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We discuss the general transport properties of superconducting quantum point contacts.
We show how these properties can be obtained from a microscopic model using nonequi-
librium Green’s function techniques. For the case of a one-channel contact we analyze
the response under different biasing conditions: constant applied voltage, current bias and
microwave-induced transport. Current fluctuations are also analyzed with particular em-
phasis on thermal and shot-noise. Finally, the case of superconducting transport through a
resonant level is discussed. The calculated properties show a remarkable agreement with
the available experimental data from atomic-size contacts measurements. We suggest the
possibility of extending this comparison to several other predictions of the theory.
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1. Introduction

Since the discovery of the Josephson effect [1], the electronic transport between weakly coupled
superconducting electrodes (weak superconductivity) has been a subject of growing interest [2]. Typically,
weak superconductivity has been studied in SIS, SNS and S-c-S junctions, where S, N, I and c denote
superconductor, normal metal, insulator and constriction, respectively. Recent technological advances have
made possible the fabrication of mesoscopic S-c-S junctions in which the electrodes are connected by a
small number of conduction channels. These systems are usually referred to as superconducting quantum
point contacts (SQPC), examples of which are the S-2DEG-S junctions [3] and atomic contacts produced by
break junctions [4, 5] and scanning tunneling microscope (STM) [6] techniques.

On the theoretical side there has also been a parallel advance with the development of fully quantum
mechanical theories for the transport properties of superconducting one-channel contacts [7–10]. There has
been a remarkable agreement between theoretical predictions and experimental results for the quantities that
have so far been measured. These quantities include the phase-dependent supercurrent in a high transmissive
contact [11] and the dc current at constant bias voltage [5, 6]. As we discuss in this paper, there remain many
exciting predictions of the microscopic theories to be explored experimentally.

The aim of this paper is to present an overview of the main theoretical results that have been obtained
for different microscopic models of an SQPC. An interesting aspect of superconducting transport is that
qualitatively different behaviors are exhibited depending on how the system is biased. This will be analyzed
in this work by discussing the cases of phase, voltage and current bias together with the case of transport
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Fig. 1.Schematic representation of a superconducting quantum point contact.

under microwave radiation. The models are introduced in Section2 together with the nonequilibrium Green’s
functions formalism used to calculate their transport properties. Section3 is devoted to the voltage biased
case for which we discuss the comparison of the fully quantum mechanical calculation with semiclassical
standard theories and the available experimental results. We also discuss the limit of very small voltage. In
Section4 the current biased case is briefly analyzed, while the response under microwave radiation and its
possible relevance for directly detecting Andreev states is discussed in Section5. Thermal and shot-noise are
the subject of Section6 where we discuss the conditions for observing coherent transport of multiple charge
quanta from the noise–current ratio. Finally, in Section7, the superconducting transport through a resonant
level is analyzed both in the limits of very large and very small charging energy. The general conclusions are
summarized in Section8.

2. Microscopic model and Green’s function formalism

A schematical representation of a quantum point contact is depicted in Fig.1. For a typical point contact
the length of the constriction between the electrodes,Lc, is much smaller than the superconducting coherence
length ξ0 and its width Wc is ∼ λF , the electron Fermi wavelength. The first condition ensures that
the detailed superconducting phase and electrochemical potential profiles in the constriction region are
unimportant and can be safely approximated by step functions. On the other hand, the conditionWc ∼ λF

implies that there are only a few conduction channels between the electrodes.
The general mean-field Hamiltonian for a superconducting system can be written in terms of the electron

field operatorsψ̂σ (r)

Ĥ =
∫

dr

{∑
σ

ψ̂†
σ (r)He(r)ψ̂σ (r)+1∗(r)ψ̂

†
↑
(r)ψ̂†

↓
(r)+1(r)ψ̂↓(r)ψ̂↑(r)

