instance, the local den-
sity of states (DOS) is given by ρ(R, ε) = − Im{gR(R, ε)}/π . In order to quantify
the superconducting correlations in the normal wire, we introduce the pair correla-
tion function defined as

Ψ (R) = 1

4πi

∫
dε[f R(R, ε) − f A(R, ε)] tanh(βε/2), (5)

where β = 1/kBT . Notice that this quantity, apart from the attractive coupling con-
stant, describes the pair potential in a superconductor and it is non-zero inside the
normal metal due to the proximity effect. Finally, the current density, j(R), can be
written in terms of the anomalous Green’s functions as

j(R) = σN

4π2e

∫ ∞

−∞
dε tanh

(
βε

2

)
Re

{
f R∇f̃ R − f̃ R∇f R + 4ie

�
Af Rf̃ R

}
, (6)

where σN is the conductivity of the normal wire. The net current is finally obtained
integrating jx across the transversal direction.

At this stage the technical challenge is to solve (2). This equation is indeed a set
of nonlinear second-order partial differential equations, whose resolution is a formi-
dable task. The main problem lies in the fact that the problem is in general of two-
dimensional nature, as we proceed to explain. By choosing, for instance, the gauge
A = −Hyx̂, one can identify in (2) the length ξH = √

Φ0/H as the characteristic
length scale for the variation of the Green’s functions in the y-direction due to the
magnetic field. Therefore, if the width W is larger than ξH, which will always occur
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for sufficiently high fields, no matter how small W is, the problem becomes two-
dimensional. It is worth stressing that, to our knowledge, so far the solution of the
Usadel equations in 2D situations has not been reported in the literature.

In the next section we shall show that one can make a lot progress analytically in
several limiting cases, but the rest of this section is devoted to explain how (2) can be
solved numerically for arbitrary range of parameters. For this purpose, the first step
is to introduce a suitable parametrization, which accounts automatically for the nor-
malization condition. Our choice here is the so-called Riccati parametrization [28],
in which for spin-singlet superconductors in an equilibrium situation the retarded
Green’s functions are parametrized in terms of two coherent functions γ R(R, ε) and
γ̃ R(R, ε) as follows

ĜR = −iπ

(1 + γ Rγ̃ R)

(
1 − γ Rγ̃ R 2γ R

2γ̃ R −1 + γ Rγ̃ R

)
. (7)

Using these definitions and the Usadel equation (2), one can obtain the following
equations for γ R and γ̃ R in the normal wire region [29](

∇ − 2ie

�
A

)2

γ R + f̃ R

iπ

[(
∇ − 2ie

�
A

)
γ R

]2

= −2i
ε

�D
γ R,

(
∇ + 2ie

�
A

)2

γ̃ R + f R

iπ

[(
∇ + 2ie

�
A

)
γ̃ R

]2

= −2i
ε

�D
γ̃ R.

(8)

Notice that the equation for γ̃ R can be obtained from the equation for γ R by ex-
changing γ R by γ̃ R (and vice versa) and changing the sign of the vector potential. If
we choose now the gauge A = −Hyx̂ and introduce the dimensionless coordinates
x̃ ∈ [0,1] and ỹ ∈ [−1/2,1/2], we can write the previous equations in the following
explicit form

∂2
x̃ γ R +

(
L

W

)2

∂2
ỹ γ R − 2γ̃ R

1 + γ Rγ̃ R

(
[∂x̃γ

R]2 +
(

L

W

)2

[∂ỹγ
R]2

)

+ 4isỹ

(
1 − γ Rγ̃ R

1 + γ Rγ̃ R

)
∂x̃γ

R − 4s2ỹ2
(

1 − γ Rγ̃ R

1 + γ Rγ̃ R

)
γ R = −2i

ε

εT
γ R. (9)

Here, we have defined the parameter s = πΦ/Φ0, where Φ = HLW is the flux en-
closed in the junction. There is a second equation for γ̃ R that can be obtained from
this one by doing the replacements explained above.

