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Abstract. We present a cluster-based approach to model charge transport
through molecular and atomic contacts. The electronic structure of the contacts
is determined in the framework of density functional theory, and the parameters
needed to describe transport are extracted from finite clusters. A similar
procedure, restricted to nearest-neighbor interactions in the electrodes, has been
presented by Damle et al (2002 Chem. Phys. 281 171). Here, we show how
to systematically improve the description of the electrodes by extracting bulk
parameters from sufficiently large metal clusters. In this way, we avoid problems
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arising from the use of nonorthogonal basis functions. For demonstration, we
apply our method to electron transport through Au contacts with various atomic-
chain configurations and to a single-atom contact of Al.

Contents

1. Introduction 2
2. Theoretical approach 4

2.1. Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Transport formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Implementation of the transport method . . . . . . . . . . . . . . . . . . . . . 6

3. Metallic atomic contacts 8
3.1. Gold contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Aluminium contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Conclusions 14
Acknowledgments 15
Appendix A. Nonorthogonal, local basis sets 15
Appendix B. Bulk parameters from finite clusters 17
Appendix C. Electrode Green’s functions 22
References 26

1. Introduction

Advances in the experimental techniques for manipulating atomic-sized objects have turned the
vision of molecular-scale electronic circuits into a realistic goal [1]–[5]. This has intensified the
interdisciplinary efforts to study charge transport in nanostructures. Ideally, the circuits would
be constructed in a bottom-up fashion with functional units and all the wiring on the molecular
scale. To approach this goal, present-day experiments in the area of molecular electronics
concentrate on measuring the current–voltage response of single molecules contacted to metallic
electrodes. In these studies, also purely metallic atomic contacts serve as important reference
systems [6].

In order to support the experiments and to stimulate further technological advance,
theoretical modeling of charge transport at the atomic scale is needed. Here, one faces the
challenge to describe infinitely extended, low-symmetry quantum systems that may, in addition,
be far from equilibrium and involve strong electronic correlations. While a complete theoretical
understanding is still lacking, sophisticated ab initio methods have been developed for
approximate but parameter-free numerical simulations. In order to study the prototypical metal–
molecule–metal systems or metallic atomic contacts, many groups employ density functional
theory (DFT) combined with nonequilibrium Green’s function (NEGF) techniques [7]–[22].
Some shortcomings related to the use of DFT in this context have been pointed out, and
solutions are being sought [23]–[26]. On the other hand, DFT presently appears to be one of
the few practicable ab initio electronic structure methods, since studies of quantum transport
require dealing with a large number of atoms. Furthermore, it can handle the hybrid metal–
molecule–metal contacts, where the central regions, comprising the molecule, are frequently
rather insulator-like, whereas the electrodes are metallic. For a more complete discussion, we
refer to [27]–[29].
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The DFT approaches can mainly be divided into two types. In the first type, atomic-sized
contacts are modeled by periodically repeated supercells, and computer codes developed for
solid-state calculations are employed [7, 15, 22]. The use of periodic boundary conditions
facilitates the electrode description. However, typically the conductance is determined for an
array of parallel junctions and may be affected by artificial interactions between them. The
second type is based on finite clusters and originates more from the chemistry community
[8, 9, 14, 16, 21]. It has the advantage that genuinely single-atom or single-molecule contacts
are studied. The drawback is commonly the description of the electrodes, since it is difficult
to treat bulk properties based on finite clusters. Furthermore, the coupling between the central
region and the electrodes can be complicated by finite-size and surface mismatch effects.

To arrive at an ab initio DFT description it is desirable to treat the whole system
consistently by using the same basis set and exchange-correlation functional everywhere. The
problem of the cluster-based approaches regarding the electrodes is apparent, for example, from
the work of [8, 9, 21], where the authors resort to a separate tight-binding parametrization
obtained from the literature [30]. In such cases, uncertainties mainly arise from the coupling
between the central region and the electrodes, which requires knowledge about level alignments
and basis functions. Damle et al proposed to resolve this issue by extracting bulk parameters
from finite clusters computed within DFT [16, 31]. However, their treatment of the electrodes
should be seen as a first approximation, since only couplings between nearest-neighbor atoms
were considered. Furthermore, they finally use energy-independent self-energies, which is well
justified only for electrode materials with a constant density of states (DOS) near the Fermi
energy EF.

In this work, we present a cluster-based DFT approach for the atomistic description of
quantum transport. We follow the ideas of Damle et al [31], but place special emphasis on
the treatment of the electrodes. In particular, we show that extracting bulk parameters from
small metal clusters can lead to an unphysical behavior of the overlap of the nonorthogonal
basis functions in k-space. The description of the electrodes can be improved systematically
by employing metal clusters of increasing size. Our implementation is based on the quantum-
chemistry package TURBOMOLE, which allows us to study clusters of several hundred atoms.
In this way, we obtain an ab initio formulation of quantum transport in atomic-sized contacts,
where the whole system is treated on an equal footing. It has the advantage that we can employ
well-tested, high-quality quantum-chemical Gaussian basis sets. Since energies in our isolated
systems are measured with respect to the vacuum level, we can directly compare values for EF

to experimental work functions8. Furthermore, our method offers a high degree of geometric
flexibility. Thus, we can describe contact configurations with molecules of large transverse
extent and with electrodes that are laterally offset or tilted relative to each other.

The theoretical framework of our approach is presented in section 2. Several technical
details related to the use of nonorthogonal basis functions and the electrode treatment can be
found in appendices A–C. To demonstrate the usefulness of our method, we study in section 3
the transport properties of atomic contacts of Au and Al. The choice of these materials is
motivated by the fact that Au exhibits a rather energy independent DOS near EF, whereas
Al does not. Furthermore, for these systems, we can compare our results with the literature.
We find good agreement, and demonstrate the sufficient robustness of our calculations. Further
applications have been presented in [32]–[36]. We summarize our results in section 4.

8 Due to the missing surfaces, the same would not be possible if we had obtained the bulk parameters from
calculations of a crystal using periodic boundary conditions [56].
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2. Theoretical approach

2.1. Electronic structure

Our ab initio calculations are based on the implementation of DFT in TURBOMOLE 5.9 [37].
By ab initio we mean that the simulations require no system-specific parameters. Self-consistent
DFT calculations of large systems are generally very time-consuming. TURBOMOLE,
however, is specialized in handling such systems, and offers several possibilities to reduce the
computational effort. Most essential are the techniques of the ‘resolution of the identity in J ’
(RI-J ) [38, 39] and the ‘multipole-accelerated resolution of the identity J ’ (MARI-J ) [40],
which are both implemented in the ridft module of TURBOMOLE. The approximations help
to reduce the effort to compute the Coulomb integrals J , which are particularly expensive to
evaluate. With the help of the RI-J approximation, known also under the name ‘density fitting’,
the four-center-two-electron integrals can be expressed as three-center-two-electron ones [41].
Calculations are faster by a factor of 10–100 as compared with standard DFT, but equally
accurate. The MARI-J technique adds to RI-J an efficient treatment of Coulomb interactions
between distant atoms. The interactions are divided into a near-field and a far-field part, where
the near field is treated with RI-J and the far field by a multipole approximation. Compared
with RI-J , it can accelerate the calculations by another factor of 2–7 [40]. Besides, if the contact
configuration admits, one can exploit point group symmetries, including non-Abelian ones. In
this way, the calculations speed up further by a factor given by the order of the point group.

DFT requires the choice of an exchange-correlation functional [42]. We select the
generalized-gradient functional BP86 [43, 44], which is known to yield good results for large
metal clusters [45]–[48]. Since it contains no contribution of Hartree–Fock exchange, it is
efficiently evaluated within RI-J or MARI-J . To express the orbital wave functions, Gaussian
basis sets of split-valence-polarization (SVP) quality are used [38, 39, 49], which are the
TURBOMOLE standard. Within the closed-shell formalism of DFT, total energies of all our
clusters are converged to a precision better than 10−6 au. In order to obtain ground-state
structures, the total energy needs to be minimized with respect to the nuclear coordinates. We
perform such geometry optimizations or ‘relaxations’ until the maximum norm of the Cartesian
gradient has fallen below 10−4 au.

