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Preface

In this preface we shall briefly describe the contents and structure of this thesis. This
work is devoted to the theoretical analysis of the electronic transport in different
mesoscopic systems in normal and superconducting state 2, paying special attention
to the analysis of metallic atomic-size contacts. The thesis is divided into two almost
independent parts. In the first one we shall develop a theoretical description of the
electronic transport in superconducting quantum point contacts (SQPCs) 3. In the
second part we shall concentrate in the microscopic analysis of the normal transport
in metallic atomic-size contacts. Moreover, in this thesis we shall show the connection
between the normal transport and the superconducting one in these atomic contacts.
The rest of this preface is devoted to summarize the contents that can be found in
both parts.

PART I: Electronic transport in mesoscopic superconducting systems.

e Chapter 1: Transport in superconducting junctions: Introduction.

In this first chapter we shall introduce the topic of electronic transport in
superconducting junctions. Firstly, we shall do a historical review of this topic,
paying special attention to the problems that we shall analyze in this work.
Secondly, we shall present our aims for the part I of the thesis and describe
the experimental systems in which we are interested.

e Chapter 2: Transport in superconducting quantum point contacts.

This chapter is devoted to the analysis of the electronic transport in a supercon-
ducting quantum point contact (SQPC) for arbitrary voltage, temperature and
transmission. First, we shall describe our model for a single quantum channel
contact based on a Hamiltonian approach in combination with nonequilibrium
Green function techniques (section 2.2). In section 2.3 we shall explicitly show

2We only study traditional superconductor, and we shall not consider high T superconductors.

3These contacts consist of two superconducting electrodes connected by a constriction whose
length is much smaller than the superconducting coherence length of the leads, and whose width is
comparable to the Fermi wave length of the system electrons.



the equivalence between our Hamiltonian approach and the scattering formal-
ism for the case of N-N and N-S single channel contacts. The main part of
the chapter (section 2.4) is devoted to the analysis of a single channel SQPC,
describing in detail the dc and ac Josephson effect: dc current, ac current com-
ponents and small bias voltage limit. Finally, we shall show that there exists a
quantitative agreement between our predictions and the experimental results
obtained in superconducting atomic contacts (section 2.5).

Chapter 3: Shot noise in superconducting quantum point contacts.

In this chapter we shall study the zero-temperature current fluctuations or
shot noise in SQPCs. After revising the N-N and N-S cases briefly, we shall
show the novel results that our Hamiltonian approach provides for S-S contacts
with arbitrary voltage and transmission (section 3.4). In particular, we shall
show that in superconducting contacts one can observe the coherent transfer
of multiple charges associated to multiple Andreev reflections.

Chapter 4: Resonant tunneling and Andreev reflections.

In this chapter we shall discuss how the superconducting transport is modified
by the presence of a resonant transmission in the system. In particular, we
shall analyze two situations: first, we shall study the current through metal-
lic nanoparticles connected to superconducting leads in relation with recent
experiments (section 4.3). Secondly, we shall analyze how the subharmonic
structure evolves in presence of a resonant transmission (section 4.4). Finally,
to conclude this chapter we shall comment something on future works and open
problems related to the topics treated in the first part of the thesis.

PART II: Electronic transport in atomic contacts

Chapter 5: Electronic transport in atomic contacts: Introduction.

In this chapter we shall introduce the topic of the electrical current through
metallic atomic-size contacts in normal state. After a brief historical review of
this topic, we shall describe our aims for the second part of the thesis.

Chapter 6: Origin of the conducting channels.

In this chapter we shall analyze the microscopic origin of the conducting chan-
nels in atomic contacts. We shall make use of a Hamiltonian approach in
terms of an atomic orbital basis, together with Green function techniques (sec-
tion 6.2-3). We shall analyze contacts of different metals, covering a broad
range of valences and orbital structures (section 6.4), and we shall show how
conducting channels arise from the valence orbitals of the corresponding ma-
terial. In special, we shall show how in an one-atom contact the number and
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character of the conducting channels are controlled by the chemical nature of
the central atom. Finally, we shall show experimental results which support
our picture of the electronic transport in atomic contacts (section 6.5).

Chapter 7: Elastic evolution of conducting channels.

In this chapter we investigate both experimentally and theoretically the evo-
lution of the conductance in metallic one-atom contacts under elastic defor-
mation. While simple metals like Au exhibit almost constant conductance
plateaus, Al and Pb show inclined plateaus with positive and negative slope
(section 7.2). It is shown how these behaviors can be understood in terms
of the orbital structure of the atoms forming the contact (section 7.3). This
analysis provides further insight into the issue of conductance quantization in
metallic contacts revealing important aspects of their atomic and electronic
structure. We shall end the chapter with some comments about future works
and open problems in relation to the topics treated in the second part of the
thesis (section 7.5).

APPENDICES

In order to make easy the reading of this work, in some occasions we explain the
most technical details in different appendices. This is the case of appendices B,
C and E. On the other hand, Appendix A contains a detailed description of the
Keldysh formalism, a technique widely used throughout this thesis. Finally,
Appendix D contains a proposal for the direct observation of the Andreev
bound states in a Josephson junction by means of the application of microwave
radiation to the contact.
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Chapter 1

Transport in superconducting
junctions: Introduction

1.1 Introduction

The superconductivity was discovered by Kamerlingh Onnes [1] in 1911. In the
course of an investigation on the electrical resistance of various metals at liquid
helium temperatures, he observed that the resistance of a sample of mercury dropped
from 0.08 2 at above 4 K to less than 3 x 1076 Q at about 3 K. Thus, he arrived at
the first characteristic property of a superconductor: its electrical resistance is zero
below a certain critical temperature.

The superconductivity is a notable example of quantum effects operating in a
truly macroscopic scale. In a superconducting material, below certain critical tem-
perature, a finite fraction of the electrons are condensed in a “superfluid” which
extends throughout the bulk system and is able to move as a whole. The surprising
properties of a superconductors as the vanishing electrical resistance, the perfect dia-
magnetism (Meissner effect), etc, are related with the peculiar excitation spectrum
of this fluid.

In 1957 Bardeen, Cooper y Schrieffer proposed the first microscopic theory of the
superconductivity, which is known as BCS theory [2]. In this theory it is explained
in an elegant way how the superfluid is formed with pairs of electrons which are
bounded by the action of lattice polarization forces. The pairs overlap appreciably
in space, and the strong correlations between pairs are responsible for the energy gap
in the excitation spectrum of a superconductor, from which most of the properties
of a superconductor follow as a consequence.

In this part of the thesis we shall concentrate in the analysis of the electronic
transport in superconducting junctions. Since the beginning of this topic in the
early sixties until nowadays, the knowledge of how the electrical current flows in

21
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22 INTRODUCTION

superconducting circuits has evolved greatly. At the present time the superconducting
electronics is a relatively well-established branch of engineering [3, 4]. There already
exist a great amount of applications of this new area of the electronics in themes like
the information technology, radiofrequency technology, technology associated with
electrical and magnetic measures of high precision or electromedicine.

The most important part of electronics is that related with the semiconductor
technology, which has conditioned much our present way of life. What are the
advantages of the superconducting electronics with respect to the well-established
semiconductor electronics? First of all, once the electrical resistance disappears so
do the parasitic heat losses which occur in the circuit resistances and connections
of semiconductor devices. The frequency limitations of superconductor components
are therefore quite exceptionally high. If they are used as sensors their sensitivity
limits can be so low as to be set only by Heisenberg uncertainty principle.

On the other hand, superconductor electronics can utilize special effects which
do not occur with semiconductors. In particular, most of the applications of the
superconducting circuits are based on the Josephson effect, which is a macroscopic
quantum phenomenon which takes place in superconducting junctions. The SQUID
! magnetic field sensors, have their operation based on the direct current Josephson
effect. They make the quantization of the magnetic field macroscopically observ-
able and technically utilizable. With the alternating current Josephson effect the
quantization of the electromagnetic field energies in the form of photons becomes
macroscopically observable. This effect is put to technical use in high precision d.c.
voltage standard.

Electronics initiated many years ago a race toward the miniaturization of its
different components. Nowadays we are attending to the first steps in the transition
from the microelectronics to the definitive nanoelectronics. One of the main problems
that one will have to face is that in devices of reduced dimensions the heat losses in
the integrated circuits of semiconductors o normal conductors will be appreciable.
In this case the superconducting electronics presents its main advantages.

On the other hand, in nanoelectronics there is a crucial aspect which provokes
that the electrical current flow takes place in a different way with respect to tradi-
tional circuits. When one has a nanometric-size electronic device, the dimensions of
the system are comparable to the Fermi wave length of the electrons in the system.
Thus, it is obvious that quantum effects will appear in these devices. In these small
systems it is possible that the electron maintains the phase coherence along the whole
system and the current can be controlled by interference phenomena associated to
the phase of the electron wave function. The physics of these quantum systems
is known as Mesoscopic Physics [5, 6, 7, 8, 9], indicating that the system dimen-
sions involved are somewhere in between the microscopic world of the atoms and the

!SQUID means superconducting quantum interference device.
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1.2. HISTORICAL REVIEW 23

macroscopic one. Finally, the mesoscopic superconductivity is the framework of the
present work. In short, our aim is the theoretical analysis of the electronic transport
through mesoscopic superconducting systems.

This chapter is devoted to an introduction on the electronic transport in super-
conducting contacts, and we also present the aims for the part I of the thesis. The
rest of this chapter is divided into two main sections. In section 1.2 we shall do
a brief historical review of this topic paying special attention to the problems and
systems which will be analyzed in this work. In section 1.3 we explain our objectives
for the part I of the thesis.

1.2 Historical review

1.2.1 Tunnel junctions

The study of the electrical current in superconducting junctions began in the early
sixties, just after the appearance of the BCS theory [2]. The first systems experimen-
tally investigated were the tunnel junctions. These systems consist of two metallic
electrodes, which may be in superconducting state, separated by a thin insulator
barrier (see Fig. 1.1). Such barrier has usually a thickness from 10 to 20 A and it is
typically made of an oxide of one of the metals. In these systems the current is due
to the passage of electrons via tunnel effect through the potential barrier created by
the insulator.

Giaever performed a pioneer experiment in 1960 [10] in which he analyzed an
aluminum/aluminum oxide/lead tunnel junction at temperatures between 1.6 K and
4.2 K. At these temperatures Pb is superconducting and Al remains in normal state.
The main conclusion of that work is summarized in Fig. 1.2 taken from the original
article. This figure shows the ratio between the conductance when Pb is in super-
conducting state and the corresponding conductance when Pb is in normal state, as
a function of bias voltage. In the case of a tunnel junction, where the electrodes
are weakly coupled, this ratio is the ratio between the Pb density of states in su-
perconducting state and the corresponding one in normal state [11, 12]. As can be
observed in Fig. 1.2, this conductance ratio resembles the BCS density of states
with a broadening of the singularity. Thus, Giaever showed the existence of a gap
in superconductors and determined it quantitatively.

Some months after the Giaever pioneer work there appeared two new experiments
in tunnel junctions analyzing the current in contacts with two superconducting elec-
trodes [13, 14]. Again, the superconductor gap was reflected in the current-voltage
(I-V) characteristics and the results were well described within the framework of BCS
theory, what was one of the main confirmations of this theory. With the appear-
ance in the following months of a great number of tunneling experiments between
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Figure 1.1: Schematical representation of a superconductor-insulator-superconductor
tunnel junction.

superconductors [15, 16, 17|, tunneling became a very valuable spectroscopy for in-
vestigating the electronic properties of these materials.

In 1962 B.D. Josephson predicted the possibility of new effects in the tunneling
between superconductors [18]. In his famous paper Josephson predicted the two
following effects which received his name:

1. dc Josephson effect: in a superconducting junction current can flow at zero
voltage due to the phase difference between the superconducting electrodes.
This current is due to the coherent tunneling of Cooper pairs through the
junction. In short, a nondissipative current or supercurrent can flow through
a superconducting contact.

2. ac Josephson effect: in a superconducting junction with a constant bias
voltage V', apart from a dc current, there appears an alternating current which
oscillates with a frequency wy = 2eV/h, referred to as Josephson frequency and
whose value is 483.6 M Hz/uV .

Let us pay attention to the quantitative description of these effects, as a reference
for later discussions. Josephson calculated the tunnel current in a superconducting
junctions making use of the transfer Hamiltonian introduced by Cohen et al. [12].
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Figure 1.2: Normalized conductance vs voltage in an Al-Pb tunnel junction at 1.6
K [10].