Finally, we have to specify the boundary conditions for these coherent functions.
For the two SN interfaces, the conditions of (3) can be expressed in terms of the
coherent functions as follows

r
∂x̃γ

R
β + (γ R

β )2∂x̃ γ̃
R
β − 2isỹγ R

β (1 − γ R
β γ̃ R

β )

(1 + γ R
β γ̃ R

β )2

= (1 − γ R
β γ̃ R

β )γ R
α − (1 − γ R

α γ̃ R
α )γ R

β

(1 + γ R
β γ̃ R

β )(1 + γ R
α γ̃ R

α ) − τ(γ R
α − γ R

β )(γ̃ R
α − γ̃ R

β )
. (10)
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This equation is coupled to a second one obtained by making the replacements ex-
plained above. The conditions of (4) for the borders of the normal wire adopt now the
simple form:

∂ỹγ
R|ỹ=±1/2 = ∂ỹ γ̃

R|ỹ=±1/2 = 0. (11)

Equation (9) and the corresponding one for γ̃ R form a set of coupled second-
order nonlinear differential equations, whose general solution is not possible to ob-
tain analytically. In order to solve them numerically, we have adapted the so-called
relaxation method for boundary value problems [30] to the case of partial differen-
tial equations. Briefly, the idea goes as follows. We first discretize the equations by
using finite differences. The corresponding algebraic nonlinear system is then solved
using the Newton-Raphson method [30]. In this method a nonlinear system of equa-
tions is solved iteratively until convergence. One starts with a guess for the solution
and it is updated in every step with the solution of the corresponding linearized sys-
tem [30]. The key problem here is the huge dimension of these linear systems. To
give an idea, let us say that we want to use a fine grid of 100×100 points to describe
our two-dimensional system. This means that one has to solve a set of 104 equations.
Moreover, one has to do it several thousand times to integrate the current density
for a particular value of the phase difference and magnetic field. What finally makes
the resolution possible at all is the fact that the algebraic system resulting from the
discretization is a block-tridiagonal system that can be solved very efficiently using
special algorithms of linear algebra such as the so-called Thomas algorithm.

3 Weak Proximity Effect

In the limit of very low transparent interfaces (tunnel barriers), or for temperatures
close to the superconducting critical temperature, the anomalous Green’s functions
are small and one can linearize the Usadel equation (2). It is convenient for the sub-
sequent analysis to use Matsubara-Green’s functions, which can be easily obtained by
making the substitution in all the equations of the previous section: ε → iωn, where
ωn = πkBT (2n + 1) are the Matsubara energies.

In this weak proximity limit the Green’s functions can be approximated by
(see (1))

Ĝ(ωn) ≈
(

1 f (ωn)

f̃ (ωn) −1

)
. (12)

The functions f and f̃ fulfill the following linearized equations which for the gauge
A = −Hyx̂ are obtained from (9):

∂2
x̃ f +

(
L

W

)2

∂2
ỹ f + 4isỹ∂x̃f − 4s2ỹ2f = 2

|ωn|
εT

f, (13)

∂2
x̃ f̃ +

(
L

W

)2

∂2
ỹ f̃ − 4isỹ∂x̃ f̃ − 4s2ỹ2f̃ = 2

|ωn|
εT

f̃ . (14)
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Notice that now the equations for f and f̃ are uncoupled and have an almost iden-
tical form. The linearized boundary conditions at the SN interfaces for the previous
equations can be written as

∓r(∂x̃fβ − 2isỹfβ) = fα; ∓r(∂x̃ f̃β + 2isỹf̃β) = f̃α, (15)

where the minus sign is for the left interface and the plus sign for the right one. Here,
fβ(α) refers to the condensate function evaluated on side β(α) of the interfaces. As
a convention we denote by α the point in the interior of the electrodes and by β

the points right at the interfaces on the normal wire side. The anomalous Green’s
functions of the superconducting leads α = l, r , are given by

fl,r = fS exp(±iφ/2); f̃l,r = −fS exp(∓iφ/2), (16)

where fS = iΔ/
√

Δ2 + ω2
n and φ is the phase difference between the superconduct-

ing leads.
In the present limit of weak proximity effect, the net supercurrent through the

junction can be expressed as

I =
(

GN

e

)
iπkBT

2

∫ 1/2

−1/2
dỹ

∑
ωn

{f̃ ∂x̃f − f ∂x̃ f̃ + 4isỹf f̃ }. (17)

Although (13–14) are far simpler than the original equations, it is not possible to
find an analytical solution for arbitrary range of parameters and one has to resort to
numerical calculations. To solve them numerically we have used finite differences to
convert them in a algebraic linear system. Such system is block-tridiagonal and it can
be very efficiently solved using the so-called Thomas algorithm for tridiagonal linear
systems. We shall present the results of the numerical analysis for arbitrary aspect
ratio in Sect. 3.3. But before, we shall concentrate in the next two subsections in the
study of two limiting cases in which an analytical 1D solution can be obtained.

