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Present trends in the miniaturization of electronic devices suggest that ultimately single atoms and molecules
may be used as electronically active elements in a variety of applications. In this context, there is an obvious
request for a theory that can elucidate the transport mechanisms at the single-molecule scale, and in turn help
in the future engineering of molecular devices. We present here a candidate to such a theory, which based on
the combination of quantum chemistry methods and Green functions techniques. Our main goal in this work
is to show how the electronic structure of single atoms and molecules controls the macroscopic electrical
properties of the circuits in which they are used as building blocks. In particular, we review our work on
three basic problems that have received a special experimental attention in the last years: (i) the conductance
of a single-atom contact; (ii) the conductance of a hydrogen molecule; and (iii) the current through single
organic molecules.
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1. INTRODUCTION

The recent advances in nanofabrication have triggered the hope that electronic devices
can be shrunk down to the single molecule scale (Aviram and Ratner, 1998; Joachim
et al., 2000). In fact, it has been already shown that single molecules can perform func-
tions analogous to those of the key components of today’s microelectronics such as
switches (Collier et al., 1999; Gao et al., 2000; Reed et al., 2001), rectifiers (Metzger,
1999) and electronic mixers (Chen et al., 1999). In view of these achievements one
can get the impression that molecular electronics is about to replace the traditional
microelectronics based on the silicon technology. However, the future of this new
field depends crucially on our understanding of the transport mechanisms in
single-molecule junctions, and at this stage there are still very basic problems which
remain unsolved. Thus for instance, from the experimental side it is difficult to achieve
an unambiguous contact to a single molecule, and in many cases the measurements
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are not reproducible. On the theoretical side the situation is even more unsatisfactory.
In this field there are notorious differences between different theories, not to mention
the discrepancies between theory and experiment.

In this context it is worth revising some of the emerging concepts in molecular elec-
tronics. There are many different mechanisms that in principle can control the current
at the single molecule scale. However, in addition to generic principles of nanoscale
physics, e.g. Coulomb blockade, the chemistry and geometry of the molecular junction
emerge as the fundamental tunable characteristics of molecular circuits. In this article
we shall review our efforts to understand the electronic transport in atomic and molecu-
lar junctions. Our main goal is to show how the electronic structure of individual atoms
and molecules determines the macroscopic electrical properties of the circuits in which
they are embedded. Making use of a combination of quantum chemistry methods and
nonequilibrium Green functions techniques, we shall describe the electronic transport
in some of the most basic situations. To be precise, we study three examples of special
experimental interest: (i) the conductance of single-atom contacts; (ii) the conductance
of a hydrogen molecule; and (iii) the current through simple organic molecules.

The rest of the article is organized as follows. In Section 2 we shall describe the theor-
etical formalism used to compute the different results in this work. Section 3 is devoted
to the analysis of the conductance of single-atom contacts. In Section 4 we study the
conductance of a hydrogen molecule. In Section 5 we shall investigate the current
through simple organic molecules. Finally, in Section 6 we present a brief summary
of the main conclusions of this work. The impatient readers who want to get a quick
idea about the content of this work are recommended to jump directly to this last
section.

2. THEORETICAL APPROACH

In order to analyze the electrical current in atomic and molecular junctions we use
a combination of quantum chemistry calculations and nonequilibrium Green func-
tions techniques. This type of approach has become quite popular and nowadays it
is used by many authors (Joachim et al., 1995; Kemp et al., 1996; Datta et al., 1997;
Emberly and Kirczenow, 1998; Yaliraki et al., 1999; Ventra et al., 2000; Damle
et al., 2001; Palacios et al., 2001; Taylor et al., 2001; Brandbyge et al., 2002; Heurich
et al., 2002), and this section is devoted to its brief description.