This Hamiltonian consists of three terms: the first two describe the uncoupled elec-
trodes within the framework of BCS theory, and the third one couples states of the
electrodes. To be precise, Josephson calculated the current up to first order in the
coupling between electrodes, what in principle seems sufficient for the case of a tun-
nel junction 2. The result of this microscopic calculation can be summarized in the
following expression for the current:

IV, T,t) = Iy(V,T) + Is(V,T) sin ¢(t) + I, (V,T) cos ¢(t). (1.1)

This expression tell us that the current I flowing through the junction as a function
of the voltage V', temperature T and time ¢ can be expressed as a sum of three terms.
The first one, I, is a time-independent term (dc current component) produced by
the tunneling of quasiparticles, in the same way as in a normal contact. The other
two terms oscillate with time with the superconducting phase difference between
electrodes ¢, which in the finite voltage case varies linearly as a function of time
with the Josephson frequency: ¢(t) = ¢o + 2eVt/h. Thus, at finite voltage these
two terms give rise to the ac Josephson effect, which we defined above. However,

2As we shall see in Chapter 2, some results are nonperturbative in the coupling and even in the
tunnel limit one has to consider the processes up to infinite order to obtain a correct description.
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the nature of these two contributions is rather different. The term of Ig is due to
the tunneling of Cooper pairs and is non-zero even at V = 0, giving rise to the dc
Josephson effect. Thus, at V = 0 the supercurrent is given by I = I sin ¢g, where
Ic =15(0,T) is the critical current of the junctions, i.e. the maximum current that
the junction can support without generating a voltage. The temperature dependence
of I was calculated by Ambegaokar and Baratoff [19], and for a symmetric ? junction
has the form

To(T) = gﬁgv) tanh (%@)) , (1.2)

where A(T) is the temperature-dependent superconducting gap, Ry is the resistance
of the normal contact and § is the inverse of the temperature.

On the other hand, I is a dissipative term which arises from the interference
between quasiparticles and the condensate of Cooper pairs, and whose existence was
doubted during a lot of time as we shall comment below.

Fig. 1.3 shows the amplitudes (Iy, Is, I) for the case of a symmetric junction at
zero temperature, as obtained from the tunnel theory. As can be observed in this
figure, the quasiparticle term, i.e. the dc current component, vanishes inside the gap,
as one would expect naively. At V = 2A this term jumps to a finite value given by
Iy(V =2A) = 7A/2eRy. On the other hand, the term Ig is finite at V' = 0 with the
value predicted by expression (1.2), and it shows a singularity at V = 2A /e referred
to as Riedel peak [20]. Finally, I; vanishes inside the gap and jumps to a finite and
negative value at eV = 2A. For a detailed analysis of the tunnel I-V curves see Refs.
[21, 22].

The new effects predicted by Josephson were quickly confirmed experimentally.
Anderson and Rowell [23] observed for the first time a supercurrent. Later, the
magnetic field dependence of the supercurrent predicted by Josephson [24], and its
temperature dependence were also confirmed [25, 26]. The ac Josephson effect was
also detected, in a indirect way by Shapiro [27], and in a direct way by Giaever [28]
and Yanson et al. [29].

The intensive investigations of the tunnel junctions gave rise to the discovery of
a great deal of new effects. Next, we shall describe two phenomena which will be
analyzed in this thesis: the subharmonic gap structure and the cos ¢ problem.

Subharmonic gap structure

We shall explain in detail this phenomenon which is the core of this thesis and which
has remained without a totally satisfactory explanation during the last thirty years.

3We shall use the term symmetric junction to indicate that the junction is formed by two electrode
of the same material.
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eV/A

Figure 1.3: Amplitudes of the tunnel current terms as a function of voltage at zero
temperature for a symmetric junction (see Eq. (1.1)).

We do here our first approach to this phenomenon and we shall come back to it
below.

If a tunnel junction, formed by two superconductors S; and Ss separated by an
insulator barrier I, is cooled below the critical temperatures of both superconductors,
then the current which flows at a voltage V < (A1 + Ag), where A; is the gap of S;,
should be very small in comparison with the one which flows at V' > Ay 4+ A,. For
example, in Pb at 1 K the number of quasiparticles excited above the gap A (1.39
meV) is ~ Noexp(—A/kT) ~ 10~"Ny. The tunnel current in a Pb-I-Pb junction at 1
K for small voltages should be exclusively due to these excited quasiparticles. Thus,
in a such a junction at 1 K, the current (Iss) for V < 2A should be ~ 107 times
the corresponding to the normal case (Iyy). In practise, currents much greater than
this have been observed, typically from 1075 to Iny/2.

The first measurements of these excess currents for eV < 2A were done by Taylor
and Burstein [30], and independently by Adkins [31]. They observed that in certain
junctions of Sn-I-Sn and Pb-I-Pb the current increased abruptly at voltages Ag, or
Apyp. The size of this increase was ~ 10~# times that of 2Ag,, or 2A py (see left panel
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in Fig. 1.4). Later, Yanson et al. [32] and Marcus [33] observed that there were not
only an abrupt increase at eV = A, but also a series of jumps located at eV = 2A/n
with n integer (for a symmetric junction), as can be observed in Fig.1.4 (right panel).
This series of current jumps is known as subharmonic gap structure due to its
localization in voltages.

1, arbitrary units
|

I arbitrary units
kT .
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Figure 1.4: First observations of the subharmonic gap structure. Left: I-V charac-
teristics in a Pb-Pb tunnel junction [31]. Notice the structure at eV = A, as well
as its temperature dependence. Right: I-V characteristics in a Sn-SnO2-Sn tunnel
junction at T=1.61 K [32]. Notice the structure at voltages eV = 2A /n with integer
n.

In the sixties two theories were developed to explain the subharmonic structure.
The first one was presented by Schrieffer and Wilkins and is referred to as multipar-
ticle tunneling theory (MPT) [34]. This theory was specially developed to explain
the current step at eV = A in the experiments of Taylor and Burstein [30]. For this
purpose they calculated the dc current up to second order in the coupling between
electrodes in the transfer Hamiltonian. This second order shows the possibility of a
process in which the transfer of two quasiparticle takes place, creating a Cooper pair
in the other electrode. This process has a threshold voltage eV = A (for a symmetric
junction), explaining qualitatively the experiment of Ref. [30]. Within the MPT the
explanation of the structure at voltages eV = 2A/n would come from the possibility
of multiple processes in which n quasiparticles cross the barrier. This theory presents
some problems, and in those years an important defect was pointed out. The proba-
bility of a process which involves the passage of n quasiparticle through the barrier is
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proportional to 7", where T is the transmission through the insulator barrier. Tak-
ing into account that 7' ~ 10! in a tunnel junction, it is difficult to believe that
this could be the explanation for the whole series which appears for instance in Fig.
1.4 (right panel) . On the other hand, MPT presents a theoretical problem. For
instance, the second order calculated by Schrieffer and Wilkins diverges at eV = 2A
due to the divergence of the BCS density of states. In higher order terms, similar
divergencies appear °.

A second theory for the explanation of the subharmonic gap structure was pro-
posed by Werthamer in 1966 and is referred to as self-coupling of Josephson radi-
ation [36]. This author claimed that the quasiparticle tunneling could be coupled
to the Josephson radiation coming from the ac current present in the tunnel junc-
tion. If a quasiparticle process took place while simultaneously a photon is absorbed
from the Josephson radiation, an increase of the tunnel probability would occur at
eV + hw = 2A, i.e. at 2A/3 since fiw = 2eV for the Josephson radiation. The in-
clusion of multiphotonic processes gives structure in 2A/(2n + 1), i.e. for odd values
of the denominator. One can obtain the even terms of the series by including the
absorption of the Josephson radiation by the electrodes, generating thus quasipar-
ticles at nhw = 2A. The main problem of this explanation is that it invokes two
different mechanisms for the odd and even terms, while the experimental current
jumps are identical for both series. Moreover, it was pointed out by Rowell and
Feldmann [35] that this theory does not reproduce the series of jumps which appears
in an asymmetric junction.

The cos ¢ problem

This is a problem that one can find in several textbooks [21, 22, 37] and it was one of
the most important failures of the tunnel theory. After years of great attention this
problem was abandoned and we recover it in this thesis proposing what we believe
it is the solution of this long-standing problem.

The current through a tunnel junction with a constant bias voltage is given by
the expression (1.1), which can be rewritten as

I(V,T,t) = Is(V,T)sin ¢(t) + oo(V,T) [1 + €(V,T') cos ¢(t)] V, (1.3)

where

“Indeed, nowadays it is clear that the presence of subharmonic structure in tunnel junctions is
due to the existence of microbridge or pinholes that make that some of the conducting channels
have a not so small transmission, giving rise to the presence of the excess current inside the gap
[35].

5As we shall show in Chapter 2, this kind of divergencies disappear when one solves the problem
up to infinite order.
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_ a1 (V,T)

e(V,T) 700(‘/’ 7)

(1.4)

is the conductance ratio between the cosine term and the quasiparticle one. Thus,
we can see that the dissipative current contains a phase-dependent term, the so
called cos¢ term. This term was simply ignored for years. The first observation
of the cos ¢ term was performed by Pedersen et al. [38] in the course of a study
of the magnetic field dependence of the Josephson plasmon resonance frequency
in a Pb tunnel junction. In this experiment they found that the cos¢ term had
approximately the magnitude predicted by the tunnel theory, but the sign was the
opposite. Let us remember that the tunnel theory, within the BCS scheme, predicts
that when 77— 0 and V' — 0, the conductance ratio € — 1 [21]. In the experiment
of Pedersen and coworkers a ratio e ~ —1 was found in this limit. Later experiments
making use of different techniques [39, 40, 41, 42, 43] showed similar results, arising
thus the so called cos ¢ problem.

Here, we shall remark the result obtained by Rifkin and Deaver [42] in which by
means of a measure of the inductance of a ring-shape junction as a function of the
superconducting phase difference ¢ through the contact, they were able to extract
the phase-dependent linear conductance, G(¢), which in the tunnel theory adopts
the form

G(¢) = Go (1 +€cos ¢). (1.5)

The result which they obtained is shown in Fig. 1.5, where it is quite clear that the
measurement is more compatible with a value of —1 for e. Moreover, G(¢) differs
from a cosine shape what complicated even more the cos ¢ problem 6.

Several theories tried to explain this discrepancy by introducing phenomenologi-
cally a finite relaxation time associated with an inelastic interaction [44, 45]. Some of
them showed the possibility of having € ~ —1, but with unrealistic values of the re-
laxation time, and furthermore none could explain the deviation of the conductance
from a cosine-type shape. After more than one hundred papers in the seventies, this
problem was forgotten and we have recovered it in this work (see Chapter 2).

So far we have revised only a small part of the rich phenomenology of the elec-
tronic transport in superconducting tunnel junctions. For those who want to pro-
found into this topic there are several monographs [46, 47| and excellent review
articles [24, 48, 49, 50].

5We should say that the experiment of Rifkin and Deaver was done in a point contact, where it
is not clear that the tunnel theory holds.
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Figure 1.5: Experimental results by Rifkin and Deaver [42] for the linear conductance
G of a superconducting point contact as a function of the phase ¢.

1.2.2 Weak Links

Although the tunnel junctions played a crucial role in the investigation of the Joseph-
son effect, since 1964 with the work by Anderson and Dayem [51] it was clear that
this effect also took place in a great variety of systems known as weak links. A
weak link is a junction between two electrodes where the current flow takes place
in direct way, and not via tunnel effect through an insulating layer as in the tunnel
junctions. The Josephson effect appears in these systems when the weak link has
reduced dimensions, i.e. when the distance between electrodes and the cross section
of the weak link are small. The critical current in these systems is much smaller
than in the electrodes giving rise to the term, weak superconductivity.

Next, we shall briefly describe some of the more important weak links (see Ref.
[49]). A type of junction related with the tunnel junctions is that in which the oxide
barrier is replaced by a non-superconducting metal. A finite supercurrent can flow
through such a junction due to the proximity effect [52]. This effect lies in the fact
that if a metal and a superconductor are put in contact, some Cooper pairs penetrate
in the metal giving rise to a non zero order parameter, which decays exponentially
inside the metal over a distance of the order of the normal coherence length. Thus,
if the length of normal region is not very large, the order parameter will be non-zero
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throughout the metal and a supercurrent may flow.

Another type of weak link consists of a superconductor with a very small section
which links two macroscopic superconductors [51]. In these contacts, known as
Dayem bridges, the supercurrent flows through the weak link in a similar way as it
does in the superconductor bulk, and there is no tunneling process.

An additional group of junctions is the one known as point contact, which is made
pressing a superconducting tip over a surface [53]. These systems have barriers that
are not very well defined and whose properties can vary between the ones of a tunnel
junction and the ones of microbridges adjusting the pressure over the tip.

As we commented above, these contacts exhibit Josephson effect, but in a differ-
ent way with respect to the tunnel junctions. Before going on, we should say what
we understand by Josephson effect in these systems. For instance, by dc Josephson
effect we mean that the supercurrent is a periodic function of the phase difference,
although it may be different from the sinusoidal relation of the tunnel junctions.
With respect to the ac Josephson effect, the relation between the voltage and fre-
quency, wo = 2eV/h, still holds because it does not depend on the details of the
barrier, but it manifests in a different way in the different contacts, so for instance
their I-V characteristics are different.

In the weak links there exist different length scales which determine the current
through the system. An important length scale in this problem is the length L of
the constriction which separates the superconducting electrodes. One can classify
the different weak links according to the comparison between the length L and the
characteristic lengths of the material which formed the weak link, like the supercon-
ducting coherence length ¢ and the mean free path /. The junctions where L < ¢
are called short junctions, and long those in which L > £. Even in the case of short
junctions, the processes may differ depending on the mean free path [. We shall call
dirty to those structures in which | < L, and clean to those in which [ > L.