2.2. Transport formalism

We compute transport properties of atomic-sized contacts using the Landauer–Büttiker theory
and Green’s functions expressed in a nonorthogonal basis of atomic-like orbitals [50, 51]. The
local nature of the basis allows us to partition the basis states |i, α〉 into left (L), central (C) and
right (R) ones, according to a division of the contact geometry. In the basis states, α refers to the
type of orbital at the position of atom i . For reasons of brevity, we will frequently suppress the
orbital index. The Hamiltonian (or Kohn–Sham) matrix Hiα, jβ = 〈i, α|H | j, β〉, and analogously
the overlap matrix Siα, jβ = 〈i, α| j, β〉, can thus be written in block form,

H =

HLL HLC 0
HCL HCC HCR

0 HRC HRR

 . (1)

Both S and H are real-valued and are hence symmetric. In addition, we assume the C region to
be large enough to have SLR = HLR = 0. Within the Landauer–Büttiker theory [52], the linear
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conductance can be expressed as

G =
2e2

h

∫
dE

[
−
∂

∂E
f (E, T )

]
τ(E), (2)

where f (E, T )= {exp[(E −µ)/kBT ] + 1}
−1 is the Fermi function, and the chemical potential

µ is approximately equal to EF. Using the standard NEGF technique, the transmission function
is given by

τ(E)= Tr
[
0L(E)G

r
CC(E)0R(E)G

a
CC(E)

]
= Tr

[
t†(E)t (E)

]
(3)

with the transmission matrix

t (E)=

√
0R(E)G

a
CC(E)

√
0L(E). (4)

Here, we define Green’s functions

Gr
CC(E)=

[
E SCC − HCC −6r

L(E)−6
r
R(E)

]−1
(5)

and Ga
CC = [Gr

CC]†, the self-energies

6r
X(E)= (HCX − E SCX) gr

X X(E) (HXC − E SXC) (6)

and the hopping-rate matrices

0X(E)= −2Im
[
6r

X(E)
]
, (7)

where gr
X X = (E SX X − HX X)

−1 is the electrode Green’s function for lead X = L,R. At low
temperatures, the expression for the conductance simplifies to

G =
2e2

h
τ(EF)= G0

∑
n

τn(EF), (8)

with G0 = 2e2/h the quantum of conductance and τn the eigenvalues of t†t . The latter are the
transmission probabilities of the transmission eigenchannels n.9 Also other observables, such
as the thermopower or the photoconductance, can be studied based on the knowledge of τ(E)
[32, 36, 53, 54].

Information on the position of energy levels of a system may help to identify conduction
mechanisms. Such information can be extracted from the spectral density [48]

ρ(E)=
i

2π

[
Gr(E)− Ga(E)

]
= −

1

π
Im

[
Gr(E)

]
. (9)

Using this, we define the local density of states (LDOS) at atom i and its decomposition into
orbitals α via

LDOSi(E)=

∑
α

LDOSiα(E), (10)

LDOSiα(E)=

(
S1/2

CC %CC(E)S
1/2
CC

)
iα,iα

. (11)

In appendix A, we discuss the approximations involved in this definition. There, we also
consider further the issues related to the use of nonorthogonal basis sets to evaluate the single-
particle Green’s functions and the electric current.

9 The fact that the τn are probabilities, i.e. that 06 τn 6 1, can be proven by defining r = 1 + i
√
0LGa

CC

√
0L such

that r†r + t†t = 1. Using relations presented in appendix A.3, it is easy to show the positive-semidefiniteness of 0L,
necessary for the determination of both r and t (equation (4)).
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Figure 1. Quantum transport scheme. The atomic-sized contact (a) is divided into
a C region and two semi-infinite L and R electrodes. Using a similar division for
the ECC (b), information on the electronic structure of the C region (SCC, HCC)
as well as the CL and CR couplings (SCL, HCL and SCR, HCR) is extracted. In
order to obtain the self-energies 6r

L and 6r
R, the remaining task is to determine

the electrode surface Green’s functions gr
LL and gr

RR. This procedure is described
further below in the text.

2.3. Implementation of the transport method

2.3.1. Central system. In order to determine the transmission function τ(E), we need a
practical scheme to obtain the necessary information on the electronic structure. In figure 1,
we present our procedure. The goal is to describe the whole atomic-sized contact (figure 1(a))
consistently, by treating the L, C and R regions with the same basis set and exchange-correlation
functional. We obtain the parameters SCC and HCC as well as the couplings to the electrodes SCX

and HCX with X = L,R from the extended central system (ECC) (figure 1(b)), in which we
include large parts of the tips of the metallic electrodes. The division of the ECC into the L, C
and R regions is performed so that the C region is identical to that in figure 1(a). The atoms in
the L and R parts of the ECC (blue-shaded regions in figure 1(a)) correspond to that part of the
electrodes, which is assumed to couple to C. The partitioning of the ECC is commonly made
somewhere in the middle of the metal tips, and we will also refer to it as ‘cut’. The electrodes
(L and R regions in figure 1(a)) are modeled as surfaces of semi-infinite crystals, described by
the surface Green’s functions gr

X X . They are constructed from bulk parameters, extracted from
large metal clusters. Let us now discuss how this is accomplished.

2.3.2. Electrodes. We extract bulk parameters describing perfect crystals from large metal
clusters. The complete procedure, which aims at determining the surface Green’s functions gr

X X
with X = L,R is summarized in figure 2. In this work, we study exclusively electrode materials
with an fcc structure, of which Au and Al are examples.

In a first step (figure 2(a)), we construct spherical metal clusters, henceforth called
‘spheres’. They are made up of atoms at positions { ER j | ER j =

∑3
n=1 jn Ean ∧ | ER j |6 Rsphere

} with
the standard primitive vectors Ean of the fcc lattice and the sphere radius Rsphere. We will generally
use the vector of integer indices j = ( j1, j2, j3) to characterize the atomic position ER j . We do
not optimize the geometry of the spheres, but set the lattice constant a0 to its experimental
literature value [56]. Increasing the radius Rsphere should make the electronic structure in the
center resemble that of a crystal. From the clusters we extract the overlap and Hamiltonian
between the central atom at position 0 and the neighboring ones at position j (including j = 0).
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j0
sphere

j0
sphereS ,H j0Sj0,H

j0
(X)(X)

j0
,HS gXX

rsphereS ,Hsphere

Extract Symmetrize ConstructRotate
(d) X=L,R(a) (c)(b)

Figure 2. In order to obtain the electrode Green’s functions gr
X X for lead X =

L,R, we determine bulk parameters from large metal clusters. In a first step
(a) we extract overlap and hopping elements, Ssphere

j0 , H sphere
j0 , from the cluster’s

central atom to all its neighbors. They are (b) symmetrized by imposing the space
group of the electrode lattice. After (c) a rotation to adapt them to the orientation
of the respective electrode, (d) gr

X X is constructed with the help of a decimation
procedure.

This yields the matrix elements Ssphere
jα,0β and H sphere

jα,0β , where α and β stand for the basis functions

of the atoms at j and 0. For reasons of brevity, we will often suppress the orbital indices. Ssphere
j0

and H sphere
j0 are then matrices with appropriate dimensions. The bulk parameters S j0, H j0 need

to satisfy the symmetries of the fcc space group (figure 2(b)). While Ssphere
j0 depends only on

the relative position of atoms, surface effects due to the finite size of the fcc clusters lead to
deviations from the translational symmetry for H sphere

j0 . A rotation may still be necessary to

arrive at parameters S(X)j0 , H (X)
j0 , which are adapted to the orientation of the electrode X = L,R

(figure 2(c)). Details on the symmetrization procedure and the transformation of bulk parameters
under rotations are presented in appendix B. The parameters S(X)j0 , H (X)

j0 are finally employed to
construct the semi-infinite crystals and to obtain the surface Green’s function gr

X X (figure 2(d)).
Due to the finite range of the couplings SCX , HCX , we need to determine gr

X X for the first few
surface layers only (blue-shaded regions in figure 1(a)). We compute these with the help of the
decimation technique of [57], which we have generalized to deal with the nonorthogonal basis
sets [58]. The complete procedure is explained in detail in appendix C. The parameters S j0, H j0

can be computed once for a given metal and can then be used in transport calculations with
electrodes of various spatial orientations.