Our approach starts with a description of the electronic structure of a molecular
junction, like the one shown schematically in Fig. 1(a), which is based on the following
Hamiltonian

ĤH ¼ ĤHL þ ĤHR þ ĤHC þ V̂V : ð1Þ

Here, ĤHC describes the ‘‘central cluster’’ of the system, which contains the molecule plus
part of the leads (see Fig. 1), ĤHL,R describe the left and right electrode respectively,
and V̂V gives the coupling between the electrodes and the central cluster. Since the
current is mainly controlled by the narrowest part of the system, the electronic structure
of the central cluster must be resolved in detail. We do this within the density functional
theory (DFT) approximation, unless the opposite is stated. The DFT calculations
have been performed with the code GAUSSIAN98 (Frisch et al., 1998). The left and

176 J.C. CUEVAS et al.



right reservoirs are modeled as two perfect crystals of the corresponding metal
using the tight-binding parameterization of Papaconstantopoulos (1986) or Mehl
and Papaconstantopoulos (1996). The inclusion of part of the leads in the ab initio
calculation is an important ingredient that assures the correct description of the
molecule–electrodes coupling, the charge transfer between the molecule and the
leads and therefore the lineup of the molecular levels relative to the metal Fermi
level. The Fermi level is set naturally by the highest occupied molecular orbital
(HOMO) for a sufficiently large number of metallic atoms in the central cluster.

In order to obtain the current for a constant bias voltage, V, between the leads, we
make use of nonequilibrium Green functions techniques. Since the Hamiltonian of
Eq. (1) does not contain inelastic interactions, one can show that the current adopts
the usual form of the Landauer formula (for a detailed derivation of the following
expressions see Cuevas, 1999)

I ¼
2e

h

Z 1

�1

d �Tr t̂tt̂t y
� �

f ð�� eV=2Þ � f ð�þ eV=2Þ½ �, ð2Þ

central cluster
(b)

(a)

FIGURE 1 (a) Schematic representation of a single-molecule contact. Notice that ‘‘the central cluster’’
consists of the molecule plus part of the metallic leads; (b) single-atom contact consisting of a fcc structure
with bulk interatomic distances grown along the (111) direction. The blue atoms represent the bulk atoms
used to model the reservoirs.
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where f is the Fermi function and t̂t is the energy and voltage dependent transmission
matrix given by

t̂tð�,VÞ ¼ 2 �̂�1=2
L ð�� eV=2ÞĜGr

Cð�,VÞ�̂�1=2
R ð�þ eV=2Þ: ð3Þ

The scattering rate matrices are given by �̂�L,R ¼ Imð�̂�L,RÞ, where �̂�L,R are the self-
energies which contain the information of the electronic structure of the leads and
their coupling to the central cluster. They can be expressed as �̂�L,Rð�Þ ¼
v̂vCL,RgL,Rð�Þv̂vL,RC, v̂v being the hopping matrix which describes the connection between
the central cluster and the leads. gL,R are the Green functions of the uncoupled leads,
which we assume to be the bulk Green functions of the corresponding metal. Finally,
the central cluster Green functions are given by

ĜGCð�,VÞ ¼ �1̂1� ĤHC � �̂�Lð�� eV=2Þ � �̂�Rð�þ eV=2Þ
h i�1

: ð4Þ

In this work we shall mostly concentrate on the analysis of the transport in the linear
regime, in which the low temperature conductance is given by G ¼ G0Trft̂tt̂t

yg ¼

G0

P
i Ti, where G0 ¼ 2e2=h is the quantum of conductance and the Tis are the transmis-

sion eigenvalues at the Fermi energy EF. As it will become clear in the next sections, the
analysis of the current in terms of conduction channels, defined as eigenfunctions of t̂tt̂t y,
provides a deep understanding of the electronic transport.

3. THE CONDUCTANCE OF A SINGLE ATOM

What determines the electrical conduction in the simplest imaginable circuit, namely
a one-atom contact between two metallic banks? Or in other words, what is the
conductance of a single atom? This is the basic question which we address theoretically
in this section. Our main goal is to show that the properties of such a contact are mainly
determined by the nature of the atom.