3.1 The Narrow-Junction Limit

In the limit in which the width W is comparable or smaller than ξH, the charac-
teristic length over which the condensate function f in the normal metal varies in
the transversal direction, one can average (13, 14) along the y-direction. Using that
〈Ax〉y = 0 and 〈A2

x〉y = H 2W 2/12, it is easy to show that these equations reduce to
the following one-dimensional ones

∂2
xf − 2

(
ωn + ΓH

εT

)
f = 0; ∂2

x f̃ − 2

(
ωn + ΓH

εT

)
f̃ = 0, (18)

where the magnetic depairing energy, ΓH, is defined as ΓH = De2H 2W 2/(6�). If
we normalize it by the Thouless energy it can be written as ΓH/εT = (πΦ/Φ0)

2/6.
These equations are similar to those describing the effect of spin-flip processes [31].
We have discussed in detail their solution in Ref. [32] and we just recall here the
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Fig. 2 (Color online) Critical
current vs. magnetic flux in the
weak proximity regime for a
wire length L = 8ξ and a
temperature kBT = 0.01Δ. The
solid line corresponds the
analytical result of (19), while
the others correspond to the
exact numerical results obtained
from the 2D equations for
different widths, as indicated in
the legend

result for the critical current

eRIC = 4πkBT

r

∞∑
n=0

Δ2/(Δ2 + ω2
n)√

2(ωn+ΓH
εT

) sinh(

√
2(ωn+ΓH

εT
))

, (19)

where we have used the fact that R = (1 + 2r)/GN ≈ 2r/GN for the normal resis-
tance. In the high temperature limit, i.e. if kBT > εT and for a long wire one obtains

eRIC = 4πkBT

r

(
L̃

L

)
exp(−L/L̃), (20)

where the effective length L̃ = LTLH/

√
L2

T + L2
H. Here, LT = √

�D/2πkBT is the

thermal length and LH = √
�D/2ΓH is the magnetic depairing length.

In Fig. 2 we show the current computed from (19) for a normal wire of a length
L = 8ξ (solid line). As one can see, the critical current exhibits a monotonic de-
cay with the magnetic flux, i.e. the complete absence of interference patterns. This
result is in qualitative agreement with the experiment of Ref. [12]. In this figure we
also show the numerical results obtained by solving numerically the two-dimensional
equations (13–14) for different widths. As expected, for the narrowest junction,
W = 0.5ξ , the agreement is quite good in the whole range of magnetic fields. How-
ever, as the width increases and ξH ∼ W , there are clear deviations from the 1D-result
and, as we shall explain in detail below, one can see the appearance of interference
patterns.

3.2 The Wide-Junction Limit

For a sufficiently wide junction (W � ξH,L) one can neglect the second term in the
l.h.s. of (13–14) and the problem becomes quasi 1D since the derivatives with respect
to the ỹ-coordinate disappear. The resulting equations can be then solved analytically
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and, for instance, the solution for the function f is

f (x̃, ỹ) = fse
2isỹ(1−x̃)

πrλ sinhλ
[e−iφ/2 cosh(λx̃) + ei(φ/2−2sỹ) cosh(λ(1 − x̃))], (21)

where λ2 = 2ωn/εT and there is a similar expression for f̃ . Substituting these solu-
tions into the expression for the current equation (17) one obtains the following result
for magnetic field dependence of the supercurrent

I (H,φ) = IC(H = 0)

∫ 1/2

−1/2
dỹ sin(φ − 2sỹ), (22)

where φ is the non-gauge invariant superconducting phase difference and IC(H = 0)

is the critical current at zero field, which is given by (19) with ΓH = 0. The previous
expression shows that in this limit the only effect of the field is to replace the phase
φ by the corresponding gauge-invariant combination φ − 2sỹ. As a consequence,
the critical current in the wide junction limit exhibits, as expected, the well-known
Fraunhofer pattern which is described by the expression [4]

IC(H)

IC(H = 0)
= | sin(πΦ/Φ0)|

πΦ/Φ0
. (23)

The analytical solution of (21) allows us exploring in detail the structure of the
superconducting correlations in the normal wire in this limit. Such correlations are
described by the pair correlation function of (5). From (21) one can show that this
pair correlation function Ψ vanishes in some particular points inside the normal wire
in which the electronic structure is not affected by the proximity effect. Such points
are located in the positions given by

x̃0 = 1/2 and φ − 2sỹ
(m)
0 = (2m + 1)π, (24)

where m = 0,±1, . . . and ỹ ∈ [−1/2,1/2]. This means that in the middle of the N
region we find an array of normal cores along the y-direction separated by a distance
Φ0/HL. Notice also that the phase difference φ simply shifts rigidly the line of nor-
mal cores along the y-direction. Moreover, from (17, 21) one can easily verify that
the current density vanishes at these points.

