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We discuss the general transport properties of superconducting quantum point contacts.
We show how these properties can be obtained from a microscopic model using nonequi-
librium Green’s function techniques. For the case of a one-channel contact we analyze
the response under different biasing conditions: constant applied voltage, current bias and
microwave-induced transport. Current fluctuations are also analyzed with particular em-
phasis on thermal and shot-noise. Finally, the case of superconducting transport through a
resonant level is discussed. The calculated properties show a remarkable agreement with
the available experimental data from atomic-size contacts measurements. We suggest the
possibility of extending this comparison to several other predictions of the theory.
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1. Introduction

Since the discovery of the Josephson effel}t fhe electronic transport between weakly coupled
superconducting electrodes (weak superconductivity) has been a subject of growing i@tefggtigally,
weak superconductivity has been studied in SIS, SNS and S-c-S junctions, where S, N, | and ¢ denote
superconductor, normal metal, insulator and constriction, respectively. Recent technological advances have
made possible the fabrication of mesoscopic S-c-S junctions in which the electrodes are connected by a
small number of conduction channels. These systems are usually referred to as superconducting quantum
point contacts (SQPC), examples of which are the S-2DEG-S juncpasd atomic contacts produced by
break junctions4, 5] and scanning tunneling microscope (STM) {echniques.

On the theoretical side there has also been a parallel advance with the development of fully quantum
mechanical theories for the transport properties of superconducting one-channel cartE@tsThere has
been a remarkable agreement between theoretical predictions and experimental results for the quantities that
have so far been measured. These quantities include the phase-dependent supercurrent in a high transmissive
contact [L1] and the dc current at constant bias voltage]. As we discuss in this paper, there remain many
exciting predictions of the microscopic theories to be explored experimentally.

The aim of this paper is to present an overview of the main theoretical results that have been obtained
for different microscopic models of an SQPC. An interesting aspect of superconducting transport is that
qualitatively different behaviors are exhibited depending on how the system is biased. This will be analyzed
in this work by discussing the cases of phase, voltage and current bias together with the case of transport
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Fig. 1. Schematic representation of a superconducting quantum point contact.

under microwave radiation. The models are introduced in Se2tiogether with the nonequilibrium Green’s
functions formalism used to calculate their transport properties. Segtimidevoted to the voltage biased

case for which we discuss the comparison of the fully quantum mechanical calculation with semiclassical
standard theories and the available experimental results. We also discuss the limit of very small voltage. In
Section4 the current biased case is briefly analyzed, while the response under microwave radiation and its
possible relevance for directly detecting Andreev states is discussed in Secktoermal and shot-noise are

the subject of Sectio where we discuss the conditions for observing coherent transport of multiple charge
guanta from the noise—current ratio. Finally, in Secfipthe superconducting transport through a resonant
level is analyzed both in the limits of very large and very small charging energy. The general conclusions are
summarized in Sectiod.

2. Microscopic model and Green'’s function formalism

A schematical representation of a quantum point contact is depicted if.Ftgr a typical point contact
the length of the constriction between the electrotigsis much smaller than the superconducting coherence
length & and its widthW; is ~ Ag, the electron Fermi wavelength. The first condition ensures that
the detailed superconducting phase and electrochemical potential profiles in the constriction region are
unimportant and can be safely approximated by step functions. On the other hand, the caiditiohr
implies that there are only a few conduction channels between the electrodes.

The general mean-field Hamiltonian for a superconducting system can be written in terms of the electron
field operatorsj, (r)

H = / dr{z T He(M o (1) + A*OPL O] 1) + AT (P40 ¢, (1)

whereH, is the one-electron Hamiltonian anki(r) is the superconducting order parameter. The problem

of calculating transport properties in such a continuous representation for a nonhomogeneous system is
extremely involved requiring the knowledge of the adequate boundary conditions at the interfaces. Some
attempts in this direction have been recently presented by Zaitsev and Al/&rimithin the quasiclasssical
Green’s functions approach. A different approach which circumvents these difficulties, while keeping a fully
microscopic description of the problem, can be obtained by expanding the field operators in a discrete basis
and writing the Hamiltonianl) in the form [L4]