Using simple experimental techniques such as the scanning tunneling microscope
(STM) or the so-called mechanically controllable break junctions (MCB), it is possible
to gently break a metallic contact to form a wire of atomic dimensions. Indeed, the
diameter of these nanowires can be easily reduced to a single atom. These atomic-
size contacts have been extensively studied in the last decade, and they have turned
out be an ideal test-bed for concepts from mesoscopic physics. The activity in this
field has been recently summarized in an excellent review by Agraı̈t et al. (2003), and
we refer the reader to this work for more details about these systems.

The most satisfactory answer to the question posed at the beginning of this section
has been given by Cuevas and coworkers (Cuevas et al., 1998a,b; Scheer et al., 1998),
and the rest of this section is devoted to review their ideas. Following Cuevas et al.
(1998a) we analyze the current through a single-atom contact making use of the ortho-
gonal tight-binding parametrization of Papaconstantopoulos (1986), which is known to
reproduce the electronic structure of bulk materials. This means that we use the bulk
hoppings to construct also the Hamiltonian matrix elements of the atomic constrictions
(HC in Eq. (1)). Here the basis is formed by 9 orbitals, namely the s, p, and d orbitals
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which give the main contribution to the bulk density of states (DOS) around the
Fermi energy. It is important to remark that we include hopping elements up to
second neighbors. The final ingredient of the model is the local charge neutrality that
typical metallic elements must exhibit. We impose it in the tight-binding approximation
by means of a self-consistent variation of the diagonal Hamiltonian matrix elements.

In this work we analyze the following four metals: Au, Al, Pb, and Rh. We have
chosen these materials to cover a broad range of valences and orbital structures. As
a reference the bulk DOS of these metals is shown in Fig. 2. We have computed the
transmission and its decomposition into channels for the structure shown in Fig. 1(b),
and the results can be seen in Fig. 3. The main findings are the following. The Au
contact has a conductance close to G0, which is largely dominated by a single channel.
In the case of Al the total transmission at the Fermi energy is also close to 1, but there
are three channels with a significant contribution. In the Pb contact the transmission is
also formed by three channels, but the conductance has a value of 2.34G0. Finally, in
the case of the transition metal Rh the conductance is composed of 5 channels giving a
total transmission of 1.68.

Let us now discuss the origin of these results. In order to understand what controls
the number of channels we now make two assumptions that simplify the model. First,
we consider only nearest neighbor interactions. Second, we reduce the size of the basis,
Norb, in such a way that we only consider the s band for monovalent metals such as the
alkali and noble metals, the s and p bands for metals such as Al or Pb, and the s and d
bands for transition metals. One can easily check that these two approximation give
reasonable results. The maximum number of channels is determined by the dimension
of t̂tt̂t y, which can be arbitrarily large depending on the size of the central cluster.
However, the actual number of conducting channels (those with a nonvanishing
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FIGURE 2 Bulk DOS as a function of energy for Au, Al, Pb and Rh. The DOS is projected into the s, p,
and d bands around the Fermi energy, which is set to zero and it is indicated with a vertical dotted line.
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transmission eigenvalue Ti) are limited by the number of orbitals in the narrowest sec-
tion of the neck (Norb when having a single-atom contact). This fact can be shown by
the following simple argument. As the division between central cluster and leads is
somewhat arbitrary, one could always redefine the leads for the geometry of Fig. 1(b)
in such a way that the new central cluster consists of only the central atom. Then, the
new scattering rate matrices �̂�L,R have a dimension of just Norb and the new transmis-
sion matrix would only admit Norb eigenmodes. Current conservation along each
conducting channel ensures that the nonvanishing eigenvalues Ti are the same, no
matter where the transmission matrix is calculated.

