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Hybrid multiterminal Josephson junctions (JJs) are expected to harbor a novel class of Andreev bound
states (ABSs), including topologically nontrivial states in four-terminal devices. In these systems,
topological phases emerge when ABSs depend on at least three superconducting phase differences,
resulting in a three-dimensional (3D) energy spectrum characterized by Weyl nodes at zero energy. Here,
we realize a four-terminal JJ in a hybrid Al=InAs heterostructure, where ABSs form a synthetic 3D band
structure. We probe the energy spectrum using tunneling spectroscopy and identify spectral features
associated with the formation of a tri-Andreev molecule, a bound state whose energy depends on three
superconducting phases and, therefore, is able to host topological ABSs. The experimental observations are
well described by a numerical model. The calculations predict the appearance of four Weyl nodes at zero
energy within a gap smaller than the experimental resolution. These topological states are theoretically
predicted to remain stable within an extended region of the parameter space, well accessible by our device.
These findings establish an experimental foundation to study high-dimensional synthetic band structures in
multiterminal JJs and to realize topological Andreev bands.
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I. INTRODUCTION

Josephson junctions (JJs) are key elements of super-
conducting circuits, used in quantum technology applications
and fundamental research. In a superconducting–normal
conductor–superconducting junction, supercurrent transport
is mediated by Andreev bound states (ABSs), electron-hole
superposition states confined within the normal area. The
ABS energy depends on the phase difference between the
superconducting wave functions of the two leads [1–4].
Recently, these electronic modes have been the subject of
extensive study [5–12], including the coherent manipula-
tion of ABSs [13–16] and the exploration of topological
superconductivity [17–20].

In multiterminal JJs (MTJJs), where three or more
superconducting terminals are linked to a single normal
scattering region, ABSs form synthetic band structures
which are expected to host a wide range of properties not
attainable in two-terminal devices. Among the most in-
triguing prospects is the potential to realize topologically
nontrivial phases in the three-dimensional (3D) band
structure of four-terminal JJs (4TJJs), with Weyl nodes
arising in the energy spectrum [21–27]. Topological phases
in these systems are inherently robust with respect to
external perturbations [21], making them particularly
appealing for applications in quantum information process-
ing [28,29] and spintronics [30].
A first set of studies on MTJJs focused on their transport

properties, including the signatures of Cooper pair quartets
[31–35] and the flow of supercurrents across multiple
superconducting leads [36–42]. Recently, MTJJs have been
proposed as a platform to realize Andreev molecules—a
system where ABSs hybridize due to the spatial overlap
of their wave functions [43–47], resulting in delocalized
states that extend across all leads and exhibit nonlocal
Josephson effect [43,48–51]. In Andreev molecules, two
primary coherent transport processes occur: double elastic
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cotunneling and double crossed Andreev reflection
[31,43,52], both essential for the generation of Cooper
pair multiplets [31,32,53] and for engineering Kitaev
chains [54] in quantum dot arrays [55–65]. Detailed
understanding of Andreev band structures in multiterminal
devices can be gained through local spectroscopy, which
has been employed to probe hybridized ABSs [66,67], as
well as spin-split energy levels and ground state parity
transitions [68,69]. In these experiments, phase biasing
allowed the exploration of ABS spectra as a function of up
to two superconducting phase differences [66,69,70].
However, realizing topological phases with nontrivial
Chern numbers strictly requires independent tuning of
three phase degrees of freedom [21,24,71,72], a challenge
that remains to be addressed.
In this work, we realize a 4TJJ where three phases are

independently controlled through flux biasing. We probe
the ABS energy spectrum of the system across the entire 3D
phase space using tunneling spectroscopy. Moreover, we
observe the simultaneous hybridization of three ABSs, i.e.,
the formation of a so-called tri-Andreev molecule, when the
three phases are tuned close to π. Our findings are
supported by a theoretical model, which qualitatively
reproduces the main features of the measured Andreev
spectra. Furthermore, our simulations indicate that the
Andreev bands undergo a phase-controlled topological
transition in which hybridization induces a band inversion
accompanied by the appearance of Weyl nodes. Because of
the finite resolution of the tunneling spectroscopy, with a
linewidth of approximately 15 μeV, the gapless states
(Weyl nodes) cannot be experimentally distinguished from
the gapped states. Finally, we study the robustness of the
topological phase under variations of experimentally
addressable parameters, finding that the regime best
describing our device is well within the topological region.
Overall, our work provides access to Andreev band
structures in three synthetic dimensions, creating an exper-
imental platform and practical guidelines for the realization
of topological states in hybrid multiterminal devices.

