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The Higgs mode, originally proposed in the context of superconductivity, corresponds to oscillations of the
amplitude of the superconducting order parameter. Recent terahertz-domain optical studies have found signatures
consistent with the Higgs mode, but its unambiguous detection is still challenging. We predict that the existence
of the Higgs mode can be unambiguously revealed by standard measurements of the transport characteristics in
microwave-irradiated asymmetric and transparent Josephson junctions. One signature of the Higgs mode in a
Josephson junction is the microwave-induced enhancement of the second harmonic of the equilibrium current-
phase relation (at zero dc bias voltage), whose sign differs from its expected value in the absence of the Higgs
mode. As the radiation frequency is varied, this enhancement exhibits resonant behavior when the microwave
frequency is tuned across the Higgs mass. The second signature that we propose is the enhancement of the second
harmonic of the ac Josephson current at finite dc voltage bias, which can be probed in a customary analysis of

the Shapiro steps in a microwave-irradiated junction.

DOLI: 10.1103/njvs-s1p5

I. INTRODUCTION

Superconductors (SCs) are characterized by the sponta-
neous breaking of global U(1) symmetry, resulting in a
complex order parameter (OP) A(¢) = |A(¢)| exp(ivH(¢)). In
equilibrium, the amplitude of the OP, |A(z)], is static and
results in a spectroscopic gap. Nevertheless, in a nonequi-
librium dynamical scenario, it embodies a collective mode,
namely, the Higgs mode [1-11]. Unlike the Nambu-Goldstone
mode associated with the phase ¢(¢), which gets screened
by electromagnetic fields and acquires a mass on the order
of the plasma frequency [12], the Higgs mode is electri-
cally neutral, which makes its detection challenging. Only
recently have nonlinear electromagnetic excitation with tera-
hertz (THz) spectroscopy signatures consistent with the Higgs
mode been observed [6-9,11,13-15].

Alternatively, there have been a few theoretical studies
predicting signatures of the existence of the Higgs mode
in transport measurements [16-22], with some of them ex-
ploring a Josephson setup [21,23,24]. The Josephson effect
[25], characterized by the coherent tunneling of Cooper pairs
across a Josephson junction (JJ) of two superconducting leads,
is a hallmark of phase coherence of the SCs. As such, the
Josephson current serves as a proxy for the SC OP, and it
may be expected to bear an imprint of the SC collective
modes [4,23]. In particular, Refs. [4,26] have argued that the
Josephson coupling between two SCs in a voltage (V')-biased
JJ, which bears the form ~A ; Ag g cos(¢), with Ag 1 /g being
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the equilibrium gaps of the left(L)/right(R) leads and d¢ /dt =
d/dt(¥p — Ug) = 2 eV the Josephson phase (we use i = 1),
provides a way to excite the Higgs mode at frequency equaling
2 eV. Subsequently, Ref. [24] proposed that the resulting sig-
natures of the Higgs mode may be found in the ac Josephson
current in voltage-biased JJs with high transparency even in
the absence of external irradiation. Unlike the usual Josephson
current, which oscillates at the Josephson frequency w; =
2 eV for a constant dc voltage bias V, the Higgs mode
manifests as a time-dependent component in the OP, which
enhances the second-harmonic Josephson current at frequency
2wy. In junctions with highly asymmetric/unequal SC gaps
on the two leads, along with high transparency, this Higgs-
enhanced 2w; current may even dominate the w; current,
which constitutes a clear indication of the Higgs mode in con-
ventional JJs with s-wave SCs, in the absence of time-reversal
symmetry breaking [27—40].

The problem with these proposals is that a direct detec-
tion of such a Higgs-enhanced Josephson current is virtually
impossible due to the very high required frequency [the Higgs
frequency is set by the superconducting gap, which for Al SCs
as an example would be on the order of 45 GHz]. To circum-
vent this problem we propose to follow the conventional way
in which the ac Josephson effect is revealed, namely, via the
measurement of the transport characteristics under microwave
irradiation [41-46]. To be precise, we propose to investigate
highly asymmetric and fairly transparent Josephson junctions
irradiated by microwaves at frequency w,. We predict the
following two unambiguous signatures of the existence of the
Higgs mode in a JJ: First, in the absence of a dc voltage
bias and for intermediate transparencies, the Higgs mode in-
duces a significant enhancement of the second harmonic of
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the microwave-assisted current-phase relation (CPR), which
is otherwise typically dominated by the term ~ sin(¢). On
tuning o, across wy, this Higgs-induced second-harmonic
component displays a resonant behavior, reflecting the under-
lying Higgs physics. Notably, the Higgs mode induces a sign
change in the second harmonic of the CPR, which manifests
in the full CPR as well. Second, when such asymmetric and
transparent irradiated JJs are subjected to a dc voltage bias as
well, besides the usual ac Josephson effect where the current
develops harmonics of the Josephson frequency w; associ-
ated with the dc component of the voltage, it also develops
harmonics of the radiation frequency. For voltages equaling
rational multiples of the radiation frequency, w; = (n/m)w,
where n, m are integers, these components synchronize and
constructively add to yield a dc current [41-43], appearing
as Shapiro spikes/steps (SS) in the dc current-voltage char-
acteristics (IVC). Crucially, the amplitudes of the SSs carry
an imprint of the ac components of the Josephson current
in the absence of the radiation. In this work, we extensively
discuss these two signatures with the help of a microscopic
theory that accounts for the self-consistent dynamics of the
order parameter in microwave-irradiated junctions. With this
theory, we demonstrate that microwave-assisted CPR, as well
as Shapiro steps in a DC IVC measurement, both provide
viable ways to detect the Higgs renormalized 2w; Josephson
current. Last, we remark that while Ref. [21] had considered
a seemingly similar setup, it had some key differences. In
Ref. [21], the bulk of the superconducting leads constituting
the JJ are subjected to a uniform oscillating vector potential to
induce the Higgs oscillations, which show up in the Josephson
current. However, in typical junctions, the microwave radi-
ation manifests as an oscillating voltage across the barrier,
which is not equivalent to an oscillating vector potential per-
meating the leads. As we demonstrate below, this difference
gives rise to qualitatively distinct OP dynamics, and hence,
different CPR and SSs.

The rest of this paper is organized as follows: In Sec. II,
we start with a phenomenological model to exlain the origin
of the Higgs oscillations in microwave-irradiated JJs. We spe-
cialize to the case of microwave-assisted CPR in Sec. IT A,
followed by an exposition of SSs in Sec. II B, demonstrating
in both cases how the Higgs mode manifests in the current.
After a description of our microscopic Floquet-Keldysh for-
malism in Sec. III employed to rigorously analyze the Higgs
signatures, we present the numerical results in Secs. IV A
and IV B, exploring in detail the microwave-assisted CPR and
SSs, respectively. Finally, we summarize our conclusions, and
discuss some practical considerations, in Sec. V.