The above simple argument already gives us a rule of thumb to estimate the maxi-
mum number of relevant conduction channels in a one-atom contact. Thus, for mono-
valent metals such as the noble and alkali metals, one expects a single channel, for an
sp-like metal like Al or Pb, this number should be typically four, while for a transition
metal like Rh (having a negligible weight of p orbitals at EF) this number would be of
order six. Indeed, comparing the results of Fig. 3 and the estimation of this simple rule
we see that there is a slight deviation in the case of the sp-like metals, where the actual
number of channels is three instead of four, and in the case of the transition metal Rh,
where there are five channels instead of six. Indeed, the simple rule should be taken as
an upper bound. The actual number of conducting channels can be smaller as some of
the channels can carry no current due to symmetry considerations. Thus, for instance
the analysis of the character of the channels reveals that in the case of the sp-like
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FIGURE 3 Transmission and channel decomposition as a function of energy of the structure shown in
Fig. 1(b) for four metals: Au, Al, Pb, and Rh. The Fermi energy is set to zero and it is indicated with a vertical
dotted line. For simplicity the channels are ordered according to the transmission value, and not according
to their character. The total transmission and the transmission coefficients at the Fermi energy are the
following. (a) Au: Ttotal ¼ 0:97, T1 ¼ 0:95, and T2 ¼ 0:02. (b) Al: Ttotal ¼ 1:046, T1 ¼ 0:817, T2 ¼ 0:208,
T3 ¼ 0:019, T4 ¼ 0:002. (c) Pb: Ttotal ¼ 2:345, T1 ¼ 0:959, T2 ¼ 0:798, T3 ¼ 0:588, T4 ¼ 2� 10�5. (d) Rh:
Ttotal ¼ 1:680, T1 ¼ 0:784, T2 ¼ 0:523, T3 ¼ 0:167, T4 ¼ 0:142, T5 ¼ 0:060, T6 ¼ 10�4.

180 J.C. CUEVAS et al.



metals the dominant channel is essentially a symmetric combination of the s and pz
orbitals of the central atom, where z is the transport direction. The antisymmetric
combination of these two orbitals gives rise to a channel that is closed because it
is orthogonal to the incoming metal states. In the same way, in the case of transition
metals the s and dz2 orbitals combine to give a widely open channel (symmetric
combination) and a closed channel (antisymmetric combination).

So in short, the analysis above suggests that one can easily estimate the conduc-
tance of a single-atom contact just using the information of the number of valence
orbitals and the chemical valence. It is worth stressing that the predictions about
the number of channels of this tight-binding model have been confirmed so far by
all the experiments that have tested the individual channels (Scheer et al., 1997,
1998; van de Brom and van Ruitenbeek, 1999; Ludoph et al., 1999; Ludoph and
van Ruitenbeek, 1999). It is also important to remark that this model explains in
a natural way the typical conductance values observed in the different materials. It
explains not only the differences between the different classes of metals: monovalent
metals (alkali and noble metals), sp-like metals, transition metals, etc, but also the
differences between the metals of the same class. Thus for instance, within the tran-
sition metals the model predicts a simple hierarchy. The highest conductance should
be exhibited by V, Nb, and Ta (with 5 valence electrons), since for them the Fermi
level lies in the middle of the d band. The conductance and in particular the trans-
missions of the fourth and fifth channels should diminish towards the column of Pd
and Pt, since in this case the Fermi lies in the edge of the d band. Indeed, this is
precisely what is observed in the conductance histograms (Agraı̈t et al., 2003).
For the sp-like metals, Pb, Al, Zn, Cd, etc, there is a huge difference between Pb,
with 4 valence electrons, and the other materials, with 2 or 3 valence electrons.
The conductance of Pb is much higher due to the position of the Fermi energy,
well inside the p band.