For Au (a0 = 4.08 Å), we have analyzed spheres ranging between 13 and 429 atoms,
whereas for Al (a0 = 4.05 Å) they vary between 13 and 555 atoms. Since we want to describe
bulk, the parameters extracted from the largest clusters will obviously provide the best
description. There is, however, an additional criterion, which necessitates the use of large metal
clusters for a reliable description of the electrodes. As discussed in appendix B.1, it is based
on the positive-semidefiniteness of the bulk overlap matrix. We find a strong violation of this
criterion, if the extraction of parameters is performed such that only the couplings of the central
atom to its nearest neighbors are considered. As a further demonstration of the quality of our
description, we show in appendix B.2 the convergence of the DOS with respect to Rsphere.

For the transport calculations, we need a value for the Fermi energy. The biggest Au and
Al spheres computed, Au429 and Al555, respectively, are very metallic. They exhibit differences
between the highest occupied molecular orbital and the lowest unoccupied molecular orbital
of less than 0.06 eV. Therefore, we set EF halfway between these energies. In this way, we
obtain EF = −5.0 eV for Au and EF = −4.3 eV for Al. The values will be used in all the results
below. Notice that the negative values of EF agree well with experimental work functions of
5.31–5.47 eV for Au and 4.06–4.26 eV for Al [59].
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2.3.3. Discussion. In our approach, we assume the metal tips included in the ECC (figure 1(b))
to be large enough to satisfy basically two criteria. Firstly, all the charge transfer between the L
and R electrodes and the C part of the contact should be accounted for. This ensures the proper
alignment of the electronic levels in C with EF. Secondly, most of the metal tips, especially the L
and R parts of the ECC, should resemble bulk as closely as possible. Under these circumstances,
the highest occupied molecular orbital of the ECC should be very similar to EF, and we can
evaluate the surface Green’s functions by using bulk parameters of an infinitely extended crystal.
Owing to the finite size of the cluster, the criteria can be satisfied only approximately. The
mismatch between the parameters in the L and R regions of the contact and the ECC will
thus lead to spurious scattering at the LC and CR interfaces. In principle this resistance can be
eliminated systematically by including more atoms in the metal tips of the ECC. On the other
hand, if the resistance in the C region is much larger than the spurious LC and CR interface
resistances, they will have little influence on the results.

In order to describe the organic molecule in a single-molecule contact, it might be desirable
to use a hybrid functional with a certain amount of Hartree–Fock exchange. However, the
exchange interactions greatly increase the computational effort due to their nonlocal character,
and may even lead to problems in the self-consistent iterations of DFT for rather metallic
systems [60]. To treat the ECC and spherical metal cluster consistently, the exchange may be
evaluated using a screened Coulomb potential [60]. A more approximate solution would be to
mix two functionals, by including a portion of Hartree-Fock exchange for the ECC, but not for
the sphere. In this way, the exchange would be taken into account, where it is most essential.

3. Metallic atomic contacts

In this section, we explore the conduction properties of metallic atomic contacts of Au and
Al. These systems, in particular atomic-sized Au contacts, have been studied in detail both
experimentally and theoretically, and can therefore be used to test our method. We start by
discussing the transport properties of the Au contacts, consisting of a four-atom chain, a three-
atom chain, and a two-atom chain or ‘dimer’. Since Al does not form chains of more than
two atoms [61], we consider only a single-atom contact. Results for Al dimer contacts were
already reported in [33]. For all systems, we analyze the transmission, its decomposition into
eigenchannels, and, in order to obtain knowledge about the conduction mechanism, the LDOS
for atoms in the narrowest part of the contact. Moreover, we investigate the robustness of our
transmission curves with respect to different partitionings of the large ECCs.

3.1. Gold contacts

Let us first discuss the electronic structure of Au, where we display the DOS in figure 3. The
Fermi energy at EF = −5.0 eV is located in a fairly structureless, flat region somewhat above
the d band. Based on the electronic configuration [Xe] 4f14 5d10 6s1 of the atom, one might have
expected a strong contribution only from the s orbitals at EF. But, as is visible from figure 3(b), s,
p and d contributions are all comparable10. This signifies that valence orbitals hybridize strongly
in the metal.
10 The orbital contributions are obtained by summing over all the basis functions of a certain angular symmetry:
px , for example, results from a sum over all the px functions of the basis set, and p is the sum over the px -, py-, and
pz-components.
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Figure 3. DOS for Au. (a) DOS resolved into s, p and d contributions and
(b) into all individual orbital components. The dashed vertical line indicates
EF = −5.0 eV.

When an atomic contact of Au is in a dimer or atomic chain configuration, a conductance of
around 1G0 is expected from experimental measurements [62]–[66] as well as from theoretical
studies [7], [67]–[70]. The analysis shows that this value of the conductance is due to a single,
almost fully transparent transmission eigenchannel. It arises dominantly from the s orbitals of
the noble metal Au, since the electronic structure in the narrowest part of the contact resembles
more the electronic configuration of the atom [66, 67].

3.1.1. Determination of contact geometries. Despite the consensus that the conductance of
atomic chains of Au is around 1G0, the precise atomic positions play an important role
[70, 71]. Therefore it is necessary to construct reference geometries that have been studied
with a well-established transport method. We choose to compare with results obtained with
TRANSIESTA [7]. The ECCs investigated are shown in figure 4. The four-atom Au chain with
electrodes oriented in the [100]-direction, called Au100c4, corresponds to a contact geometry
examined in [72] (see figure 1(b) therein). The three-atom Au chain, Au111c3, is similar to a
configuration in figure 9(d) of [7]. In addition, we study a Au dimer contact, Au111c2, where a
two-atom chain is forming the narrowest part. In contrast to Au100c4, for the latter two contacts,
the electrodes are along the [111]-direction. In each ECC, the main crystallographic direction is
aligned with the z-axis, which is the transport direction.

Let us briefly explain, how we determine these geometries (figure 4). For Au100c4, we
construct two ideal, atomically sharp Au [100] pyramids, with two atoms in between. The
pyramids end with the layer consisting of 25 atoms. The distance between the layers containing
four atoms is set to 12.68 Å (figure 4(a)), as in [72]. Next, we relax the four-chain atoms without
imposing symmetries, keeping all other atoms fixed. After geometry optimization, we find that
the configuration agrees well with symmetry D4h. We add two more Au layers with 16 and
9 atoms on each side, where the ECC now consists of 162 atoms, and perform a final DFT
calculation, exploiting the symmetry D4h. Compared with [72], all bond distances indicated in
figure 4(a) agree within 0.01 Å, except for the distance between the central chain atoms, where
our distance is shorter by 0.07 Å. For Au111c3, we proceed similarly to Au100c4 (figure 4(b)).
We start with two perfect Au [111] pyramids, set the distance between the Au layers with 3
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Figure 4. ECCs for Au. (a) Au100c4 is a four-atom chain, (b) Au111c3 is a
three-atom chain and (c) Au111c2 is a two-atom chain or dimer contact. For
Au100c4, electrodes are oriented in the [100]-direction, whereas for Au111c3
and Au111c2, electrodes are oriented the [111]-direction. Indicated are also the
most important bond distances together with information on the construction of
the ECCs.

atoms to 9.91 Å [7], and cut the pyramid off at the layers containing 10 atoms. Then we add
one atom in the middle, relax the three-chain atoms, add two layers on each side with 12 and 6
atoms, and perform a calculation in symmetry D3d. Au111c3 consists of 77 atoms in total. Our
bond distances agree with those in figure 9(d) of [7] to within 0.02 Å. For Au111c2, we include
also the first Au layer in the geometry optimization process. The distance between the fixed
layers with 6 atoms is 12.12 Å. Otherwise the steps are the same as for Au111c3. The ECC is
computed in symmetry D3d and consists of 76 atoms. In the parts excluded from the geometry
optimization, atoms are all positioned on the fcc lattice, where we set the lattice constant to the
experimental value of 4.08 Å, which corresponds to a nearest-neighbor distance of 2.88 Å.