II. PHENOMENOLOGY

Before discussing the microscopic theory that allows us to
quantitatively predict how the Higgs mode shows up in the
transport characteristics of irradiated JJs, we illustrate in this
section the underlying principles with a phenomenological
model. For this purpose, we first recapitulate the key results
of Ref. [24]. Conventional treatments of JJs employ BCS
mean-field SC Hamiltonians with static/time-independent gap
amplitudes. In contrast, on relaxing this constraint, we find
that under suitable conditions, a self-consistent solution for

the OP in JJs driven by microwave radiation and/or dc volt-
age bias acquires a time-dependent amplitude governed by
the Higgs mode. Crucially, this should be distinguished from
the more familiar case where the time dependence of the
OP arises from a time-dependent phase but a static ampli-
tude. Similar to the usual equilibrium/static proximity effect,
wherein the gaps of two SCs in contact with each other are
modified in the vicinity of the junction, these Higgs oscil-
lations may be understood as a dynamical proximity effect
between the two voltage-biased SCs. We demonstrate this
with a phenomenological model of the two OPs coupled at the
junction. We relegate the details to Appendix A, and summa-
rize the key results here. Assuming without loss of generality
that the left SC is at a potential V (¢) relative to the right SC, on
decoupling the two SCs constituting the JJ, the OPs have the
form Agre”"v*0, where 9(t) = ¥ 1, + fioo 2 eV(tdt'
and 9 (t) = Yo g [48,49]. This relative time dependence im-
prints upon the leading-order coupling between the OPs of the
two SCs ~JR(A(t)*Ag(t)), where J ~ T2 with T being the
tunnel coupling. For a dc voltage bias, this provides a stimulus
at frequency 2 eV [26], which leads to the usual ac Josephson
effect [25]. Additionally, the same time dependence enhances
the usual proximity effect by eliciting a dynamical response;
along with a change in the static gap amplitude, the OP also
acquires a time-dependent part whose spectrum derives from
the time dependence of the coupling. Throughout this work,
we consider highly asymmetric JJs with Ay < Ag g without
loss of generality, where the external drive excites the Higgs
mode only in the left SC. Expanding the OP amplitude in
the left SCas Ap (¢, x) = Ag.r(x) + AL, x), with SAL(¢, x)
capturing the time dependence, and the left lead occupying
x < 0, we find that to the leading order in J [24]

SAL(w, q) = xr(w, )X (w), (la)
dt ...
X () = / Ee"" 2J A g cos (¢(1)), (1b)

1
—(w +i0)> + oy, 1(q)*

x(w, q) = (1c)

Here, ¢(t) = 9.(t) — Ux(¢) is the Josephson phase, X; ()
captures the dynamic excitation provided by the coupling be-
tween the two OPs, and x; (w, q) is the Higgs susceptibility of
the left SC, which is peaked at the Higgs dispersion frequency
o =wyr(q) =201+ c?q?, where ¢ is the wave vector and
c is the Higgs velocity. A detailed treatment of Higgs-mode
damping lies beyond the scope of this phenomenological
analysis. Consequently, the present results are not expected
to remain valid when the drive frequency w approaches or
exceeds wy . This limitation, however, does not apply to the
microscopic numerical analysis which follows this section.
Nevertheless, we find that certain key qualitative features are
captured by our phenomenological analysis. As introduced
earlier, we now propose two ways to excite the Higgs mode:
(i) phase bias, and (ii) dc voltage bias, with both cases in-
volving a microwave irradiation. These are described in the
following subsections.
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A. Phase bias: Current-phase relation

Let us first assume that the JJ is subjected to microwave
radiation in the presence of a phase bias, but in the absence
of a dc voltage bias. The radiation imposes an ac voltage
Ve cos(w,t) [41-46], which corresponds to the Josephson
phase,

@) = ¢po + (2eVac/w;) sin(w,t), 2
———— ——

=u

where ¢y denotes the phase bias. Henceforth, we use o =
2 eV, /o, to parametrize the strength of the radiation. Be-
fore turning to the Higgs response, we first examine the
trivial case where it is absent. We start with the “adiabatic”
approximation (AA) [42,51]. The starting point in this ap-
proximation is the expression for the equilibrium Josephson
current in the absence of microwaves, which is given by I =
>, 1™ sin(ngy). A microscopic analysis shows that the har-
monics /™ progressively decrease with increasing n, [I™| >
[I"+D|, and contribute noticeably only at high transparencies.
Additionally, their signs alternate, sgn(/™) = —sgn(/"*~),
with IV > 0, I® < 0, and so on. The leading term, IV ~
J Ao Ao g, determines the critical current in the tunnel limit.
The AA that describes the supercurrent in the presence of mi-
crowaves simply consists of substituting the time-dependent
phase of Eq. (2) in the equilibrium CPR. This leads to the gen-
eralized result: 7 =), I™ sin(ngy), where the amplitudes
I™ incorporate the effect of the microwaves and are related to
the equilibrium amplitudes 7 as we specify below. This type
of approximation only works for slowly varying ¢(¢), which
permits us to neglect the frequency dependence of 1™ and
replace them with their zero-frequency values [42,51]. In the
presence of microwave radiation, we obtain on using Eq. (2)
that

I = Z Z 1™ ], (na) sin(ngo + aw,t). 3)

The dc supercurrent follows as

1= Z 1P Jo(na) sin(ngy), (€]

n 10

defining I™ = I™Jy(na). Specifically, we note that the
second-harmonic component, /®, depends on o as Jy(2),
and /®(a¢ = 0) < 0.

Returning to the case with Higgs renormalization, we shall
now see that the Jo(2c) profile, as well as the sign of I (a =
0) obtained above for the second-harmonic current, is altered
significantly. Plugging Eq. (2) in Egs. (1a)-1(c), we obtain the
change in the OP as

SAL(,x) =Y SALn(x)e ™", (52)
_Jeos(@o)(a)xr (mw,, x) m : even
8ALm(q) = {—isin(qbo)Jm(a)xL(mw,.,x) m:odd ’
(5b)

N

e c
2c /a)%LL — (mw,)?

Xe(@,x) =Y x(w, g)e® = E
q

This shows that the OP contains harmonics of w,, which
are resonantly excited when the harmonic frequency mow,
matches the Higgs frequency wy . The higher harmonics decay
parametrically due to the factor J,,(x). We reiterate that this
analysis is only valid for small w, < wp 1, along with o < 1,
due to the limitations of the AA and the phenomenological
field theory for the coupled OPs. Within the AA, promot-
ing the equilibrium supercurrent to I ~ JA(#)Ao g sin(¢(z))
and using Eq. (5), the dc supercurrent once again bears the
form given by Eq. (4), albeit with the Higgs-renormalized
amplitudes 7-Higes In particular, while the first harmonic
remains unchanged, the amplitude of the second harmonic,
which encodes the Higgs renormalization, becomes

I‘(Z).Higgs ~J Z(_l)m [‘Im(()l)]2 .

From this, we can distinguish the Higgs resonance when har-
monics of w, equal wy 1, and the dependence on «. We find
that the latter is equally helpful in indicating the underlying
Higgs renormalization. Importantly, along with the difference
in the o dependence with [Eq. (6)] and without [Eq. (4)]
the Higgs renormalization, we note that /®-Hige (¢ = 0) > 0,
in contrast to the Higgs-free case where I®(a = 0) < 0, as
mentioned earlier. This difference in the sign of the second-
harmonic component plays a significant role in qualitatively
altering the CPR, skewing the peak current. This is easy
to see on retaining only the first two harmonics, yielding
the current I(y, ¢o) = IV sin(¢) + ¥ sin(2¢y) (where y is
a weighting factor), which satisfies I(y, ¢9) =I(—y,m —
¢o). Irrespective of the magnitude of the Higgs-renormalized
second-harmonic component, the qualitative differences in the
CPR, arising from the opposite sign of the second harmonic
and its distinct edependence, serve as a clear fingerprint of
Higgs renormalization.