4. THE CONDUCTANCE OF A HYDROGEN MOLECULE

In this section we discuss the electrical conduction through an individual hydrogen
molecule. The results described here are based on our recent work Heurich et al.
(2003). As we mentioned in the introduction, at this stage of the development of the
field of molecular electronics one can hardly find any satisfactory agreement between
theory and experiment. In this context the measurement of the conductance of an
individual hydrogen molecule reported by Smit et al. (2002) provides a valuable oppor-
tunity to analyze the emerging concepts on the electrical conduction in single-molecule
devices in the perhaps simplest possible system. In Smit et al. (2002) it was shown that
a single hydrogen molecule can form a stable molecular bridge between platinum
contacts. In contrast to results for organic molecules (Reed et al., 1997; Kergueris
et al., 1999; Reichert et al., 2002), this bridge has a conductance close to one quantum
unit, carried by a single channel. This result belies the conventional wisdom because
the closed-shell configuration of H2 results in a huge gap between its bonding and
antibonding states, making it a perfect candidate for an insulating molecule.

Before describing the results of our DFT calculations, it is very instructive to discuss
our prejudices and naive expectations based on a toy model for the conduction through
a hydrogen molecule. We describe H2 with a two-sites tight-binding model, see Fig. 4(a).
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In this scheme �0 represents the 1s energy level of H and tH is the hopping connecting
the H atoms. This hopping is simply related to the splitting between the bonding (�þ)
and the antibonding state (��) of the molecule, namely �� ¼ �0 � tH , and its value is
� �12 eV. The molecule is coupled symmetrically to the leads with a single hopping t.
Within this model the total transmission as a function of energy is given by

Tð�Þ ¼
4�2t2H

ð�� ~��þÞ
2
þ �2

� �
ð�� ~���Þ

2
þ �2

� � : ð5Þ

Here, ~��� ¼ �0 � tH þ t2Refgag are the renormalized molecular levels, gað�Þ being the
advanced Green function which describes the local electronic structure of the leads.
The scattering rate �, which determines the broadening of the molecular levels, is
given by �ð�Þ ¼ t2Imfgag ¼ �t2�, where �ð�Þ is the LDOS of the Pt contacts. For the
sake of simplicity, let us assume that � is energy independent and that the levels are
not renormalized ð ~��� ¼ ��Þ. In Fig. 4(b) we show the transmission as a function of
energy for different values of � in units of tH. We also show in Fig. 4(c) the correspond-
ing DOS projected into the bonding and antibonding states of H2, which are given
by �� ¼ �=�fð�� ~���Þ

2
þ �2g respectively. Taking into account the huge value of tH,

one naively expects the curve for � ¼ 0:05 tH to represent the relevant situation.
Assuming that H2 remains neutral, the bonding state is occupied by two electrons
and EF ¼ �0. In this simple picture H2 would be insulating, in clear disagreement
with the observations of Smit et al. (2002).

Let us now see if the full DFT calculations can resolve this puzzle. In the last
section we learned that a single-atom contact of transition metal such as Pt sustains

0

0.2

0.4

0.6

0.8

1

T
(ε

)

Γ = 1.0t
H

Γ = 0.4t
H

Γ = 0.2t
H

Γ = 0.05t
H

-2 -1 0 1 2
(ε − ε0)/|tH|

0

0.5

1

1.5

D
O

S(
ε)

(b)

(c)

(a)
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and DOS projected into the bonding (solid lines) and antibonding (dashed lines) states vs energy for different
values of the scattering rate �.