The fact that both Ψ and the current density vanish at those special points suggests
that these points are nothing else than the cores of magnetic vortices. In order to
demonstrate that this is indeed the case, we proceed to show that the phase of the pair
correlation function experiences a 2π jump by integration over any closed contour
around the core, which is really the property that defines a vortex. For this purpose,
we expand the pair correlation function around one of the points (x̃0, ỹ

(m)
0 ) given

by (24). Following (5), we can now express the pair correlation function as Ψ =
kBT

∑
n f (ωn). Thus, we obtain (cf. (21))

Ψ (x̃, ỹ) = A(x̃ − x̃0) + iB(ỹ − ỹ
(m)
0 ), (25)
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where

A = 2(−1)m+1kBT
∑
ωn

Cnλ sinh(λ/2);

B = 2(−1)m+1skBT
∑
ωn

Cn cosh(λ/2),
(26)

and Cn = ifS/(πrλ sinhλ). We see that the function around the point (x̃0, ỹ
(m)
0 ) can

be represented as Ψ ∼ |Ψ |eiθ , where θ = tan−1(Bx/Ay) (we have shifted the coor-
dinates center to the point (x̃0, ỹ

(m)
0 )). This means that the phase varies by 2π after

any integration around these points, i.e. these are vortices with topological charge
equal to 1. Moreover, the magnetic flux enclosed in a rectangle delimited by lines
in the x-direction half way between two normal cores and two vertical lines inside
the electrodes is equal to one flux quantum. Thus, the properties of these vortices
are the same as those of the Abrikosov ones. The only difference with the vortices
in a bulk superconductor of type II is that the vortices found here are arranged in
one-dimensional array instead of forming a two-dimensional lattice [17, 18].

In the light of these results we see that the appearance of the Fraunhofer pattern
in the critical current is closely related to the existence of an array of vortices in the
center of the N region, in analogy with the situation that takes place in a Josephson
tunnel junction. As explained in the introduction, in this latter case the Frauenhofer
pattern is due to the so-called Josephson vortices [4]. Obviously, the vortices found
in this work are a reminiscence of these Josephson vortices, but with the essential
difference that they do possess normal cores. This property is essential to have a
complete analogy with the Abrikosov vortices in a type II superconductor.

3.3 Arbitrary Aspect Ratio

So far we have studied the weak proximity regime in the cases where the width was
either much smaller or much larger than the magnetic length ξH. In the first case
(narrow-junction limit), we have shown that the critical current decays exponentially
with the magnetic field (see (19)), while in the second (wide-junction limit), it ex-
hibits a Fraunhofer interference pattern (see (23)). In this section we discuss briefly
how the critical current interpolates between these two behaviors within the weak
proximity regime. For this purpose, we have solved numerically (13, 14) for arbitrary
ratio between the width and the length of the normal wire.

In Fig. 3 we show the critical current as a function of the magnetic flux for a wire of
length L = 8ξ , which is a typical value in the experiments, and different values of the
width W . Notice that when W ∼ ξ or smaller, which corresponds to the case where
the width is clearly smaller than ξH, the critical current decays monotonically and it
does not exhibit any interference pattern. Indeed, in this case the curves agree nicely
with the result of (19). As the width increases, one observes the appearance of an in-
terference pattern in the sense that there are values of the magnetic flux for which the
critical current vanishes. It is important to notice that these values are clearly larger
than Φ0 for intermediate widths and the patterns are not really “periodic”. Then, when
the width is comparable to the length (see curve for W = 10ξ ) the interference pat-
tern approaches the standard Fraunhofer pattern with zeros at multiples of Φ0. This
pattern is accurately reproduced when W � L (see inset of Fig. 3).