}
, (1)

whereHe is the one-electron Hamiltonian and1(r) is the superconducting order parameter. The problem
of calculating transport properties in such a continuous representation for a nonhomogeneous system is
extremely involved requiring the knowledge of the adequate boundary conditions at the interfaces. Some
attempts in this direction have been recently presented by Zaitsev and Averin [12] within the quasiclasssical
Green’s functions approach. A different approach which circumvents these difficulties, while keeping a fully
microscopic description of the problem, can be obtained by expanding the field operators in a discrete basis
and writing the Hamiltonian (1) in the form [14]

Ĥ =
∑
i,σ

(εi − µi )c
†
iσciσ +

∑
i 6= j,σ

ti j c
†
iσc jσ +

∑
i

(1∗i c†
i↓c

†
i↑ +1i ci↑ci↓), (2)

where i, j run over the different sites of the system,ti j are the hopping parameters connecting the
different sites;µi and1i being the chemical potential and order parameter in a site representation. The



Superlattices and Microstructures, Vol. 25, No. 5/6, 1999 927

simplification introduced by this approach allows us to deal with rather involved situations including spatial
inhomogeneities (self-consistency) and nonstationary effects typically appearing in superconductors. For the
voltage range eV∼ 1 the energy dependence of the transmission coefficients can be neglected and the
transport properties can be expressed as a superposition of independent channels [13]. One can simplify the
model even further to represent an SQPC with a single conduction channel, which can be described by the
following Hamiltonian

Ĥ = ĤL + ĤR+
∑
σ

(teiφ(τ)/2c†
LσcRσ + t∗e−iφ(τ)/2c†

RσcLσ )− µL N̂L − µRN̂R, (3)

where HL ,R are the BCS Hamiltonians for the left and right uncoupled electrodes characterized by
constant order parameters1L ,R (for a symmetric contact1L = 1R = 1). φ(τ) is the time-dependent
superconducting phase difference entering as a phase factor in the hopping terms describing electron transfer
between the electrodes. In our model the transmission,α, can be varied between 0 and 1 as a function of
the coupling parametert (see [8] for details). Within this model, the total current through the contact can be
written as

I (τ ) =
ie

h̄

∑
σ

(teiφ(τ)/2
〈c†

Lσ (τ )cRσ (τ )〉 − t∗e−iφ(τ)/2
〈c†

Rσ (τ )cLσ (τ )〉). (4)

The averaged quantities appearing in the current can be expressed in terms of nonequilibrium Green’s
functions [15]. For the description of the superconducting state it is useful to introduce spinor field operators
(Nambu representation) [16], which in a site representation are defined as

ψ̂i =

(
ci↑

c†
i↓

)
, ψ̂

†
i = ( c†

i↑ ci↓ ) . (5)

Then, the different correlation functions appearing in the Keldysh formalism adopt the standard causal form

Ĝα,β
i j (τα, τ

′
β) = −i 〈T̂[ψ̂i (τα)ψ̂

†
i (τ
′
β)]〉, (6)

whereT̂ is the chronological ordering operator along the closed time loop contour [15]. The labelsα andβ
refer to the upper (α ≡ +) and lower (α ≡ −) branches on this contour. The functionsĜ+−i j , which can be
associated within this formalism with the electronic nonequilibrium distribution functions [17], are given by
the (2× 2) matrix

Ĝ+−i, j (τ, τ
′) = i

(
〈c†

j↑(τ
′)ci↑(τ )〉 〈c j↓(τ

′)ci↑(τ )〉

〈c†
j↑(τ

′)c†
i↓(τ )〉 〈c j↓(τ

′)c†
i↓(τ )〉

)
. (7)

In terms of theĜ+−, the current is given by

I (τ ) =
e

h̄
T r [σ̂z(t̂ Ĝ

+−

RL (τ, τ )− t̂†Ĝ+−L R(τ, τ ))], (8)

wheret̂ is the hopping element in the Nambu representation

t̂ =

(
t 0
0 −t∗

)
. (9)

The Green’s functionŝG+−i j are calculated using an infinite order perturbation theory with the coupling
term in eqn (3) considered as a perturbation. Within this approach these Green’s functions obey a set of
integral Dyson equations [8]. As discussed in the next sections, the solution is strongly dependent on the
biasing condition which determines the time dependence in the superconducting phase difference.
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Fig. 2. dc current–voltage characteristics of a SQPC for different values of the normal transmission. Left panel corresponds to the
semiclassical OTBK theory and right panel to the fully quantum mechanical calculation.