182 J.C. CUEVAS et al.



five conduction channels. Following the experiment of Smit et al. (2002), we now study
how the presence of H2 modifies the conduction. Usually the lack of knowledge of the
precise geometry of the molecular junction complicates the comparison between theory
and experiment. However, in Smit et al. (2002) the presence of H2 was identified by
means of the signature of its vibrational modes in the conductance. This information
establishes clear constraints on the geometries realized in the experiment. In this
sense, we only consider configurations which are compatible with the observed vibra-
tional modes. The most probable configuration is shown in the inset of Fig. 5, where
the H2 is coupled to a single Pt atom on either side (top position). In this geometry
the vibrational mode of the center of mass motion of H2, which is the one seen in
the experiment, has an energy of 55.6meV, lying in the range of the experimental
values (see Heurich et al., 2002 for the technical details about the basis sets and func-
tional used in the DFT calculations). In Fig. 5 we also show the transmission and the
LDOS projected into the orbitals of one of the H atoms. The total transmission at the
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FIGURE 5 Transmission and LDOS projected into one of the H atoms as a function of energy for the
Pt–H2–Pt structure, the central cluster of which is shown in the inset. At EF T1 ¼ 0:83 and T2 ¼ 0:03. The
H–H and Pt–H distances are 0.8 and 2.1 Å respectively. We use the cc-pVDZ basis set for H.
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Fermi energy is Ttot ¼ 0:86 and it is largely dominated by a single channel, in agreement
with experimental results. We would like to draw the attention to the following two
features in the LDOS: (i) the bonding state of the molecule appears as a peak at
�6 eV below EF and the antibonding state, not shown in Fig. 5, is located at �18 eV
above EF. (ii) around the Fermi energy the gap between the molecular states is filled
due to the strong hybridization with the Pt leads, which is indeed the mechanism
behind the high conductance of this molecule.

How can we understand these results in simple terms? In other words, what
ingredients were missing in the toy model presented above? Our DFT calculations
indicate that there are two main ingredients missing in this simple argument. First,
H forms a bond with Pt by sharing electrons. The DFT calculations show that every
H atom donates �0:12 e to Pt. This implies that the Fermi level lies closer to the
bonding state. With this charge transfer the transmission raises significantly, but it is
not yet sufficient to reproduce the DFT results. Thus, a large broadening (�) of the
bonding state is still needed. As suggested by the DFT calculations, this is provided
by the good Pt–H2 coupling and the large DOS around the Fermi energy coming
from the d band of Pt. We test this idea assuming that ga is the bulk Green function
of Pt. The Pt bulk DOS is shown in Fig. 6(a). We also show in Fig. 6(b) and (c)
the transmission and the LDOS projected into one of the H atoms for two values
of the coupling to the leads t. One can see that for realistic values of t� 1–2 eV, the
transmission at EF can now indeed reach values close to one. Therefore, we conclude
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that the high conductance of H2 is due to the charge transfer between H2 and the
Pt leads and the strong hybridization between the bonding state and the d band of Pt.
This mechanism is not exclusive of Pt and it must also operate in other transition
metals, as it was shown experimentally for Pd (see Smit et al., 2002).

The above analysis has been performed for a particular geometry and a legitimate
question is whether we can be sure that this is the geometry realized in the experiment.
In principle, there are other configurations compatible with the vibrational modes
analysis. However, based on the channel analysis performed in the experiment many
geometries can be ruled out. For more details about this point we refer the reader to
Heurich et al. (2003).

5. CURRENT THROUGH SIMPLE ORGANIC MOLECULES

Since the pioneering experiment of Reed and coworkers (Reed et al., 1997) many
different organic molecules have been investigated experimentally. Most of these
molecules consist of a few benzene rings forming a short wire, which is terminated
by thiol groups. This means in practice that the molecules are attached to gold electro-
des by means of a stable covalent bond between sulfur and gold. These molecules have
usually � delocalized orbitals, which make them in principle ideal building blocks for
molecular circuits (Tour et al., 1998). There are many different interesting observations
such as negative differential conductance (Chen et al., 1999), which still, by-and-large,
beg theoretical explanation. In this section we concentrate ourselves on the answer to

FIGURE 7 (a) Organic molecule analyzed in this work connected to three gold atoms in the hollow
position. Color codes: C (green), H (white), S (yellow), Au (gold). (b) Charge density of the HOMO of the
central cluster. (c) Charge density of the LUMO of the central cluster.
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the following question: why is the low bias conductance of these molecules much lower
than in the hydrogen case?