We emphasize that a reliable estimate of the second-
harmonic amplitude requires a microscopic analysis, since
for any finite @ multiple harmonics of w, contribute, with
the higher ones extending beyond wpy ; where Higgs-mode
damping becomes relevant. Nonetheless, as shown below, the
a dependence predicted here agrees with our microscopic
numerical results.

(6)

B. Voltage bias: Shapiro steps

Next, we consider the case of a microwave-irradiated JJ
when a finite dc voltage biased is applied as well. For the
discussion of this problem, it is convenient to first analyze
the behavior of the OP and the Josephson current without
microwave radiation, and then incorporate the effects of the
radiation afterward. For a pure dc voltage bias corresponding
to ¢(t) = ¢ + 2 eV ¢, from a similar analysis as above [24],
we find that as the voltage increases and w; — wpy 1, the left
OP modulation is amplified by the Higgs resonance,

SAL(, x) = JxL(w, x) cos(wt + o), (N

where y(w, x) is shown in Eq. (5) above, while the off-
resonant §Ag remains negligible. In this case, using the
AA for the current as before, we see that it acquires a
component oscillating at frequency 2wy, L, = I, fu, where
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I,, = JAp Ao is the amplitude of the usual w; compo-
nent obtained from the Ambegaokar-Baratoff relation [52],
and fy ~ 1/vw} ; — w} shows a resonant behavior as
approaches the Higgs frequency. As we show below, this
Higgs renormalized I,,, may be inferred from Shapiro steps
in irradiated JJs.

In the presence of both dc voltage bias and microwave
radiation, the net voltage across the junction is given by V +
Ve cos(w,t). The corresponding Josephson phase becomes

d(1) = do + oyt + asin(w1). (8)

First we consider the case without any Higgs renormalization.
Using the AA described above, the current reads

I(t) =J Ao Ao sin(@(1))
=Y JAoL Aok Tp(@)sin(go + ot + bayt).  (9)
N ——’

n
L,

From this current, we obtain the bth SS when w; = |b|w,, with
maximum height SS} = 1,,,J_ (). For convenience, we have
defined S} to refer to the SS at aw; = bw,. Specifically,

SSl =2 max{ o, /1 @) sin(go)] = 2L, /1 (@), (10)

which has a characteristic J_;(«) profile as a function of
o. Note that this reveals the amplitude of the ac Joseph-
son current at zero ac voltage, I,,. For high transparencies,
equivalently large J, the higher harmonics 7,,, oscillating at
frequency aw; may also be significant. Specifically, on includ-
ing the 2wy current,

(1) = Z L, Jp(ct) sin(¢po + w;t + ba,t)

n

+ > b,y () sin2gy + 25t + Vo), (11)
b/

two changes occur: (i) The previously obtained SS; are mod-
ified as the second line in Eq. (11) contributes to SS; when
2w; = (V' = 2b)w,. This yields

ssl =2 max[ /1 (@) Sin(go) + o,/ 2(200) sin(2o)].
(12)

Notice that I, introduces a J_,(2«) dependence, deviating
from the J_; (o) obtained earlier in Eq. (10). This is noticeable
as J_»(2a) oscillates approximately twice as fast as J_; ().
(ii) Another set of SSs, SS?, is obtained when 2w; = bw, for
odd b. Specifically, SS? has the height

SS2 =2 max{ b, /1 (20) sin2o)] = 2, J 1 2e). (13)
0

Typically, L, < I,,, particularly in highly asymmetric JJs as
we shall see below, which results in SS% <SS } in the absence
of Higgs renormalization.

Returning to the case with Higgs renormalization, the un-
derlying Shapiro physics remains unaltered; what changes is
the amplitude of L,,. Within the simple AA, with Ay, <
Ao g and considering a dc voltage resonant with the Higgs
mode of the left lead w; &~ 2A¢, we obtain §A.(¢) =
0AL cos(¢p(t)) and § Ap ~ 0. The resulting current is given by
I~ JAL(t)Aogsin(¢(t)) [24]. Since by arguments of gauge

invariance, the left OP responds as § A7 () = § Ap cos(¢(t)),
the Higgs-renormalized current becomes

I(t) =J[Ao,L + 8 AL cos(¢(1))] Ao,k sin(p(1))

=Y L, Jy(@)sin(¢o + wt + bat)
b

+ Z JSAL Ao g Ty (2a) sin(2pg + 2wyt + b w, ).
——

/
b IHiggs
2w;

(14)

Consequently, on enforcing the condition for SS! along with
that of the Higgs resonance, i.e., , = w; = 2A¢ 1, we obtain
the same expression as Eq. (12), albeit with a much stronger
Higgs enhancement I;:Jggs > by,)»

SSi =2 n}pax[lw_,l,l (o) sin(¢po) + I;j;f;'gsj,z(za) sin(2¢)].
0
(15)
Similarly,

§§? =2 r%ax[lz}ffgsJ_l (20) sin(2¢) ] (16)
0

Note that I;ijggs depends on the dc voltage. It is peaked at the
Higgs resonance w; ~ wy . With an experiment probing the
SS heights over a range of V,, there are two distinct markers
indicative of a Higgs-enhanced 2w; current: (i) The relative
magnitudes of S 512 and SS } provide an estimate of the strength
of the Higgs-renormalized ,,,, which is expected to enhance
$S?. In conventional JJs without any Higgs renormalization,
the only other source of SS12 is the higher-order Josephson
effect arising from a large transparency. In this work, even
though we consider transparencies up to ~0.48, we find that
the higher-order Josephson effect is much weaker than the
corresponding Higgs-induced result, particularly in case of
highly asymmetric JJs which, as we show below, suppress
by, - (i) A resonantly peaking behavior of SS? on sweeping w;
across wy ;. provides an unambiguous signature of the reso-
nant Higgs renormalization of I, . Equivalently, the deviation
of §S 11 from the J_;(«) profile due to the contribution of I5,,,
which introduces a J_,(2«) component, is also expected to
show a resonant enhancement across the Higgs resonance.

Let us emphasize that although this simplified analysis
captures the essential physics, its validity is restricted to tunnel
JJs subjected to radiation of sufficiently low frequency and
intensity. Noting that the OP varies at the same timescale as
¢, along with the fact that we consider high transparencies and
radiation strength V), it is imperative to account for the proper
retarded dynamics when obtaining the microscopic current
[43,51,53-56]. We pursue a microscopic Keldysh formulation
in the rest of our work, following Refs. [24,43]. Nevertheless,
as we show later, the AA introduced above captures the salient
features concerning the dependence of the step heights on the
radiation strength.