H =Y (6 —uic,cio+ Y ticl cio + Y (AFc] ¢l + Aiciray), )
i,o i#],0 i

wherei, j run over the different sites of the systefy, are the hopping parameters connecting the

different sites;u; and A; being the chemical potential and order parameter in a site representation. The
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simplification introduced by this approach allows us to deal with rather involved situations including spatial
inhomogeneities (self-consistency) and nonstationary effects typically appearing in superconductors. For the
voltage range eV~ A the energy dependence of the transmission coefficients can be neglected and the
transport properties can be expressed as a superposition of independent ci&@hr@tse] can simplify the

model even further to represent an SQPC with a single conduction channel, which can be described by the
following Hamiltonian

H=H. + Hg + Z(tei(b(r)/zCIJCRa + t*e_i(b(r)/zCLUCLo) — N — rNg, ®3)

o

where H_ r are the BCS Hamiltonians for the left and right uncoupled electrodes characterized by
constant order parameters_ r (for a symmetric contach. = Ar = A). ¢(7) is the time-dependent
superconducting phase difference entering as a phase factor in the hopping terms describing electron transfer
between the electrodes. In our model the transmissipran be varied between 0 and 1 as a function of

the coupling parameter(see B] for details). Within this model, the total current through the contact can be
written as

ie i »
L) = 2D t€? 2], (1), (1)) — e (ep, (n)eLe (1)), (4)
o
The averaged quantities appearing in the current can be expressed in terms of nonequilibrium Green’s
functions [L5]. For the description of the superconducting state it is useful to introduce spinor field operators
(Nambu representation}§], which in a site representation are defined as

A G A
wi=< TT>, Br=d @) 5)
Then, the different correlation functions appearing in the Keldysh formalism adopt the standard causal form

G (ta. th) = =i (T (ra) ¥ (). ®)

whereT is the chronological ordering operator along the closed time loop contdlrThe labelsx andj
refer to the uppera( = +) and lower & = —) branches on this contour. The functio& ~, which can be
associated within this formalism with the electronic nonequilibrium distribution functbrjsdre given by
the (2x 2) matrix

T N ) N
éﬁj’(t, ) =i ((Cp(f/)cﬁ(m (le,(f/)CITT(T») . @
’ (c], (e () (e (o)
In terms of theG+~, the current is given by
I () = ETr[&z(fG;g[(r, r) - {16z (z, )1, (8)

wheref is the hopping element in the Nambu representation

= (5 ). ©

The Green'’s functionéﬁ‘ are calculated using an infinite order perturbation theory with the coupling
term in eqn 8) considered as a perturbation. Within this approach these Green’s functions obey a set of
integral Dyson equations8]. As discussed in the next sections, the solution is strongly dependent on the
biasing condition which determines the time dependence in the superconducting phase difference.
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Fig. 2. dc current—voltage characteristics of a SQPC for different values of the normal transmission. Left panel corresponds to the
semiclassical OTBK theory and right panel to the fully quantum mechanical calculation.

3. Current in a voltage biased contact

The simplest biasing condition is that of a constant applied voltage. This situation is rather easy to
achieve experimentally except for very small voltages (see Sedjiom spite of its apparent simplicity,
the theoretical analysis is quite complex because of the time-dependent phase difference which gives
rise to a time-dependent current containing all harmonics of the Josephson freguerey?2eV/h, i.e.
() = ), In(V)expinwg. The current can be also decomposed into dissipative and nondissipative parts
according to the different symmetry with respecit@f even and odd terms in the previous expans&n [

In this case, the integral Dyson equations can be transformed into a set of algebraic equations by a double
Fourier transformation defined by

Gn.m(w) = /dr/dt/e’i“’O(W’m’/)/zei‘”(t”/)é(r, ). (10)

An efficient algorithm for the numerical evaluation of the Green’s function Fourier components is
discussed in Refg].