J Low Temp Phys (2008) 153: 304–324 315

Fig. 3 (Color online) Critical current vs. magnetic flux in the weak proximity limit for a wire length
L = 8ξ and a temperature kBT = 0.01Δ. The different curves correspond to different values of the width
of the wire, W . The inset shows a comparison between the critical current for a width W = 200ξ and the
Fraunhofer function of (23)

4 The Vortex State for Transparent Junctions

In this section we shall discuss the results for the case of perfectly transparent inter-
faces, which are more relevant for a direct comparison with the recent experiments.
The analysis of this regime requires the numerical solution of the Usadel equation (2)
for arbitrary aspect ratio, a task that we have performed following the steps explained
in detail in Sect. 2. We shall start in Sect. 4.1 with an analysis of the local density of
states in the normal wire, which turns out to be strongly modulated by the magnetic
field, especially in the regime where the vortex structure is fully developed (wide-
junction limit). Then, we shall continue in Sect. 4.2 with a detailed study of the pair
correlation function in the normal region as a way to elucidate the existence and prop-
erties of the magnetic vortices. Then, we shall finish this section with a discussion of
the results for the magnetic field dependence of the critical current for arbitrary aspect
ratio (see Sect. 4.3).

Although it is impossible to compute analytically the different properties for per-
fectly transparent interfaces, one can still make some analytical progress in two lim-
iting cases, which gives a valuable insight. The first one is the narrow-junction limit,
where the width W is assumed to be smaller than any other length scale, in partic-
ular smaller than ξH. As explained in Sect. 3.1, using the gauge A = −Hyx̂ and
averaging equation (2) over the transversal direction, one arrives at the following
one-dimensional equation

�D

π
∂x(Ĝ

R∂xĜ
R) + ε[τ̂3, Ĝ

R] = ΓH

2π
[τ̂3Ĝ

Rτ̂3, Ĝ
R], (27)

where let us recall that the magnetic depairing energy is given by ΓH/εT =
(πΦ/Φ0)

2/6. These equations, as in the weak proximity regime, are precisely the
same equations that describe the effect of a spin-flip mechanism such as magnetic
impurities and we have studied extensively their physical consequences in Ref. [32].
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The second useful limit is the wide-junction case (W � ξH,L). In this case it is
convenient to use the gauge A = Hxŷ. A dimensional analysis (see Sect. 3.2.) shows
that in this limit one can neglect the terms where the derivatives with respect to the y-
coordinate appear. In this gauge (A = Hxŷ) the magnetic field also disappears from
the equation and its only effect is to change the superconducting phase difference φ

into the gauge-invariant combination φ − 2π(Φ/Φ0)y/W . With this result in mind,
it is easy to anticipate how the local DOS will be modulated in the normal wire and,
more importantly, it shows that in this wide-junction limit one has a Fraunhofer-like
pattern in the critical current vs. magnetic field.

4.1 The Local Density of States

Let us start the discussion of the results by analyzing the local density of states in
the normal diffusive wire. In the absence of magnetic field it is well-known that the
most prominent feature is the presence of a minigap, Δg [33–36]. This minigap is
determined, among other factors, by the length of the wire, the interface transparency
and the superconducting phase difference (for a detailed discussion, see Ref. [32]).
In the absence of magnetic field the minigap is the same throughout the normal wire.
As a reference, let us say that for perfect transparency and zero phase difference, the
minigap scales with the Thouless energy as Δg ∼ 3.1εT in the long junction limit
(L � ξ ). The question is now, how does the magnetic field modify the local DOS in
the normal wire?

In order to answer this question we have computed numerically the local DOS in
the normal wire following the procedure explained in Sect. 2. In Fig. 4 we show the
results for the local DOS in the middle (x = L/2) of a wire of length L = 8ξ for
different values of the width, W/ξ = 1,8,200, and the magnetic flux. The local DOS
is shown as function of the energy and y-coordinate to see the field modulation due
to the magnetic field. Notice first that for a narrow wire, W = ξ (see upper panels),
the local DOS is practically independent of the transversal coordinate. Moreover,
when the field is not very high, there is still a clearly defined minigap (see upper
left panel). However, when the field is increased, the minigap closes and the DOS
progressively tends to the one of the normal state. In the opposite limit, when W � L,
the local DOS is strongly modulated along the y-direction. For low fields (Φ < Φ0),
the minigap is still open throughout the wire, however for higher Φ the minigap
changes in a periodic fashion from its maximum value (equal to the value in the
absence of field) to exactly zero at well-defined positions where the DOS is indeed
the one of the normal state. In the intermediate regime, when W is comparable to L,
the magnetic field closes progressively the minigap, but at the same time it modulates
the local DOS along the y-direction.

