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Abstract 

A microscopic theory for transport properties of a superconducting quantum point contact is presented. According to contact 
transmission and quasiparticle damping two different physical regimes can be identified. In the limit of small applied voltages 
and weak damping this theory provides an exact analytical expression for the current through the contact. The phase-dependent 
linear conductance thus obtained exhibits an unusual behavior at low temperatures which strongly differs from the standard 
cos @like form. It is argued that a realistic highly transmissive contact will be accurately described by our analytical expression. 

The field of superconducting point contacts and weak 
links has been the object of an increasing interest in re- 
cent years associated with the advances in the fabrication of 
nanoscale devices. Illustrative examples of these advances 
are the developement of superconducting quantum point 
contacts (SQPC) on a nearly atomic scale using break junc- 
tions [1] and devices combining superconducting electrodes 
and microconstrictions in the two-dimensional electron gas 
of a gated heterostructure [2]. From a theoretical point of 
view this is an appealing situation due to the presence of 
quantization effects in the transport properties, which in turn 
simplifies the analysis considerably allowing a closer com- 
parison with experiments. 

In the present communication we report on a recent theo- 
retical approach for the calculation of the transport proper- 
ties of a SQPC in the limit of a small applied bias voltage. 

Within this limit, it has been customary to describe the 
current through a biased superconducting contact or tunnel 
junction [3, 4] by 

1 ls sin </? + G0(l + ccos ~b)K ( ] )  

where the first term corresponds to the nondissipative tun- 
neling of Cooper pairs while the second one to the tun- 
neling of quasiparticles. While the sin <75 dependence of 
the supercurrent has been confirmed experimentally, the 
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discrepancy of the phase-dependent linear conductance 
G(cb) - G0(1 + e, cos q$) with the experiments has been for 
a long time a puzzling issue. This discrepancy involves 
not only the sign of ~: [4] hut also, more importantly, the 
complete behavior of G as function of 4b: the experiments 
[5] indicate a strong departure from a simple cos 4 law. 

In a recent publication [6], hereafter referred as I, we have 
discussed the failure of any finite-order perturbative expan- 
sion in the coupling between the electrodes for a SQPC in 
the limit of small voltages and small quasiparticle damping. 
This implies that a nonperturbative calculation is needed 
to obtain the correct expression for the current through the 
SQPC in this regime. In the present paper we shall briefly 
review the main steps in that calculation leading to an exact 
analytical expression for the phase-dependent linear conduc- 
tance (most technical details will be omitted). The range of 
validity of such expression together with its most relevant 
experimental consequences will be discussed in detail. 

We consider a model SQPC consisting of~ ,o  BCS super- 
conducting electrodes characterized by complex order pa- 
rameters AL.R exp(iq~L.R ) coupled by a hopping term of the 
form 

I 
y, f l~"  

where (~, fl) stand for orbitals on the (left, right) electrodes 
respectively. For simplicity we restrict our discussion to the 
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case of  a symmetrical contact (AL -- AR) and denote by 
the total phase difference between the electrodes qSL -- qSR. 
The assumption of  a step-like order parameter profile is jus- 
tifiedwhen the contact size is much smaller than the super- 
conducting coherence length [7]. Without loss of  generality, 
the case of a single quantum channel connecting the elec- 
trodes Will be considered. 

Within this model and by means of a gauge transforma- 
tion, the superconducting phase difference can be taken into 
account as a phase factor modifying the hopping ampli- 
tudes (tLR ---+ t exp(i~b)) [6]. in the presence of  a finite bias 
voltage, V, the phase difference varies with time as qS(r) 
2eVr/h + ~bo. , 

In order to comple'/e the description of our model it is 
convenient to introduce two more quantities: the normal 
transmission coefficient, denoted by ~ [8] and a quasiparticle 
energy relaxation rate q due to inelastic scattering processes. 

The transport properties of  this model can be adequately 
analyzed by means of  a nonequilibrium Green functions 
formalism [7, 9, 10]. The nonequilibrium Green functions 
obey a Dyson equation that can be formally solved by means 
of standard perturbative techniques [6] and assuming the 
coupling Hamiltonian/tLR as a perturbation. 

The calculation of  the current for any transmission and 
voltage range can be a rather involved problem. The dif- 
ficulty arises essentially from the generation of an infinite 
series of Andreev reflection processes between the super- 
conducting electrodes as depicted in Fig. 1. The only partic- 
ularly simple limit is that of large voltages ( V >> A ), where 
the series can be truncated at the first step. In this limit the 
conductance tends to that of  a normal contact with an excess 
current due to single Andreev reflection processes [9, 11 ]. 