II. EXPERIMENTAL SETUP
AND 3D PHASE CONTROL

The device under study, shown in Fig. 1(a), consists of a
4TJJ embedded in a triple-loop geometry. It is realized in an
InAs=Al heterostructure [73,74], where the epitaxial Al
layer is selectively removed to expose the III–V semi-
conductor below. Three flux-bias lines are patterned on
top of a uniform dielectric layer to generate the external
magnetic fluxes Φi (i ¼ L;M;R) threading the three inter-
connected superconducting loops (L, M, and R). This
enables us to control the phase differences ϕi between the
four terminals (T1–T4). The latter couple with a common
semiconducting region [see Fig. 1(b)] where a supercon-
ducting island with diameter of approximately 90 nm is
left at its center to partially screen the probe gate voltages.

By design, the minimum distance between neighboring
terminals is 50 nm, while the distance between T1 and T4 is
220 nm. All these lengths are small in comparison
with the superconducting coherence length in the InAs
2DEG, estimated to be 600 nm [49]. Four gate electrodes
on the dielectric layer are energized by voltages Vg

(g∈ fTL;TR;H; JJg), allowing for electrostatic tuning of
the electron density in the InAs layer below. Tunneling
spectroscopy of the scattering area is performed by meas-
uring the differential conductance G across a tunneling
barrier, formed by depleting the InAs region below the
gates VTL and VTR (see Supplemental Material [75] Sec. II
for additional details). The device was measured in a
dilution refrigerator with a base temperature of about
10 mK using lock-in techniques, with a dc voltage bias
Vsd and an ac voltage bias of amplitude δVsd ¼ 3 μV
applied between the probe and the four terminals. More
information about materials, fabrication, and measurement
setup is available in Ref. [66].
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FIG. 1. (a) False-colored scanning electron microscope (SEM)
image of a 4TJJ device lithographically identical to that used in
the experiment, showing the three-loop geometry. The four
superconducting terminals T1–T4 are labeled, along with the
voltage bias Vsd, gate voltages Vg (g∈ fTL;TR;H; JJg), flux-line
currents Ii (i∈ fL;M;Rg), magnetic fluxes through the loopsΦi,
and superconducting phase differences ϕi across the respective
terminal pairs. (b) Enlargement of the four-terminal junction area.
The background is an SEM image of a device lithographically
identical to that under study, taken prior to gate deposition. The
gate structures (yellow) are overlaid by extracting their contours
from a second SEM image of an identical device with gates
deposited (see Supplemental Material [75] Sec. I for more
details). (c) Illustrative representation of the 4TJJ, highlighting
its multiterminal character. Three Andreev bound states, labeled
jLi, jMi, and jRi, form between terminals T1 and T2, T2 and T3,
and T3 and T4, respectively, as indicated by black electron-hole
trajectories. Orange arrows represent the couplings between pairs
of ABSs. When all three ABSs hybridize, the system is expected
to form a tri-Andreev molecule.
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Figure 2(a) shows a typical tunneling spectrum measured
by varying the flux-line current IL and the dc bias Vsd. The
flux-dependent ABS spectrum is visible outside a transport
gap of 350 μV ¼ 2Δ=e, that is due to the superconducting
probe (Δ is the superconducting gap). Weaker spectro-
scopic features are also visible inside the transport gap.
Two flux-independent conductance peaks at Vsd ¼ �Δ=e
highlight the probe gap edges and are attributed to multiple
Andreev reflection processes. Assuming a BCS-like den-
sity of states (DOS) for the superconducting probe with
peaks at energy �Δ, G is expected to have a resonance at a
voltage �ðΔþ EÞ=e when a peak is present in the DOS of
the scattering area at energy E. Consequently, spectroscopic
features observed at eVsd ¼ �Δ=e ¼ �175 μeV corre-
spond to DOS peaks at zero energy (E ¼ 0) in the
scattering area. When half of a superconducting flux
quantum (Φ0 ¼ h=2e) induced by the left flux line pen-
etrates loop L, the superconducting phase difference ϕL is
tuned to π, and the ABS energy approaches zero energy as

for a highly transparent two-terminal JJ [2]. Notably, the
dispersion shows an additional modulation with a larger
periodicity in IL, which is evident in the map shown in
Fig. 2(b) measured at constant Vsd ¼ −Δ=e by varying IL
and IR. Here, we observe a slower modulation along the
diagonal direction IL ¼ IR, caused by the magnetic flux
generated by lines L and R impinging through the middle
loop. A useful way to navigate within the 3D flux space is
to consider the cubic unit cell defined by the three
independent magnetic fluxes ΦL, ΦM, and ΦR, as sche-
matically illustrated in the insets in Figs. 2(b) and 2(c).
Within this framework, the IL − IR map follows a tilted
plane sketched in gray, whose orientation is defined by the
3 × 3 mutual inductance matrix M:

Φ ¼

0
B@

ΦL

ΦM

ΦR

1
CA ¼ M

0
B@

IL
IM
IR

1
CAþΦð0;0;0Þ; ð1Þ

where Φð0;0;0Þ is an offset defining the corner of a unit cell.
In order to cut the unit cell in a controlled way, we
compensate for the cross-coupling between loops and flux
lines by simultaneously setting the three currents IL, IM,
and IR needed to reach a flux pointΦ, according to Eq. (1).
Figure 2(c) shows the differential conductance map mea-
sured in this way by sweeping the fluxes ΦL and ΦR and
keeping ΦM ¼ 0. As a result, a periodic square net is
obtained, demonstrating independent flux control over the
three loops. More details about the current-to-flux remap-
ping and how to extract the mutual inductance matrix
elements are provided in Ref. [75], Sec. III.

III. ABS ENERGY DISPERSION
IN THE 3D FLUX SPACE

Having established a measurement protocol that allows
for independent flux control, we systematically map the
ABS energy spectrum in the 3D flux space. Owing to the
periodicity of the spectrum, we can restrict our investiga-
tion to a single 3D flux unit cell. We start with a simple case
where we sweep the flux threading a loop while keeping the
other two fluxes at zero, as shown in Fig. 3(a) for varying
ΦL. The energy spectrum reveals the dispersion of a highly
transparent ABS, that we identify as the mode formed
between the terminal pair T1 and T2. The large trans-
parency (but smaller than 1) is expected to prevent the band
from reaching zero energy, forming a minigap between the
positive and negative energy branches of the ABS spectrum
[3]. However, this small energy gap is not experimentally
revolved due to the sizable spectral broadening, estimated
to be 15 μeV (see Ref. [75], Sec. IV). Notably, the ABS
dispersion does not reach the superconducting gap edge,
but it is reduced to ∼0.4Δ=e, potentially due to the
repulsion with the lower-transmission states visible at
Vsd < −0.3 mV. Figure 3(b) shows the dispersion of the
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FIG. 2. (a) Tunneling spectroscopy measurement, showing the
differential conductance G as a function of voltage bias Vsd and
the current IL flowing in flux line L. (b) Differential conductance
map measured at Vsd ¼ −175 μV as a function of the flux-line
currents IL and IR. (c) As in (b), but measured as a function of the
magnetic fluxes ΦL and ΦR after the current-to-flux remapping
(see the text). The schematics on the right in (b) and (c) represent
the orientations of the corresponding maps with respect to the
cubic unit cell in the 3D flux space.
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ABSs formed between T2 and T3, which are tuned by
sweeping ΦM. Similar to the previous case, the spectrum is
dominated by a brighter highly transparent mode having
the same reduced dispersion and a low-transmission mani-
fold of states at lower energies. The dispersion of the modes
formed between T3 and T4 (shown in Ref. [75], Sec. IV) is
qualitatively equivalent to the one alongΦL. In the following,
we focus on the three high-transmission ABSs that we label
jLi, jMi, and jRi as shown in Fig. 1(c).
To have an overview on how such states disperse in the

flux space, we map the differential conductance G fixed at
Vsd ¼ −Δ=e − 25 μV within the whole 3D unit cell. In
Fig. 3(c), we plot G for values larger than 0.095 × 2e2=h,
i.e., where the DOS is nonzero. At this Vsd value, the
Andreev dispersions are cut twice around Φi ¼ 0.5Φ0,
forming pairs of parallel conductance lines along the cube
faces. At the center of each face, the ABSs do not cross
each other, but they rather interact opening avoided cross-
ings, as highlighted in the face maps in Figs. 3(d) and 3(e).
These avoided crossings are spectral signatures character-
istic of bi-Andreev molecular states formed by the hybridi-
zation of two ABSs, which have recently been observed in
three-terminal devices [66]. Notably, the four-terminal
device presented here acts as an effective three-terminal
system on the cube faces, i.e., when one flux is kept fixed
to zero.
To better define directions in the 3D flux space, we