3. Current in a voltage biased contact

The simplest biasing condition is that of a constant applied voltage. This situation is rather easy to
achieve experimentally except for very small voltages (see Section4). In spite of its apparent simplicity,
the theoretical analysis is quite complex because of the time-dependent phase difference which gives
rise to a time-dependent current containing all harmonics of the Josephson frequencyω0 = 2eV/h̄, i.e.
I (τ ) =

∑
n In(V) expinω0. The current can be also decomposed into dissipative and nondissipative parts

according to the different symmetry with respect toV of even and odd terms in the previous expansion [8].
In this case, the integral Dyson equations can be transformed into a set of algebraic equations by a double

Fourier transformation defined by

Ĝn,m(ω) =

∫
dτ
∫

dτ ′e−iω0(nτ−mτ ′)/2eiω(τ−τ ′)Ĝ(τ, τ ′). (10)

An efficient algorithm for the numerical evaluation of the Green’s function Fourier components is
discussed in Ref. [8].

In this section, we shall concentrate on the dc component of the currentI0 which is the quantity
more readily accessible experimentally. Figure2 shows the dcI –V characteristics calculated from the
fully quantum mechanical theory and from the semiclassical OBTK theory [18]. As can be observed, the
results become increasingly different for decreasing transmission. The fully quantum-mechanical calculation
exhibits a pronounced subgap structure with steps at eV= 21/n which is hardly noticeable in the
semiclassical theory. Both theories give the same result, nevertheless, for perfect transmission where
interference effects, not included in the semiclassical theory, disappear due to the absence of backscattering.

The experimentalI –V characteristics for atomic contacts of different metals are in remarkable agreement
with our theoretical results. This is illustrated in Fig.3 for the case of a one-atom contact made of Pb (these
results are taken from Ref. [6]). This agreement makes it possible to extract information on the conduction
channels transmissionsTn of metallic atomic contacts [5, 6, 19].

The temperature dependence of theI –V characteristics is shown in Fig.4 for different values of
transmission. A remarkable feature of this dependence is that the SGS persists up to temperatures close
to the critical temperature. When normalized to the temperature-dependent superconducting gap, the dc
current exhibits a certain increase at low transmission, the opposite behavior being found close to prefect
transmission. The crossover between these two tendencies is found forα ∼ 0.8.

The limit of very small bias is particularly interesting due to the contribution of MAR processes of
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Fig. 3.Measured current–voltage characteristics (symbols) for different realizations of a Pb one-atom contact at 1.5 K fabricated with the
STM technique [6]. The full lines are numerical fits obtained by superposing four one-channelI –V curves with different transmissions.
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increasing ordern ∼ 21/eV. This divergency in theV → 0 limit is eventually controlled by the presence of
an inelastic relaxation rateη (usually a small fraction of the gap parameter) which introduces a cut-off in the
theory when eV< η. The effect of the inelastic relaxation rate is to damp MAR processes of ordern > 21/η.
As a consequence, the system experiences a transition into a different regime where the total current becomes
linear inV . In this regime, the system response is determined by the adiabatic dynamics of the Andreev states

at ε(φ) = 1

√
1− T sin2(φ/2) which move following the actual value of the superconducting phase. The

total current can then be written asI (φ,V) = IS(φ) + G(φ)V [20], where the supercurrentIS(φ) and the
phase-dependent linear conductanceG(φ) are given by

IS(φ) =
e1

2h̄

α sinφ√
1− α sin2(φ/2)

tanh

(
βε(φ)