' However, the most interesting effects, like the appearance 
of subharmonic gap structure [11], are found for V < A 
where the evaluation of  the current can only be performed by 
means of  numerical methods [ l 0, 11]. As illustrated in Fig. 1 
the number of Andreev reflections taking place inside the 
~ap region increases for decreasing V (this is due to the fact 
that the energy shift between successive reflections is 2eV). 
Only the region around the energy gap gives a significant 
contribution to Andreev processes, whose amplitude decay 
as A/e) inside the continuous part of the spectrum. 

In the limit V --+ 0 the number of Andreev reflections 
inside the superconducting gap tends to infinity. As dis- 
cussed below it is possible to obtain an analytical expres- 
sion for the current (dissipative and nondissipative parts) 
within this limit by summing up the complete series of  scat- 
tering processes inside the gap region. Within our model 
this is equivalent to the evaluation of  the complete pertur- 
bativeexpansion in t (any finite-order calculation would 
fail to give the correct result in this limit). A well known 
consequence of  this multiple processes is the existence of  
interface bound states in the point contact spectral density 
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Fig. 1. Schematic representation of the multiple Andreev reflections 
inside the gap region taking place in a biased superconducting point 
contact. Case (a) corresponds to V = 2A/7 and (b) to V = 2A/19. 

at {os - =IzA V/I - :~ sin 2 q~/2 which carry the whole super- 
current in short constrictions [7, 12]. 

Let us stress that the above qualitative picture holds for 
the case of small values of  the damping parameter q. For q 
sufficiently large higher-order Andreev processes are heav- 
ily damped and can be neglected. As we show below the 
separation between the weakly damped (WDR) and strongly 
damped regimes (SDR) is defined by the condition q ~ ~A. 

Let us now briefly summarize the calculation of the trans- 
port properties within our theory in the limit V --+ 0. In the 
general case, all dynamical quantities (spectral and current 
densities, etc.) can be expanded as a Fourier series of the 
form 

A((,), V, 4)) }-~A,,((,), I" )e i'¢' = J . ( 3 )  

n 

For analyzing the small voltage regime the Fourier co- 
efficients in Eq. (6) can be expanded as A,,(~o, V) 
A},°)Oo ) +A~,')(~o)V, where AI, °) = A,,(~o,O) and A}, J~ = 
(~A,,/~ V) ((o, 0). It must be stressed that such an expansion 
would be only valid in a voltage interval of the order of r/ 
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around V = 0. (Notice that a finite q is necessary for the 
existence of a linear regime.) 

In the WDR the coefficients A <°) satisfy a very simple 
recursive relation within the energy range A > leo[ > 
x/1 - ~A [6]: 

A(.i) i~(<,~) ( / )  
,+1 = e A, , (4) 

with q~(oJ) = 2 arcsin V/(A 2 - ~t )2) /~z]  2. 

Eq. (4) is the mathematical expression of the physical fact 
that in this limit ( V ~ 0 and q << aA ) all multiple scattering 
processes contribute equally to the transport and electronic 
properties. On the other hand, this particular recursive rela- 
tion is directly related to the existence of the aforementioned 
bound states in the region A > ]~o6 > "4'1 - ~A. This can 
be easily understood by noticing that, provided that a recur- 
sive relation like (4) holds, any dynamical quantity A(~o) 
given by Eq. (3) becomes a geometrical series which has a 
divergent behavior at ~b = ~o(co). This condition is equiva- 
lent to the presence of poles in A(oJ) at ~o = ~os(~b). There- 
fore, in this linear regime and in virtue of Eq. (4), calcula- 
tion of any dynamical quantity reduces to the evaluation of 
the first coefficients A~°){o~) and d~oO(~o). 

In I we describe in detail how this procedure can be ap- 
plied to the calculation of the current through a supercon- 
ducting point contact. In this case y],, A~°)(o~) exp(inq~) and 

y'~, A~ l)(~o) exp(in~b) would correspond respectively to the 
nondissipative and dissipative parts of the total current. The 
result is then obtained by evaluating the residues of A(~o) at 
oJ =¢os yielding 

Is(qa) = 2h ~¢/1 - ~sin2(~b/2) 

2 

G(q~) - 2ez rc A~ sin q~ sech fl, 
h 16q 1 - ~sinZ(~b/2) 

(6) 

where fl = 1/kB T. Eq. (5) for the supereurrent has been pre- 
viously derived using different approaches in Ref. [7, 12]. 
The expression of Eq. (6) for G(qS) is our main new result. 
It is interesting to point out the existence of an analogy be- 
tween our expression for G(~b) and the conductance of a 
normal mesoscopic loop threaded by a magnetic flux [13]. 
The reason for this analogy lies in the fact that in both sys- 
tems the current is mainly carried by two phase-dependent 
discrete levels. 