3.1.2. Four-atom gold chain. Let us now study the conduction properties for the contact
Au100c4 (figure 5(a)). There are different possibilities to partition the ECC into the L, C and R
regions. The cuts should be done so that L and R are unconnected (SLR = 0 and HLR = 0, see
section 2.2). Hence, the C region must be long enough. In order to describe well the coupling
to the electrode surface (figure 1), it is furthermore necessary to have sufficiently many layers
in the L and R regions. We observe that at least two of them are needed to obtain reasonable
transmission curves. For the two different cuts of the ECC τ(E) is plotted in figure 5(b). In
both cases it is found to be almost identical, indicating the reliability of our method. The
transmissions at the Fermi energy are τ(EF)= 0.93 and 0.98 for cuts 1 and 2, respectively.
These values correspond well to the result τ(EF)= 0.99 of [72].

For cut 2, it is visible in figure 5(c) that the transmission at EF is dominated by a single
eigenchannel, in good agreement with experimental observations [66] and previous theoretical
studies [7, 68]. In general, the electronic structure at the narrowest part should have the most
decisive influence on the conductance of an atomic contact. Therefore, we plot in figure 5(d)
the LDOS of the atom indicated by the arrow in figure 5(a), resolved in its orbital contributions.

New Journal of Physics 10 (2008) 125019 (http://www.njp.org/)

http://www.njp.org/


11

–10 –8 –6 –4 –2 0
    E (eV)

0

0.5

1.0

1.5

2.0

2.5

3.0

T
ra

ns
m

is
si

on

Cut 1
Cut 2

–10 –8 –6 –4 –2 0
E (eV)

0

2

4

6

8

10

L
D

O
S 

(1
 e

V
–1

)

total
s
p
d

-5.4 -5.2 -5 -4.8 -4.6
0

0.05

0.1

0.15

0.2 s
p

z
d

3z
2
-r

2

d
xz

, d
yz

–10 –8 –6 –4 –2 0
E (eV)

0

0.5

1.0

1.5

2.0

2.5

3.0

T
ra

ns
m

is
si

on

τ
τ

1
τ

2
τ

3

(a)

Cut 2
Cut 1

(c)

(b)

(d)

Cut 2
Cut 1

Figure 5. Au100c4. (a) ECC with two different partitionings into L, C and
R regions, cuts 1 and 2, and (b) the transmission as a function of the energy
for these cuts. For cut 2 (c) transmission resolved into its eigenchannels and
(d) LDOS of the chain atom indicated in the ECC with its orbital contributions.

Compared with the DOS of figure 3, it is dominated by s at EF, where the contributions of all
other orbitals than s and pz are suppressed. These two orbitals form the almost fully transparent
transmission eigenchannel, which is rotationally symmetric with respect to the z-axis.

3.1.3. Three-atom gold chain. Exactly the same analysis will now be carried out for the contact
Au111c3. In figure 6, the geometry of the ECC, the transmission for different partitionings,
the transmission eigenchannels, and the LDOS of the central chain atom are shown. As for
Au100c4, we observe that the different cuts yield very similar transmission curves (figure 6(b)).
Furthermore all the basic features in τ(E) are the same as in the TRANSIESTA calculation (see
figure 11(d) of [7]). Above the d band, which exhibits a very narrow and high final peak, there is
a dip in τ(E) in both cases. The transmission recovers, however, and a flat region with a value of
around 1 is visible. At the Fermi energy cuts 1 and 2 yield τ(EF)= 0.96 and 0.99, respectively.
This is in reasonable agreement with τ(EF)= 0.94 in [7], considering the differences in the
electrode geometry, basis set, and exchange-correlation functional. We observe from figure 6(c)
for cut 1 that the transmission at EF is dominated by a single eigenchannel, and the LDOS
indicates a dominant contribution of s orbitals (figure 6(d)).

3.1.4. Two-atom gold chain. The transmission and LDOS resolved into eigenchannels and
orbital components, respectively, are shown in figure 7 for the dimer contact Au111c2. As for
Au100c4 and Au111c3, we observe a single dominant eigenchannel at EF, and τ(EF)= 0.96.
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for these cuts. For cut 1 (c) transmission resolved into its eigenchannels and
(d) LDOS of the central chain atom indicated in the ECC with its orbital
contributions.
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Figure 7. Au111c2. (a) ECC, (b) transmission resolved into its eigenchannels for
the cut indicated, and (c) LDOS of the tip atom with its orbital contributions.

The finding of such a dominant channel for chains of two or more atoms is in good agreement
with our analysis of less symmetric contacts, which were based on a combination of a tight-
binding model and classical molecular dynamics simulations [70]. However, that τ(E) increases
partly even above one in the vicinity of EF signals that the influence of other channels is
increased as compared with Au100c4 and Au111c3. Indeed, the LDOS of the atom in the
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Figure 8. DOS for Al. (a) DOS resolved into s, p and d contributions and
(b) into all individual orbital components. The dashed vertical line indicates
EF = −4.3 eV.

narrowest part of the constriction (figures 7(a) and (c)) shows in particular increased px and
py contributions. Also, the d states exhibit a less pronounced peak structure than was visible
in figures 5(d) and 6(d). This is due to the higher coordination number of the atom and the
enhanced coupling to the electrodes.

3.2. Aluminium contacts

As is visible from the DOS in figure 8, the electronic structure of Al differs substantially from
that of Au. While the latter is a noble metal with an s valence, the Al atom has the electronic
configuration [Ne] 3s2 3p1 with an open p shell, and the metal is hence considered sp-valent.
The strong contribution of s and p states is also observable in the DOS, where d states play
only a minor role. As compared with Au, the DOS exhibits a noticeable energy dependence
around EF.

For Al, we study an ideal fcc [111] pyramid, consisting of 251 atoms (figure 9(a)),
henceforth referred to as Al111c1. Ideal means that the atoms are positioned on an fcc lattice
with the experimental lattice constant a0 = 4.05 Å.

3.2.1. Aluminium single-atom contact. In figure 9, the transmission is displayed for three
different partitionings of the ECC Al111c1. Also shown are the transmission eigenchannels and
the LDOS of the atom in the narrowest part of the contact for a selected cut. For energies below
−6 eV, there are practically no differences visible between the curves for the three different
partitionings. Nevertheless, some deviations arise at EF, and we obtain τ(EF)= 2.36 (cut 1),
1.88 (cut 2) and 2.23 (cut 3). We attribute these variations to spurious scattering at the LC
and CR interfaces, similar to Au. Our values for τ(EF) of around 2 agrees nicely with those
reported for single-atom contacts in [12]. Compared with Au, the structure of the transmission
eigenchannels has changed in an obvious way. There are three channels at EF, which is in line
with experimental observations of Scheer et al [66, 73]. Due to the D3d symmetry of the ECC,
degeneracies arise, where in particular τ2 = τ3. As is visible from the LDOS, these additional
eigenchannel contributions mainly stem from the px and py orbitals, whereas s and pz form the
nondegenerate first channel [66, 67, 74].
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Figure 9. Al111c1. (a) ECC with three different partitionings into L, C and R
regions, cuts 1, 2 and 3, and (b) the transmission as a function of the energy
for these cuts. For cut 2 (c) the transmission resolved into its eigenchannels and
(d) the LDOS of the central atom, indicated in the ECC. The nearest-neighbor
distance shown in the ECC is identical for all atoms.