As an example of that the Josephson effect which takes place in a weak link is in
general different from that of tunnel junctions, we shall mention here the prediction
of Kulik and Omelyanchuk [54] for the supercurrent in short and clean weak links
(L <1,§):

wA(T)
eRy

Ig = (1.6)

AT eoso2)
2

sin(¢/2) tanh (

In this expression A is the gap, Ry is the resistance of the normal contact, ¢ the

superconducting phase and [ the inverse of temperature. As one can see, this ex-

pression differs from the sinusoidal behavior of a tunnel junction .

"For those who want to profound in how the different characteristic lengths give rise to different
manifestations of the Josephson effect, we recommend the excellent review article of Likharev [55].
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At the beginning of the eighties the situation was the following. While for the case
of tunnel junctions there existed since the sixties a suitable theoretical description for
almost all phenomena, in the case of weak links there was only a limited knowledge.
Concentrating ourselves in the I-V curves, since it is the topic that we shall analyze
in detail in this thesis, among the different characteristics which remained without
a satisfactory explanation there were two outstanding ones: the above mentioned
subharmonic structure, which appears more clearly in weak links [56, 57, 58, 59],
and the excess current, which we explain next. One would expect that at voltages
much greater than the gap, the current through a weak link reached the same value as
in the normal case, as it happens in tunnel junctions. However, different experiments
in point contacts and microbridges [60, 61] show that the current in the high voltage
limit is linear but does not extrapolate to zero as the voltage vanishes. The difference
at voltages much larger than the gap between the current in the superconducting
case and the corresponding one in the normal case is referred to as excess current.

In the eighties new theories for the description of the superconducting I-V curves
appeared. Among them we shall review two of special interest. The first one is known
as KBT model and provided the basis for a definitive understanding of transport
phenomena in these systems. It identified the processes which control the current and
allowed an unified analysis of tunnel junctions and weak links. The second theory was
developed by Arnold and it was orientated to a more microscopic and quantitative
description of the superconducting transport. In the following two subsections we
shall briefly revise these theories and their predictions.

KBT Model

In a set of papers in 1982 and 1983, Klapwijk, Blonder, Tinkham and in one of them
Octavio developed a model based on the scattering formalism to describe N-S and
S-S contacts ® [62, 63, 64]. In their model the excitations of a clean superconductor
are described by the Bogoliubov-de Gennes equations [66]. In order to simulate
the scattering that takes place in the junctions they used a d-like potential located
in the interfase between electrodes, whose strength is controlled by a parameter Z
9. The central idea of the model consists of connecting the wave functions of the
electrodes through the barrier to obtain the probability of each process and finally
its contribution to the total current.

As it is explained in detail in Ref. [63], these authors carried out this scheme
completely for the case of a N-S junction. They obtained the current as a function
of Z, ranging from the case of a tunnel barrier, where they recovered the results

8We shall use the notation N-N, N-S, S-S, etc, to refer to contacts made of normal metal-normal
metal, normal metal-superconductor, superconductor-superconductor, etc.

9The parameter Z is related to the normal transmission coefficient 7" through the potential barrier
by the expression 7 = 1/(1 4+ Z?). Thus for instance, Z = 0 means no barrier at all.
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of the traditional tunnel theory, to the case in which there is no scattering in the
interfase. They showed that both the current inside the gap and the excess current
for voltages eV > A which appear in these junctions are due to the contribution of
a process called Andreev reflection [65].

When at least one of the electrodes is superconducting, apart from the quasi-
particle tunneling, there exists the possibility of having Andreev reflections. In a
N-S junction the Andreev reflection is a process in which an electron coming from
the normal metal is reflected as a hole in the interfase, giving rise to the transfer of
a Cooper pair to the superconducting electrode (see Fig. 1.6). Due to the energy
conservation, the hole has the same energy, measured from the Fermi level, as the
incoming electron, i.e. this hole corresponds to the time-reversal state of the original
electron. This process produces a charge transfer equal to 2e, which becomes super-
current in the superconducting electrode. The Andreev reflection is an fundamental
mechanism in nature since it is the way in which a dissipative current in the normal
metal is converted in a supercurrent in the superconductor.

ev ! |_ &l €O --*--

Cooper pair

Figure 1.6: Schematical representation of an Andreev reflection in a N-S contact.
In this process an electron is reflected as a hole by creating a Cooper pair in the
superconducting electrode.
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Two of the authors, Blonder and Tinkham [67], showed experimentally that the
BTK model describe quantitatively the I-V curves of an N-S contact. To be concrete,
they analyzed the current through Cu-Nb point contacts. The special features of
the point contacts allowed them to analyze the transition from a tunnel junction
to a weak link. The notable agreement indicated the importance of the Andreev
reflections in the correct description of the superconducting transport.

The case of a contact with two superconducting electrodes is much more complex.
In these contacts it is possible the occurrence of multiple Andreev reflections (MAR),
which take place in the following way (see Fig. 2.7 in Chapter 2). When an electron
10 js reflected as a hole, such a hole can undergo a similar process in the other
electrode giving rise thus to a reflected electron. This new electron can undergo
a new reflection and so on. Thus, when an electron cross the barrier it gains a
energy equal to eV, and in the return journey the hole do the same. So, a process in
which the quasiparticles cross the interfase n times can be seen as a process in which
a quasiparticle gains energy reflection after reflection until it finally gains a energy
equal to neV. This multiple process ends when the quasiparticle finds an empty state
in an electrode, what happens (at zero temperature) when the minimum condition
neV = 2A is fulfilled. Thus, at zero temperature every time eV = 2A/n (n integer)
a new multiple Andreev reflection is possible giving a new contribution to the current
and explaining in a natural way the subharmonic gap structure. In the case of an
asymmetric contact, the subharmonic structure can be explaining using the same
argument and taking into account the relation between the gaps.

The scheme developed for the N-S case is difficult to carry out for the S-S or
S-N-S case and the authors only did it in the limit of a contact with perfect trans-
mission [62]. In its place, the authors proposed a semiclassical model (OTBK model)
based on the Boltzmann equation, which allowed them to analyze the I-V curves for
arbitrary transmission [64]. In this model the nonequilibrium distribution functions
are determined by means of boundary conditions in the N-S interfases, which are
determined by the different processes that take place in such interfases. In some
sense, in this model an S-N-S junction is considered as two N-S junction in series.
For instance, the probability of a multiple Andreev reflection is given by the prod-
uct of the probabilities of the elementary processes which form it, neglecting so the
interferences between these processes 1.

Fig. 1.7 shows results obtained with the OTBK model for both the current
and the differential resistance in a S-S contact. The subharmonic structure can be

108trictly speaking the excitations of a superconductor are a combination of electrons and holes.
However, for the sake of simplicity we shall speak about electrons instead of quasielectrons, and
about holes instead of quasiholes.

1 As we shall show in Chapter 2, this is probably the main limitation of this model for describing
a mesoscopic system.
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Figure 1.7: Predictions of the OTBK model [68]. Left panel: zero-temperature
I-V characteristics of an S-S contact for different transmissions. Right panel: zero-
temperature differential resistance for a S-S contact with different transmissions.

observed specially in the differential resistance which exhibits maxima at voltages
eVy, = 2A/n with n integer.

Arnold theory.

In the mid eighties Arnold developed a theory for analyzing superconducting junc-
tions with arbitrary transmission through the insulator barrier [69, 70, 71]. His
theory is based on nonequilibrium Green function techniques. The idea that he
worked out is that of calculating the Green functions for the uncouped electrodes
and finally connect them in the interfase by means of suitable boundary conditions.
His theory is adequate for treating different junctions as N-I-S, S-I-S, etc.

We remark here the results obtained for the current in a S-I-S junction. Fig. 1.8
(left panel) shows the I-V curves for different values of the transmission coefficient.
In this figure the subharmonic structure can be observed, which is more clearly seen
in the differential resistance (see Fig. 1.8, right panel). As it was stressed by the
author, the subgap structure is due to Andreev reflections in agreement with the
KBT model. As can be seen the main difference with this latter model is that the
subharmonic structure is more pronounced.
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Figure 1.8: Current and differential resistance in the Arnold model. Left panel: zero-
temperature I-V characteristics of a S-I-S contact with different transmissions. Right
panel: zero-temperature differential resistance for a S-I-S contact with transmission
0.42 [71].

1.2.3 Mesoscopic Superconductivity

With the advance of the microfabrication techniques, nowadays the design of nanometric-
size devices is possible. In these systems the characteristic dimensions are comparable

to the Fermi wave length (Ap) of the electrons, thus a purely quantum-mechanical
description of their transport properties is indispensable. An example of this kind

of systems is a two dimensional electron gas (2DEG) created in semiconductor het-
erostructures [72]. In this system the electrons are confined in a plane, where the
low electronic density implies a large A\p (typically 40 nm) which is comparable to
the dimensions of these structures. Moreover, the mean free path can be as large as

(> 1 um).

Other examples of nanometric-size systems are the metallic atomic-size contacts.
These contacts are fabricated with the Scanning Tunneling Microscope (STM) [73]
or with the technique of the mechanically controllable breakjunctions (MCB) [74].
The current in these atomic contacts flows through a few atoms, thus the system
has a minimum width comparable to Ap, which in the metals is of the order of
interatomic distances. Below, we shall describe in detail these contacts which play
a fundamental role throughout this thesis.

In these nanometric-size systems the electron phase coherence can be kept over
distances of several microns at low temperatures (< 1 K), i.e. almost macroscopic
distances. The reason is that the elastic scattering with impurities does not destroy
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the phase coherence, what can provoke a modification of the conductivity due to
interference phenomena. The physics of these systems is known as Mesoscopic
Physics [5, 6, 7, 8, 9] to indicate that the length scales involved are between the
microscopic world of atoms and the macroscopic world.

In these systems the technological interest coincides with the interest in the in-
vestigation of the fundamental principles of the Quantum Mechanics (those related
with the concept of the wave function phase). In fact, these solid state devices
have become ideal systems where to examine such principles. In the study of elec-
tronic transport in the quantum regime one finds certain surprises associated with
the mentioned interference phenomena. For instance, the usual rule for connecting
resistances in parallel or in series may break down in the quantum regime. Also, the
resistance may be nonlocal in the sense that what is measured between a given pair
of points may depend on things connected further away.

In the last two decades the mesoscopic systems have given rise to the appearance
of a great number of new phenomena that now play a central role in Condensed
Matter Physics. For instance, we can mention the Aharanov-Bohm effect, the quan-
tum Hall effect, universal conductance fluctuations, the conductance quantization,
Coulomb blockade, etc (see Ref. [72] and references therein). The combination of the
mesoscopic physics with the superconductivity has given rise to a new branch known
as Mesoscopic Superconductivity [75, 76, 77, 78, 79], which is the framework of
this first part of the thesis. The rest of this section is devoted to a review of some of
well-known superconducting mesoscopic systems which are the aim of our analysis
in this thesis.

countersupport
stycast

notched filament

béhding bea

Piezo

Figure 1.9: Representation of the experimental set-up used for fabricating a
breakjunction. A notched filament is mounted over a flexible substrate (bending
beam) which is bent in a controllable way making use of a piezo [80].
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Let us start by describing the atomic contacts known as mechanically controllable
breakjunctions (MCB). These contacts initially designed by Moreland et al. [81] and
improved by Muller et al. [74] are formed in the following way. As can be seen in Fig.
1.9, a metallic wire of the material under investigation is glued in a flexible substrate
which is broken by bending in a controllable way such substrate. Breaking the
wire at low temperatures and at high vacuum guarantees two clean atomic surfaces.
The distance between surfaces is controlled by a piezoelectric. This system has a
great stability (better than 107!3 m), what permits to create contacts of just a
few atoms (even one-atom contacts [82]). The great advantage of these systems
is that one can vary the contact from the tunnel regimen, with normal resistances
Ry > h/2e¢? ~ 12.9 k), to form a weak link with a few Ohms. Therefore, they are
ideal systems for studying the transport in different regimes.
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Figure 1.10: I-V characteristics (a) and differential resistance (b) of a Nb breakjunc-
tion with 1.74 kQ (left panel) and 19 kQ (right panel). Notice in both cases the clear
subharmonic structure [74].

In the last years this technique has allowed the detailed study of different trans-
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port phenomena. For instance, in the breakjunctions a phenomenon similar to the
conductance quantization in semiconductor devices has been observed, and some-
thing similar for the supercurrent [83, 84]. On the other hand, due to the control in
the contact characteristics it has been possible to study the evolution of the super-
current and the I-V curves from tunnel regime to contact regime. As an example
we show here the subharmonic structure which appears clearly in these contacts
[74, 85, 86]. Fig.1.10 shows the I-V curves and the differential resistance of two
Nb breakjunctions with different normal resistance after Ref. [74]. Notice the pro-
nounced subharmonic gap structure, which is clearly visible even in the current.
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Figure 1.11: Differential conductance in a Pb-Pb superconducting atomic contact
created with the STM [88]. The resistance varies from tunnel regimen to contact
regime where the subharmonic structure is visible.

Another method to fabricate metallic atomic-size contacts is provided by the
Scanning Tunneling Microscope (STM) [73]. This microscope deviced in the early
eighties has provided great information about the electronic properties of supercon-
ducting materials. For instance, it has been used as planar junctions, point contacts
and other geometries for determining the density of states of a superconductor, as
well as its phonon spectrum [22]. The STM shares with the breakjunctions all its
advantages, and moreover it has the possibility of lateral movement. Due to this
movement it is possible to characterize very well the barrier between electrodes,
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what provides a better knowledge of the contacts. As in the case of MCB’s, one
can vary the junction from tunnel to contact [87, 88], what permits to take a whole
family of curves ranging the resistance as it is illustrated in Fig. 1.11.