One of the most striking consequences of Eq. (6) is 
that when ~ - +  0 the tunnel theory conductance G(q~)= 
G0(1 + g cos q~) is not recovered. In fact, the tunnel theory 
result becomes only valid in the SDR. It is therefore worth 
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Fig. 2. Transition between the weakly and strongly damped 
regimes. The ratio between the exact numerical conductance and: 
(a) the analytical expression of Eq. (6) and (b) the tunnel the- 
ory O(t 2) conductance, is plotted against q/A. The values of c¢ 
considered are: (i) 0.15, (ii) 0.48, (iii) 0.64, (iv) 0.78, (v) 0.88, 
(vi) 0.95 and (vii) 0.99. 

to analyze in detail the transition from the WDR to the 
SDR. 

In the SDR the recursive relation (4) no longer holds. 
On the contrary, higher harmonics are very quickly 
damped. For v/ sufficiently large (i.e. r/>> aA) the se- 
ries (3) can be truncated after the first harmonic. Thus, 
when a << 1 and q >> ~A a perturbative calculation to the 
lowest order in the coupling t becomes a good approxima- 
tion. 

Figs. 2(a) and (b) illustrate the transition from the WDR 
to the SDR and allow to establish more precisely the range 
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of validity of  our expression for G(qS). In Fig. 2(a) the 
ratio between the exact conductance to the analytical 
expression of Eq. (6) is plotted as a function of r/ for in- 
creasing values of  the transmission coefficient (the exact 
linear conductance is obtained by the numerical evaluation 
of the harmonic series associated tO the dissipative current). 
As can be observed, this ratio tends to unity for q suffi- 
ciently small, within a range r/ < etA in agreement with 
the criterion for the definition of  the WDR previously dis- 
cussed. Notice that when approaching perfect transmission 
the range of validity of  the WDR approximation becomes 
~ / ~ A .  

On the other hand, the validity of  standard tunnel the- 
ory for the SDR is illustrated in Fig. 2(b), where the ratio 
between the exact numerical conductance and the O(t 2 ) ex- 
pression is represented as a function of  r/. From this figure 
it is clear that tunnel theory becomes valid only for suf- 
ficiently small transmissions such that rl/~A 7> 1. We can 
therefore conclude that a realistic highly transmissive point 
contact, in which ;7 can be assumed to be a small fraction 
of A, will be always described better by our WDR result 
[14]. 

The more unusual and interesting experimental conse- 
quences of  Eq. (6) would arise when measuring the com- 
plete phase dependence of  the linear conductance at low 
temperatures. An experiment of this kind was performed 
by Rifkin and Deaver [5] using an experimental setup in 
which the point contact was connected to a superconduct- 
ing ring (this allows to control the phase by varying the 
magnetic flux through the ring). In Fig. 3 the experimen- 
tal data of  Rifkin and Deaver for G(~b) is represented to- 
gether with our theoretical results for some selected values 
of the parameters ct and temperature. In both cases G(~b) 
exhibits a clear asymmetry with respect to ~b = n/2 in con- 
trast to the expected cos(qS)-like form of standard tunnel 
theory. 

In conclusion, we have obtained an exact analytical ex- 
pression for the phase-dependent linear conductance valid 
for the WDR. This expression predicts an unusual phase 
dependence (with a strong departure from a simple cos ~b- 
like form) specially for low temperatures and large trans- 
missions, in agreement with the available experimental data. 
Further experimental investigation of  this quantity taking ad- 
vantage of  the recently developed nanoscale SQPCs would 
be desirable. 

We thank M. B/itikker for interesting remarks about our 
expression for G(~b). Support by Spanish CICYT (Contract 
No. PB93-0260) is acknowledged. One of us (A,L.Y.) ac- 
knowledges support by the European Community under con- 
tract No.CI 1 *CT93-0247. 
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Fig. 3. Phase-dependent linear conductance normalized to its max- 
imum value for different values of the transmission (from left to 
right ~ = 0.4, 0.5, 0.6, 0.7 and 0.8) and T = 0.1A. The dots rep- 
resent the data from Ref. [5]. References 
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