introduce a crystallographiclike notation, where the three
flux axes (ΦL, ΦM, and ΦR) are denoted as (100),
(010), and (001), respectively. The hybridization lifts the

degeneracy of the original two-terminal ABSs, splitting
the dispersion in two bands as observed in the spectra in
Figs. 3(f) and 3(g), measured along the directions (110) and
(101) [white arrows in Figs. 3(d) and 3(e), respectively].
A larger splitting is observed along the (110) direction
(f) compared to (101) cut (g), indicating a stronger coupling
between the nearest neighbor ABSs jLi and jMi. Aweaker
hybridization is instead expected between jLi and jRi, due
to their smaller wave function overlap. In Fig. S4 [75],
additional tunneling spectra show that the energy splitting
is much smaller along the perpendicular directions Φ101̄

and Φ11̄0, as expected when the interacting ABSs have
opposite phases [43,47,66]. Thus, our observations reveal a
significant hybridization between all three ABSs, which
couple in pairs to form bi-Andreev molecules on each face
of the cubic unit cell.

IV. EXPLORING THE CENTER
OF THE UNIT CELL

The device configurations discussed so far reproduce the
behavior of either two-terminal devices (when two phase
differences are kept to zero, i.e., along the unit cell edges)
or three-terminal ones (along the unit cell faces, where only
one phase difference is kept to zero). Inside the unit cell, all
the phase differences are nonzero, leading to a more com-
plex ABS spectrum achievable only with four or more
leads. To explore such configurations, we slice the cubic
cell from the ΦL −ΦR face to the center along parallel
planes measured at differentΦM values and at Vsd ¼ −Δ=e,
as shown in Fig. 4(a). At this Vsd value, we probe the

0 0.4

1.00.50.0

-0.4

0 0.4

1.00.50.0

(g)

0.0

0.0

1.
0

1.0

ΦL
(Φ0

) = (100)

Φ
M (Φ

0 ) =
(010)

Φ
R
(Φ

0)
=

(0
01

)
1.0

(c)

0 0.3(1
01

)

1.00.50.0
Φ

L
(Φ

0
)

1.0

0.5

0.00.1 0.2 0.3
G (2e2/h)

0 0.3

1.00.50.0
Φ

L
(Φ

0
)

1.0

0.5

0.0

V
sd

(m
V

)
V

sd
(m

V
)

0 0.4

1.00.50.0

-0.4

-0.3

-0.2

-0.1

0.0

Φ
L
(Φ

0
)

-0.4

-0.3

-0.2

-0.1

0.0

Φ
M

(Φ
0
)

(a)

(b) (e)

(f)(d)

0 0.4

Φ
110

(Φ
0
)

Φ
101

(Φ
0
)

G (2e2/h)
V

sd
(m

V
)

V
sd

(m
V

)

1.00.50.0

Φ
R
(Φ

0)
Φ

M
(Φ

0)

-0.3

-0.2

-0.1

0.0

-0.4

-0.3

-0.2

-0.1

0.0

FIG. 3. (a) Tunneling differential conductance G measured as a function of dc voltage bias Vsd and magnetic flux ΦL, with
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energy spectrum near the maxima of the ABSs, resulting in
one conductance line per state. By increasing ΦM, the
conductance becomes asymmetric around the center of
the plot and develops a maximum at ΦL ¼ ΦR ¼ 0.7Φ0.
MovingΦM further to 0.5Φ0, the map recovers its inversion
symmetry, featuring two lobes of low conductance around
the center. In this configuration, onewould expect tomeasure
constant conductance across the entire plane, since jMi is
fixed at its energy maximum. Instead, the energy cut along
Φ101 [Fig. 4(b)] reveals that the state jMi has a relatively
weak dispersion just below Vsd ¼ −0.175 mV.
We explain the weak influence of ΦL;R on this ABSs in

terms of mutual inductive coupling between loops. When
ΦL and ΦR are swept in phase (Φ101), two opposite cur-
rents flow along the two long sides of loop M, as shown in
Fig. 4(c). These currents induce two parallel flux contri-
butions to ΦM, providing an additional phase difference
between T2 and T3. When ΦL and ΦR are swept with
opposite sign, i.e., along Φ101̄, the two currents flow in the
same direction as sketched in Fig. 4(e), and the two induced
fluxes cancel each other out. Indeed, the spectrum mea-
sured along this direction [Fig. 4(d)] shows that jMi forms
a flat band independent of the other two fluxes just
below Vsd ¼ −0.175 mV.
In Fig. 4(d), we also observe two dispersive bands

representing the jLi − jRi hybridized states and having
their maxima at Φ101̄ ∼ 0.5Φ0. Here, they interact with the
jMi-derived flat band which significantly decreases its
energy to Vsd ∼ −0.2 mV. This indicates that an additional
gap between the positive and negative energy branches of
the overall ABS spectrum is opened in addition to the
minigap formed by the finite junction transparency. In the

following, we show that this spectral feature marks the
hybridization among three two-terminal ABSs occurring
when they are tuned to the same energy, i.e., the formation
of a tri-Andreev molecule.