As a example we consider the molecule shown in Fig. 7(a). It consists of three ben-
zene rings terminated by a thiol group on each side. The S atoms are attached to three
Au atoms in the hollow position and the Au–S distance is 2.37 Å. For this molecule, as
for many of this type, the work function of gold lies inside the HOMO–LUMO gap,
which usually means that there is not a significant charge transfer between the metal
and the molecule. This is confirmed by the Mulliken population analysis of the central
cluster. Thus, the question of whether this molecular junction is highly conductive or
not reduces to the question of whether the coupling to the gold electrodes is strong
enough to fill the HOMO–LUMO gap. In the DFT calculation we have used the
B3LYP functional (Becke, 1993), the LANL2DZ basis (Hay and Wadt, 1985) for the
atoms of the molecule and the basis set of Christiansen et al. (Ross et al., 1990) for
the Au atoms. In Fig. 8 we show both the transmission through the molecule and
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channel. The Fermi energy has been set to zero.
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the density of states of the central cluster. Notice that the transmission at the Fermi
energy is 8.2� 10�4, which reproduces the general trend observed in these molecules
(Reed et al., 1997; Kergueris et al., 1999; Reichert et al., 2002). The reason for this
low transparency can be understood with the analysis of the density of states. In
Fig. 8(b) we show the DOS projected into the HOMO and LUMO of the central clus-
ter. We see that the HOMO has a width of � 0.3 eV and only its tail reaches the Fermi
level. Thus, although this molecular orbital has an extended character, see Fig. 7(b), it
does not give a large contribution to the low bias conductance. The LUMO is broader
due to its stronger coupling to the leads, see Fig. 7(c). However, it does not give either a
large contribution at the Fermi energy. So in short, we can conclude that this molecule
does not conduct very well at low bias because its hybridization with the metallic electrodes
is not strong enough to fill its HOMO–LUMO gap. Finally, it is important to remark
that although we have paid special attention to the contribution of the HOMO and
LUMO, there are many other levels close to the Fermi energy, which give at least a
similar contribution to the current. This seems to be a common feature of many of
these organic molecules (Heurich et al., 2002).

6. CONCLUSIONS

In this work we have analyzed theoretically the electronic transport through atomic and
molecular junctions. The main conclusion is that the set of our results illustrate clearly
how the electronic structure of single atoms and molecules determines the macroscopic
current of the circuits in which they are used as building blocks. Below, we summarize
the main conclusions of the different sections.

Single-atom contacts The ensemble of the experimental and our theoretical results
show unambiguously that the conduction channels in an atomic contact are determined
by the orbital electronic structure and the local atomic environment around the neck
region. In particular, for the case of one-atom contacts the conduction channels are
determined by the chemical nature of the central atom. As a simple rule, we could
say that the number of active channels corresponds to the number of valence orbitals
of such atom. Our calculations, in agreement with the experimental results, predict
the presence of three conducting channels for sp-like metals like Al or Pb. For transition
metals like Pt, we expect the presence of five conduction modes due to the contribution
of d orbitals. In the case of simple metals such as alkali or noble metals, we expect
the presence of a single conducting channel due to the contribution of the s band.

Conductance of a hydrogen molecule We have presented a theory for the conductance
of a hydrogen bridge between Pt contacts explaining the experimental observations of
Smit et al. (2002). We have shown that the conduction mechanism consists of two main
ingredients. First, the catalytic activity of platinum is responsible for a significant
charge transfer between H2 and the Pt contacts, which moves the bonding state of
the molecule towards the Fermi energy. Then, the strong hybridization with the d
band of the Pt leads provides a large broadening of the bonding state, finally allowing
for a high transmission. Our analysis of this ideal test system illustrates that ingredients
such as charge transfer and the electronic structure of the metallic contacts are essential
for the proper description of the electrical conduction in single-molecule devices.
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Current through simple organic molecules We have studied the transport through a
simple organic molecule consisting of three benzene rings terminated by thiol groups.
We have shown that the low conductance exhibited by this type of molecules in the
low voltage regime is due to the following reason. The hybridization between the mol-
ecular orbitals and the metallic states is not strong enough to fill the HOMO–LUMO
gap, and the current proceeds then through the tails of the closest levels to the Fermi
energy.
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