2

)
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G(φ) =
2e2

h

π

16η

 1α sinφ√
1− α sin2(φ/2)

sech(
βε(φ)

2
)

2

βV. (11)

The expression of the supercurrent [14, 21, 22] in eqn (11) interpolates between the JosephsonIS ∼ sinφ
behavior and the Kulik–OmelyanchukIS ∼ sinφ/2 ballistic limit [23]. This behavior at high transmission
has been recently confirmed experimentally using break junction techniques in an SQUID configuration [11].
It should be noted that the expression forG(φ) gives a definite answer to an old-standing problem concerning
the form of this term known as the ‘cosφ problem’ [24]. The precise form of this term remains to be explored
experimentally (a similar set-up to that used in Ref. [11] could be used for this purpose).

Finally, it should be stressed that, from a mathematically point of view, the two limitsη→ 0 andV → 0
are not interchangeable [8]. In practice, the limit eV→ 0 with eV > η can never be reached as there is
always a finite, although small, inelastic relaxation rate present.

4. Current biased contact

At very low voltages (and specially for high transmission), the contact impedance may become actually
smaller than the voltage source impedance. If these conditions apply, the assumption of having an ideal
source providing a constant voltage bias which fixes the phase dynamics is no longer valid. In this case one
should take into account the electromagnetic environment of the contact in order to determine the phase
dynamics and the system response to the external bias.

For conventional tunnel junctions this limit is usually analyzed by means of the RSJ and RSCJ models [2,
24] which represent the actual environment by a simple shunted circuit with a resistanceR and a capacitance
C connected in parallel to the junction. Within these simple models the phase dynamics are equivalent to that
of a particle moving in a ‘tilted washboard’ potentialU (φ) = −Ibφ+ Ic cosφ, whereIb is the biasing current
and Ic is the Josephson critical current. At finite temperatures one should also consider thermal fluctuations
acting as an stochastic force on the fictitious particle.

To analyze the response of an SQPC under current bias one should generalize these models for contacts of
arbitrary transmission [25]. The description of the superconducting phase as a classical variable will be valid
as long as the Josephson coupling energyEJ ∼ h̄ Ic/2e is much larger than the charging energyEc ∼ e2/2C.
For an SQPC connected to a current source, the equations for the generalized RSCJ model would be given
by

Ib =
h̄

2e
Cφ̈ +

h̄

2e
G(φ)φ̇ + IS(φ)+ in(φ)

V =
h̄

2e
φ̇, (12)

whereIS(φ) andG(φ) are given by eqn (11) of the previous section andin(φ) is a fluctuating current whose
power spectrumS is related toG(φ) by the fluctuation-dissipation theoremS = 4kBT G (see Section6).
It should be noted that the above equations are strictly valid in the limit of small voltages induced on the
contact, i.e. eV< η, which is the condition for the validity of eqn (11) in Section3. The actual value ofη is
unknown but can be estimated to be of the order of1/100 or less.†In the mechanical analogy, the effective
potential for the generalized RSCJ model can be written as

U (φ) = −

{
Ibφ +

4e

βh̄
log

[
cosh

(
βε(φ)

2

)]}
(13)

and there appears a ‘position’-dependent friction which comes from the dissipative term inG(φ). The

†This small value is consistent with the agreement between theory and experiments in the constant voltage case.
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inclusion of this phase-dependent term should have important consequences in the dynamics of the system.
Note that the particular form ofG(φ) (eqn (11)) introduces a very asymmetrical friction with a minimum at
the local minima ofU (φ) and maximum at the local maxima.

Integrating eqn (12) for the generalized RSCJ model under arbitrary conditions is a formidable task. An
approximate solution for the overdamped case, i.e.G(φ)/C > (2eIc/h̄C)1/2, can be obtained following the
procedure introduced by Ambegaokar and Halperin [26] for overdamped tunnel junctions. The generalization
of the Ambegaokar and Halperin theory is straightforward once we had identified the generalized potential
(eqn (13)) and the shunted resistance with 1/G(φ) (details will be given elsewhere). The measurement of the
slope of theI –V curve at zero voltage, which is directly related toG(φ), would provide information on the
value ofη in real systems.