4. Conclusions

In conclusion, we have developed a cluster-based method to study the charge transport
properties of molecular and atomic contacts. We treat the electronic structure at the level of DFT,
and describe transport in terms of the Landauer formalism expressed with standard Green’s
function techniques. Special emphasis is placed on the modeling of the electrodes and the
construction of the associated bulk parameters from spherical metal clusters. We showed that
these clusters need to be sufficiently large to produce a reliable description of bulk properties,
where a criterion for the extent of the spherical clusters is set by the overlap of the nonorthogonal
basis functions. In our studies we crucially rely on the accurate and efficient quantum-chemical
treatment of systems consisting of several hundred atoms, made possible by use of the quantum
chemistry package TURBOMOLE. Compared with supercell approaches, our method has the
advantage that we genuinely describe single-atom or single-molecule contacts.

As an application of our method, we analyzed Au and Al atomic contacts. Studying
a four-, a three-, and a two-atom chain with varied electrode lattice orientations for Au,
we found a conductance close to 1G0, carried by a single transmission channel. Next, we
investigated an ideal Al single-atom contact, and found three transmission channels to contribute
significantly to the conductance of around 2G0. These results are in good agreement with
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previous experimental and theoretical investigations. Although we observe some finite-size
effects, we have demonstrated both for Au and Al a sufficient robustness of our transmission
curves with respect to partitionings of the contact systems. The results illustrate the applicability
of our approach to various electrode materials.

Beside the metallic atomic contacts examined here, we have applied the method in the
field of molecular electronics. Studies include the dc conduction properties of dithiolated-
oligophenylene and diamino-alkane junctions [32], [34]–[36] as well as oxygen adsorbates in
Al contacts [33]. In addition, the thermopower [36] and photoconductance [32] of molecular
junctions have been investigated in this way. Our studies demonstrate the value of parameter-
free modeling for understanding transport at the molecular and atomic scale.
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Appendix A. Nonorthogonal, local basis sets

For practical reasons, one often employs nonorthogonal basis sets in quantum-chemical
calculations, consisting for example of a finite set of Gaussian functions. The electronic
structure is then described in the spirit of the linear combination of atomic orbitals (LCAO)
[41, 75, 76], and this is also how TURBOMOLE is implemented. While it is in principle always
possible to transform to an orthogonal basis, it may be more convenient to work directly with
the nonorthogonal states.

A concise mathematical description using nonorthogonal basis states can be formulated
in terms of tensors. The formalism is presented in a fairly general form in [77], where also
aspects of second quantization are addressed. Below, we discuss some of the subtleties related
to the use of nonorthogonal basis functions that are important for our method [58]. Since the
basis functions are real-valued in our case, the full complexity of the tensor formalism is not
needed [78, 79]. Furthermore, we use a simplified notation, where all tensor indices appear as
subscripts of matrices.

A.1. Current formula

The most important quantity for transport calculations is the electric current. In the NEGF
formalism, its determination requires a separation of the contact into subsystems similar to
figure 1(a) [52, 80, 81]. However, due to the overlap of the basis functions in a nonorthogonal
basis, the charges of the subsystems are not well defined. Different ways of determining
them exist, e.g. the Mulliken or Löwdin population analyses [75]. Despite these additional
complications, the Landauer formula (equation (2)) can be derived in a similar fashion as for an
orthogonal basis. Recent discussions of the derivation can be found in [51, 82].
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A.2. Single-particle Green’s functions

Consider the single-particle Hamiltonian H describing the entire system. The retarded Green’s
operator is defined as Gr(E)= [(E + i0+)− H ]−1. Now consider the local, nonorthogonal basis
|i〉 with the matrix elements of the overlap Si j = 〈i | j〉 and the Hamiltonian Hi j = 〈i |H | j〉.
Compared with section 2.2 the index i , used throughout this appendix, is a collective index,
denoting both the position at which the basis state is centered and its type. The components of
the retarded Green’s function, defined by Gr

=
∑

i, j |i〉Gr
i j〈 j |,11 satisfy the equation [50].∑

k

[(
E + i0+

)
S jk − H jk

]
Gr

kl(E)= δ jl . (A.1)

The Green’s function Gr
CC is defined as Gr

i j restricted to the central region C. It can be
calculated according to equation (5). Due to the nonorthogonal basis the perturbation that
couples C to the lead X = L,R and enters the self-energy (equation (6)) is given by HCX − E SCX

and thus includes also an overlap contribution. It is interesting to observe that as E → ∞ the
self-energies and the Green’s function behave as

6r
X(E)

E→∞

−→ E SCX (SX X)
−1 SXC, (A.2)

Gr
CC

E→∞

−→ E−1
(
S−1

)
CC

(A.3)

with (
S−1

)
CC

=

[
SCC +

∑
X=L,R

SCX (SX X)
−1 SXC

]−1

. (A.4)

Equation (A.4) describes the ‘renormalization’ of the inverse overlap matrix of C due to the
coupling to the leads.

A.3. LDOS

We have defined the LDOS at atom i and its decomposition into orbitals α in equations (10)
and (11). Let us discuss these definitions further. Consider the energy eigenstates |µ〉 of the
entire system, satisfying H |µ〉 = εµ|µ〉. In this basis, the spectral density of equation (9) has
the components ρµν(E)= 〈µ|ρ(E)|ν〉 = δ(E − εµ)δµν . Clearly, they fulfill the normalization∫

∞

−∞

dEρµν(E)= δµν. (A.5)

If, instead, we consider the components defined by ρi j(E)= −Im[Gr
i j(E)]/π , where Gr

i j(E) is
given by equation (A.1), we find∫

∞

−∞

dEρi j(E)=
(
S−1

)
i j
. (A.6)

Performing a Löwdin orthogonalization of the basis∑
k,l

∫
∞

−∞

dE(S1/2)ikρkl(E)(S
1/2)l j = δi j , (A.7)

11 Note that the Si j and Hi j are the covariant components of the identity and H , respectively, whereas Gr
i j are the

contravariant components of Gr [78, 79, 85, 86]. In the conventional tensor formulation they would be written
(Gr )i j , but in our simplified notation no distinction between co- and contravariant components is made.
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the normalized LDOS is given as a diagonal element of the integrand. The function
LDOSiα(E) of equation (11) (with iα → i) is an approximation to this, where all indices are
restricted to C. Since ρCC(E)= −Im[Gr

CC(E)]/π is a positive-semidefinite matrix, it is easy to
show that LDOSiα(E) is positive for all E . However, the normalization

∫
∞

−∞
dELDOSiα(E)= 1

is only approximately fulfilled. This could be corrected by multiplying in equation (11) with
(S−1)

−1/2
CC (equation (A.4)) instead of S1/2

CC . But since the contributions
∑

X=L,R SCX(SX X)
−1SXC

constitute only a surface correction, their neglect may be justified for atoms in the middle of C.

Appendix B. Bulk parameters from finite clusters

B.1. Size requirement for cluster construction

How large do the spherical metal clusters (figure 2) need to be for a convergence of the bulk
parameters? Since the matrix elements of the Hamiltonian and the overlap decay similarly with
increasing interatomic distance (for exchange–correlation functionals without a contribution
of Hartree–Fock exchange), we can concentrate on the overlap. Then, a rather well-defined
criterion can be found. The clusters should be so large that the extracted bulk overlap matrix is
positive-semidefinite.