In the above described atomic-size contacts the current finally pass through a
few number of atoms, or in other words, the current is controlled by reduced number
of conducting channels. This fact converts them in ideal these systems in order to
do a quantitative comparison with theory. In this thesis we shall show an exhaustive
comparison between our theoretical results and the experimental results obtained
with these types of atomic contacts.

The first quantum point contacts arose in the context of the two dimensional elec-
tron gases (2DEG) fabricated in semiconductor heterostructures. In these systems
was firstly observed the phenomenon of conductance quantization [89, 90]. In prin-
ciple, the main difficulty to fabricate a superconducting point contact with a 2DEG
lies in incorporating the superconducting electrodes. This difficulty has been re-
cently overcome by Takayanagi et al. [91]. These authors deviced a superconductor-
2DEG-superconductor point contact as the one illustrated in Fig. 1.12 (left panel).
Furthermore, they incorporated a “split gate” whose width Ly, can be controlled by
means of a gate voltage. Thus, they could control the number of conducting channels
which contribute to the current through the 2DEG. With this ingenious device they
could investigated the quantization of the critical current as it is illustrated in Fig.
1.12 (right panel).

Finally, we mention a system that although it has not the typical profile of a
mesoscopic system, it has a renewed interest: the tunnel junctions. These junctions
in their modern version, almost always making use of the Nb technology, could serve
as X rays detectors [92, 93, 94]. These tunnel junctions exhibit a clear subharmonic
structure (see for instance Ref. [94]). Typically this subharmonic gap structure is
superimposed to a notable excess current inside the gap, taking into account that
they are tunnel junctions. The explanation is that the insulator barriers are not
perfect and present pinholes which provoke the mentioned excess current inside the
gap [94].

In the last years there has been a great advance in the knowledge of the transport
properties of mesoscopic systems in which superconducting elements are involved.
From the theoretical point of view there are two important approaches. Firstly, the
scattering formalism [95] has provided a very intuitive picture of the superconducting
transport in mesoscopic systems [96, 97, 98, 75, 99]. It is also remarkable the so called
nonequiblibrium superconductivity theory [100, 101, 102, 103, 79]. This theory, based
on semiclassical Green function techniques, is specially well adapted for dealing with
situations where the elastic scattering with impurities is essential. Furthermore, it
provides a suitable framework for treating interactions like electron-electron interac-
tion, electron-phonon interactions, spin-flip processes, etc. Nowadays, it is believed
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Figure 1.12: Superconducting point contact created by means of a 2DEG [91]. Left:
(a) cross sectional view of the point contact. (b) Upper view of the contact. An
applied voltage generates a gate defining a constriction of width Ly in the 2DEG.
Right: critical current I and normal conductance G¢ of the junction as a function
of the gate voltage V.

that this theory can explain all proximity effect experiments in N-S structures (see
Ref. [104]). In fact, it has achieved such a refinement that there even exists a circuit
theory [105], which consists of simple rules, in the same way as the Kirchoff rules,
which in principle permit to solve any N-S circuit.

1.3 Objective of the part I

In spite of the notable and numerous successes of the scattering formalism and of
the nonequilibrium superconductivity theory, at the beginning of this thesis it was
quite clear that there was still a very elementary situation for which there did not
exist a satisfactory description. We are referring to the case of superconducting
contacts with a finite applied voltage. Although the existent theories seemed to
contain part of the physics which governs the electronic transport in superconducting
junctions, it was by no means clear that they could quantitatively describe even
the simplest situations. At the beginning of this thesis the debate about which
theory (multiparticle tunneling theory, self-coupling of the Josephson radiation or
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the theories based on multiple Andreev reflections) gave a better description still went
on [92, 106, 93, 94, 87]. By analyzing the experiments of the previous references it
was rather clear that none of the mentioned theories gave a completely satisfactory
explanation for the different situations.

Historically it has been very difficult to do a quantitative comparison between
experiment and theory. The main reason lies in that in the traditional experiments,
with planar tunnel junctions, there exists a great uncertainty about the crucial junc-
tion parameters like the thickness, contact area, transmission, composition and di-
mensionality of the insulator barrier. However, with the modern microfabrication
techniques which have given rise to systems like the STM, 2DEGs and the breakjunc-
tions, these problems have disappeared to a great extent. Thus, our aim at the
beginning of this thesis was to develop a theory which quantitatively describes the
electronic transport in superconducting contacts. The following paragraphs are de-
voted to concrete this aim.

As it is clear from the historical review, the description of the electronic transport
in S-S contacts is very complex, even in the simplest situations. Thus, we shall
concentrate in the description of short contacts known as superconducting quantum
point contacts (SQPC). Next we shall explain what we mean by an SQPC and for
ending this chapter we shall mention the experimental systems which fit in the profile
of these contacts.

A
\ 4

Figure 1.13: Schematical representation of a SPQC.

By an SQPC we mean a superconducting contact like the one depicted in Fig.
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1.13. In this contact the constriction which links both electrodes has a length L¢
much smaller than the superconducting coherence length £ of the electrodes. As we
shall comment in the Chapter 2, this feature allows us to do some hypothesis which
simplify the problem considerably. On the other hand, in a SQPC the constriction
width is comparable to the Fermi wave length Ar of the system electrons, what
implies that the junctions only sustains a reduced number of conducting channels
12

The different mesoscopic systems that we described in the previous section fit
in the definition of a SQPC, in special the metallic atomic-size contacts and the
S-2DEG-S point contacts. Thus for instance, in the metallic contacts, created with
the STM o with the breakjunction technique, have a minimum width of the order
of a few atoms, that is, comparable to the Ag of the metals. On the other hand,
the superconducting coherence length (¢ ~ 102 — 103 nm) is much greater than the
contact atomic neck length.

Thus, systems of undoubted interest fit the definition of a SQPC. Finally, we
conclude this chapter by reminding our aim for the part I of the thesis:

To develop a theory which describes
the dc an ac transport in SQPCs
quantitatively.

12This assumption is not fundamental in the theory that we will develop, but of course the
experimental comparison will be more accessible if this condition holds.
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Chapter 2

Transport in superconducting
quantum point contacts

2.1 Introduction

Traditionally, quantum transport in microelectronic devices has been mainly ad-
dressed by three different approaches: one is based in the scattering formalism, first
introduced by Landauer [95] and generalized by Biitikker [107], in which the trans-
port properties are expressed in terms of the scattering matrix of the system '. In
this picture one converts a transport problem in a scattering problem by replacing
the device by an appropriate scattering matrix. The natural extension of this for-
malism to the superconducting case was provided by the already mentioned KBT
model [62].

Another widely used technique is that of the semiclassical Green functions [100,
101, 102, 103, 79]. In this case the problem consists of determining the Green func-
tions for the uncoupled electrodes and finally connect them in the interfases by means
of suitable boundary conditions. As we explained in the previous chapter, this point
of view has produced great results, specially in the context of N-S systems.

Finally, a different point of view arises when the problem is analyzed starting
from a microscopic Hamiltonian. We shall very generally call Hamiltonian approach
to the theories which take this starting point. The origin of this approach can
be traced back to the work by Bardeen who introduced the tunnel Hamiltonian 2
approximation for describing a tunnel junction [11]. Most of the calculations based on
this tunnel Hamiltonian were restricted to the lowest order transport processes like in
the calculation of the Josephson current in a S-I-S junction [18, 19]. Multi-particle

! As general references about the scattering formalism we recommend the textbooks [7, 9].
2 Also known as transfer Hamiltonian.
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tunneling was first discussed by Schrieffer and Wilkins [34] in their multiparticle
tunneling theory, as a possible explanation for the observed subgap structure in
superconducting tunnel junctions. The contributions of these higher order processes
were found to be divergent, which has led to the quite extended belief that the
Hamiltonian approach is pathological except for describing the lowest order tunneling
processes.

We shall make use of this last point of view and we shall show the equivalence
between the scattering formalism and the Hamiltonian approach. As will be shown
below, the inclusion of higher order processes up to infinite order eliminates the
pathologies associated with finite order perturbation theory.

On the other hand, the Hamiltonian approach in combination with non-equilibrium
Green function techniques presents certain advantages. For instance, this approach
can be generalized for dealing with situations where self-consistency of the supercon-
ducting order parameter is needed [108, 109]. Moreover, the formulation in terms
of Green functions is specially well suited for dealing with correlation effects when
strong electron-electron interactions are present [110]. Furthermore, with respect to
the semiclassical Green functions the Hamiltonian approach has the following advan-
tage. If a system is described by a Hamiltonian, one has not to worry about boundary
conditions, since one has a natural prescription to connect Green functions in the
interfases. Of course, the Hamiltonian approach has also certain disadvantages. One
may think that the scattering formalism is more transparent from the physical point
of view, in comparison with the apparent complexity of the Green functions. On the
other hand, it is obvious that the semiclassical Green functions are better adapted
for dealing with situations like disordered systems.

This chapter, based on our works [111, 112], is organized as follows. In section 2.2
we shall start describing our Hamiltonian approach to study the transport properties
of a single channel SQPC, as well as the method used for solving such a model. In
section 2.3 we shall analyze the case of single channel N-N and N-S contacts in
order to show explicitly the equivalence with the scattering formalism. Section 2.4 is
devoted to the detailed analysis of single channel S-S contacts, emphasizing the novel
results that our model provides. In section 2.5 we show an exhaustive comparison
between experimental results obtained in superconducting atomic contacts and the
predictions of our theory. In section 2.6 we shall summarize the main conclusions of
this chapter and we postpone some comments about future works and open problems
until the end of Chapter 4.

2.2 Hamiltonian approach for SQPCs

For the general description of a superconducting system we take as a starting point
a grand canonical Hamiltonian with an attractive delta-type electron-electron inter-

46



2.2. HAMILTONIAN APPROACH FOR SQPCS 47

action (U > 0), which written in second quantization language has the form

H = Hy+Hpy
By = [di YU Ho W)

fe = —5 [ &7 S UG O (80 (70,7, (2.1)

g,0’

where \ifa(f') is the field operator which destroys an electron with spin o located
in 7. Hy is the single-particle Hamiltonian given by Hy = (1/2m) (ﬁ— (e/c)/r)2 +
Vo(7) — (7). In this latter expression A is the vector potential associated with the
corresponding magnetic field, V,(7) is an arbitrary external potential which may
represent an electrostatic potential or an impurity potential, and finally p is the
chemical potential of the system.

Within the BCS approximation the Hamiltonian (2.1) is analyzed in a mean field
approximation or generalized Hartree-Fock approximation [113, 66, 114]. This is
equivalent to approximate the four operator term in I:Imt, using the Wick theorem,
by sums of products in which two operator terms are replaced by their mean values.
This lead us to an effective Hamiltonian [66]

i = [ar {0 Hy () + MA@V + ADBOEM}, 22)

where Hy(7) = Hy(7) + V(7), being V(7) the Hartree potential, which only renor-
malizes the single-particle spectrum, given by V(7) = —U(f')(‘i@(f’)\ifT(F)) On the
other hand, the order parameter A(7) is given by A(7) = —U(f’)(‘i’l(f')‘iﬂ(i’))

As it is well-known, one may diagonalize this effective Hamiltonian by defining
new fermion operators by means of a Bogoliobuv transformation [115]. Because of
the pair-potential A the creation operators of these new fermions quasiparticles will
consist of a coherent sum of an old quasiparticle and its time-reversed counterpart.
The equations which describe the dynamics of the two-component wave functions
of the superconductor quasiparticles are called Bogoliubov-de Gennes (BdeG) equa-
tions, and they have the form of a Schrodinger equation in the space of electrons
and holes:

3Notice that we have considered that expectation values as (\ilj{\i/ 1) vanish, because we shall
not consider magnetic situations. Moreover, we only consider s pairing for the order parameter,
according with our aim of analyzing traditional superconductors.
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H{(™)  A(F) u\  .d [ u
( Ag(f') —Hj () ) ( v ) B Zh% ( v ) (23)

The solution of these equations is simple in the case of a homogeneous system
in absence of impurities, where quasiparticle wave functions are simply plane waves.
However, in more complex situations, where for instance one has a space-dependent
order parameter, to solve the BdeG equations is rather difficult. In these cases, it
is more convenient the use of Green functions, which is the approach that we shall
follow. Moreover, instead of working in real space, we believe that the use of a
local basis has certain advantages, as we shall show below. For this reason, we first
transform the Hamiltonian (2.2) to a site representation. The change of basis is
given by the relation between operators in both basis:

U, (7) = Z ¢i(7) Cio, (2.4)

where {¢;(7)} is a orthonormal local basis, as for instance an atomic orbital basis *,
whose wave functions are localized around the different system sites. On the other
hand, ¢, is the annihilation operator in the site 7. In this new basis the effective
Hamiltonian in absence of magnetic field adopts the form

H = Z(Cz - ui)cgacw + Z tijCICj + Z(A;CLC}T + Aici‘rcii); (2.5)

1,0 1#£j,0 %
where 4, j run over the sites used to represent the system 5. The different parameters
of the Hamiltonian are: the on-site energies ¢;, the chemical potential y; in each
site, the hoppings t;; which couple the different sites and the local complex order
parameter A;. By choosing appropriately the different parameters one can simulate a
superconducting contact with arbitrary geometry. In general, one has to complement
the previous Hamiltonian with the self-consistency condition for the order parameter
in each site:

A; = ~Uy{c] cl), (2.6)

where U; is the attractive electron-electron interaction in each site.