5. Contact under microwave radiation
As discussed in Section3, the Andreev states play a central role in determining the adiabatic dynamics of

an SQPC at low bias voltage. Considering that typical subgap energies are in the microwave range, it seems
natural to propose using microwave radiation for a direct detection of Andreev states. This possibility has
been suggested in a previous work by us [27] and in Ref. [28].

The effect of a microwave external field can be easily introduced in the single-channel contact model.
One can assume that the field intensity is maximum in the constriction region and neglect the effect of the
field penetrating inside the electrodes. Within this assumptions the field can be introduced as a phase factor
modulating the hopping termt in eqn (3), i.e.

t (τ ) = teiα0 cosωr τ , (14)

whereωr is the microwave frequency,α0 = eVopt/(h̄ωr ), Vopt being the optical voltage induced by the field
across the constriction. The parameterα0 measures the strength of the coupling with the external field. The
time-dependent hopping term can be expanded as

t (τ ) = t
∑

n

i n Jn(α0)e
inωr τ , (15)

whereJn is then-order Bessel function. For small coupling one can keep the lowest order terms in eqn (15)
and obtain some analytical results [27]. In the general case, the model Hamiltonian can be viewed, according
to eqn (15), as a superposition of processes where an arbitrary number of quanta of energyh̄ωr are absorbed
or emitted. As the temporal dependence of each term in eqn (15) is formally equivalent to that in the constant
voltage case, the generalization of the algorithm discussed in Section3 to the present case is straightforward.

Figure5 shows the induced dc current as a function of microwave frequency for the case of a low coupling
constant(α0 = 0.1). All these results correspond to the situation in which the contact is carrying the
maximum supercurrent. In this weak coupling limit the induced current is mainly due to the excitation from
the lower to the upper Andreev state, which carries a negative current (i.e. opposite to the supercurrent). As a
consequence, the induced current exhibits a maximum for the resonant conditionωr = 2ε(φ). At resonance,
the induced current can be of the same order as the critical supercurrent. One can also notice a second stellite
peak aroundε(φ) associated withtwo photonprocesses and a continuous band above1 + ε(φ). When
the coupling constantα0 increases, the contribution of higher order processes becomes progressively more
important giving rise to a complex structure where the resonant condition for the excitation of the upper
Andreev state can no longer be resolved [27].

6. Thermal and shot-noise
The analysis of current fluctuations has a central role in the theory of transport in mesoscopic systems [29].

Fluctuations can provide useful information on the microscopic dynamics (correlations) not contained in the
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Fig. 5. Induced dc current in a SQPC under microwave-radiation for different values of the transmission. The parameterα0 controls the
coupling to the external field (see text).

average current. It is thus desirable to develop a fully quantum-mechanical theory of current fluctuations in
an SQPC on an equal footing as previously discussed for the current. In this respect, some limiting cases
have already been analyzed in the recent literature: the excess noise for eV� 1 in a ballistic contact has
been discussed in Ref. [30], thermal noise for arbitrary transmission was analyzed in Ref. [31] while the case
of perfect transmission and finite voltages has been addressed in Ref. [32].

The noise power spectrum is defined by

S(ω, τ) = h̄
∫

dτ ′eiwτ ′
〈δ Î (τ + τ ′)δ Î (τ )+ δ Î (τ )δ Î (τ + τ ′)〉, (16)

whereδ Î (τ ) = Î (τ ) − 〈 Î (τ )〉. For the evaluation of the above correlation functions a BCS mean-field
decoupling procedure can be performed.S(ω, τ ) can then be written in terms of nonequilibrium Green’s
functions introduced in Section3. In the voltage biased case,S(ω, τ) can be expanded in harmonics of the
Josephson frequency, i.e.S(ω, τ ) =

∑
Sn(ω) expinω0τ . As in the case of the average current, the noise

Fourier componentsSn(ω) can be evaluated in terms of the Green’s functions matrix elementsGn,m defined
in Section3.