V. THEORETICAL MODEL

To better understand how the hybridization between
ABSs reshapes the complex Andreev band structure
observed in the previous paragraph, we develop a theo-
retical model schematically represented in Fig. 5(a). The
model features four superconducting leads coupled to a
normal scattering region described by means of three
coupled conduction channels. The superconducting phase
differences ϕL;M;R (or, equivalently, magnetic fluxes
ΦL;M;R ¼ Φ0ϕL;M;R=2π) are defined between the leads
using the same convention introduced in Fig. 1(a). Each
channel contains two noninteracting spin-degenerate levels
with on-site energy ϵ�i (i ¼ 1, 2, 3) and is coupled to the
neighboring leads with a coupling strength characterized by
the parameter Γ, as well as to the other channels, described
by the parameter t. All channel-lead couplings and inter-
channel couplings are assumed to be equal. We note that the
choice of a conduction channel network provides a con-
venient description of a normal region hosting discrete
ABSs, with the degree of hybridization among them
determined by t. This model is not intended to represent
quantum dots with Coulomb interactions but rather to
provide a minimal framework to qualitatively describe
hybridization effects among ABSs. Coulomb interactions
are not included in the model because the normal region
is strongly coupled to the leads, resulting in negligible
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charging energies, and our experimental data do not show
signatures of interaction effects such as Kondo physics or
parity transitions. Nevertheless, residual interactions may
influence the ABS spectra. A fully interacting treatment
(e.g., via numerical renormalization group methods) would
be necessary to capture these effects. However, to our
knowledge, these methods have not yet been extended to
address multiterminal junctions with the complexity of our
system, and developing such an approach would require
substantial theoretical work beyond the scope of this study.
To compare with the experimental data, we compute the

total DOS projected onto the three channels as a function
of the energy E and the three superconducting phase
differences ϕL;M;R (fluxes ΦL;M;R), indicated in Fig. 5(a).
Furthermore, to include the effect of the mutual inductive
coupling between the superconducting loops, which causes
a nonlinear cross dependence between the phases (mag-
netic fluxes), we remap them to effective phases ϕeff

i
(effective magnetic fluxes Φeff

i ) using the relations

ϕeff
L;R ¼ ϕL;R þ αfðϕMÞ;
ϕeff
M ¼ ϕM þ α½fðϕLÞ þ fðϕRÞ�;

where ϕeff
i =2π ¼ Φeff

i =Φ0 for i ¼ L;M;R. Here, fðϕÞ ¼
−2∂ϕ½1 − τ sin2ðϕ=2Þ�−1=2, α ¼ 0.2 is the strength of the

mutual coupling, and τ ¼ 0.9 introduces nonsinusoidal
character to fðϕÞ. Additional details on the model are
discussed in Ref. [75], Secs. VII and VIII. Figure 5(b)
illustrates the influence of ϕL;R on Φeff

M ðϕMÞ as a conse-
quence of the mutual coupling, highlighting a nonlinear
behavior when ϕL;R are varied together with ϕM.
The simulated DOS as a function of energy and of ΦL

while ΦM ¼ ΦR ¼ 0 is shown in Fig. 5(c). The two energy
levels in each of the three channels give rise to two distinct
manifolds comprising three modes each. As expected, only
one state per manifold has a significant energy dispersion,
while the others remain mostly constant in energy. Similar
to the tunneling spectra in Figs. 3(a) and 3(b), the simulated
band structure exhibits one resonance that approaches
E ¼ 0 at ΦL ¼ 0.5Φ0, forming a cusp consistent with an
isolated high-transmission ABS. Figure 5(d) displays the
simulated ΦL −ΦR plane for constant flux ΦM ¼ 0.5Φ0

and constant energy E ¼ 0, which corresponds to the
measurement shown in Fig. 4(a). The presence of two
lobes of minimum DOS around ΦL ¼ ΦR ¼ 0.5Φ0 is
captured by the model as a result of the nonlinear cross
dependence between the phases, closely mimicking the
experimental data.
To focus on the effects of ABS hybridization, we