In previous works of our group this approach based on a site representation has
been used for describing the electronic and transport properties of superconducting
contacts [116, 108, 109]. This representation can be view either as a tight-binding
description of the electronic states or as a discretization of the BdeG equations. The

“In part IT of the thesis we shall use an atomic orbital basis for describing the electronic transport
in metallic atomic-size contacts.
SUsually we shall assume that there is only one “orbital” per site.

48



2.2. HAMILTONIAN APPROACH FOR SQPCS 49

first case would be more suitable for describing systems like an atomic-size contact
(Fig. 2.1(a)), while the second could be used to represent constrictions involving a
2DEG in semiconductor heterostructures (Fig.2.1(b)).
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Figure 2.1: Schematical representation of two types of SQPC: (a) atomic contact
and (b) two-dimensional electron gas.

In Refs. [108, 109] the dc Josephson effect has been analyzed for the case of a
constriction of arbitrary length. The self-consistent description carried out in these
works is very difficult to generalize to the case of a finite bias voltage. Thus, as we
stated at the end of Chapter 1, we shall restrict ourselves to the study of a SQPC.
Let us remember that these contacts consist of two wide (3D or 2D) electrodes
connected by a narrow constriction (see Fig. 1.13). The constriction length, L,
is assumed to be much smaller than the superconducting coherence length and its
width, W¢, comparable to the Fermi wavelength, Arp. As we commented in the
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previous chapter, there are a lot of systems that fit the SQPC definition. For instance,
the atomic contacts created by the break-junction technique [85, 86] or with the STM
[87, 88], and the split-gate S-2DEG-S of Takayanagi [91]. These two situations are
schematically represented in Fig. 2.1.

In the case of a short constriction (Lo < ), as the SQPC case, the detailed form
of the self-consistent order parameter and the electrostatic potential in the region
between the electrodes become irrelevant, allowing us to represent them by simple
step functions. The validity of this hypothesis has been discussed in detail by several
authors [55, 108, 109] and its justification is explained as follows:

1. If the width W of the junction is small compared to the coherence length,
the non-uniformities in A extend only over a distance of the order W from
the junction. Since non-uniformities on length scales < £ do not affect the
dynamics of the quasiparticles, these can be neglected and the step-function
model holds. In fact, if the length and width of the junction are < ¢, it is
irrelevant whether it is made of a normal metal or of a superconductor. In
particular, the atomic-size contacts correspond to this case.

2. Alternatively, the step-function hypothesis works if the resistance of the junc-
tion is much bigger than the resistance of the bulk superconductor. This condi-
tion has been formulated precisely by Kupriyanov et al. [117]. A superconductor-
semiconductor-superconductor junction typically belongs to this second case.

With the previous hypothesis we need not to determine the exact profile of the
potentials and the problem is thus simplify greatly. Anyway, in order to simplify the
problem as much as possible, we start analyzing the case of a single quantum channel
contact. Below, in section 2.5 we shall indicate how to generalize the results to the
case of a SQPC with an arbitrary number of channels. A single channel model can
be built up in a simple way within the approach represented by Hamiltonian (2.5),
we just need to connect only one site of each electrode (this situation is schematically
represented in Fig. 2.2). Thus, taking the complex order parameter and the electro-
static potentials as constants on the left and right electrodes [denoted by (Ap, ur,)
and (Ag, ur), respectively], the case of a single channel connecting both electrodes
can be described by the following Hamiltonian

I’i’ = I:IL + ﬁR + Z(tCEGCRg + t*CTRUCLg) - NLNL - ,URNRa (2.7)
o

where H;, and Hp, are the BCS Hamiltonians, written in a local basis, which describe
the uncoupled electrodes. The third term is the coupling term which describes the
electron transfer processes between the outermost sites on both electrodes, denoted
as L and R. Finally, N r,r are the particle number operator of each electrode.
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We would like to stress that, although this is a very simple model Hamiltonian
(formally equivalent to a tunnel Hamiltonian), it contains the relevant physics of a
quantum point contact which depends essentially on the contact normal transmission
coefficient. In our model this transmission can vary between ~ 0 (tunnel limit) and
~ 1 (ballistic regime) as a function of the coupling parameter ¢. This will be discussed
in section 2.3.

Figure 2.2: Representation of a superconducting contact with only one conducting
channel described in a site representation.

We shall study the case of a symmetric contact with constant bias voltage
eV = ur, — ur 8. In order to analyze this case it is convenient to perform a gauge
transformation [118] by means of which the Hamiltonian (2.7) adopts the following
time-dependent form 7

f{(T) = I:IL + ﬁR + Z (tem(T)/QCEUCRU + t*e_m(T)/QCtRaCLU) ’ (2.8)
o

where the superconducting phase, ¢(7), is given by the Josephson relation ¢(7) =
¢o + 2eV 7 /h and appears as a phase factor in the hopping elements.

Within the previously introduced model, the average total current through the
contact evaluated between both electrodes is given by

5In order to keep constant the voltage in the system, it is necessary that impedance of the
junction (of the order of h/e*) be greater than the characteristic impedance of the external circuit.
This is a condition that is experimentally achieved, unless the voltage is very small (eV <« A).
"We denote the time as 7 to distinguish it from the hopping .
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I(7) = £ 3 < chol(Mers (1) > = < chy(Dera(1) >), (29)
g

where, depending on the gauge choice, ¢ can include a time dependent phase like
in Eq. (2.8). Thus, our problem consists of determining the expectation values
appearing in the current expression. These average quantities are evaluated over
non-equilibrium states whose dynamics is controlled by Hamiltonian (2.8). In order
to determine these type of expectation values it is convenient to use the Keldysh
formalism [119] that we describe in detail in Appendix A. Moreover, for the su-
perconducting state it is also convenient to introduce the (2 x 2) matrix Nambu
representation [120], where the field operators in a local representation are defined
as

hi = ( r ) = () (2.10)

of
il
The different correlation functions which appear in the Keldysh formalism adopt
the following form

G (tasty) = —ilTe [dulta) D] )], (2.11)

where T}, is the time-ordering operator along the Keldysh time contour. The indexes
a and f indicate the branch in such a contour (a,3 = £) (see Appendix A). On

the other hand, 7, j indicate the sites. Thus for instance, the Green functions G;"J’ ,

which give us information on the non-equilibrium distribution function, are given by
a (2 X 2) matrix

G (r7') = ( ) C% mlentn) > < auldenln) > ) . (2.12)

o\ <) (1) > <ey()el (1) >
In terms of these Green functions, the current can be expressed as
e W aAL AL
I(r)= = Tr 6. (iGfp (rm) = #1G1R(m )] (2.13)

where G, is the corresponding Pauli matrix, Tr denotes the trace in Nambu space
and t is the hopping that in the Nambu matrix representation is written as

t= ( 8 _(l* ) (2.14)

In absence of magnetic field, the spin symmetry allows us to simplify the current
expression and work only in the electron space:
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_ 2
T n
where (1,1) indicates the corresponding matrix element in the Nambu representation.
The problem has been then reduced to the determination of these Green func-
tions. We shall calculate them within the perturbative scheme of the Keldysh for-
malism, treating the coupling term in Hamiltonian (2.8) as a perturbation. The
unperturbed Green functions correspond to the uncoupled electrodes in equilibrium,
each one with its corresponding chemical potential. For a symmetric contact, and
neglecting finite bandwidth effects, the uncoupled retarded and advanced Green
functions of the outermost sites of each electrode (L, R) can be expressed as &

I(r) |Gy (r,7) = 2GR 7] (2.15)

- —wEinp A ) (2.16)

_aT,Q _ 1
IrL(Ww) = ggpw) = W/A2 — (w £ )2 ( A —w i

where W is an energy scale related to the normal density of states at the Fermi
level (taken as zero) by p(ep) ~ 1/(7W). On the other hand, 7 is a small energy
relaxation rate that takes into account the damping of the quasi-particle states due
to inelastic processes inside the electrodes. A typical value of n for the traditional
superconductors is /A < 1072 (see for instance Ref. [121]). Thus, in general 7 is
the smallest energy scale and can be usually considered as zero ?. However, as we
shall see below, n play an important role in the small bias voltage limit (eV < A).

The Green functions (2.16) are the typical BCS Green functions for a bulk su-
perconductor. One can obtain this expression, within a tight-binding representation,
calculating the Green functions of the last site of a linear chain or a Bethe lattice
(see Ref. [122]). The exact electrode geometry is irrelevant because we are only
interested in a small range of energies around the Fermi level, which is the relevant
energy interval for the transport properties. In this energy range, and due to the
fact that the superconducting gap is much smaller than the band-width, the Green
functions of any superconducting electrode have the form given by Eq. (2.16).

On the other hand, the unperturbed functions g+ (w) satisfy the relation

T (w) = 2mip(w)np(w), (2.17)

where p(w) = (1/7)Im[§*(w)] and np(w) is the Fermi function.
Within the Keldysh formalism the functions G;':]-_ of the coupled (perturbed)

system can be obtained by means of the integral equation (see Appendix A) 0

8We assume electron-hole symmetry in the leads.

°In most of the calculations we shall take n = 0, except we say explicitly the contrary.

0In Eq. (2.18) we have used the fact that the self-energies ij;_ = 0 in this model, because the
coupling term is a one-body perturbation.
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G+_(T, ) = /dTldTQ [f5(7' —71)+ GT(T, Tl)flr(ﬁ)] G (11 — 1) x

[fé(Tg —7') 4 2%(15) G* (7o, TI>] (2.18)
where G¢ satisfy the Dyson equations
G (r,7) = g (r =) + /dﬁ g (r = ) (1) G (1, T), (2.19)

g"® being the Green functions of the uncoupled electrodes given by Eq. (2.16).
In the previous expressions the self-energies of this model take the simple form
208 =30 = 0 and 3% = (87%)* = £. The knowledge of the self-energies allows
to solve the model exactly, i.e. up to infinite order. However, in spite of the apparent
simplicity of the model its solving in the general case of a S-S junction is not trivial
at all. Thus, we shall start analyzing it in the case of N-N and N-S contacts to gain
some insight.

2.3 N-N and N-S single channel contacts

In this section we discuss the N-N and N-S cases within our single channel model.
The analysis of the N-N case allows us to define the normal transmission coefficient
of the contact in term of the microscopic parameters of the model. Thus, it will
permit us to make contact with the scattering formalism. On the other hand, in the
N-S case we shall compare our results with the ones of the BTK model [63], to show
explicitly the equivalence between the scattering formalism and our Hamiltonian
approach in the case where at least a superconducting electrode is involved. For the
sake of clarity, all the technical calculations are explained in Appendix B, and here
we are mainly concerned with the results.

In these two cases the problem admits a stationary (time-independent) solution,
So it is convenient to adopt a time-independent formulation based on Hamiltonian
(2.7). In this case the Green functions depend on the difference of their temporal
arguments and the integral equations (2.18-19) become simple algebraic equations
when Fourier transformed with respect to the difference of times. Then, we have

G (w) = §"(w) + §M (W) B (W) G (), (2.20)

GED(W) = [T+ 6 @) ()] §H D ) [T+ 2 @G W), (221)
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where ™1 (w) = —27mip(w)[1 —np(w)]. On the other hand, it is convenient to rewrite
expression (2.15) for the current as (see Appendix B)

2e o0 _ _ _ _
I= ftQ . dw [QZFL,H(W)GRJ}E,H(W) - gLJJ;r,n(w)GJ}ER,n(W)] ) (2.22)

where we have assumed that the left (L) electrode is in normal state, while the right
one can be either normal or superconducting.

Let us first analyze the case where both electrodes are in the normal state (the
details of the calculation of the N-N current can be found in Appendix B). As in the
scattering approach, the current can be written as [123]

_26 o0
=% .

where T'(w, V) is an energy and voltage dependent transmission coefficient which is
given by !

I T(w,V)[np(w—e€eV) —np(w)] dw, (2.23)

Ar*prr(w — eV)prr(w)
11— #2g11(w — eV)grr(w)[>
Notice that in the tunnel limit (first order in the coupling term) this transmission
coefficient adopts the form T(w,V) ~ 47%t?prr(w — eV)prr(w), which lead us to
the usual expression for the current in this limit. The exact expression of T'(w, V)
is a consequence of the sum of all possible processes, up to infinite order, that take
place in the junction.

Eq. (2.24) adopts a simpler form in the small bias limit where the normal system
exhibits an Ohmic response. This regime is valid for a bias voltage range much
smaller than the typical energy scale for the variation of the normal density of states
around the Fermi level. This condition certainly holds for the case we are interested in
(eV ~ A) and is consistent with the assumptions leading to Eq. (2.16). In this limit
the coefficient T'(w, V') becomes a constant, which we denote as a for convenience in
the notation, given by

T(w,V)=

(2.24)

4¢% /W2
(14+¢2/W?)?