Let us start by analyzing theV = 0 case where noise is due to thermal fluctuations. While in a normal
QPC thermal noise has the usual well understood behavior, increasing linearly with temperature and with
a flat frequency spectrum, in the superconducting case it exhibits very unusual behavior as a function of
temperature, frequency and phase. Figure6 illustrates the frequency dependence of the thermal noise for
different transmissions. As can be observed, the noise exhibits two sharp resonances atω = 0 andω = 2ε(φ)
corresponding to the excitation of the Andreev bound states. Forω > 1 + |ε(φ)|, S exhibits a broad band
arising from the continuous part of the single particle spectral density.

The weight of the peaks at 0 and 2ε(φ) can be evaluated analytically as discussed in Ref. [31]. We find
that the zero frequency noise is related to the phase-dependent linear conductance byS(0) = 4kBT G(φ)
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as expected from the fluctuation dissipation theorem. The exponential temperature dependence inG(φ)
gives rise to an exponential increase of thermal noise whenkBT ∼ ε(φ). It should be noted that the ratio
S(0)/2eIS(φ) can actually be divergent for any temperature provided thatα → 1 andφ → π . On the other
hand, the weight of the peak at 2ε(φ) is zero for perfect transmission, increasing asα2(1− α), becoming the
dominant feature for finite 1− α and sufficiently low temperatures. In fact, the ratio betweenS(2ε(φ)) and
S(0) is given by

S(2ε(φ))/S(0) =
1

2
(1− α) tan2 φ

2
cosh

[
ε(φ)

kBT

]
. (17)

Another quantity which is interesting to analyze and is directly amenable to experimental measurement is
the shot-noise. Mathematically the shot-noise is given by the zero frequency dc component in the expansion
of the noise power spectrum, i.e.S0(0), at eV� kBT . For simplicity we will consider the zero temperature
case. Results for the shot-noise as a function of voltage are shown in Fig.7 for several transmissions. The
curves exhibit a pronounced subgap structure at the voltage values eV= 21/n as in the dc current. In the
case of the shot-noise, the structure is more pronounced and is still observable for transmissions rather close
to 1. In the perfect ballistic limit, shot-noise is greatly reduced due to correlations associated with the Pauli
principle as in the case of a normal ballistic contact [33].

On the other hand, in the tunnel limit the shot-noise is expected to reach the Poisson limitS∼ 2q I , where
q is the transmitted charge in an elementary process. This relation offers the possibility to directly check
whether multiple chargesq = neare actually being transmitted coherently in anth order MAR process [34].
Our theory allows one to calculate the effective charges defined by the shot-noise current ratio. In the tunnel
limit one finds thatq exhibits a well-defined step-like behaviorq/e= 1+ I nt[21/eV] confirming the above
hypothesis [35].

7. SGS and resonant tunneling

The model discussed so far describes an SQPC with an energy-independent transmissionα. In some
situations, that can be achieved experimentally, the normal transmission can have a nonnegligible variation
on an energy scale of the order of1. This can happen when the constriction region is weakly coupled to
the electrodes by tunnel barriers as in the case of a small metallic particle or a quantum dot coupled to
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superconducting leads [36]. We represent this situation by the following model Hamiltonian

Ĥ = ĤL + ĤR+
∑
ν,σ

tν(ĉ
†
νσ ĉ0σ + ĉ†

0σ ĉνσ )+
∑
σ

ε0n̂0σ +Un̂0↑n̂0↓, (18)

where ĤL and ĤR describe the left and right leads,ε0 is a resonant level associated with the isolated
constriction region,tν with ν = L , R are hopping parameters which connect the level to the left and right
leads. TheU term takes into account the Coulomb repulsion in the constriction region. The parameterU
is basically the charging energy,Ec, and is related to the central region capacitanceC by U ∼ e2/2C. For
the subsequent discussion it is convenient to introduce the normal elastic tunneling rates0ν = π |tν |2ρν(µ),
whereρν(µ) are the normal spectral densities of the leads at the Fermi level.