We define states | Ek, α〉 =
∑

j ei Ek· ER j | j, α〉 in k-space. Since Siα, jβ = 〈i, α| j, β〉 is a positive-
semidefinite matrix [75], the same is true for the overlap in k-space

Sαβ( Ek, Ek ′)= 〈Ek, α| Ek ′, β〉 =

∑
l,m

e−i Ek· ERl Slα,mβei Ek′
· ERm (B.1)

=N δ Ek, Ek′ Sαβ( Ek),

where we used that Slα,mβ = S(l−m)α,0β . In the expression,N is the number of atoms in the crystal
and

Sαβ( Ek)=

∑
j

e−i Ek· ER j S jα,0β . (B.2)

In order to study the positive-semidefiniteness of Sαβ( Ek, Ek ′) it is hence sufficient to investigate
the behavior of Sαβ( Ek). To do so for a complex quantum-chemistry basis set, we define the
positive-definiteness measure

ξ(Rsphere)= min
Ek
(S( Ek)). (B.3)

In this equation, S( Ek) is the smallest eigenvalue of the matrix Sαβ( Ek), where Sαβ( Ek) is
constructed from the bulk parameters extracted from a cluster with radius Rsphere [Sαβ( Ek)=∑

ER j ;| ER j |6Rsphere e−i Ek· ER j S jα,0β]. In the discrete Fourier transformations (see appendix C.3), we
assume periodic boundary conditions with a finite periodicity length along the standard
primitive lattice vectors [56, 58]. Rsphere must be chosen large enough for ξ to be positive or, if
ξ remains negative, it must at least be sufficiently small in absolute value.

Let us first illustrate the behavior of ξ at the example of an s-orbital model. Gaussian
s-functions are described by

φs(Er )=

(
2γ

π

)3/4

e−γ | Er |
2

(B.4)
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(a) (b)

Fourier transformation
Discrete

ssss

Figure B.1. s-orbital-chain model. (a) The overlap S js,0s of an atom with its
neighbors at positions R j,x = j1a0 with j1 = 0,±1, . . . . (b) Overlap Sss(kx) after
a discrete Fourier transformation. In both cases, the solid line is for a large cluster
and the dashed line for a small cluster.

with an exponent γ , characterizing the radial decay. Hence, the overlap between two atoms

S js,0s =

∫
d3rφs(Er − ER j)φs(Er )= e−γ R2

j /2 (B.5)

decays with their distance R j = | ER j | like a Gaussian function. We consider an infinitely
extended chain with atoms at equally spaced positions along the x-axis ( ER j = j1a0Eex ). The
overlap from a selected atom to its neighbors drops off exponentially (figure B.1(a)). The Fourier
transformation will again result in a Gaussian with purely positive values Sss(kx) (figure B.1(b)).
If, however, overlap matrix elements are taken into account only up to a certain maximum value
| ER j |6 Rsphere, as in a finite cluster, a rough sin(kx)/kx -behavior results, where Sss(kx) becomes
negative at certain k-values. Upon an increase of Rsphere, Sss(kx) will evolve into a Gaussian
function and ξ will thus approach zero from below. The negative tails of Sss(kx) are unphysical,
and our observation implies that the clusters used to extract bulk parameters (figure 2) need
to be of a sufficiently large radius Rsphere, in order to obtain a reliable description of a crystal.
Obviously, with our overlap-based criterion the required magnitude of Rsphere depends on the
basis set chosen.

In figure B.2, we plot the behavior of ξ as a function of Rsphere for Au and Al. Beside
the results for the SVP basis set, we display ξ for Au also for the basis set LANL2DZ used
in [16, 31]. It is visible that ξ is positive for a single atom (Rsphere

= 0), but negative for small
spheres. With increasing Rsphere, ξ approaches 0 from below similarly to the s-orbital model.
We find that the elimination of diffuse functions reduces the radius Rsphere for ξ to become
positive or negligibly small. For practical reasons, it may happen that Rsphere cannot be chosen
large enough. In such a case, negative eigenvalues of Sαβ( Ek) can lead to negative eigenvalues
of the hopping-rate matrices 0X (equation (7)), since ρX X = −Im[gr

X X ]/π may no longer be
positive-semidefinite (see also the discussion in appendix A.3).

B.2. DOS

The DOS can be used as another measure for the convergence to a solid-state description. With
a k-space Hamiltonian in an orthogonal basis set H orth( Ek), it is given as

DOS(E)=

∑
α

DOSα(E)= −
1

π

∑
α

Im
[
Gorth,r

0α,0α(E)
]
. (B.6)
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Figure B.2. The positive-definiteness measure ξ for Au and Al as a function of
Rsphere. Beside the SVP basis set, the behavior of ξ is shown for LANL2DZ used
in [16, 31]. S( Ek) (equation (B.2)) is evaluated at 323 k-points. The radius Rsphere

has been scaled with the respective lattice constants (a0 = 4.08 Å for Au and
a0 = 4.05 Å for Al).

Here, α runs over all basis functions on a bulk atom, and Gorth,r
00 (E)=

∫
1BZ d3kGorth,r( Ek, E)/V1BZ

with the volume V1BZ of the first Brillouin zone (1BZ)12 and Gorth,r( Ek, E)= [(E + i0+)−

H orth( Ek)]−1. The orthogonal Hamiltonian can be obtained in several ways. Two possible choices
are (i) to Fourier transform S j0 and H j0 and to perform a Löwdin orthogonalization in k-space
H orth( Ek)= S−1/2( Ek)H( Ek)S−1/2( Ek) or (ii) to perform the Löwdin orthogonalization H sphere,orth

=

(S−1/2)sphere H sphere(S−1/2)sphere in real space, to obtain H orth
j0 by extracting H sphere,orth

j0 and by
imposing the fcc space group (see also figure 2), and to carry out the Fourier transformation last.
For parameters extracted from large enough clusters, we observe the equivalence of the DOS
construction with respect to the two different orthogonal Hamiltonians H orth( Ek). If ξ remains
(slightly) negative due to a too small Rsphere, then the construction of the DOS from the Löwdin
orthogonalization in real space (procedure (ii)) is of a higher quality than that resulting from the
orthogonalization in k-space (procedure (i)).

In figure B.3 we show the DOS as constructed via procedure (ii) with parameters extracted
from different Au and Al spheres with 141 to 555 atoms. We observe that the DOS seems well
converged with respect to Rsphere both for Au and Al for the largest spherical clusters Au429 and
Al555.

B.3. Transformation of bulk parameters under rotations

We assume that two coordinate systems are connected by the rotation %, where Er ′
= % Er . The

transformation properties of the bulk parameters

Y jα,0β = 〈 j, α| Y |0, β〉 =

∫
d3rφα(Er − ER j)Y (Er)φβ(Er)

12 The integration over 1 BZ is implemented as a discrete sum over k-points (see section C.3).
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Figure B.3. DOS of Au and Al constructed from parameters extracted from
fcc spheres with atom numbers between 141 and 555. The vertical dashed line
indicates EF.

with Y = S, H are determined by those of the basis functions 〈Er | j, α〉 = φα(Er − ER j).13 The
Gaussian basis functions used by TURBOMOLE are characterized by the angular momentum
l and the multiplicity ν = 1, . . . , 2l + 1, and α is a collective index for both. The rotated basis
functions of angular momentum l can be expressed as [83]

[
ψ ′

]l

ν
(Er )= ψ l

ν(%
−1

Er )=

2l+1∑
µ=1

ψ l
µ(Er )D

l
µν(%)

with the representation Dl
µν(%) of the rotation %. Using Y ′(Er )= Y (%−1

Er ), it can be shown that
the bulk parameters of the two coordinate systems are related by

Y ER jα,E0β =

∑
µ,ν

[
DT (%)

]
αµ

Y ′

% ER jµ,E0ν
D(%)νβ, (B.7)

where D(%) is the representation of % in the employed basis set. By knowledge of the Dl
µν(%),

D(%) can be constructed by the addition of representations [83]. If there are nl basis functions
of angular momentum l in the basis set describing Y jα,0β , we have

D(%)= ⊕lnl D
l(%), (B.8)

where ⊕ denotes a direct sum.
Let us now give the explicit formulae for the Dl(%). In this work only s, p, and d basis

functions are used, and hence we restrict ourselves to l = 0, 1 and 2. Since s functions just
depend on the radius, ψ0(Er )= ψ0(r), we have

D0(%)= 1. (B.9)