consider the Φ101̄ direction (in which mutual inductance
effects are negligible) and simulate the Andreev spectra as a
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FIG. 5. (a) Schematic of the model comprising three two-level conduction channels (blue, red, and green) coupled to each other and to
four superconducting terminals (T1–T4). ABSs form in the conduction channels and have energies dispersing as a function of the
superconducting phase differences ϕi. The model parameters (see definitions in the text) are ϵ ¼ 0.005Δ, Γ ¼ 0.37Δ, and t ¼ 0.12Δ.
(b) Phase-effective flux relation including mutual inductive coupling between the loops when the other phases ϕL and ϕR are kept
constant to zero (dashed gray line) and when they are equal to ϕM (solid purple line). (c) Simulated energy spectrum along ΦL, with
ΦM ¼ ΦR ¼ 0. The energy axis E is shifted by Δ ¼ 175 μeV to align to the experimental data. (d) Simulated flux-flux map at E ¼ 0
corresponding to the measurement shown in Fig. 4(a) for ΦM ¼ 0.5Φ0. (e) Conceptual illustration of the hybridization among three
degenerate energy levels resulting in bonding, nonbonding, and antibonding states separated by energy gaps, as in a triatomic molecule.
(f) Simulated energy spectra along Φ101̄ for different ΦM values, showing that hybridization between ABSs opens energy gaps at the
crossing points between different levels. The colored squares refer to the arrows in Fig. 6(f).
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function of E for different values of ΦM [Fig. 5(f)]. At
ΦM ¼ 0, jMi remains flat at high energy, while both jRi
and jLi form dispersing bands which are nearly degenerate
in energy. By increasing ΦM, the flat state approaches zero
energy and forms avoided crossings with the dispersing
states. These three nondegenerate ABSs resemble the
energy levels of a triatomic molecule, where three molecu-
lar orbitals (bonding, nonbonding, and antibonding) are
split in energy, as conceptually depicted in Fig. 5(e). At
ΦM ¼ 0.5Φ0, the state jMi reaches the energy closest to
zero and remains constant around that energy. Here, its
dispersion bends downward from zero energy as observed
in the corresponding measurement in Fig. 4(c). These
results support the interpretation that our device hosts
three ABSs hybridizing among each other, forming a tri-
Andreev molecule delocalized over the four superconduct-
ing terminals.

VI. TRI-ANDREEV MOLECULE

Supported by our theoretical model, we investigate more
complex spectral features measured along the diagonals
of the cubic unit cell, when all three fluxes are varied.
Figure 6(a) shows a map measured at Vsd ¼ −Δ=e along
the Φ101 −ΦM plane sketched in the schematic on the left.
As previously discussed in Sec. III, jLi and jRi are already
hybridized along the Φ101 direction, as also visible by the
splitting of the conductance line at ΦM ¼ 0 and
Φ101 ¼ 0.5Φ0. When ΦM is tuned to 0.5Φ0, these hybrid-
ized states mix with jMi, forming an avoided crossing
which is well reproduced by the simulation displayed in
Fig. 6(b). Taking an energy cut along the (1, 1, 1) direction

[gray arrow in Fig. 6(a)], we observe how the energy
spectrum is affected by the hybridization, as shown in
Fig. 6(c). Here, the bands split in energy forming an
M-shaped dispersion close to zero energy. Notably, such
effect is much stronger compared to the one observed
for the bi-Andreev molecules in Figs. 3(f) and 3(g). By
simulating the same energy spectrum [Fig. 6(d)], we
reproduce a similar M shape of the topmost band and
reveal the energy splitting between the three bands repre-
senting the bonding, nonbonding, and antibonding molecu-
lar states illustrated in Fig. 5(e).
As discussed in Sec. III for the bi-Andreev molecules,

the energy splitting induced by the hybridization is strongly
anisotropic in the phase space. Figure 6(e) shows the
conductance map along the Φ101̄ −ΦM plane sketched in
the schematic on the left. Here, the dispersions of jLi and
jRi overlap with each other atΦM ¼ 0 but split whenΦM is
swept toward 0.5Φ0. Notably, the splitting appears larger
along the ð111̄Þ direction compared to ð11̄1̄Þ, since jLi has
a slightly larger transparency than jRi (see Ref. [75],
Sec. VI). Also, the horizontal conductance resonance
representing the maximum of jMi significantly decreases
in intensity approaching the center of the map. The
simulation in Fig. 6(f) reproduces the opening of a low-
conductance region at the crossing point, which ultimately
derives from the splitting at E ¼ 0 observed in the
simulated energy spectra in Fig. 5(f). Indeed, those dis-
persions represent horizontal energy-dependent cuts in
Fig. 6(f), at ΦM values indicated by the colored arrows.
Taking an energy-dependent cut along the direction ð11̄1̄Þ
[Fig. 6(g)], we observe a sizable splitting into two bands but
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smaller than the splitting observed along the (111) direc-
tion. The overall hybridization strength is indeed reduced
along the direction ð11̄1̄Þ, since two phases always have
opposite values. Therefore, two bands are expected to
remain nearly degenerate, as reproduced in the simulated
spectrum in Fig. 6(h).
In summary, the dispersion of a tri-Andreev molecule