When the charging energy is much larger than both0 and 1, Andreev reflections are completely
suppressed and transport is only due to single-quasiparticle tunneling. This situation has been achieved
in experiments on transport through nanometer metallic particles by Ralphet al. [36]. Model calculations
presented by us in Ref. [37] based on the Hamiltonian given in eqn (18) yield good agreement with the
experimental results.

We shall consider in more detail the case of small charging energy, in which the interplay between resonant
tunneling and MAR gives rise to novel effects and a very rich subgap structure [37, 38]. Figure8 shows the
dc I –V characteristic for different positions of the resonant levelε0 with respect to the Fermi level. The
tunneling rates are taken in this case as0L = 0R = 1. As can be observed, when the level is far from
the gap region (case a) the limit of energy-independent transmission is recovered and the subgap structure is
similar to the one depicted in Fig.2 (right panel). As the resonant level approaches the gap region, the subgap
structure becomes progressively distorted with respect to the energy-independent transmission case. While
the structure corresponding to the opening of odd-order MAR processes (i.e. at eV∼ 21/n with oddn) is
enhanced, the structure at eV∼ 21/n with evenn is suppressed. When0 → 0 (not shown), one can also
note the appearance of resonant peaks in theI –V characteristic for eV∼ 2ε0.

8. Conclusions

An overview of the results of a microscopic theory for the transport properties of superconducting quantum
point contacts has been presented. These results include the response under different biasing conditions for
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Fig. 8. dc current–voltage characteristic for a resonant levelε0 coupled to superconducting leads.ε0 = 51 (a), 21 (b),1 (c),1/2 (d)
and 0 (e).RN (0) is the normal resistance at the Fermi level. Curves (c), (d) and (e) have been displaced for the sake of clarity.

an energy-independent transmission as well as the case of resonant transmission. A remarkable agreement
has been found between the calculated and the experimental dcI –V curves for atomic-size contacts [5, 6].
The agreement has allowed us to extract information on the number and transmissions of the conduction
channels in atomic contacts of different metallic elements [6, 19]. On the other hand, the agreement shows the
importance of interference effects included in a fully quantum-mechanical calculation and thus the need to go
beyond semiclassical theories for describing these kind of systems. Additional predictions of the microscopic
theory remain to be analyzed experimentally. For instance, we could point out the phase dependence of the
linear conductance, the direct observation of Andreev levels in contacts under microwave radiation and the
analysis of shot-noise. This last analysis would provide direct evidence of coherent transmission of multiple
charges in MAR processes. Finally, the rich SGS in the presence of resonant transmission could be explored
in S-2DEG-S devices which are currently being developed [3].
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[6] E. Scheer, N. Agräıt, J. C. Cuevas, A. Levy Yeyati, B. Ludolph, A. Martin-Rodero, G. Rubio, J. M. van

Ruitenbeek, and C. Urbina, Nature394, 154 (1998).
[7] D. Averin and A. Bardas, Phys. Rev. Lett.75, 1831 (1995).
[8] J. C. Cuevas, A. Martin-Rodero, and A. Levy Yeyati, Phys. Rev.B54, 7366 (1996).
[9] M. Hurd, S. Datta, and P. F. Bagwell, Phys. Rev.B54, 6557 (1996).

[10] E. N. Bratus, V. S. Shumeiko, E. V. Bezuglyi, and G. Wendin, Phys. Rev.B55, 1266 (1997).
[11] M. C. Koops, G. V. van Duyneveldt, and R. de Bruyn Ouboter, Phys. Rev. Lett.77, 2524 (1996).
[12] A. V. Zaitsev and D. V. Averin, Phys. Rev. Lett.80, 3602 (1998).