For l = 1, there are three p functions, p1 = px = f1(r)x , p2 = py = f1(r)y and p3 = pz =

f1(r)z, with a certain radial dependence f1(r) [76]. Exploiting %−1
= %T , we obtain

13 We assume that all basis functions are real-valued and that Y is a local single-particle operator 〈Er | Y | Er ′
〉 =

Y (Er )δ(Er − Er ′). The identity and Kohn–Sham Fock operator of DFT are of this form.
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p′

i =
∑3

j=1 p j% j i . Thus the 3 × 3 representation of the rotation % for the p functions is

D1(%)= % =

%xx %xy %xz

%yx %yy %yz

%zx %zy %zz

 . (B.10)

For l = 2, there are five d functions, where d1 = d3z2−r2 = f2(r)
(
3z2

− r 2
)
/(2

√
3), d2 =

dxz = f2(r)xz, d3 = dyz = f2(r)yz, d4 = dxy = f2(r)xy and d5 = dx2−y2 = f2(r)(x2
− y2)/2

with some radial dependence f2(r). The transformed d functions are given as d′

i =∑3
j=1 d j

[
D2 (%)

]
j i

with the 5 × 5 representation

D2(%)=

(
3%2

zz − 1
)
/2

√
3%zx%zz

√
3%zy%zz

√
3%zx%zy

√
3

(
%2

zx − %2
zy

)
/2

√
3%xz%zz %xx%zz + %zx%xz %xy%zz + %xz%zy %xx%zy + %xy%zx %xx%zx − %xy%zy√
3%yz%zz %yx%zz + %zx%yz %yy%zz + %yz%zy %yx%zy + %yy%zx %yx%zx − %yy%zy√
3%xz%yz %xx%yz + %yx%xz %xy%yz + %yy%xz %xx%yy + %xy%yx %xx%yx − %xy%yy√

3
(
%2

xz − %2
yz

)
/2 %xx%xz − %yx%yz %xy%xz − %yy%yz %xx%xy − %yx%yy

(
%2

xx + %2
yy − %2

xy − %2
yx

)
/2

 .

(B.11)

B.4. Imposing the fcc-space-group symmetry

In this section, we consider how to impose the fcc space group on the parameters H sphere
jα,0β ,

extracted from the finite spherical fcc clusters (figure 2). Assuming basis functions to be real-
valued, the matrix elements of a translationally invariant Hamiltonian H trans are symmetric and
obey the relations

H trans
iα, jβ = H trans

(i− j)α,0β = H trans
0α,−(i− j)β = H trans

−(i− j)β,0α. (B.12)

Owing to surface effects, the translational symmetry is not fulfilled for the parameters H sphere
jα,0β ,

as illustrated in figure B.4. Hence, although the deviations decrease with growing radius of
the spheres, the translational symmetry needs to be enforced in order to describe a crystal. To
avoid numerical errors, we impose at the same time the point-group symmetry Oh, although that
symmetry is already present due to the shape of our clusters. Concerning the notation, we call
the parameters conforming to the Oh point group, the translational symmetry, and the fcc space
group H Oh

jα,0β , H trans
jα,0β , and H jα,0β = H fcc

jα,0β , respectively. We do not need to consider the overlap,
since it depends only on the relative position of two atoms.

B.4.1. Oh point group. With equation (B.7) a Hamiltonian H Oh
jα,0β conforming to the point-

group symmetry can be constructed by averaging, for a given element of H Oh
jα,0β , over all H sphere

jα,0β
related to it by symmetry

H Oh
ER jα,E0β

=
1

NOh

∑
%∈Oh

∑
µ,ν

[
DT (%)

]
α,µ

H sphere

% ER jµ,E0ν
D(%)νβ . (B.13)

Here, % runs over all NOh = 48 symmetry operations of the point group Oh [83, 84].
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translationally symmetric, this is not the case for H sphere
jα,0β . In particular Ssphere

jα,0β =

Ssphere
0α,− jβ , whereas H sphere

jα,0β 6= H sphere
0α,− jβ as illustrated in the plot.

B.4.2. Translational symmetry. Using equation (B.12), the translational symmetry can be
imposed by setting

H trans
jα,0β =

1
2

(
H sphere

jα,0β + H sphere
− jβ,0α

)
. (B.14)

B.4.3. Fcc space group. The combined action of the Oh point group and the translational
symmetry leads to the fcc-space-group symmetry. With equations (B.13) and (B.14) we obtain
the parameters H jα,0β = H fcc

jα,0β according to the prescription

H fcc
ER jα,E0β

=
1

2NOh

∑
%∈Oh

∑
µ,ν

{[
DT (%)

]
αµ

H sphere

% ER jµ,E0ν
D (%)νβ +

[
DT (%)

]
βµ

H sphere

−% ER jµ,E0ν
D (%)να

}
.

(B.15)

Appendix C. Electrode Green’s functions

In this appendix, we describe the last step (figure 2(d)) in the construction of the electrode
Green’s function gr

X X (equation (6)), which we model as the surface Green’s function of a
semi-infinite crystal. Since there is a discrete translational invariance in the directions parallel
to the surface, the electronic parameters are first Fourier transformed to k-space in these
directions. Then the surface Green’s function is computed by applying the decimation method
of Guinea et al [57], generalized to the case of a nonorthogonal basis. Finally, an inverse Fourier
transformation is carried out to obtain the Green’s function in real space.

C.1. Semi-infinite crystal

The starting point for the construction of the surface Green’s functions are the overlap and
Hamiltonian elements S(X)jα,0β and H (X)

jα,0β with X = L,R. They have been determined as sketched
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Figure C.1. Au electrode oriented along the [111]-direction. In the illustration,
each superlayer consists of N3 = 3 atomic layers. The first six superlayers are
displayed with indices running from 0 to 5, as indicated at the top of the figure.
In the first step, Green’s functions Gr

1,0,Gr
3,0,Gr

5,0,Gr
7,0, . . . are eliminated, in

the second step Green’s functions Gr
2,0,Gr

6,0,Gr
10,0,Gr

14,0, . . . and so on. The
renormalized couplings τ (n)1 and τ (n)2 are effective couplings between superlayers
0 and 2, 2 and 4, and so on for n = 1, between 0 and 4, 4 and 8 and so on for
n = 2, and generally between superlayers with an index difference of 2n.

in figure 2(a)–(c) and can be used to obtain the overlap and Hamiltonian of the semi-infinite
crystal via S(X)mα,m′β = S(X)jα,0β and H (X)

mα,m′β = H (X)
jα,0β with j = m − m ′. Here, the index tuple m =

(m1,m2,m3) refers to the position ERm =
∑3

i=1 mi Ea
(X)
i in electrode X with some primitive

vectors Ea(X)i . Similar relations hold for m ′ and j . Note that we restrict the discussion here to
Bravais lattices, in particular fcc.

In order to describe the surface of the semi-infinite crystal, e.g. the Au [111] surface14

displayed in figure C.1, it is convenient to introduce a new set of primitive vectors, which we
call Ec(X)i (i = 1, 2, 3). The vectors Ec(X)1 and Ec(X)2 are chosen to span the surface planes, while Ec(X)3
points into the surface. Every lattice point may then be represented also in the new basis as
follows: ERm =

∑2
i=1 tiEc

(X)
i + pEc(X)3 = ERt,p. Hence, the relation Y (Xt)

mα,m′β = Y (X)
tpα,t ′ p′β holds for the

electronic parameters with Y = S, H . We note that the choice of the Ec(X)i vectors depends on the
orientation of the surface [58] and is not unique, as for any set of primitive vectors. Note also
that in our notation the index t = (t1, t2) for the transverse direction is a tuple of two integers,
while p, numbering the surface planes, is an integer.