Let us try to understand these results on the basis of the limiting cases discussed
above. As it was explained in Sect. 3.1 and at the beginning of Sect. 4, when the wire
is sufficiently narrow, one can show that the magnetic field plays the role of a spin-flip
mechanism. This pair-breaking mechanism is characterized by a depairing energy,
ΓH, that in units of the Thouless energy is equal to (πΦ/Φ0)

2/6. It is well-known
that the minigap is reduced in the presence of a spin-flip mechanism and vanishes for
large values of the depairing energy [32, 35]. In particular, Crouzy et al. [37] have
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Fig. 4 (Color online) Local density of states as a function of the energy and the y-coordinate in the middle
of a wire of length L = 8ξ . The different panels correspond to different values of the width W and the
magnetic flux. The SN interfaces are perfectly transparent and a phase difference φ = 0

shown analytically that in the long junction limit of an SNS structure, the minigap
closes at a critical value of Γ C

H = π2εT/2, i.e. in our case at a critical magnetic flux of
ΦC = √

3Φ0. This explains nicely the results for W = ξ in Fig. 4, where in particular
the minigap is already closed for Φ = 2Φ0.

In order to explain the results for the case W = 200ξ , we remind that in the limit
W � L the magnetic field only affects the superconducting phase difference, which
becomes the gauge-invariant combination: φ − 2π(Φ/Φ0)y/W . This means in prac-
tice that the different properties of the junction are like in the absence of field, but tak-
ing into account that now the local phase depends on the flux and the y-coordinate. It
has been shown that when there is a finite phase difference φ (in the absence of field)
the minigap of a diffusive SNS junction decreases monotonously as φ increases and it
closes completely when φ = π [36]. This is exactly what happens in the lower panels
of Fig. 4. When the gauge-invariant phase difference is equal to zero, the minigap is
completely open and reaches the value in the absence of field. However, when this
phase is equal to π , the minigap closes. Thus for instance, for Φ = 2Φ0 and φ = 0
the gauge-invariant phase is equal to ∓π at y/W = ±1/4, which explains why the
local DOS becomes that of the normal states at those positions, see Fig 4(h). It is im-
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portant to stress that, although the DOS changes with the x-coordinate, the minigap
is independent of x throughout the wire for the same value of the y-coordinate.

Finally, as one can see in the middle panels of Fig. 4, in an intermediate regime,
where W and L are comparable, the magnetic field acts at the same time as a pair-
breaker and modulates spatially the local DOS in a way similar to what happens in
wide junctions.

4.2 The Pair Correlation Function

The peculiar local DOS described in the previous subsection suggests the presence of
vortices in the normal wire in wide junctions. This impression was confirmed in the
analysis of the weak proximity regime in the previous section and now we proceed to
investigate this issue in the case of transparent junctions. For this purpose, we have
computed the pair correlation function, Ψ (R), in the normal wire (see (5)). In Fig. 5
we show the modulus of this function (in a logarithmic scale) throughout a wire of
length L = 8ξ . The different panels correspond to different values of the width and
magnetic flux, exactly as in Fig. 4. The common thing in all the panels is the fact
that the function diminishes towards the center of the wire, which simply reflects the
decay of the superconducting correlations inside the normal wire. What mainly dis-
tinguishes the different cases is the modulation of Ψ along the transversal direction.
In the case of W = ξ one can see that at low fields (see panel for Φ = Φ0), Ψ does
not go to zero in the middle of the wire, and for higher fields its value decreases.
Moreover, in all the cases there is a negligible modulation of the correlations along
the y-direction. In the opposite limit (see lower panels for W = 200ξ ), one can see
how Ψ goes to zero (within the numerical precision) in some points in the middle of
the wire (x = L/2), which is a signature of the presence of the linear array of vortices
discussed in Sect. 3.2. Of course, the number of vortices depends simply on the num-
ber of flux quanta in the junction. In the intermediate case (see panels for W = 8ξ ),
the correlations are modulated in the transverse direction, one can already observe
the formation of a regular array of vortices.

Let us point out that the position of the vortex cores are determined by (24), which
was obtained in the limit of weak proximity effect. This means that the vortex cores
are located exactly on the middle of the wire forming a regular line along the y-
direction, the center of which depends on the value of the phase difference φ. As an
example, let us consider the case of Φ = 2Φ0. Equation (24) predicts the appearance
of two vortex cores located on y/W = ±1/4, which are exactly the positions that one
can read off in the panel of Fig. 5(h). In order to confirm the nature of this magnetic
structure for transparent junctions, we have also studied numerically the phase of the
pair-correlation function in the case of wide junctions and found that it changes in 2π

around any contour that encloses a normal core.