936 Superlattices and Microstructures, Vol. 25, No. 5/6, 1999

[13] C. J. W. Beenakker, Phys. Rev.B46, 12841 (1992).
[14] A. Martin-Rodero, F. J. Garcia-Vidal, and A. Levy Yeyati, Phys. Rev. Lett.72, 554 (1994); Surf. Sci.

307–309, 973 (1994); A. Levy Yeyati, A. Martin-Rodero, and F. J. Garcia-Vidal, Phys. Rev.B51, 3743
(1995).

[15] L. V. Keldish, Zh. Eksp. Teor. Fiz.47, 1515 (1964) [Sov. Phys. JETP20, 1018 (1965)].
[16] Y. Nambu, Phys. Rev.117, 648 (1960).
[17] L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics(Benjamin, New York, 1962).
[18] T. M. Klapwijk, G. E. Blonder, and M. Tinkham, PhysicaB109–110, 1657 (1982); M. Octavio, M.

Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev.B27, 6739 (1983); K. Flensberg, J. B. Hansen,
and M. Octavio, Phys. Rev.B38, 8707 (1988).

[19] J. C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero, Phys. Rev. Lett.80, 1066 (1998).
[20] A. Martin-Rodero, A. Levy Yeyati, and J. C. Cuevas, PhysicaB218, 126 (1996); A. Levy Yeyati, A.

Martin-Rodero, and J. C. Cuevas, J. Phys.: Condens. Matter8, 449 (1996).
[21] W. Haberkorn, H. Knauer, and J. Richter, Phys. Status Solidi47, K161 (1978).
[22] C. W. J. Beenakker, Phys. Rev. Lett.67, 3836 (1991).
[23] O. Kulik and N. Omel’yanchuk, Fiz. Nizk. Temp.3, 945 (1977); O. Kulik and N. Omel’yanchuk,4,

296 (1978) [Sov. J. Low Temp. Phys.3, 459 (1997);4, 142 (1998)].
[24] A. Barone and G. Paterno,Physics and Applications of the Josephson Effect(Wiley, New York, 1982).
[25] The case of perfect transmission has been recently discussed in D. V. Averin, A. Bardas, and H. T. Iman,

Phys. Rev.B58, 11165 (1998).
[26] V. Ambagaokar and B. J. Halperin, Phys. Rev. Lett.22, 1364 (1969).
[27] A. Levy Yeyati, J. C. Cuevas, and A. Martin-Rodero,Photons and Local Probes, edited by O. Marti

and R. M̈uller (Kluwer Academic, Dordrecht, 1995).
[28] V. S. Shumeiko, G. Wendin, and E. N. Bratus, Phys. Rev.B48, 13129 (1993).
[29] For a recent review, see M. J. M. de Jong and C. W. J. Beenakker,Mesoscopic Electron Transport,

NATO ASI Series E Vol. 345, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön (Kluwer
Academic Publishing, Dordrecht, 1997).

[30] J. P. Hessling, V. S. Shumeiko, Yu. M. Galperin, and G. Wendin, Europhys. Lett.34, 49 (1996).
[31] A. Martin-Rodero, A. Levy Yeyati, and F. J. Garcia-Vidal, Phys. Rev.B53, R8891 (1996).
[32] D. V. Averin and H. T. Imam, Phys. Rev. Lett.76, 3814 (1996).
[33] V. A. Khlus, Sov. Phys. JETP66, 1243 (1987).
[34] P. Dieleman, H. G. Bukkems, T. M. Klapwijk, M. Schicke, and K. H. Gundlach, Phys. Rev. Lett.79,

3486 (1997).
[35] J. C. Cuevas, A. Martin-Rodero, and A. Levy Yeyati, Phys. Rev. Lett.82, 4086 (1999).
[36] D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett.74, 3241 (1995).
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