The zero-temperature normal conductance of this normal single-mode contact
is given by Gyn = (2€2/h)a, which is nothing but the Landauer formula for the
single-channel case. Notice that « can vary between zero and one as a function of ¢.
The o — 0 limit is reached both for t/W < 1 and for t/W > 1, while the ballistic
limit, i.e. « ~ 1, is reached when ¢t/W ~ 1.

T(w,V) ~ = a. (2.25)

11n Eq. (2.24) we have suppressed the Nambu indexes because we are in the normal case.
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Transmission (a)

0.0 0.5 1.0 1.5 2.0
t/W

Figure 2.3: Normal transmission « in the linear regime as a function of the ratio
t/W (see Eq. (2.25)).

It is worth to further clarify the role of the hybridization parameter ¢ within
our point contact model. Although in the context of the tunnel Hamiltonian ap-
proach it has been customary to identify ~ t? with the transmission probability, this
strictly holds for the tunnel regime (lowest order perturbation theory in t). However,
the actual expression for the contact transparency (Eq. (2.25)), including all order
processes is a non-linear function of ¢2. While the ballistic condition is achieved

for t2/W? ~ 1, the way in which o approaches unity is completely different from
~ 12 W2 12,

12Tn Ref. [124] a detailed discussion on the derivation of Eq. (2.25) by a different perturbative
formalism and its range of validity can be found. As stated in this reference, finite order perturbation
in the coupling t/W is only valid for t/W < 1, while for t/W > 1 finite order perturbation theory
breaks down together with the appearance of bound states outside the metallic band. This fact could
lead to the conclusion that Eq. (2.25) is not valid for ¢/W > 1. However, being the result of the
summation of the complete infinite series, Eq. (2.25) is actually a nonperturbative result valid even
for the somewhat academic case t/WW > 1. In fact, by comparing this expression with the normal
transmission coefficient of the d-like scattering potential model used by BTK, the equivalence of
both models arises by identifying Z = [1 — (t/W)?]/(2t/W), where Z is the parameter controlling
the barrier strength. Thus, one can associate the case t/W < 1 with a repulsive barrier (Z > 0),
and the case ¢/W > 1 with an attractive d-like potential (Z < 0), which certainly would lead to a
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In the N-S case (A = 0, Ar = A) starting from Eqgs. (2.20-22) after some
simple algebra (see Appendix B for details) we obtain the following expression for
the current as the sum of four different contributions I = I; 4+ Is + I3 + 14, where

8e 9.9 [ T 2
L = -t /_oodw 14+ tGrpn (W) x
,OLL,11(w - €V)PRR,11(W) [nF(w —eV) —np(w)]
16e 2,2 o a T
I2 = —7°t / dw Re {tGLRQI(w) [1+tGRL 11(&))]} X
h —o0 ) ’
prrii(w — eV)prr12(w) [np(w — V) — np(w)]
8e o0
Iy = ﬁﬂ2t4/ dw |Grr12(wW)Pprri(w — eV)prr22(w) [nr(w — V) — np(w)]
8e o4 [ 2
Iy = ﬁﬂ t / dw |GRR,12(W)| X
—00

PLL,11 (w— GV)/)LL’QQ(W +eV)[np(w—eV) —np(w+eV)]. (2.26)

Written in this form, each contribution has a clear interpretation in terms of
elementary processes that an electron may undergo in the interfase '3. For this
purpose, we must inspect the spectral densities involved in each case. Thus, I
corresponds to normal electron transfer between the electrodes, and reduces to Eq.
(2.23) in the N-N case. I corresponds also to a net transfer of a single electron
with creation or annihilation of pairs as an intermediate state. On the other hand,
I3 arises from processes where an electron in the normal electrode is converted into
a hole in the superconducting side, i.e. processes with “branch crossing” in the
BTK language [63], or an Andreev transmission process [125]. Finally, I arises
from Andreev reflection processes in which an electron (with an associated spectral
weight prr 11(w —€eV)) is transmited from the left to the right electrode with a hole
reflecting backwards into the normal electrode (with an associated spectral weight
pLL,gg(w + eV')) while a Cooper pair is created in the superconducting side with a
probability proportional to |Grr,12(w)|* .

The current I can be expressed in a simple form as follows. We group together
the first three terms, which corresponds to the transfer of one electronic charge. So,
the current is given by

transmission lower than 1 and the presence of bound states.

3Eq. (2.26) is written in the electron space. So, we will only speak about the processes that an
electron undergoes. A hole undergoes similar processes.

'“We have only spoken about the processes that an incoming electron from the normal side
undergoes. Of course, a quasiparticle coming from the superconducting side would undergo com-
plementary processes, and finally each contribution to the current is given by the balance between
the current in both senses.
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Invs = % /0 " dw {Ty (@) nr(w — eV) — np(w)] +
2 R(w)[np(w—€eV) —np(w+ eV)]}, (2.27)

where Ty (w) is the transmission probability of an electron at the corresponding
energy, given by the sum of the first three terms. On the other hand, R(w) is the
Andreev reflection probability. The previous expression has a very appealing form
and tell us that the current is given by the sum of the probabilities of the different
processes weighted by their corresponding charges.

With the same simplifying assumptions leading to Eq. (2.25), i.e. assuming a
constant normal density of states around the Fermi level, the coefficients Ty and R
adopt the following form in terms of the normal transmission coefficient a:

0 if lwl <A
TN((U) = 20{oz(l—Az/14.12)4—(2—0[)\/l—A:/u.,v2 if |w| > A
[a—|—(2—a)\/ 1-A?/w?
a2
2—a)?—4(1— A)?
ro - { T
[a+(2—a)\/1—A2/w2 :
Therefore, we have a non-linear differential conductance that at zero temperature
is given by Gns(V) = (2¢2/h) [Ty (V) + 2R(V)], which adopts the form

if lw <A

it [w] > A (2.28)

Gys(V) 47 o if eV <A
= — if e
" ho(2-a)?—401-a)(F)? -
4 2
Gns(V) = — c if eV > A (2.29)
hiat(@2-a)/1- (&)

This expression is equivalent to the one obtained with the BTK model [63] with
the correspondence Z = [1 — (t/W)2]/(2t/W) commented above. Thus, it is now
clearer the equivalence between the scattering formalism and the Hamiltonian ap-
proach.

Fig. 2.4(a) shows the conductance Gyg (Eq. (2.29)) for different values of the
normal transmission. Such conductance rises from (4e?/h)a?/(2—a)? at V = 0 to the
value 4e2/h at eV = A, and finally tends to the normal value at eV > A. It is worth
noticing that the conductance value at eV = A is independent of the transmission.
This is a result which cannot be obtained by finite perturbation theory and requires
to sum up the processes up to infinite order. In particular, the traditional tunnel
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Figure 2.4: Zero-temperature differential conductance (a) and current (b) in a single-
channel N-S contact as a function of voltage for different normal transmissions.

theory predicts a conductance G g proportional to the BCS density of states, i.e.
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a conductance that strictly diverges at eV = A. Usually the disappearance of
this divergence in the experiments has been attributed to the fact that the BCS
divergence is rounded off by an inelastic mechanism. However, as we have shown
above, this divergence is not even present within the BCS framework. These type
of nonperturbative results are specially important in the S-S case [126], as we shall
show below.

It is also possible to obtain an analytical expression for the zero-temperature
current. Such expression has the form

Ins(V) = si eV <A

eA a? 1 2—a+2(eV/A)VI -«
h(2—avl-a \2—a—26V/AVI-a
eaA « 2—a+2yl—-«a
Ins(V) = h {(2—a)mln<2—a—2m> +
alz —1)+ (2 - a)V1—22
z(1—a)
a2 — a) [svT=a+(1+V1i-2?)| [-1+vI—q] .
In si eV > A, (2.30)
2(1 — )32 [svT=a+(1-vi—a2)| [1+vI=a]

_|_

where x = A/eV. Fig. 2.4(b) shows this function for different transmissions. One of
the remarkable features of the current is the presence of an excess current at voltages
eV > A with respect to the normal case (Iyy). Eq. (2.30) permit us to analyze in
detail this excess current defined as Iz = limy o0(Ins —INn), as a function of the
contact transmission. We find the following expression at zero temperature:

(2.31)

B 1-VI—a

eA  o? a? 1+vV1 -«
Lope = — 1 In .
h1l-a«a 22-a)Vl-a

Fig. 2.5 shows this function. As can be seen, the excess current is positive for any
transmission, however it can be difficult to measure it for two reason. The first
one is that for voltages greater than the gap, heating effects can distort the I-V
curves [58]. The second one is that the excess current is defined as an asympthotic
limit, and therefore in order to measure it one has to investigate sufficiently large
voltages. On the other hand, for o = 1 the well-known result for the ballistic contact
Iepe = (8/3)eA/h is recovered [62, 127].
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Figure 2.5: Zero-temperature excess current for a N-S junction as a function of
transmission.

2.4 Single channel superconducting quantum point con-
tact

In this section we shall analyze in detail the case of a single channel S-S contact
with arbitrary constant bias voltage. So far we have shown that with our model we
recover classical results of the scattering theory. Let us see now the novel results
that our Hamiltonian approach provides.

In the S-S case the problem does not admit a stationary solution, and the Green
functions depend on two temporal arguments, making the problem very complex.
Let us see how to solve it.

For the case of a S-S contact with finite bias voltage it is convenient to start from
the Hamiltonian (2.8) in which the applied bias is taken into account through a time-
dependent phase factor in the hopping element, which in the Nambu representation
has the form

e 0
t:< 0 _eid(m)/2 | (2.32)
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where ¢(7) = ¢ + 2eV 7 /R is the time-dependent superconducting phase difference.
This explicit time dependence implies, as we shall show below, that all dynamic

quantities can be expanded as a Fourier series in all possible harmonics of the fun-

damental frequency wy = 2eV/h. In particular, the current can be expressed as

I(r) = Y Ine™. (2.33)

m=—0oQ

This is the general expression of the Josephson effect in a superconducting quan-
tum point contact, which indicates that in a SQPC with a constant bias voltage
there appear alternating components which oscillate not only with the Josephson
frequency wyp, as in the case of a tunnel junction, but also with all its harmonics.
When the voltage tends to zero all the harmonics sum up to yield the supercurrent.

Let us see how the previous expression arises and how every Fourier component,
I,,,, can be expressed in terms of the Green functions. Due to the time dependence
of ¢, which is the self-energy in our model, it is easy to realize that the solutions of
Eqgs. (2.18-19) are Green functions, G, which admit a Fourier expansion of the form
[128]

G(r,7) = % > (72 / dw e G (w, w + nwo/2). (2.34)

This relation indicates that the two frequencies of a Green function are not indepen-
dent. Introducing this expression in Eq. (2.15), we can see that the time-dependent
current admit an expansion as in Eq. (2.33) 5. On the other hand, it is important to
stress that the current components I,,, are now independent of the superconducting
phase.

Hereafter we shall use the notation G, (w) = G(w + nwy /2, w + mwy/2) for the
different Fourier components. From this definition it is evident that different Fourier
components are related by G’nm(w) = én,m,o(w + mwy/2).

At this point the problem is to determine the different Fourier components of
the current in terms of the different quantities of the model. Within a perturbative
scheme one can follow two different paths. Either one can “dress” the propagators,
as we did in the N-N and N-S cases, or one can “dress” the perturbation, as in
the case of the RPA approximation for an electron gas. We shall follow the latter
approach and dress the perturbative potential, which in our case is simply ¢. The
dressed or renormalized hoppings, T, are defined in terms of the Green functions in
the following way

151n principle, it seems that in Eq. (2.33) also half-integer harmonics of the frequency wo should
appear. However, one can show that these components vanish.
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Tra(r, ) = i(r)s(r — ') +i(r) Gl () i)
TE (r,7') = () o(r —7) + (1) Gyy(r, ') T(7'). (2.35)

These renormalized hoppings, T, have a simple physical interpretation. Basically
they are probability amplitudes for the different processes, depending on their Nambu
components. Moreover, these quantities verify their own Dyson equations, thus for
instance

Tg};(T, ™Y =1(r)6(r —7') + / dridr (1) §5p (T — Tl)fT(Tl)Qz’z(Tl - TQ)TLa};(TQ,TI).

(2.36)

After some algebra, see Appendix C for details, we get the following expression
for the current harmonics I, in terms of the renormalized hoppings T,%7 (w)

2e A . . .
— T ~At— a N AT P A — a
I, = E /dwz [TLR,OngRR,nnTRL,nmgLL,mm - gLL,OOTLR,OngRRynnTRL,nm
n
it [ GT—  Ta T At—  ga ~a
+3rRr,00TRL,00ILL i L LR M — TRL,OngLL,nnTLR,nngR,mm] 0 (2.37)

One can show that there exists the general relation TRL (W) = ngjrmn(w)
Thus, we shall express the current only in terms of the hoppings Tﬁﬁ’nm, which

hereafter we denote as T%7. In terms of these latter hoppings the current for a
symmetric junction can be written as

/dwz TOngnn ngmm gOOTOngnn TTT
+050 L0t Tiom — TrgGrt Timlam] (2:38)

where we have suppressed the site indexes L and R in the Green functions of the
uncoupled electrodes.