4.3 The Josephson Critical Current

We discuss now the magnetic field dependence of the critical current. In Fig. 6 we
show an example for L = 8ξ , which is a typical value in the experiments [12], and
different values of W . The results are quite similar to those of Fig. 3 for the weak
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Fig. 5 (Color online) Modulus of the pair correlations, |Ψ (R)|, in a wire of L = 8ξ and a phase difference
φ = 0. The different panels correspond to different values of the width W and the magnetic flux Φ . |Ψ (R)|
has been normalized to its value inside the electrodes and the temperature is kBT = 0.01Δ. We have
assumed perfect transparency for the SN interfaces. Notice the logarithmic scale

Fig. 6 (Color online) Critical
current normalized by the
zero-field value vs. magnetic
flux for a wire length L = 8ξ ,
perfect transparent interfaces
and kBT = 0.01Δ. The different
curves correspond to different
values of the wire width, W . The
dashed line shows the standard
Fraunhofer pattern given by
sin(πΦ/Φ0)/(πΦ/Φ0)
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proximity regime and there are only quantitative differences. First, notice that when
W ∼ ξ or smaller, and therefore W < ξH in the field range shown in the figure, the
critical current decays monotonically. As in the weak proximity case, this is sim-
ply due to the fact that in this limit no vortices appear, and the field acts as a pair-
breaking mechanism that suppresses progressively the superconductivity in the nor-
mal wire [32]. Indeed, the curve for W = 0.5ξ agrees quantitatively with the result
obtained for the one-dimensional approximation of (27) for the whole range of mag-
netic field shown in the figure.

As the width increases, one observes the appearance of an interference pattern
where the critical current vanishes at certain values of the magnetic flux. Notice that
these values are clearly larger than Φ0 for intermediate widths and the patterns are
not really “periodic”. Only in the limit W � L one obtains a regular pattern with
zeros at multiples of Φ0, recovering the Fraunhofer pattern [3]. These patterns are
a consequence of the appearance of the linear array of vortices described above. In
particular, in the wide-junction limit the current density in the x-direction is much
higher than in the transversal one, and it alternates sinusoidally between the vortex
cores, recovering the standard picture of the Josephson vortices. These results explain
in an unified manner the different behaviors observed experimentally [5–8, 12], which
at first glance seemed to be contradictory.

The agreement between the curve for W = 200ξ and the Fraunhofer pattern (see
Fig. 6) might seem surprising, since this latter one corresponds to a junction with a
sinusoidal current-phase relation, while this is not the case of our perfect transparent
SNS junction at a temperature kBT = 0.01Δ lower than the Thouless energy. For this
reason, we have studied in more detail the interference pattern in the wide-junction
limit (W � L). It is known that in the absence of magnetic field, the current-phase
relationship is non-sinusoidal and can be written as I (φ) = ∑

n In sin(nφ). As ex-
plained in the introduction of this section, in the wide-junction limit the field only
enters in the gauge-invariant phase difference, which immediately leads to the fol-
lowing current-phase relationship

I (H,φ) =
∞∑

n=1

In

sin(nπΦ/Φ0)

(nπΦ/Φ0)
sin(nφ). (28)

Notice that the magnetic field dependence in this limit can be calculated in terms of
the Fourier coefficients, In, in the absence of field. The dependence of these com-
ponents on the wire length and temperature has been studied in detail in Ref. [38].
If only the term containing I1 contributed, one would recover exactly the standard
Fraunhofer pattern for tunnel junctions. In Fig. 7 we show an example of the inter-
ference pattern for a wire length L = 8ξ for different temperatures, ranging from
zero temperature to temperatures well above the Thouless temperature. As a refer-
ence, we show in the inset the current-phase relationship for the different cases. As
it is well-known, below the Thouless temperature the relationship is non-sinusoidal
and it becomes sinusoidal for higher temperatures. As one can see in Fig. 7, even at
zero temperature the deviations from the standard Fraunhofer pattern for tunnel junc-
tions are indeed rather small. This shows that higher harmonics of the current-phase
relationship (In with n > 1) do not contribute significantly to interference pattern.
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Fig. 7 (Color online) Critical
current vs. magnetic flux for a
wire with L = 8ξ in the limit
W � L and comparison with
the standard Fraunhofer pattern.
The different curves correspond
to different values of the
temperature. We have assumed
perfect transparent interfaces.
The inset shows the
corresponding current-phase
relationship in the absence of
magnetic field for the three
different temperatures

Fig. 8 (Color online) Critical current vs. magnetic flux for different lengths of the normal wire. The
different panels correspond to different values of the wire width. We have assumed perfect transparent
interfaces and kBT = 0.01Δ

The last issue that we want to address is the role of the length in the crossover
between the narrow- and the wide-junction limits. To clarify this issue, we show in
Fig. 8 the critical current as a function of the magnetic flux enclosed in the junction
for different values of the wire length and width. As one can see, as L increases the
appearance of well-defined interference patterns occurs at larger values of W . This
confirms the fact that the condition for the appearance of an interference pattern,
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i.e. zeros in the critical current, is given, roughly speaking, by W > ξH, which is
equivalent to W/L > Φ0/Φ . This means, in particular, that as a simple rule of thumb,
one can expect the appearance of the standard Fraunhofer pattern when the aspect
ratio becomes of the order of one or larger, i.e. W � L.