Let us now denote with Y any quantity that satisfies the translational symmetry

Y (X)
tpα,t ′ p′β = Y (X)

upα,0p′β, u = t − t ′. (C.1)

Due to the regularity of the semi-infinite crystal, the relation is fulfilled by S and H and therefore
also by the surface Green’s function gr

X X . The symmetry may be exploited by performing a two-
dimensional Fourier transformation with respect to Er u =

∑2
i=1 uiEc

(X)
i , resulting in quantities

Y (X)
pα,p′β(Eκλ), where Eκλ is a vector in k-space. Details on the implementation of the Fourier

transformation are discussed further below.
14 To specify the crystallographic direction, such a [111] in figure C.1, we refer to the vectors of the conventional
cubic cell [56].
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C.2. Decimation procedure

For the calculation of the lead self-energy for side X = L,R (equation (6)), Green’s function
gr

X X is needed only for the first few atomic layers of the surface, since the coupling elements
HCX − E SCX have a finite range. Therefore, the semi-infinite crystal is divided into superlayers,
each consisting of an equal number N3 of atomic layers (figure C.1). The surface superlayer is
given the index 0, and the number N3 is determined by requiring the hopping elements to be
finite only between the nearest-neighbor superlayers and between C and superlayer 0.

We assume from now on that the two-dimensional Fourier transformation to k-space has
been performed for all quantities. For notational simplicity, we will suppress the dependence on
Eκλ and on the index (X). Furthermore, the atomic layer indices p, p′ and the atomic orbital (or
basis function) indices α, β are replaced by superlayer indices m,m ′, thus

Y (X)
pα,p′β(Eκλ)→ Ym,m′ . (C.2)

If there are M basis functions on each electrode atom, then the element Ym,m′ is a matrix block
with dimensions M N 3 × M N 3.

In terms of the block matrices, Green’s function (equation (A.1)) satisfies
∞∑

n=0

[
E+Sm,n − Hm,n

]
Gr

n,l = 1m,l, m, l > 0, (C.3)

where E+
= E + iη with an infinitesimal broadening η > 0. Within this set of equations, we

need to solve for Gr
0,0. Furthermore, since we are assuming an ideal semi-infinite crystal where

Sm,m′ = Sm−m′,0 and Hm,m′ = Hm−m′,0 with m,m ′ > 0, and because Sm,0 = Hm,0 = 0 if |m|> 2,
the set may be simplified to

W Gr
0,0 + τ1Gr

1,0 = 1, (C.4)

τ2Gr
m−1,0 + W Gr

m,0 + τ1Gr
m+1,0 = 0, for m > 1, (C.5)

where W = E+S0,0 − H0,0, τ1 = E+S0,1 − H0,1, τ2 = E+S†
1,0 − H1,0 and S0,0 = S†

0,0, H0,0 = H †
0,0,

S1,0 = S†
0,1, H1,0 = H †

0,1. Note that due to the imaginary part of E+, τ1 and τ2 are not the
Hermitian conjugates of each other. In order to solve equations (C.4) and (C.5) for Gr

0,0, we now
use the iterative decimation scheme [57], illustrated in figure C.1. In the nth step of the iteration,
this procedure eliminates all Green’s functions Gr

2n−1(2 j−1),0 with j ∈ N\{0}. The remaining
components are then determined through new effective ‘onsite’ and ‘hopping’ blocks, given
by

W (n)
s = W (n−1)

s − τ
(n−1)
1

(
W (n−1)

b

)−1
τ
(n−1)
2 , (C.6)

W (n)
b = W (n−1)

b − τ
(n−1)
1

(
W (n−1)

b

)−1
τ
(n−1)
2 − τ

(n−1)
2

(
W (n−1)

b

)−1
τ
(n−1)
1 , (C.7)

τ
(n)
1 = −τ

(n−1)
1

(
W (n−1)

b

)−1
τ
(n−1)
1 , (C.8)

τ
(n)
2 = −τ

(n−1)
2

(
W (n−1)

b

)−1
τ
(n−1)
2 , (C.9)

where the matrices of the 0th step are W (0)
b = W (0)

s = W , τ (0)1 = τ1, and τ (0)2 = τ2. In the iterative
procedure, the couplings τ (n)1 and τ (n)2 describe effective couplings between superlayers with an
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index difference of 2n after n steps (figure C.1). Therefore, the couplings τ (n)1 and τ (n)2 can be
expected to decrease rapidly as a function of n. If τ (n)1 and τ (n)2 are negligible after n = ν steps,
we find

Gr
0,0 =

(
W (ν)

s

)−1
. (C.10)

Returning to the original notation, the surface Green’s function is given by(
gr

X X

)
pα,p′β

(Eκλ)=
(
Gr

0,0

)
pα,p′β

(Eκλ)=

[(
W (ν)

s

)−1
]

pα,p′β
(Eκλ). (C.11)

By using an inverse Fourier transformation, we obtain gr
X X in real space (see section C.3)15.

C.3. Discrete Fourier transformation and further numerical details

For the practical implementation of the two-dimensional Fourier transformations, we assume
periodic (‘Born-von-Kármán’) boundary conditions with a finite periodicity of Ni steps along
the vectors Ec(X)i for i = 1, 2 [56]. For any quantity with the symmetry of equation (C.1), the
discrete Fourier transformation and its inverse are given as

Y (X)
pα,p′β(Eκλ)=

∑
u

Y (X)
upα,0p′βe−i Eκλ· Eru , (C.12)

Y (X)
upα,0p′β =

1

N

∑
λ

Y (X)
pα,p′β(Eκλ)e

i Eκλ· Eru . (C.13)

Here, Er u =
∑2

i=1 uiEc
(X)
i , Eκλ =

∑2
i=1 λi Edi

(X)
and N =

∏2
i=1 Ni . The Ed (X)i are the reciprocal lattice

vectors corresponding to the Ec(X)i , and the integer indices ui and λi in the index tuples u =

(u1, u2) and λ= (λ1, λ2) are restricted to the set Mi = {−Ni/2, . . . , Ni/2 − 1}, where Ni is
assumed to be even. The discrete Fourier transformations can be carried out efficiently by
employing fast-Fourier-transform algorithms.

Let us assume that the surface Green’s function (gr
X X)pα,p′β(Eκλ) has been determined in

k-space with the help of the decimation (equation (C.11)). Then the matrix elements of gr
X X

are constructed via (gr
X X)tpα,t ′ p′β = (gr

X X)upα,0p′β , where (gr
X X)upα,0p′β is obtained from equation

(C.13) and u = t − t ′. For this assignment to yield sensible results, the periods N1 and N2 in
the Fourier transformations need to be chosen large enough to fulfill two conditions. Firstly, the
bulk parameters S(X)upα,0p′β and H (X)

upα,0p′β should have decayed to negligible values for u at the
borders of the area M1 × M2. Secondly, all u occurring in the assignment must be contained in
M1 × M2.

In our calculations we used periodicity lengths N1 = N2 = 32, corresponding to N = 322

k-points. The broadening parameter for the electrode Green’s function was chosen such that we
obtain a reasonably smooth DOS, which does not change much for an increased number N of
k-points (section B.2). We observe that there exists a certain balance between the broadening
η and N : the larger the N , the smaller can η be [58]. We employed η = 10−2 H for Au and
η = 2 × 10−2 H for Al.

The decimation procedure is formally the same for the L and R electrodes, and needs to be
carried out separately for them in general. However, computer time can be saved, for example,

15 We note that the decimation also provides the Green’s function Gr
m,m = (W (ν)

b )−1 for a bulk superlayer with
m > 2ν .
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by choosing both electrodes along the same crystallographic direction and by orienting them in
the same way. In such a case, the vectors Ec(X)i are identical for X = L,R. Consequently, W , τ1,
and τ2 need to be constructed only once, and the decimation can be done simultaneously for
both sides. For the convergence criterion, we use∑

i, j

∣∣∣∣∣
[
τ
(n−1)
1

(
W (n−1)

b

)−1
τ
(n−1)
2

]
i, j

∣∣∣∣∣< ε.
In this way, we have a direct control on how much the inverse surface Green’s function (equation
(C.6)) is still modified. Here, ε = 10−6 H turned out to be sufficient to converge the transmission
curves.
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