The problem is now reduced to the evaluation of the components 7;,,,. From Eq.
(2.36) it can be seen that these (advanced and retarded) components satisfy a set of
linear equations of the form
Tnm = Anm + énTnm + Vn,n—2Tn—2,m + Vn,n+2Tn+2,m- (2-39)

These equations are mathematically equivalent to those describing the motion
of electrons in a tight-binding linear chain with “site energies”, é,, and “nearest-
neighbor couplings”, Vn n—2 and Vn n+2- The detailed expressions of €, and Vn m N
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terms of the unperturbed Green functions are given in Appendix C. This analogy
allows us to obtain the Fourier coefficients T}, using standard recursion techniques.
In particular, one can show that the following recursive relation holds

Tniom(W) = 21 [w+ (n = Dwo] Tpm(w)  ,n>1
{ Tn—Q,m(w) =z [w +(n+ l)wo] Tnm(w) ,n < -1, (2.40)

where the transfer matrix 3% satisfies the equation

2E(w) = [I —éy3— Viz 455w+ wo)] y (2.41)
Clearly, as the transfer matrix 4% connects consecutive harmonics of T, it can
be viewed as a generating function which introduces the effect of a unitary Andreev
reflection process. The problem has been reduced to the calculation of only two
matrix coefficients like, for instance, T1,0 and T—l,o as a starting point for generating
the rest of the components.

In summary, the basic mathematical difficulty lies in the evaluation of the transfer
matrix functions 2% from Eq. (2.41). In principle, this equation gives rise to an
infinite system that cannot be solved analytically for arbitrary voltages. We shall
show analytical results for the cases of eV/A — 0 and eV/A — oco. For intermediate
voltages, an accurate numerical solution of Eq. (2.41) can be obtained.

The rest of this section is organized as follows. Next we shall analyze in detail
the dc current component. Then, we shall study the ac current components, and
finally we shall investigate the interesting small bias voltage limit.

2.4.1 Dc current

This section is devoted to the analysis of the dc¢ current in a single-channel SQPC.
The overall features of the I-V characteristics have been calculated by different au-
thors: Octavio et al. [64], Zaitsev [127] and Arnold [71]. Recently, more quantitative
and detailed analysis are being reported. In particular, Bratus et al. [129] have
analyzed the tunnel limit and Averin and Bardas [130] have analyzed the case of
arbitrary transmission using the scattering formalism. We shall comment below the
comparison of our results with the different theories.

Fig. 2.6 shows the numerical result !¢ for the zero-temperature dc current in a
symmetric junction, together with the corresponding differential conductance G =
dI/dV. As can be observed in Fig. 2-6(a), the current for eV < 2A is a highly
non-linear function of the voltage. In particular, there appears some structure at
voltages eV ~ 2A/n (n integer), known as subharmonic gap structure (SGS), which
is more pronounced in the tunnel limit (o« < 1) where becomes a series of steps

16The results of Fig. 2.6 were obtained for n = 0.
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Figure 2.6: Zero-temperature dc current (a) and differential conductance (b) as
a function of voltage for different transmissions in a single channel S-S con-
tact. In the case of the current (a) the transmission from bottom to top are
a = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99,1.0. Gy is the normal conductance
of the single channel given by Gy = (2¢2/h)a.
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at such voltages. In the contrary, as the transmission increases the subharmonic
structure is smoothed and is completely washed out for « — 0. The SGS is already
clear in the I-V curves, but we can see it more clearly in the conductance (see Fig.
2.6(b)). As can be observed, there are conductance maxima at eV ~ 2A /n. It is also
worth noticing the presence of G < 0 in some subharmonic gap current steps. Other
interesting features are the huge conductance near zero voltage for transmissions
close to 1 and a finite value of the dc current at V' = 0 for a = 1. On the other hand,
at voltages much greater than the gap the contact exhibits an excess current with
respect to the normal case. Next, we shall analyze the origin of all these features.

In order to understand the nature of the subharmonic gap structure we first
analyze the tunnel limit (o < 1). Before showing some analytical results in this
limit, let us explain qualitatively the origin of such a structure. As it has been
pointed out by several authors [62, 64, 71], this structure is due to the occurrence of
multiple processes, known as Multiple Andreev Reflections (MAR), in the junction.
We shall explain the nature of these processes and the origin of the current steps
at eV ~ 2A/n using the schematical representation of Fig. 2.7. Let us assume
zero temperature. As it is indicated in the upper panel of this figure, as the voltage
reaches the gap (eV = 2A) quasiparticle tunneling can occur, giving rise to the
current step at this voltage. Of course, this process gives a contribution to the
current proportional to the transmission o and dominates the current in the tunnel
limit for eV > 2A.

When eV = A a simple Andreev reflection can take place (see second panel in
Fig. 2.7). This Andreev reflection is quite similar to the one that takes place in a
N-S contact and gives rise to the current step at eV = A. In this process an electron
is reflected as a hole (its corresponding time-reverse state), transferring a Cooper
pair to the other electrode. In this process both the electron and the hole gain an
energy equal to eV every time they cross the interfase. Thus, this process ends when
the hole finds an empty state in the initial electrode, what can only happen when
eV > A, which gives rise to the current step at eV = A. In this simple Andreev
reflection a Cooper pair is transferred, it gives a contribution proportional to a? and
in the tunnel limit it is the main contribution for voltages A < eV < 2A.

When the voltage reaches eV = 2A/3 a triple process known as a multiple
Andreev reflection can take place. As can be seen in the third panel of Fig. 2.7,
this process takes place as follows: when an electron approaches the interfase can be
Andreev reflected, the corresponding reflected hole has not enough energy to reach
an empty state in the initial electrode. However, this hole can also be Andreev
reflected transmitting a Cooper pair of holes to the initial electrode and giving rise
to a new electron that now has enough energy to reach an empty state in the second
electrode. The contribution of this process is proportional to a3, needs a voltage
eV > 2A/3 and gives rise to the transfer of a Cooper pair plus a quasiparticle. This
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Figure 2.7: Schematical representation of the multiple Andreev reflections in the
tunnel limit. In the left hand side we show the energy trajectories of the different
processes and in the right hand side their contributions to the current.
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process gives the main contribution for voltages 2A/3 < eV < A in the tunnel limit.

It is now easy to understand how the complete series of current steps arises. In
general, a n-order multiple Andreev reflection, like the one depicted in the lower
panel of Fig. 2.7, consists of a cascade of reflections in which n quasiparticles cross
the barrier until one finds an available state in one of the electrodes. In order to have
this n-order process a minimum voltage eV = 2A/n is needed. This process gives a
contribution proportional to @™ and in the tunnel limit is the main contribution for
2A/n < eV < 2A/(n+1). Finally, notice that there is a difference between the even-
order and odd-order Andreev reflections. While the even-order reflections end with
the transmission of a hole, odd-order ones end with the transmission of an electron.
The electron-hole symmetry that we have assumed implies that there is no difference
between both series of current steps. So in summary, the subharmonic gap structure
is due to the opening of multiple Andreev reflections at voltages eV, = 2A/n.

This picture about the origin of the subharmonic structure in the tunnel limit is
supported by analytical results that we now describe. In the tunnel limit one can
describe the transport by means of a sequential picture in which one identifies the
probability R,, of a n-order multiple Andreev reflection '7:

Ry (w,V Ta” lnl_[lP —zeV] plw—neV)p(w) ; we[AneV —A], (2.42)

where p(w) = |w|/vw? — A? is the dimensionless BCS density of states and P(w) ~
A?/(A% — w?) is the probability of creating a Cooper pair at energy w. Before
giving the exact expression of P(w), notice that these probabilities have a simple
interpretation in the framework of a sequential picture. Simply, R,, is proportional
to the probability of crossing n times the barrier (o), proportional to the probability
of creating n — 1 Cooper pairs and proportional to the initial and final density of
states. Notice that in order to have a non-zero probability R, the voltage must be
eV >2A/n.

In the previous expression, the probability of creating a Cooper pair has the form:
P(w) = |f(w)/D(w)|?, where f(w) = A/v/AZ — w? is the dimensionless anomalous
BCS Green function for the uncoupled electrodes. On the other hand, the denom-
inator is equal to D(w) = 1 — (a/4)g(w) (91(w) + g-1(w)) — (a?/16)g1 (w)g-1(w),
where g;(w) = g(w + ieV) is the dimensionless Green function given by g(w) =
—w/vVA? —w?. Moreover, the term n = 1 in Eq. (2.42) corresponds to the quasi-
particle term and should be understood as

7T2()é

Ri(w,V) = Do )|2p( eVip(w) ; we[A eV — Al (2.43)

"In this expression we have used explicitly the electron-hole symmetry.
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It is important to remark that, although R, is proportional to the BCS density of
states, it does not diverge at all (it is truly a probability bounded between 0 and 1).
Indeed, Eq. (2.42) is a nonperturbative result in which the divergencies appearing
in the perturbative expansion have been renormalized in a natural way.

In terms of the R, the current in the tunnel limit can be written in a very simple
form

Iy(V) = ﬁ/dw > nRy(w,V). (2.44)

This expression indicates that the current can be written as a sum of the Andreev
reflection probabilities weighted by their corresponding charges '8. Fig. 2.8 shows
the comparison between the tunnel result of Eq. (2.44) and the exact numerical
result.

The expression for the tunnel current allows us to understand better several
things. For instance, as one can see in Fig. 2.6, the subharmonic structure consists of
a series of abrupt steps only in the tunnel regime and it is progressively washed out as
the transmission increases. Eq. (2.42) for the R,, indicates that a multiple Andreev
reflection probability is proportional to initial and final quasiparticle densities of
states. Moreover, in the tunnel limit these densities are truly BCS deunsities of states
and thus diverge at the gap edges. This implies that when the opening of a n-
order Andreev reflection takes place at a voltage eV = 2A/n, its probability reaches
a maximum because at this voltage the process starts and ends at the gap edges,
giving a finite contribution since its opening. For increasing transmissions the SGS
disappears because the lead density of states is no longer a BCS one, due to to the
finite coupling between the superconductors. In this case, the density of states has
not singularities and the contribution of the Andreev reflections is small at their
openings.

On the other hand, with the tunnel expression one can understand the appearance
in this limit of negative differential conductance near some steps (see Fig. 2.6(b) and
Fig. 2.8). When eV = 2A/n a n-order Andreev reflection start contributing and its
probability reaches a maximum precisely at this voltage because the process begins
and ends at the gap edges. As the voltage is increased it is no longer possible that the
process takes place between both gap edges. Thus, the current diminishes slightly
giving rise to a negative differential conductance. As we keep on increasing the
voltage the current increases again because we are increasing the energy window in
which the reflection can take place. For larger transmissions a negative conductance
is not observed because the density of states is rounded off due to a finite coupling
between the superconducting electrodes.

81n the next chapter we shall analyze the charge of Andreev reflections by means of the analysis
of the current fluctuations.
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Figure 2.8: Comparison between the tunnel expression (2.44) (open circles) and the
exact result (solid lines) for two transmissions. Notice the logarithmic scale.

Another important information that we can obtain from the tunnel current ex-
pression is the value of the current steps, I(S"), at voltages eV;, = 2A/n in the small
transparency limit. For this purpose we have to evaluate the current that a n-order

MAR provides just at a voltage eV = 2A/n, i.e.

2e [
Y= lim = / : 2.4
0l ev%12r£+/n - dw nRy(w,V) (2.45)

An appropriate way of estimating these current steps as the transmission tends to
zero is to approximate the denominators in Eq. (2.42) as 1, i.e. D(w) ~ 1. Thus, the
result for the steps coincides with the one obtained with a perturbative expansion,
like in the multiple-particle tunneling theory [34, 126]. The result of the integrals
yields
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(n) _ eAa” 2n n™\ 2
1§ = = <W> <F) (2.46)

As we see, the magnitude of the n-step is proportional to o™ because it is due
to the opening of a n-order MAR. This result coincides with the one obtained in
Ref. [129]. In particular, Eq. (2.46) for n = 1 yields the well-known quasiparticle
step 5[81) = meAa/h = 7A/2eRy, for eV = 2A. Moreover, Eq. (2.46) indicates
that the ratio between consecutive current steps is proportional to the transmission,
something which has been confirmed experimentally by Post et al. [85].

When the transmission increases the sequential picture, represented by Eq. (2.44),
breaks down due to the interference between the different processes forming a multi-
ple Andreev reflection. As we commented above, the subharmonic structure progres-
sively disappears due to the disappearance of the divergencies of the density of states.
The analysis of the current for intermediate transmissions is thus rather complicated
and analytical results cannot be obtained. However, in the perfect transmission case
the absence of backscattering (no normal reflection) in the contact simplifies the
analysis. In this case (o = 1) it can be shown, see Appendix C for details, that the
dc current adopts the following form for arbitrary temperature

26 o0 oo m
L=""] dw ) [H |aj|2] (1= lao* am1[2) {nr(w) = np(w + (m+1)eV)},
- m=0 |j=1

(2.47)
where a; = a(w + jeV') and a(w) is the amplitude of an Andreev reflection in a N-S

interfase with perfect transmission, and is given by

1) wHivVA? —w? lw| <A
A | w-=sign(w)Vw? —A? |w| > A.

This formula allows us to understand why the SGS disappears in the perfect trans-
parency case. When a new Andreev process is opened (m-th term in Eq. (2.47)), its
probability increases slowly starting from zero. Thus, the opening of a new Andreev
reflection does not give rise to a current step like in the tunnel regime.