5 Conclusions

In summary, motivated by the recent experiments of Ref. [12] we have revisited in this
work the theory of electronic and equilibrium transport properties of a diffusive SNS
junction in the presence of a perpendicular magnetic field. Our analysis, based on
the quasiclassical theory of superconductivity, provides a complete description of the
local density of states and supercurrent for arbitrary aspect ratio (W/L) of the normal
wire. We have found that a magnetic vortex structure may develop in the normal metal
with properties similar to those in the mixed state of a type II superconductor. This
vortex structure is reflected in the appearance of an interference pattern in the critical
current that tends to the Fraunhofer pattern in the wide-junction limit (W � ξH =√

Φ0/H ). On the contrary, when W is comparable or smaller than ξH, the formation
of vortices is not favorable and the field acts as a pair-breaking mechanism which
suppresses monotonically the critical current. The vortex structure is also revealed in
the strong field modulation of the local density of states (DOS) in the normal wire
along the transverse direction. In particular, in the wide-junction limit the local DOS
becomes the normal state one at the vortex cores and exhibits a minigap in between
those points, the size of which depends on the local value of the gauge-invariant
superconducting phase difference.

Our results provide an unified description of the critical current for arbitrary
width of the junctions and solve the main puzzle put forward by the experiments
of Ref. [12]. Those experiments were performed with samples in the long junction
limit (L � ξ ), where the ratio L/W was between 2 and 3 for the junctions with Nb
electrodes and it exceeded 7 for the Al junctions. In all cases, a monotonous Gaussian
extinction of the critical current at high field was found, which is compatible with our
narrow-junction results. However, the quantitative comparison with the experimental
results obtained for the widest Nb/Au/Nb was not satisfactory. While the theory pre-
dicts the emergence of an interference pattern, the experiments showed a monotonous
decay over the whole field range. At the moment the origin of this discrepancy is not
understood (for a detailed discussion of the comparison between our theory and the
experimental results, see Ref. [12]).

Our theory for the narrow-junction case has also been recently used in another situ-
ation. Crosser et al. [39] have measured the critical current in a diffusive SNS junction
as a function of the magnetic field applied parallel to the current direction. They have
found a Gaussian extinction of the critical current similar to that of Ref. [12] for a per-
pendicular field. The analysis of the Usadel equation [39] shows that a parallel mag-
netic field can be absorbed into a depairing energy that varies quadratically with the
field, in the spirit of (27). Using the scaling IC(H)/IC(H = 0) ≈ exp(−0.145ΓH/εT)

for the zero-temperature supercurrent that we obtained in Ref. [32] for narrow junc-
tions, the authors achieved a very good agreement with the experiment.
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We propose two kind of experiments to confirm the existence and properties of
the vortices predicted in this work. The first one would be a systematic study of
the critical current for junctions of varying width. The magnetic field dependence
of these junctions should then cross over from a monotonic decay when W � L to
a Fraunhofer pattern when W approaches L. The second type of experiment would
involve a local measurement of the DOS in the normal wire. Obviously, the ideal thing
to do would be to use the combined AFM-STM cryogenic microscope of Ref. [40]
to obtain local information about this quantity throughout the wire. In particular, it
would be desirable to measure the modulation of the local DOS along the transverse
dimension due to the field. There is, however, a simpler way to test this modulation.
Let us recall that the exact position of the vortex array depends on the value of the
phase difference φ. Therefore, by controlling the phase, e.g. by passing a supercurrent
through the junction, one could modulate the DOS in any given point like for instance
in the wire borders. Then, the local DOS at the borders could be measured with the
help of an additional probe electrode, in the spirit of the experiments of Refs. [41, 42].

We think that the work presented here paves the way to study the vortex matter
in a great variety of hybrid structures. For instance, an ideal two-dimensional system
that would be interesting to investigate is the recently introduced superconducting
graphene junctions, where a standard Fraunhofer pattern has been observed [43].
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