In this section, we shall concentrate on the dc component of the cukgewhich is the quantity
more readily accessible experimentally. Fig@ehows the dcl—-V characteristics calculated from the
fully quantum mechanical theory and from the semiclassical OBTK thelfly As can be observed, the
results become increasingly different for decreasing transmission. The fully quantum-mechanical calculation
exhibits a pronounced subgap structure with steps at=eV2A /n which is hardly noticeable in the
semiclassical theory. Both theories give the same result, nevertheless, for perfect transmission where
interference effects, not included in the semiclassical theory, disappear due to the absence of backscattering.

The experimental -V characteristics for atomic contacts of different metals are in remarkable agreement
with our theoretical results. This is illustrated in F&for the case of a one-atom contact made of Pb (these
results are taken from Ref6]). This agreement makes it possible to extract information on the conduction
channels transmissiofiy of metallic atomic contact$[ 6, 19].

The temperature dependence of theV characteristics is shown in Figl for different values of
transmission. A remarkable feature of this dependence is that the SGS persists up to temperatures close
to the critical temperature. When normalized to the temperature-dependent superconducting gap, the dc
current exhibits a certain increase at low transmission, the opposite behavior being found close to prefect
transmission. The crossover between these two tendencies is found-for8.

The limit of very small bias is particularly interesting due to the contribution of MAR processes of
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Fig. 3.Measured current-voltage characteristics (symbols) for different realizations of a Pb one-atom contact at 1.5 K fabricated with the
STM technique]. The full lines are numerical fits obtained by superposing four one-chdriveturves with different transmissions.
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Fig. 4. dc current—voltage characteristic for different temperatures and four values of the transmission.

increasing orden ~ 2A /eV. This divergency in th& — 0 limit is eventually controlled by the presence of

an inelastic relaxation ratg(usually a small fraction of the gap parameter) which introduces a cut-off in the
theory when eV< 5. The effect of the inelastic relaxation rate is to damp MAR processes of orde2A /1.

As a consequence, the system experiences a transition into a different regime where the total current becomes
linearinV. In this regime, the system response is determined by the adiabatic dynamics of the Andreev states

ate(¢) = Ay/1— T sird(¢/2) which move following the actual value of the superconducting phase. The
total current can then be written &6p, V) = Is(¢) + G(¢)V [20], where the supercurretig(¢) and the
phase-dependent linear conductaGae) are given by

ls(d) = ezﬁ asing a nr(ﬁ (¢>)>
—aS|n2(¢/2)
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The expression of the supercurrebd[21, 22] in eqgn (L1) interpolates between the Josephsgn- sing
behavior and the Kulik-Omelyanchdk ~ sing/2 ballistic limit [23]. This behavior at high transmission
has been recently confirmed experimentally using break junction technigues in an SQUID configlidétion [
It should be noted that the expression®ii) gives a definite answer to an old-standing problem concerning
the form of this term known as the ‘cgsproblem’ [24]. The precise form of this term remains to be explored
experimentally (a similar set-up to that used in R&f][could be used for this purpose).

Finally, it should be stressed that, from a mathematically point of view, the two limits0 andV — 0
are not interchangeabl@][ In practice, the limit eV— 0 with eV > n can never be reached as there is
always a finite, although small, inelastic relaxation rate present.

G(o) =

4. Current biased contact

At very low voltages (and specially for high transmission), the contact impedance may become actually
smaller than the voltage source impedance. If these conditions apply, the assumption of having an ideal
source providing a constant voltage bias which fixes the phase dynamics is no longer valid. In this case one
should take into account the electromagnetic environment of the contact in order to determine the phase
dynamics and the system response to the external bias.

For conventional tunnel junctions this limit is usually analyzed by means of the RSJ and RSCJ rodels [

24] which represent the actual environment by a simple shunted circuit with a resi®amzba capacitance

C connected in parallel to the junction. Within these simple models the phase dynamics are equivalent to that
of a particle moving in a ‘tilted washboard’ potentidl¢) = —Ip¢ + | cose, wherely, is the biasing current

and| is the Josephson critical current. At finite temperatures one should also consider thermal fluctuations
acting as an stochastic force on the fictitious particle.