III. MICROSCOPIC MODEL

Our technical formulation follows from Refs. [24] and
[43], based on a self-consistent Keldysh-Gorkov framework
[22,57-62]. We, nevertheless, describe the crucial aspects to
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FIG. 1. Illustration of the JJ, with two leads of length L;/ ~
&sc,./r comparable to the superconducting coherence length (sub-
script L/R denotes left/right) forming a bridge. The outer ends of
the leads are connected to macroscopic superconducting reservoirs
(widening triangles). The JJ has high transparency, and it is highly
asymmetric with unequal equilibrium gaps, Ao, < Agg without
loss of generality. We find that the OP develops a time-dependent
component, denoted §A; r(t), representing the Higgs mode. This
Higgs mode, corresponding to radial oscillations of the OP (red balls)
in the free-energy landscape of the OP (Mexican hat), is excited
by radiating tunneling Cooper pairs. An external radiation (blue
waves) may be used to alter the current-phase relation, or create
Shapiro steps, which reveal the presence and the strength of the
Higgs-induced Josephson current.

keep the discussion self-contained. We model our junctions
with s-wave BCS SC Hamiltonians [24,53-56,63—66]. The
device, as illustrated in Fig. 1, is a superconducting bridge
comprising two SC leads of length L with Ap < L ~ &g,
where Ap is the Fermi wavelength, and &gc is the SC coher-
ence length. This is because the Higgs oscillations take effect
over a length scale ~&gc. The leads terminate in macroscopic
SC reservoirs [67]. For numerical tractability, we consider a
single-channel JJ. This is a valid assumption for specular tun-
neling across the interface, which establishes a homogeneous
OP along the direction(s) transverse to current transport. This
was already established in Ref. [24], albeit in the absence
of external radiation. The time-dependent mean-field Hamil-
tonian, written in a local real-space basis, is given by H =
H; + Hg + Hy, where

Hyr = Z (—chﬂacja - é‘c;ac,i+1a)
jeL/R.c
+(A; (t)c](,cﬂr + A% *(1)CjorCio), (17)
and
Hr =Y W(t)ch,cne +He), W) =T,

(18)
Here, j labels sites belonging to the L(left) and R(right) leads,
containing Ny and Ny sites, respectively. Furthermore, ¢ de-
notes the hopping amplitude, with the bandwidth equaling 4¢,
g > 0is the BCS attractive interaction, 7 denotes the junction
tunnel coupling, and last ¢(¢) is given by either Eq. (2) or
(8) depending on the biasing condition. We remark that by
allowing the gaps A(z) to be time dependent, this formula-
tion is able to capture the mean-field dynamics of the OP
deriving from the Higgs mode. As described in Appendix A,
following Refs. [4,24], the Josephson coupling stabilizes the

Higgs fluctuations, shifting the OP’s vacuum expectation
value from the equilibrium static gap Ay to a time-dependent
one, Ao + SA(¢). The latter is effectively captured by such a
time-dependent mean-field formulation [22,60-62]. Addition-
ally, in the Hamiltonian mentioned above, we have adopted
a gauge in which the voltage is shifted from the chemical
potentials, and it appears exclusively in the tunneling term
[68]. There are two aspects to the validity of this procedure.
First, even in equilibrium, a supercurrent flow establishes a
phase gradient within the leads. In our setup, it can be shown
that variation of the SC phase in the leads over a distance
Egc satisfies £&sc Vo ~ t, where 7 is the normal-state trans-
parency. Hence, for highly asymmetric junctions where the
requirement of very high transparencies may be relaxed, it is
justified to neglect the phase variations within the leads [24].
The macroscopic superconducting reservoirs, by virtue of the
macroscopic number of transport channels, is immune to this
issue. Second, beyond equilibrium, the presence of electric
fields within the leads could lead to a time-varying phase. We
consider type-I SCs with £&s¢ > A, where A is the penetration
depth. Since the Higgs and transport physics occur over length
scales ~&gc, it is safe to neglect the fields and the associated
phase variations. Hence, we assume that the voltage drop is
confined to the barrier.

For the dc voltage-biased and irradiated junction, the tunnel
amplitude equals

W) :Z —Te_i%osm,lJn<%> e—im%’t—inw,-z, (19)

m,n

W

revealing that energy is transferred in units of w;/2 and w,.
The tunneling self-energy is given by

2 =2 O =W@or - W @), (20a)
r/a —
E 7 kLo = Wrmig-n T = W (omyg-nm) T
(20b)

where 7 denotes the Pauli matrices in Nambu space with 7. =
(7o £ 73)/2. Since the OP responds to the energy supplied by
the tunneling pairs, we have

(SAJ(I) — Z SAmn;je_imwTjt_inwrt, (21)

m,n
with the corresponding self-energy being
NOESINIGLE (22a)

Er/a

8 A;pg,mn;j = BA(P—"’!)(KI—")QJTI ’ (22b)

where j denotes the spatial indices. Therefore, the two-time
retarded and advanced Green functions may be written as (see
Appendix B)

Gl (@)

r/a wy
— G o+ p; + qo,, ®

Gt t) = 2/

X e—i(w-‘rPT +qw, )t +iot’ . (23)
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In this representation, the Dyson equations for the retarded
and advanced components become

/a(w)z:r/a Gr/a(w)

pg,mn~"mn

G (@) = g (@)8p0840 + Y _ &,

(24)

where all quantities are matrices in Nambu space, and the
bare Green function g, (@) = glw + pw; /2 + qw,) is defined
in the absence of tunneling. The self-energy contains several
contributions. Note that X7 = X5, =0 [68]. We also have
the reservoir self-energy, Er’gf;/,,;mn =27 gr/a/ 738 m8g.n»
where g, is the boundary Green function [67], acting only
on the lead sites immediately neighboring the reservoir.
Last, we include the broadening self-energy Elﬂ/;z -
:|:z(F/2)8,,m gnand g = L f(@0)8pm8q,n, Where f(w)
is the Fermi function. It aids numerical convergence, and
accounts for the lifetime arising from, e.g., relaxation to
the quasiparticle continuum, electron-phonon interaction, etc.
[56]. Finally, the lesser Green function, which is central to our

calculation, is obtained as [57,69-75]

G;n () = Z G(r+m)(q+n)(w)2<(w)Gr1-S(w)’ (25)

where G () = G(w, w + roy /2 + sw,) = G (w +
rwy)2 + sw,, w) = G

The nonequilibrium gap equation [22,24,57,59,61] be-
comes

Aj(1) = iupcs[G7 1121, 1)
[o¢]

) do __
= Appyj = WBCS/ Z[Gmn,oo;j,j]l,z(w), (26)

—0Q

where upcs is the BCS interaction in the pairing channel, j
denotes the spatial index, m and n denote the harmonics of
wy/2 and w,, respectively, and we consider the anomalous
component of G=, as evident from the subscript 1,2.

We self-consistently solve Eqs. (24)—(26) to obtain the OP.
Finally, the current is obtained as [24,43]

1) = ZLme*"m‘“T’*""W (27a)

L= e / —tr[T%ET LR.(p+m).(g+m GRILN, . pg (®)
P.q
— (L < R)]. (27b)
We note that the dc current is obtained as Iy, while the ac
components oscillating at frequency w; and 2w; are Iy = 1,
and Iy = b, respectively. We use these notations inter-
changeably in this work.

As introduced above, we consider two observables,
namely, the CPR and the SSs. The calculation of the SS
amplitudes requires a full account of the Floquet indices
corresponding to both dc and ac components of the voltage,
exactly following the theory in this section. Recalling that SSj,

is obtained when aw; = bw,, we obtain

SS, =2 TI;S&X[ E S(hak,—bk — I-2ak,pk) sin(kepo)
0
X

+ Rk, —bk + 1-2ak,pk) COS(k¢o):|, (28)

where the first and the second lines correspond, respectively,
to the sine and cosine Josephson currents [76].