is characterized by an anisotropic energy splitting, larger
along the (111) direction and weaker along its perpen-
dicular direction ð11̄1̄Þ. This is directly reflected into the
different shapes of the avoided crossings observed at the
center of the cube diagonal conductance maps in Figs. 6(a)
and 6(e). The spectral signatures of a tri-Andreev molecule
discussed here are also observed in a second device (see
Ref. [75], Sec. IX).

VII. TOPOLOGICAL ANDREEV BANDS

The hybridization between the three ABSs in our device
leads to the formation of molecularlike states whose energy
depends on all three superconducting phase differences.
This property is one of the requirements for the formation
of Weyl nodes, which would appear as zero-energy cross-
ing points with linear dispersion as a function of all the
three phases. In the following, we analyze the simulated
Andreev band structure matching our experimental results.

In Fig. 7(a), we show the ABSs spectrum extracted from the
maxima of the density of states for ϕM ¼ 0.21π. Here, the
two particle-hole symmetric bands closest to the Fermi
level form a zero-energy crossing at ϕL ¼ ϕR ¼ 0.89π as
highlighted in the enlarged plot in Fig. 7(b). Increasing ϕM,
we obtain gapped states [see Fig. 7(c)] with a small energy
gap. The gap is closed again at ϕM ¼ 0.96π, where another
zero-energy crossing appears at ϕL ∼ ϕR ∼ 0.6π [Fig. 7(d)].
Within the whole cubic unit cell, we find four zero-energy
crossings appearing in two pairs [red and blue points in
Fig. 7(e)], which are related by time-reversal symmetry.
As shown in Refs. [76–78], the full information about the

topology of the ABS spectrum is encoded in the topological
Hamiltonian Htop, given by the inverse of the central
Green’s functions GC evaluated at zero energy, i.e.,
Htop ¼ −G−1

C ðE ¼ 0Þ. Htop depends on the dimensionless
parameters ϵ̃ ¼ ϵ=Γ and t̃ ¼ t=Γ [24,27] (see more details
in Ref. [75], Sec. VIII). The values of t and ϵ used for the
DOS simulations matching our measurements correspond
to ϵ̃ ≈ 0.01 and t̃ ≈ 0.32. By diagonalizing Htop, we obtain
the eigenvectors jvii and the corresponding spin-degener-
ate eigenenergies. To establish the topological properties of
the ABSs, we compute the topological invariant following
the numerical method in Ref. [79]. The Chern number is
given by
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FIG. 7. (a) ABS spectra extracted from the density of states as a function of the phase differences ϕL and ϕR for fixed ϕM ¼ 0.21π. The
energy gap between the highest band with E < 0 and the lowest band with E > 0 vanishes in one point, where a Weyl node forms.
(b) Enlargement of (a) around zero energy, highlighting the Weyl node. (c) As in (b), but for ϕM ¼ 0.58π. A topological gap is present
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CLR
i ðϕMÞ ¼

1

2π

Z
2π

0

Z
2π

0

BLR
i ðϕL;ϕR;ϕMÞdϕLdϕR; ð2Þ

with the total Chern numberCLR ¼ P
i¼1;2;3 C

LR
i as the sum

over all occupied bands and BLR
i ≡ −2 Imh∂ϕL

vij∂ϕR
vii

represents the Berry curvature calculated at fixed ϕM.
Figure 7(f) shows two distinct nontrivial topological phases
having a Chern number equal to �1 within extensive ϕM
intervals indicated by the green areas. Therefore, the zero-
energy crossing points in Fig. 7(e) are positively (blue) and
negatively (red) chargedWeyl nodes appearing in the energy
spectra [Figs. 7(b) and 7(d)] as the states cross the Fermi
level. The eigenenergies of the topological Hamiltonian for
the same parameters as in Fig. 7 are shown in Fig. S7 [75].
The eigenenergies exhibit zero-energy states exactly when
one localmaximumof theDOS is at zero energy, as expected.
Notably, the spectrum shown in Fig. 7(c) represents a
topological insulating phase with a small energy gap.
Since such features aremaskedby the relatively large spectral
broadening in our measurements, we cannot experimentally
confirm the predicted topological phase transitions.
To evaluate the robustness of the topological regime in