To analyze the response of an SQPC under current bias one should generalize these models for contacts of
arbitrary transmissior2p]. The description of the superconducting phase as a classical variable will be valid
as long as the Josephson coupling endétgy~ hlc/2eis much larger than the charging enefgy ~ €?/2C.

For an SQPC connected to a current source, the equations for the generalized RSCJ model would be given

by

h . h ; .
lb = %Cfi) + EG(¢)¢ + Is(®) +in(®)
h.
V= %gb, (12)

wherels(¢) andG(¢) are given by egnl(l) of the previous section and(¢) is a fluctuating current whose
power spectruns is related toG(¢) by the fluctuation-dissipation theoreB= 4kgT G (see Sectiorb).

It should be noted that the above equations are strictly valid in the limit of small voltages induced on the
contact, i.e. eV< n, which is the condition for the validity of eqrii{) in Section3. The actual value of is
unknown but can be estimated to be of the ordea@f00 or lessin the mechanical analogy, the effective
potential for the generalized RSCJ model can be written as

_ 4e Be($)
U@p) = —{ lhe + ﬁ Iog[cosl-(Tﬂ} (13)

and there appears a ‘position’-dependent friction which comes from the dissipative te&tp)n The

TThis small value is consistent with the agreement between theory and experiments in the constant voltage case.
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inclusion of this phase-dependent term should have important consequences in the dynamics of the system.
Note that the particular form d&(¢) (eqn (L1)) introduces a very asymmetrical friction with a minimum at
the local minima ofJ (¢) and maximum at the local maxima.

Integrating eqnX2) for the generalized RSCJ model under arbitrary conditions is a formidable task. An
approximate solution for the overdamped caseG.@)/C > (2el./hC)¥/2, can be obtained following the
procedure introduced by Ambegaokar and Halpe2®j for overdamped tunnel junctions. The generalization
of the Ambegaokar and Halperin theory is straightforward once we had identified the generalized potential
(egn (L3)) and the shunted resistance withA(¢) (details will be given elsewhere). The measurement of the
slope of thel -V curve at zero voltage, which is directly related@g¢), would provide information on the
value ofy in real systems.

5. Contact under microwave radiation

As discussed in Sectid®) the Andreev states play a central role in determining the adiabatic dynamics of
an SQPC at low bias voltage. Considering that typical subgap energies are in the microwave range, it seems
natural to propose using microwave radiation for a direct detection of Andreev states. This possibility has
been suggested in a previous work by 2 and in Ref. p8].

The effect of a microwave external field can be easily introduced in the single-channel contact model.
One can assume that the field intensity is maximum in the constriction region and neglect the effect of the
field penetrating inside the electrodes. Within this assumptions the field can be introduced as a phase factor
modulating the hopping teriin eqn @), i.e.

t(z) :teiaocosa)rr’ (14)

whereew; is the microwave frequencyg = eVopt/ (hwr ), Vopt being the optical voltage induced by the field
across the constriction. The parametgmmeasures the strength of the coupling with the external field. The
time-dependent hopping term can be expanded as

t(r) =ty i"dn(ao)e", (15)
n

whereJ, is then-order Bessel function. For small coupling one can keep the lowest order terms ih=qn (

and obtain some analytical resul®]. In the general case, the model Hamiltonian can be viewed, according

to eqgn (L5), as a superposition of processes where an arbitrary number of quanta of eogwrye absorbed

or emitted. As the temporal dependence of each term inEg)rig formally equivalent to that in the constant

voltage case, the generalization of the algorithm discussed in S&dtidhe present case is straightforward.
Figure5 shows the induced dc current as a function of microwave frequency for the case of a low coupling

constant(eg = 0.1). All these results correspond to the situation in which the contact is carrying the

maximum supercurrent. In this weak coupling limit the induced current is mainly due to the excitation from

the lower to the upper Andreev state, which carries a negative current (i.e. opposite to the supercurrent). As a

consequence, the induced current exhibits a maximum for the resonant conglitioBe (¢). At resonance,

the induced current can be of the same order as the critical supercurrent. One can also notice a second stellite

peak aroundk(¢) associated withwo photonprocesses and a continuous band abave e(¢). When

the coupling constanig increases, the contribution of higher order processes becomes progressively more

important giving rise to a complex structure where the resonant condition for the excitation of the upper