The calculation of the CPR is simpler; while the procedure
described above remains unchanged, the absence of the dc
voltage bias (w; = 0) lets us drop the corresponding Floquet
indices altogether, with the time dependence of all quantities
occuring only in harmonics of w,. For clarity, we summarize
the details. The OP becomes

SA(t) = Z(SA,,; je e, (29)

With the self-energies now given by

E;Z,(IRL;q,n = Wg-m T+ = Wi_mt- (30a)
g = OBy, (30b)
the Green functions admit the form
G~ (@)
G'<(t,t") = Z/ Gr/a/<(a)+ gor, ®)
X e*l(w+qwr)1+iwt’. 31)

Note that as shown in Appendix B, this is equivalent to
the usual Floquet expansion. Consequently, the current is ob-
tained as

I(t) = Z Le ",

I, = Z / _tr (5357 1R (g+m GRiLn, 4 (@)

(32a)

—(L < R)]. (32b)
The CPR is the dc component of the current, obtained from
its zeroth Floquet component, 1.

IV. RESULTS

In this section, we present our numerical results for the
CPR, and the SSs, following the theory developed in the
previous sections. We highlight the signatures of the Higgs
mode in each case, contrasting with the corresponding results
in the absence of the Higgs mode.

Throughout this work, we use a system of size N, = 18,
Ng =5, T/¢ = 0.4 corresponding to the transparency ~0.48
[43], '/ Ap g = 0.0125, along with a BCS coupling constant,
which leads to Ag g/¢ = 0.2. The remaining parameters spe-
cific to each figure are specified in the corresponding captions.
We discuss further practical considerations concerning the
essential parameters below in Sec. V.
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FIG. 2. (a) Numerically obtained first Floquet harmonic of the OP modulation in the left lead at the junction, §Ay,j—y, [n =1, j = Ny ; cf.

Eq. (29)], for N, = 18, Ng = 5 [47], T /¢ = 0.4 (transparency ~0.48 [43]), I" = 0.0125A x = 0.0025¢, and w, =~ 2.29A, ~ 1.14wy 1, just
over the Higgs resonance. As anticipated from Eq. (5), the dominant contribution varies as sin(¢o) (shown here, denoted by the subscript). The
cos(¢o) component (not shown) is much weaker. The predicted J; (o) dependence is also confirmed, as indicated by the blue circles. (b) The
second-harmonic component of the CPR, /¥, as a function of a. We present the normalized quantity I®eRy /Ay g, where Ry is the numerically
obtained normal-state resistance. For reference, in symmetric (Ao = Agg = Ao) tunnel JIs IV satisfies the Ambegaokar-Baratoff result
IWeRy /Ay = /2 [52]. In the Higgs-free case (red), obtained by retaining only the zeroth Floquet component of the OP in the self-consistency
equation Eq. (26), we confirm the expected Jy(2c) dependence [cf. Eq. (4)]. With Higgs renormalization included (blue), 7/®Higes is much
larger. It starts out positive at « = 0, in contrast to the Higgs-free case. Moreover, inspired by Eq. (6), the numerical results are well described
by a fit of the form Zm PmlJn(@)]?, with the coefficients p,, obtained from least-squares regression. We find that p,,>s are negligible. (c) We
show the CPR I, with varying o, in the absence of Higgs renormalization. Since I®-"°Higes ig negligible, the CPR is not noticeably altered
from Iy ~ IVJy(er) sin(¢ ). (d) Same as (c), but now we include the Higgs renormalization. Since I®*H#2 is large, it imparts a sin(2¢,) phase

dependence, with the o dependence following from Eq. (6) [see also panel (b)].

A. Phase bias: Current-phase relation

We start by exploring the first proposal in Fig. 2, pre-
senting the Higgs-renormalized CPR I, (dc supercurrent) in
the absence of a dc voltage bias. We verify key predictions
from the phenomenological analysis regarding how both the
CPR and the OP depend on the radiation strength «, keeping
the radiation frequency w, fixed. We begin by examining the
Higgs-induced OP modulation, as it ultimately determines
how the current depends on «. Specifically, Fig. 2(a) con-
firms the prediction of Eq. (5): the first Floquet component
of the left order parameter at the junction, §A;.y, , varies with
the Josephson phase as sin(¢y) and scales with o as Jj(«).
We find that the cos(¢y) component is negligible. Next, be-
fore addressing the full CPR, we first examine the behavior
of its second-harmonic component, which varies with the
Josephson phase as ~ sin(2¢g) [cf. Eq. (4)]. Its amplitude is
calculated as I'® = (2/7) [ dgolo(¢o) sin(2¢py), where I is
numerically obtained using Eq. (32b). Figure 2(b) shows the
qualitative difference in I® with and without Higgs renor-
malization: in the Higgs-free case (I'®"°Higes) it follows the
expected Jy(2«) scaling [cf. Eq. (4)], is negative near o = O,
and remains small, whereas including the Higgs renormal-
ization strongly enhances /®®-Higes and crucially, makes it
positive at « = 0. Note that we enforce the absence of Higgs

oscillations by using a static gap, retaining only the zeroth
Floquet component while self-consistently solving for the
gap using Eq. (26). We reiterate that with Higgs renormal-
ization, the second-harmonic component not only intensifies
in amplitude but it also exhibits a distinct dependence on
the radiation strength [compare Eqgs. (4) and (6)]. Indeed, as
shown in Fig. 2(b), the Higgs-renormalized second harmonic
is well captured by the fit )_ PmlJu(a)]?, as obtained in
Eq. (6). Finally, we are now able to understand the full CPR
shown in Figs. 2(c) and 2(d), whose distinctive behavior in
the presence of the Higgs renormalization derives from that
of its second-harmonic component, /?-Higgs In the Higgs-
free case [Fig. 2(c)], noting that [®-roHiges « [ for the
transparencies and equilibrium gap asymmetries considered
in this work, we obtain from Eq. (4) Iy ~ IV sin(¢y). Thus,
the CPR maintains its typical sin(¢y) phase dependence, along
with the associated ~Jy(«) @ dependence. In contrast, in the
presence of Higgs renormalization [Fig. 2(d)], the CPR is
strongly modified by the enhanced second harmonic, 7?-Higes
with Iy ~ IV sin(¢pg) + I®Higes sin(2¢py ). This not only intro-
duces a clear sin(2¢,) phase dependence, but also leads to a
distinct « dependence via I®Hiegs consistent with Eq. (6).
We emphasize that even if 7?0 Higes were sizable, it may
be clearly distinguished from the Higgs-renormalized case
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as their signs and o dependences differ [Fig. 2(b)], both of
which are reflected in the full CPR. When the second har-
monic is negligible, the CPR [~ sin(¢)] is symmetric about
¢o = /2 and remains positive for ¢y € (0, 7). However, a
negative (positive) second harmonic skews the CPR backward
(forward). Moreover, if the second harmonic is sufficiently
large, |[®Higes| > 051V it can drive the CPR below zero
near ¢g = 0 (¢pg = 7).

Next, in Fig. 3 we complement the analysis in Fig. 2 by
studying the dependence of the CPR and OP on w, and equi-
librium gap asymmetry, for a fixed value of «. In Figs. 3(a)
and 3(b), we plot the CPR as a function of the equilibrium
gap asymmetry for two fixed values of w,, at a fixed ra-
diation strength o = 2. A clear transition appears at o, =
wp = 2Mo; for v, > 2A¢ 1, the CPR dips below zero near
¢o = 0, signaling a sizable negative Higgs-induced I>)-Higes
[see Fig. 2(b), which shows I®-Higgs < 0 at & = 2 when w, is
slightly above 2A¢ ]. Instead, for w, < 2A¢ 1, this negative
dip disappears. The corresponding plots in the absence of
Higgs renormalization, shown in Figs. 3(c) and 3(d), do not
exhibit such a transition, lacking a negative dip altogether.
This suggests 10 Higes js negligible. In Fig. 3(e), we see the
resonant enhancement of the OP at w, = wy 1, as predicted
by Eq. (5). Recall from the same equation that the harmonics
8 A, decay as J,,(«). No signatures of higher-order resonances
at mw, = wy 1. are observed for ¢ = 2. In Figs. 3(f) and 3(g),
we show the amplitudes of the second-harmonic component
with and without Higgs renormalization, respectively. The
former is negative, and shows a resonant enhancement at
o, = wpy.1, while the latter is positive [see Fig. 2(b)].