our simulations, we calculate the extension ρ of the region
in ϕM where the Chern number differs from zero [green
areas in Fig. 7(f)] as a function of the two key parameters of
our model, ϵ̃ and t̃. The phase diagram in Fig. 7(g) shows a
first topological transition when the hybridization t̃ exceeds
ϵ̃. Intuitively, the hybridization has to be large enough to
push one state through zero energy, a mechanism analogous
to the band inversion driven by spin-orbit coupling occur-
ring in topological insulators [80]. By further increasing t̃,
the two opposite charged Weyl nodes get closer to each
other, gradually reducing ρ to zero. At this point, the
oppositely charged Weyl nodes annihilate with each other,
completely suppressing the topological phase. The param-
eters used for simulating our measurements corresponds to
ϵ̃ ¼ 0.01 and t̃ ¼ 0.32, which places our system well
within the calculated topological region as indicated by
the black dot in Fig. 7(g).

VIII. DISCUSSION AND CONCLUSIONS

In this work, we studied the hybridization between ABSs
in a 4TJJ and demonstrated the formation of a tri-Andreev
molecule. This state, whose energy is controlled by three
superconducting phase differences, is expected to support
topological Andreev bands. According to our model, Weyl
nodes emerge when the hybridization shifts at least one
ABS through zero energy, inducing an inversion between
positive and negative energy bands in certain regions of the
phase space. By varying ϕM, the system undergoes four
topological transitions marked by Weyl nodes as shown in
Fig. 7(f). The Andreev bands as a function of ϕL-ϕR have
an energy gap ranging between 0 (at the Weyl nodes) and
approximately 7 μeV, depending on ϕM. The resolution of
tunneling spectroscopy, approximately 15 μeV, prevents us

from experimentally resolving any gapped states in the
low-energy spectrum. Thus, the spectral detection of Weyl
nodes would be facilitated by a larger minigap, which could
be obtained through an increase of the superconducting gap
Δ or by an enhanced device tunability. For example, a
larger minigap would be obtained by making the coupling
parameters [see Γ in Fig. 5(a)] asymmetric or by increasing
ϵ while keeping a sufficiently large hybridization strength.
The phase diagram shown in Fig. 7(g) provides a useful
guideline for engineering these parameters while preserv-
ing the topological properties of the device.
Advanced spectroscopic techniques, such as nonlocal

spectroscopy [81,82] and spectroscopy via quantum
dots [83,84], might be beneficial for detecting the gap
closing and reopening, expected at the Weyl nodes, and
for increasing the spectroscopic resolution, respectively. A
direct signature of topological transitions would require
measuring the quantized transconductance induced by the
Chern number variation as a function ofΦM [21]. However,
a voltage-biased device would require splitting the triple
loop geometry and, hence, losing the phase control, which
is essential for accessing the full energy spectrum.
The large transparency and hybridization strength

observed in our 4TJJ already fall well into the stability
range of the topological state. Experimental techniques
with higher energy resolution would be highly favorable
for confirming the presence of Weyl nodes in the ABS
spectrum, even in systems with such a large transparency.
Microwave spectroscopy, in particular, offers sub-μV reso-
lution, making it well suited for this purpose. Furthermore,
hybrid InAs=Al heterostructures are readily integrated in
circuit QED architectures [11,14,85–88], offering a tan-
gible prospect for studies of topological Andreev band
structure. The employment of polarized microwave radia-
tion can also make this technique sensitive to the Berry
curvature [24].
In summary, we realized a phase-controlled 4TJJ and

studied its energy spectrum using tunneling spectroscopy.
The measurement protocol based on independent flux
control developed here allows the systematic exploration
of the Andreev spectrum in the 3D phase space. We
identified the spectral signatures of a tri-Andreev molecule
resulting from the simultaneous hybridization of three
ABSs. A numerical model reproduced the key experimental
observation and suggested that the current generation of
devices already hosts topological Andreev bands. In the
light of our results, phase-tunable MTJJs offer new oppor-
tunities for studying topological phases in high-dimen-
sional synthetic band structures and developing novel
superconducting quantum circuits [89].
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