Andreev state can no longer be resolved|

6. Thermal and shot-noise

The analysis of current fluctuations has a central role in the theory of transport in mesoscopic X@tems [
Fluctuations can provide useful information on the microscopic dynamics (correlations) not contained in the
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Fig. 5.Induced dc current in a SQPC under microwave-radiation for different values of the transmission. The pafgaowetgols the
coupling to the external field (see text).

average current. It is thus desirable to develop a fully quantum-mechanical theory of current fluctuations in
an SQPC on an equal footing as previously discussed for the current. In this respect, some limiting cases
have already been analyzed in the recent literature: the excess noise for £\in a ballistic contact has
been discussed in ReB(), thermal noise for arbitrary transmission was analyzed in Bédf.\hile the case
of perfect transmission and finite voltages has been addressed ir8gef. |

The noise power spectrum is defined by

S(w,7) =h / dr’e™? (51 (z + )81 (x) + 81 (0)81 (x + 7)), (16)

wheresi(r) = I(r) — (I (r)). For the evaluation of the above correlation functions a BCS mean-field
decoupling procedure can be perform&gw, ) can then be written in terms of nonequilibrium Green’s
functions introduced in Sectio® In the voltage biased casB(w, ) can be expanded in harmonics of the
Josephson frequency, i.8(w, t) = ) Si(w) expinwpr. As in the case of the average current, the noise
Fourier component§,(w) can be evaluated in terms of the Green’s functions matrix elen@nisdefined

in Section3.

Let us start by analyzing thé = 0 case where noise is due to thermal fluctuations. While in a normal
QPC thermal noise has the usual well understood behavior, increasing linearly with temperature and with
a flat frequency spectrum, in the superconducting case it exhibits very unusual behavior as a function of
temperature, frequency and phase. Fighiiustrates the frequency dependence of the thermal noise for
different transmissions. As can be observed, the noise exhibits two sharp resonaneed ahdw = 2¢(¢)
corresponding to the excitation of the Andreev bound stateswFsrA + |€(¢)|, S exhibits a broad band
arising from the continuous part of the single particle spectral density.

The weight of the peaks at 0 and(®) can be evaluated analytically as discussed in RHi. We find
that the zero frequency noise is related to the phase-dependent linear conduct&i0e ydkg T G(¢)
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Fig. 6. Power spectrun$(w) of the zero—voltage current-fluctuationskgfT = 0.2A in a SQPC for three transmission values. The
contact is biased at the maximum supercurrent.

as expected from the fluctuation dissipation theorem. The exponential temperature dependetge in
gives rise to an exponential increase of thermal noise vidadh ~ €(¢). It should be noted that the ratio
S(0)/2els(¢) can actually be divergent for any temperature providedd¢hat 1 and¢ — 7. On the other
hand, the weight of the peak a @) is zero for perfect transmission, increasingrdsl — «), becoming the
dominant feature for finite + « and sufficiently low temperatures. In fact, the ratio betw8& (¢)) and
S(0) is given by
1 ¢ ()
S(2¢(#)/S(0) = 51— ) tarf > cosl{ kBT}. (17)

Another quantity which is interesting to analyze and is directly amenable to experimental measurement is
the shot-noise. Mathematically the shot-noise is given by the zero frequency dc component in the expansion
of the noise power spectrum, i.§(0), at eV > kgT. For simplicity we will consider the zero temperature
case. Results for the shot-noise as a function of voltage are shown i féigseveral transmissions. The
curves exhibit a pronounced subgap structure at the voltage values2V/n as in the dc current. In the
case of the shot-noise, the structure is more pronounced and is still observable for transmissions rather close
to 1. In the perfect ballistic limit, shot-noise is greatly reduced due to correlations associated with the Pauli
principle as in the case of a normal ballistic cont&d][

On the other hand, in the tunnel limit the shot-noise is expected to reach the Poiss@rirdd |, where
g is the transmitted charge in an elementary process. This relation offers the possibility to directly check
whether multiple charges = neare actually being transmitted coherently inth order MAR process34].
Our theory allows one to calculate the effective charges defined by the shot-noise current ratio. In the tunnel
limit one finds thaty exhibits a well-defined step-like behavigpre = 1+ Int[2A /eV] confirming the above
hypothesis 35].