B. Voltage bias: Shapiro steps

Let us now discuss the signature of the Higgs mode in the
Shapiro steps that appear as a consequence of the phase lock-
ing between the microwave field and the applied dc voltage
bias. In Fig. 4, to clarify the impact of Higgs renormalization,
we proceed by examining the OP and the current harmon-
ics I, and Ip,, in dc voltage-biased JJs in the absence of
radiation, comparing results with and without the Higgs renor-
malization. We find that [,,, exhibits no significant qualitative
changes in the presence of Higgs renormalization [compare
Figs. 4(a) and 4(b)]. The Higgs oscillations mainly appear as
a nonequilibrium OP component oscillating at frequency wj,
which is shown in Figs. 4(c) and 4(d). Its amplitude peaks
at the Higgs resonance, w; = wy . In highly asymmetric
junctions, these Higgs oscillations result in a pronounced peak
in the second-harmonic Josephson current IH'ggg as the bias
voltage is tuned across the Higgs resonance [Fig 4(f)]. By
contrast, without Higgs oscillations, /5> "##* is much smaller
and no such peak arises [Fig. 4(e)].

Now, armed with an understanding of the effect of the
Higgs renormalization on the ac Josephson current harmonics,
we are ready to look at how these manifest in the SSs in
irradiated dc voltage-biased JJs in Figs. 5 and 6. Specifically,
we focus on two SSs, SS! in Fig. 5 and SS? in Fig. 6, which
require w; = w, and 2w; = w,, respectively. Before turning
to the role of Higgs renormalization, we first consider the
trivial case where it is absent. Even for the high transparencies
(~0.48) studied here, the 2w; current arising from higher-

order Josephson processes remains much smaller than the
conventional w; current given by Eq. (9). In fact, as shown
in Figs. 4(c) and 4(d), a large equilibrium gap asymmetry
(Ag, L <K Ap,r without loss of generality) aids the suppression
of the 2w; current. As such, we expect the current to be
described by Eq. (9), containing only the w; current, 1,,.
Furthermore, while the amplitude of 7,, is expected to be
dependent on both w; and w; [1,,, (@, w, )], for small w;, along
with radiation of low intensity (low «) and low frequency
w,, the frequency dependence of /,, may be neglected and
replaced with its zero-frequency value. As derived in Eq. (10),
this yields SS } = 2I,,J_1 () with the distinctive J_;(c) pro-
file [77,78]. For the values of o and w, considered in this
work, as shown in Fig. 5(b), we find that this is indeed the
case, with no significant differences from the J_;(«) profile.
Turning to SS?, we recall from Eq. (13) that it is governed

solely by I,. As noted above, I, Higgs s much smaller

than 10 "2 in the absence of Higgs renormalization. Conse-
quently, SS? 1.no Higgs Na8 @ much smaller magnitude compared

to SSI1 1o Hieess Which depends on both 1) Higes and I"O Higes
[Eq. (10)]. This difference is clearly ViSlble when companng
their amphtudes in Figs. 5(b) and 6(b), which reveal that

the crests of SS? 1 no Higgs are nearly two orders of magnitudes

smaller than those of SS7 Higes®

Now, we turn to the case with Higgs renormalization. We
begin with SS| Higes> Shown in Fig. 5(a), where it is plot-
ted as a function of « for several bias voltages w; ranging
from below the Higgs resonance (w; < wpy 1) to well above
it (w; > wg ). Recall that SS1 Higes depends on a combina-

tion of J_(a) and J_,(2a), weighted by I5** and IzHaijggs,
respectively [cf. Eq. (16)]. At the resonance w; = wy 1, the
strong Higgs-renormalized contribution to I,, amplifies the
J_>(2a) term, producing clear deviations from the J_;(«) be-
havior observed in the absence of Higgs renormalization [cf.

Fig. 4(d)]. Even more striking is the behavior of SS?, which
Higgs

according to Eq. (16) depends exclusively on 1, Since
‘gg‘ becomes comparable in size to I, " near the resonance,

S S | Higgs attains a magnitude similar to SS ]I.Higgs, as evident in
Figs. 5(a) and 6(a). This provides a clear fingerprint of Higgs
renormalization in conventional JJs, as no other mechanism
can generate such a pronounced increase in the 2w, current.
Now we comment on the applicability of the AA intro-
duced earlier. As shown in Figs. 5(c) and 6(a), we find that
for small w, < Ay g, our numerical results are matched by the
AA [Egs. (15) and (16), respectively]. Specifically, on starting
with the numerically obtained coefficients 1, = J(l — 1-29)
and b, = S(lso — I—49) at @ = 0, which represent the ampli-
tudes of the sin(wy,t) and sin(2w,t) currents in the absence
of radiation, the numerically obtained SS} and SS% mirror
Egs. (15) and (16), respectively [76]. For large values of w,
comparable to or larger than Ag g, we find significant devi-
ations from the AA predictions. The validity of the AA is
primarily limited by electronic retardation processes, which
imbibe the amplitudes 1,, and I, with frequency dependence
[77,78]. A detailed account of this argument may be found
in Chap. 11 of Refs. [42,79]. In particular, a leading-order
perturbative (in the tunnel coupling 7) calculation reveals res-
onances at frequency Ag /g or Aoz £ Ag g, corresponding to
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FIG. 3. (a)-(d) Numerically obtained CPR (Ip) at« = 2, in a system with N, = 18, Ny = 5[47], T /¢ = 0.4 (transparency ~0.48 [43]), and
I' = 0.0125A z = 0.0025¢. We present the normalized quantity IpeRy /A g, Where Ry is the numerically obtained normal-state resistance.
(a), (b) CPR as a function of the equilibrium gap asymmetry A /Ao z. Each panel considers a different w,. The black dashed line marks the
point 0.5w,/Agr = Ao/ Ao, corresponding to the resonance condition w, = 2A, .. The Higgs renormalization weakens as 2A ; exceeds
w,, restoring the conventional ~ sin(¢) behavior. In contrast, when 2A,; moves below w,, the CPR develops a negative dip near ¢y = 0,
originating from the Higgs-induced term 7®"Higes sin(2¢,), with /@ Higgs < O [see Fig. 2(b) for the sign at o« = 2]. Panels (c) and (d) show
the corresponding results without Higgs renormalization. We do not find any negative dips in Iy. (e) The component of the OP varying as
sin(¢y) [the cos(¢y) component is negligible] in the left lead at the junction (x = N.), which is peaked at the Higgs resonance w, = 2A ;.
This resonance is marked by a dashed line in all remaining panels. (f) Second harmonic 7®"Hi#s a5 a function of w, and Ag ;/A¢ &, showing
the Higgs resonance. The Higgs-free counterpart in panel (g) exhibits the opposite sign [see Fig. 2(b)]. In this case, the peak at w, = 2A 1.
corresponds to the pair-breaking threshold.

resonant excitation of quasiparticles between the singular gap and wy, the components /,, and I, are probed only near zero
edges of the two SC leads. Since the dominant contribution  frequency, and their frequency dependence can therefore be
to the current typically arises from the exchange of only the neglected. However, for w; and w, comparable to the resonant
few lowest harmonics of w; and w,, for small values of w, frequencies mentioned above, or for larger transparency and

014516-9



LAHIRI, CUEVAS, AND TRAUZETTEL

PHYSICAL REVIEW B 113, 014516 (2026)

0.05
0.04
0.03
0.02
0.01
02 0.4 0.6 0.8 02 0.4 0.6 0.8 02 0.4 0.6 0.8
O,L/AO,R Ao,L/ 0,R AO,L/AO,R
(d)
14l =17 [ 0.06
0.6 —0.038
0.5 1.21 : :8:832 N 0.05
[N —0.095 I
0.4 s | —0.144 0.04
ﬂlO- | —0213 ||
03 = —03% 0.03
4
02 —o08 | 1 0.02
|
0.1 ! 0.01
o6 I
02 04 0.6 0.8 o 1 2 Vi 4 5 6 02 0.4 0.6 0.8
AO,L/AO,R eV/ 0.L AO,L/AO,R

FIG. 4. Numerically obtained current harmonics without radiation, in a system with N, = 18, Ny =5 [47], T /¢ = 0.4 (transparency
~0.48 [43]), and T = 0.0125A g = 0.0025¢. Panels (a) and (b) show 1, without (I,° Higesy and with (I,"¢%") Higgs oscillations, respectively;
they exhibit no significant qualitative differences. The orange diagonal dashed line marks the Higgs resonance, 2 eV = 2A 1, in all the heat
maps. (c) A, (OP component oscillating at frequency w;), normalized by Ag g, which exhibits a peak at the Higgs resonance (orange dashed
line). The small offset from the resonance likely originates from a local enhancement of A, near the junction barrier due to the proximity
effect. (d) Cuts of A,, normalized by A, ., as a function of eV for various values of A ;. It is peaked at the Higgs resonance (vertical dashed
line), with the peak achieving its maximum value for Ag/Agx ~ 0.07. Panels (e) and (f) show |L, |, in the absence (;°"*#€*) and presence
(If g8y of Higgs renormalization, respectively. In the absence of Higgs renormalization (e), only a small 2w, current appears, attributable to
higher-order Josephson effect. In contrast, with Higgs renormalization (f), a pronounced peak emerges at the Higgs resonance (orange dashed
line), particularly in the highly asymmetric regime where A ; < Ag g (bottom-left corner, highlighted by the red box). In the same regime

(once again, highlighted by a red box), panel (e) shows that £;°"'¢&*

o when higher harmonics of w; and w, also participate via
higher-order tunneling processes, this frequency dependence
may no longer be neglected. It introduces an explicit depen-
dence on the harmonic number in the current amplitudes,
which modifies the Bessel function amplitudes derived within
the AA.

V. DISCUSSION AND CONCLUSIONS

In this work, we demonstrate that the Higgs mode can be
excited and detected in highly asymmetric, high-transparency
JJs under microwave irradiation. We propose two approaches:
(i) measuring the second harmonic of the current-phase re-
lation, whose Higgs-renormalized dependence on radiation
strength deviates strongly from the Higgs-free case, and (ii)
applying a dc voltage bias, where the Higgs-renormalized
second-harmonic ac Josephson current can be extracted from
Shapiro step measurements.

We note that a recent work by Vallet and Cayssol [21] had
explored a similar, yet different scenario, wherein the Higgs

remains much smaller.

mode is excited by irradiating the bulk of the SC leads by a
uniform THz electric field. This corresponds to the SC leads
being subjected to a uniform bulk vector potential A oscillat-
ing at frequency w,. This is not equivalent to our case, where
we assume that the radiation induces a time-dependent po-
tential difference between the two SC leads V. [41-46], with
the drop restricted to the barrier region [24]. Indeed, Ref. [21]
considered an OP oscillating as A(¢) = Ay 4+ § Ayc(t), where
SAve(t) = 2R (Age 20, arising from the second-order cou-
pling of the OP to the oscillating bulk vector potential [17],
which differs from our results as the spectrum of § Ayc does
not contain: (i) any multiples of wy, and (ii) the first harmonic
of the radiation frequency w,. (i) follows from the fact that
Ref. [21] only considered tunnel JJs; oscillations in § Ayc()
at frequency w; are O(7?) and they contribute to the current
only at O(T*), while the leading-order Josephson current
is O(T?). In our case, by arguments of gauge invariance,
it is clear that the OP must respond to the gauge-invariant
Josephson phase given by Eq. (2) and thus, § A(¢) is bound
to contain wy, as well as all harmonics of w, (not just the even
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FIG. 5. Numerically calculated Shapiro step height SS! [Eq. (28)], in a system with N, = 18, Nz = 5 [47], T /¢ = 0.4 (corresponding to

transparency ~0.48 [43]), Aoz = 0.045A0x = 0.0088¢, and I = 0.0125A¢ x = 0.0025¢. We plot the normalized quantity SS|Rye/ Ao as
a function of the radiation strength «, for various values of the dc voltage eV sweeping across and beyond the Higgs resonance eV = Aq .
We show it in (a) the presence and (b) the absence of Higgs renormalization. In its presence, SS}Higgs noticeably deviates from the J_;(«)
profile, evident most immediately from the changes in the location and magnitudes of the nodes/dips as a function of «. On the other hand,
in the absence of Higgs renormalization [panel (b)], while SS| | Higes 18 still altered by the presence of b, arising solely from higher-order
Josephson processes [cf. Eq. (12)], for the chosen transparency this contribution is insufficient to generate noticeable deviations from the
expected ~J_; (o) dependence. Panel (c) compares the exact numerical results from (a) (solid lines with markers) with the AA of Eq. (15)
(dashed lines). The AA is evaluated using the numerically obtained currents [Eq. (27b)] with I, = S(l — I_29) and I, = IS4 — I_49). Our
goal is to test whether the o dependence of S} (but not that on the dc voltage) can be captured by the AA [Eq. (12)]. For small w; and w,,
the AA agrees well with the numerical results, reproducing the Higgs-induced deviations from the J_; («) profile shown in (b). Finally, panel
(d) presents the amplitudes of the w; and 2w, currents, with I, = I, (red) and L, = I (blue), both with and without Higgs renormalization,
as functions of the bias voltage. I, decreases away from the resonance.