7. SGS and resonant tunneling

The model discussed so far describes an SQPC with an energy-independent transmigsisome
situations, that can be achieved experimentally, the normal transmission can have a nonnegligible variation
on an energy scale of the order af This can happen when the constriction region is weakly coupled to
the electrodes by tunnel barriers as in the case of a small metallic particle or a quantum dot coupled to
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Fig. 7. Zero-frequency current-fluctuations at zero temperature (shot-noise) as a function of bias voltage.

superconducting lead86]. We represent this situation by the following model Hamiltonian

H=HL+Hr+ ) t,(El 00 + 6 60) + Y coftar + Uiy figy, (18)
V,0 o

where ﬁL and HR describe the left and right leads; is a resonant level associated with the isolated
constriction regiont, with v = L, R are hopping parameters which connect the level to the left and right
leads. TheJ term takes into account the Coulomb repulsion in the constriction region. The pardineter
is basically the charging energl., and is related to the central region capacita@idey U ~ e?/2C. For

the subsequent discussion it is convenient to introduce the normal elastic tunneling,rates|t, |%p, (1),
wherep, (i) are the normal spectral densities of the leads at the Fermi level.

When the charging energy is much larger than bbttand A, Andreev reflections are completely
suppressed and transport is only due to single-quasiparticle tunneling. This situation has been achieved
in experiments on transport through nanometer metallic particles by Ralph[36]. Model calculations
presented by us in Ref37] based on the Hamiltonian given in eqh8] yield good agreement with the
experimental results.

We shall consider in more detail the case of small charging energy, in which the interplay between resonant
tunneling and MAR gives rise to novel effects and a very rich subgap stru@ureq. Figure8 shows the
dc |-V characteristic for different positions of the resonant lexeWith respect to the Fermi level. The
tunneling rates are taken in this caselas= I'r = A. As can be observed, when the level is far from
the gap region (case a) the limit of energy-independent transmission is recovered and the subgap structure is
similar to the one depicted in Fig.(right panel). As the resonant level approaches the gap region, the subgap
structure becomes progressively distorted with respect to the energy-independent transmission case. While
the structure corresponding to the opening of odd-order MAR processes (i.e~at2e\/ n with oddn) is
enhanced, the structure at e¥2A /n with evenn is suppressed. Whdn — 0 (not shown), one can also
note the appearance of resonant peaks il hé characteristic for eV~ 2¢o.

8. Conclusions

An overview of the results of a microscopic theory for the transport properties of superconducting quantum
point contacts has been presented. These results include the response under different biasing conditions for
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Fig. 8. dc current—voltage characteristic for a resonant leyeloupled to superconducting leadg.= 5A (a), 2A (b), A (c), A/2 (d)
and 0 (e).Ry (0) is the normal resistance at the Fermi level. Curves (c), (d) and (e) have been displaced for the sake of clarity.

an energy-independent transmission as well as the case of resonant transmission. A remarkable agreement
has been found between the calculated and the experimentaMicurves for atomic-size contacts, f.

The agreement has allowed us to extract information on the number and transmissions of the conduction
channels in atomic contacts of different metallic elemeit$9]. On the other hand, the agreement shows the
importance of interference effects included in a fully quantum-mechanical calculation and thus the need to go
beyond semiclassical theories for describing these kind of systems. Additional predictions of the microscopic
theory remain to be analyzed experimentally. For instance, we could point out the phase dependence of the
linear conductance, the direct observation of Andreev levels in contacts under microwave radiation and the
analysis of shot-noise. This last analysis would provide direct evidence of coherent transmission of multiple
charges in MAR processes. Finally, the rich SGS in the presence of resonant transmission could be explored
in S-2DEG-S devices which are currently being develo@d [
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