ones, or just 2w, ) in its spectrum. Consequently, Ref. [21] did
not obtain a Higgs-induced correction to SS % at w; = w,, nor
did they obtain SS? at 2w; = w,, both of which are present in
our results shown in Figs. 5 and 6. Instead, they only obtained
S521 at wy; = 2wg. Similarly, in the phase-biased case, the res-
onance at w, = 2A¢ 1 in the second harmonic of the CPR was
absent when § A lacks a component oscillating at w,. Instead,
the leading resonance appeared at 2w, = 2A . We remark
that these differences result from the two physically distinct
excitation processes considered by them and this work.
Finally, we comment on the practical realization of our
proposal. Since our aim is to realize highly asymmetric
Josephson junctions using conventional s-wave superconduc-
tors, Al-based junctions appear to be the most promising
choice, owing to their small gap (=45 GHz in the bulk limit)
and the flexibility of tuning the equilibrium gap by varying
the thickness [80-86]. The asymmetry can be further tuned
by raising the temperature, since the smaller gap decreases

more rapidly with increasing temperature. As shown in Fig. 1,
we require long junctions with leads of lengths larger than
the corresponding superconducting coherence lengths, along
with high transparencies. We note that a compromise can be
achieved by increasing the equilibrium gap asymmetry, which
in turn allows the use of smaller transparencies. According
to our numerical calculations (Ref. [24], which considered
two- and three-dimensional models, as well as this work),
which are limited to a maximum equilibrium gap asymme-
try Ao../Aor =~ 0.05 — 0.1 due to computational bottlenecks
(the Higgs resonance condition requires eV = Agp, and
smaller values of eV necessitate more Floquet modes), in
order to achieve I,, ~ I,, we require transparencies >0.4.
Nevertheless, even at lower transparencies or lower asymme-
try, when b, < I,,, the presence of Higgs renormalization
can still be inferred from the resonant amplification of its sig-
natures on tuning the voltage bias across the Higgs resonance
condition w; = wy.
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FIG. 6. (a) Same as Fig. 5(c) (including the parameters, except for ,), but we show SS2, where 2w; = w,. SS?

Higgs-enhanced Igggs

is approximately of the same magnitude as SS| Higgs

Rye/Ag g
=
o
S
N
u

o
o
o
U1
o

1, no Higgs

O 0025+

2

SS

0.0000¢ts

a=2eV,./w,

I Higgs» Which arises from the

in Fig. 5 as I;ﬂfgs ~ INess, Similar to Fig. 5(c), we overlay the AA

results given by Eq. (16) using dashed lines. These match the numerical results only for small @; and w,. (b) Same as (a), but we show the

data in the absence of Higgs renormalization. Notice that now SS?

counterpart in (a). For the chosen value of transparency ~0.48, the higher-order Josephson current 7,

Higgs-renormalized Iz}gfgs [cf. Eq. (13). See also Fig. 5(d)].
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APPENDIX A: PHENOMENOLOGICAL MODEL FOR
HIGGS EXCITEMENT IN JOSEPHSON JUNCTIONS

In this Appendix, we show how the Higgs mode is excited
in a JJ using a toy model for the superconducting conden-
sates of two tunnel coupled superconducting leads. In this
simple analysis, we only look at a linear response calculation
at the leading order in the Josephson coupling between the
condensates of the two SCs. We thus start with the Euclidean
action describing the effective field theory of the condensates,
represented by a complex scalar field ¥ minimally coupled
[87] to a scalar potential field V. An equivalent analysis may
be performed in the Keldysh space for the nonlinear response.

1,no Higgs

is about an order of magnitude smaller than its Higgs renormalized

noHiges 5o far from sufficient to match the

The action is given by

S_/ > [(a + 12 eVi(T) ¥ + 2|V

j=L/R
a; u
+ Ej|‘lfj|2 + Z|‘I’j|4:|

- / JWpaoWroco + Wy oWrice). (Al

T

Here V;, = V() and Vi = 0, without loss of generality, cap-
ture the potential difference, a; ~ (T — T¢ ;)/Tc,j (Tc,; is the
critical temperature of the jth lead) in the superconducting
phase, and J is the Josephson coupling. Note that in Euclidean
space, the minimally coupled scalar potential, transforming
like the timelike component of the electromagnetic four-
potential, gets an additional factor of i as well [87].

We use the ansatz W; = (Ag; + h;j)e™ i to separate the
mean gap amplitudes Ag ; = /—|a;|/u®(—a;) of the iso-
lated condensates, the Higgs fields /;, and the complex phase

factor e~?i. The relevant terms in the resulting action is ob-
tained as
/ 3 [(M)z 2T+

J=L/R

A%vj[(arﬂj -2 G:Vj(t))2 + c2(v19j)2]i|

- /ZJAO,LhR,xzo cos(Vy y—0(1) — Vg rx=0(7))

T

_ / 20y om0 & €O8(T110(T) — Fpaco(T)).  (A2)

T

Here, |a;|/2 is the mass of /. The phase-field fluctuations are
massive, and thus the phase settles into its mean-field value,
satisfying the Josephson relation 9;%; = 2eV;(z). Defining
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X (1) =2JAg g cos(Vp x—0 — PR .x=0),

<hL,iw,1,k> = % (A3)
w2+ 2k> + &
On analytically continuing to real time
(he,ox) = Xo (A4)

—(w +i0)* 4 2k + 4l

where X, is the Fourier transform of cos(d —o(t) —
Vr.x=0(?)). Note that along with t — i, we also require V —
—iV [87,88].

For a dc voltage bias, the Josephson phase ¢ = ¥ — Og
satisfies 9;¢p = 2e(V, — Vg) = 2 eV. Now, we assume with-
out loss of generality that a; < ag (corresponding to Ag ; K
Ay g, which suppresses the Higgs field in the R condensate).
Hence,

sz/ > [(ath,)%cz(w,)u@hﬁ]

T j=L/R

_ / 2J(Boheco + hircoBog) coS(2eVT).  (AS)
T

Clearly, we see that the Higgs field responds at fre-
quency 2eV, and the response is peaked at the Higgs
mass 2 eV = |ay|/2. Thus, we see that the potential dif-
ference V provides a dynamic excitation to the Higgs
field at frequency 2 eV, essentially arising from the
interference of the two OPs whose phases differ by
2eVt. This is embodied in the tunneling action Sy =
—fr 2Jhy x=0Ao g cos(2 eVt), which in Minkowski space
becomes St = —ift 2Jhy x=0Ao g cos(2 eVt). Note that the
analysis of the regime 2 eV > |a;|/2 requires an account of
the damping of the Higgs mode, which we have neglected in
this toy model.

APPENDIX B: PSEUDO-FLOQUET DECOMPOSITION

Here we discuss the representation used in Eq. (23), which
is not the usual Floquet decomposition. This is because, in
general, there is no periodicity when w;/2 and w, are in-
commensurate. We do, however, recover the periodicity for
o, = 0 (or w; = 0). In this case, we can split the frequency
integral into intervals of length equaling the Floquet frequency
Q = wy;/2 as the periodic perturbation always scatters be-
tween two frequencies separated by 2 and never within a
single interval. A two-point function which is periodic in the
average argument, Gt + T,t' + T) = G(t,t') < G(tyy +
T, 8t) = G(tu, 8t) where f,, = (t +1')/2, admits the usual
Floquet expansion:

Qd Gn(@)

w

G, t) = — G(w +m, w + nL2
()MX’;/OM(“””‘””)

% e*i(a)erQ)tJri(athQ)t” (Bl)

where G,,,(w) satisfies

G((w + Q) +m, (w + Q) + 1) = G-+ (@). (B2)

In this case, the pseudo-Floquet one given by Eq. (23) and the
usual Floquet one in Eq. (B1) are equivalent:

G " = * d_a)G Q —i(w+mQ)t+iwt’ B3
=) | 5-Glo+mQ e (B3)
m —00
Q
= Z/ d—meo(a) + kQ)e*i(w+kQ+mQ)t+i(w+kQ)t’
m,k 0 2

2 dw ) ) ,
= E / _G(l1l+k)(k)(w)e*l(w+(m+k)Q)t+l(w+kQ)t
0 2
m,k

m+k—m @ dw —i(w+mQ)t+i(w+nQ)t’
—_— E — Gy (w)e .
k—n 0 21
m,n

(B4)
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