The previous expression also permits to study another interesting feature of the
dc current, namely, the finite current value at zero voltage for perfect transmission
(see Fig. 2.6). From Eq. (2.47) it is deduced that the zero-temperature dc current
saturates at a value Iy = (4e/h)A when V' — 0. This result has been obtained by
different authors [131, 130, 132]. We stress that this finite value of the current at
zero voltage comes from the contributions of Andreev reflections whose orders tend
to infinity as 2A/eV. These contributions are finite due to the perfect transmission.
It is evident that in this extreme case any inelastic interaction giving rise to a finite

a(w) = (2.48)
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relaxation energy n will play a relevant role in the determination of the current.
When the voltage is smaller than this energy 7, this latter becomes the natural cut-
off of the Andreev reflections. To be concrete, when a reflection needs a time greater
than 7/n to take place, the inelastic interaction will damp the Andreev reflection.
This implies that in a real contact, where n is non-zero, the dc current vanishes at
zero voltage. The detailed analysis of the complex V' — 0 limit will be carried out
in section 2.4.3.

3.0 . , . , . , . ,

/(2en/h)

exc

0.0 0.2 0.4 0.6 0.8 1.0

Transmission (a)

Figure 2.9: Zero-temperature excess current in a single channel S-S contact as a
function of transmission. The solid line represents the exact result defined as an
assymptotic limit. The dotted line corresponds to the excess current obtained nu-
merically at eV = 6A. The inset shows the small transparency region, where the
numerical results (diamonds) shows a defect current as the transmission goes to zero.

Another relevant feature of the dc current is, as in the N-S case, the large voltage
excess current, which can be analytically evaluated within our model for any trans-
mission value. The main simplification in this limit comes from the fact that only the
lowest order Andreev reflection process gives a significant contribution to the excess
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current [64]. This implies that one can truncate the system of equations (2.39) for
harmonic indexes n > 1, the resulting simplified system can then be solved explicitly
for T} o(w) and T (w) (see Appendix C for details). As shown in this Appendix,
the simple result 157 = 2INS is obtained for any value of the transmission. This
result reduces in the ballistic limit (o = 1) to the result obtained in Refs. [127, 62].
Moreover, some authors have reported the existence of a negative excess current for
low transmissions [68], which seems to be in contradiction with the above result.
However, one should notice that the excess current as defined above is an asymp-
totic quantity (only valid in the eV/A — oo limit). When corrections of order A/eV
are taken into account one actually can have a defect instead of an excess current
for sufficiently low transmission. Thus for instance, Fig. 2.9 shows the comparison
between the excess current given by the exact formula and the numerical result for
eV = 6A. As can be observed in the inset, there is a defect for a < 1.

So far we have analyzed the subharmonic structure at zero temperature. Next,
we shall briefly comment how this structure is modified by a finite temperature. Fig.
2.10 shows the evolution of the SGS with temperature in reduced units for different
transmissions. In panel (a) we see that the temperature progressively smoothes the
SGS and increases the current for low transmissions. This is a simple consequence
of the thermal excitation of quasiparticles. On the other hand, for intermediate
transmissions the structure inside the gap is only slightly modified by the effect
of temperature (see panel (b) and (c)). For perfect transmission the temperature
reduces slightly the current, specially at small voltages (see panel (d)). This is due
to the fact that the multiple Andreev reflected quasiparticles reach states that would
be empty at zero temperature, but at finite temperature there is certain probability
of being occupied, giving rise to a reduction of the current. Finally, in Ref. [132]
a detailed analysis of the finite temperature SGS for perfect transmission of an
asymmetric S-S contact can be found.

Due to the experimental interest of the dc current, we shall devoted the rest of
this subsection to a comparison of our results with other theories. As commented
above, there are several works analyzing the I-V curves for arbitrary transmission.
Probably, the most important model is the OTBK one [64] commented in the pre-
vious chapter. Fig. 2.11 shows the dc current obtained with the OTBK model [68]
and our results for different transmissions. As can be observed, there are clear dif-
ferences in the current and we do not need to show the differential conductance. In
general, the SGS obtained with our model is more pronounced. Both models only
coincide for the perfect transmission case. In our opinion, the discrepancies are due
to the fact that in the OTBK model a S-N-S is treated as two N-S contacts in series,
in the sense that the probability of a multiple process is given by the product of
the processes that take place in the interfases, neglecting the possibility of that a
quasiparticle interferes with itself. This is only valid in the absence of normal reflec-
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Figure 2.10: Finite temperature I-V characteristics for four transmissions. The
temperature is in unit of the critical temperature and the voltage is normalized
to the temperature dependent gap.

tion of the contact, explaining that both models only coincide quantitatively in the
case of perfect transparency. Thus, the main conclusion of this comparison is that
for describing properly the electronic transport in a SQPC a coherence and purely
quantum-mechanical description is needed.

Another remarkable theory is the one developed by Arnold [71] and commented in
Chapter 1. A comparison between Figs. 1.8 and 2.6 shows the qualitative agreement
between both theories.

Finally, we discuss the results obtained by Averin and Bardas [130] using the
scattering formalism. These authors carried out independently a description of the
ac Josephson effect in a single channel contact. Fig. 2.12 shows the dc current
for both theories for different transmissions. As can be observed, both models give
quantitatively the same description for the transport in a SQPC, as one would expect
taking into account that both models share the same physical ingredients. Moreover,
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Figure 2.11: Zero-temperature I-V characteristics in the OTBK model (upper panel)
[68] and in our theory (lower panel) for different transmissions. In both cases the
dashed line indicates the normal case.

75



CHAPTER 2. TRANSPORT IN SUPERCONDUCTING QUANTUM POINT
76 CONTACTS

N

eV/A

Figure 2.12: Zero-temperature I-V curves for our model (solid lines) and the model
of Averin and Bardas [130] (open circles) for different transmissions.

the I-V curves has been lately obtained by Bratus et al. [133] using also the scattering
formalism.

2.4.2 Ac current components

This section is devoted to the analysis of the ac current components. The algorithm
described in section 2.4 allows an efficient evaluation of the higher order ac compo-
nents of the current. For the following analysis we decompose the ac current, Eq.
(2.33), into its dissipative Ip and non-dissipative Is contributions given respectively
by

Ip=1I)+ i IP cosmo(r) (2.49)

m=1

and
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Is =Y I3 sinmg(r), (2.50)
m=1

where T2 = 2Re(I,;,) and I3 = —2Im(I,;,).

Due to the inclusion in the current of multiple processes there appear all the
harmonics of the Josephson frequency. It is easy to show that the lowest order
contribution of the m-th current component goes like a™. The results obtained
for the three components I2 and I are shown in Figs. 2.13 and 2.14. As can be
seen, these components also exhibit a pronounced subgap structure. Moreover, these
components become exponentially small for bias voltages larger than A/n. On the
contrary, when eV < A/n the decay of the ac components with increasing n becomes
slower. The analysis of the higher order components reveals a decay for eV < A/n
close to a inverse power law. As a consequence of this slow decay, one is forced to
take an increasing number of ac components into account in order to adequately
describe the behavior at small bias. This will be the subject of the next subsection.

Let us say a few words about the observability of these alternating components.
Due to their fast oscillation, it is difficult to observe them in a direct measurement of
the I-V characteristics. However, they manifest in a direct way in the case of eV —
0, both in the supercurrent (sinusoidal components) or in the linear conductance
(cosinusoidal components), as we shall show below. Traditionally, the ac current
components have been investigated by means of the application of a radiation to the
contact. As it is well-known, the dc current is modified by the application of a laser
radiation, appearing the well-known Shapiro steps [27, 21]. In a superconducting
tunnel junction, when the condition wy = mw, is satisfied, where wy = 2eV/h is the
Josephson frequency, w, is the radiation frequency and m is a integer number, then
a new step in the dc current appears. The Shapiro step heights depend on the ac
current components [21], which in the case of a tunnel junction reduce to the first
harmonic. In the case of a transmissive point contact, the application of a radiation
would provoke the appearance of a greater number of steps, according to the relation
wo = (m/n)w, with m,n integers, and their heights will depend on the explicit form
of the ac current components. This would be an appropriate way of testing our
predictions for the ac current components.

2.4.3 Small bias regime (eV < A)

In this subsection we concentrate in the eV/A — 0 case, which turns out to exhibit
a remarkable variety of different regimes according to the values of the parameters
aA and the inelastic scattering rate . As eV — 0, the ac components oscillate more
slowly, and at zero voltage these components give rise to the supercurrent. There
are a lot of questions that naturally arise when one analyzes this limit: how does the
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Figure 2.13: The first three ac components of the dissipative current for different
values of the normal transmission at zero temperature.
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Figure 2.14: The first three ac components of the nondissipative current for different
values of the normal transmission at zero temperature.
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current pass form its dissipative branch (Iy) to the supercurrent branch at V' = 07?,
does it cross a linear regime?, if it does, how does the linear conductance vary as a
function of the superconducting phase?, does it take place like in the tunnel theory?,
what can we say about the long-standing “cos ¢ problem”? (see Chapter 1). We
shall try to answer some of these questions during the analysis of the small bias
regime.

As we commented above, the main difficulty for obtaining quantitative results in
this limit lies in the fact that the order of the Andreev reflections that contribute
to the current grows with decreasing V' as ~ A/eV. Furthermore, the amplitudes
of these multiple processes do not decay when (V,n) — 0 leading to the appearance
of divergencies in the perturbative expansion in the coupling . Again, a complete
summation of the perturbative series is needed in order to regularize these divergen-
cies. An additional difficulty arises, as will be discussed below, from the fact that
the limits V' — 0 and n — 0 do not actually commute.

When the order of a multiple Andreev reflection increases there are two possible
cut-offs for these processes, apart from of course the contact transmission. One is
the bias voltage and the other is the energy relaxation rate 1 associated to inelastic
scattering mechanisms. When the voltage is large enough a MAR ends outside
the gap and its probability reduces greatly. Another cause for the MARs decay is
the occurrence of inelastic processes inside the leads. If the time elapsed for the
occurrence of a MAR is greater than h/7, then the MAR will be damped or killed.
Depending on the effective damping mechanism we can have two regimes: the case of
(eV/A — 0) with finite 1, analyzed in our works [111]; and the case of (eV/A — 0)
with negligible n analyzed by Averin and Bardas [130]. In this subsection we shall
analyze in detail the main results for both regimes and the conditions for their
observability in a actual SQPC.

Linear regime

In the case of eV//A — 0 with n > eV, the energy relaxation rates becomes the
damping mechanism that controls the MARs. In this case, one can linearize the
current expression (2.38) with respect to voltage, separated in its dissipative and
nondissipative components. The linear expression can be obtained by expanding the
Fermi functions appearing in the functions g™~ up to first order in eV. Doing this

and after some algebra (see Appendix C for details) we obtain °
2 2 00 N N
o= 2oy [T dwse® B S wRe {1 (o785 - T4
h —0 2

n=odd>0

19Notice that now we express the current only in terms of the advanced hoppings.
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D _ % * 2 ﬂ_w o mat mat ~a _ AT\ra G
I, = o BV dw sech”( 5 ) > nRe{’I‘r (az [Tn+m+Tn_m} (90 gO)Tngo)}
e n=odd>0
8e [ . . .
5= 5 dene) ¥ T (e [T, - T @8 - a)Ta) ), @51
N n=odd>0

where § = 1/kgT, we have again simplified the notation: T, = Tho and now the
Green functions for the uncoupled electrodes and the renormalized hoppings are
evaluated at zero voltage. Thus, the previous expression indicates that the current
in the linear regime adopts the form: I(7) = Ig(¢) + G(¢)V, where Ig(¢) is the
supercurrent at V' = 0 and G(¢) is the conductance in this linear regime. Let us
recall that in the standard tunnel theory (see Chapter 1), the conductance has the
form G(¢) = (1 + ecos ¢). The aim is to obtain analytical expressions for these two
terms.

As we shall comment below, according to the value of 1 and the normal trans-
mission «, one can identify two subregimes within the linear regime: the weakly
damped regime (WDR) for n < aA, an the strongly damped regime (SDR), where
1n > aA. For the interesting WDR one can show that the perturbative series for the
current is formed by terms that diverge more and more strongly in the eV — 0 limit.
It is easy to show that the contribution to the current of order t2*, n > 2, diverges
like ~ 2" /"' (in comparison with the tunnel case where it does like ¢ In7). This
result is a consequence of the increasing contribution coming from the gap edges.
Therefore, a correct answer can only be obtained by means of infinite perturbative
exTPansion.

Within our formalism, analytical results in the small bias limit become feasible
since the transfer matrix % (w) (see Eq. (2.41)) tends to a scalar quantity having
the form of a simple phase factor inside the gap region. As shown in Appendix C
for (n,V) — 0 we find

5% (w) = 2(w)eP@) | AVI—a < |w| <A, (2.52)

where

¢(w) = arcsin (%\/ A2 — w2\/w2 —(1- a)A2> . (2.53)

As the multiple Andreev processes are generated by successive applications of
Z(w), Eq. (2.40) indicates that these processes do not decay in this limit inside the
gap region. This infinite series of MAR gives rise to the well-known bound states
spectrum of a current-carrying SQPC at zero bias voltage [54, 134, 97]. As shown
in Appendix C, the positions of these bound states are determined by the condition
¢(w) = ¢, thus appearing inside the gap in positions w, given by [54, 134, 97]
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ws = £A/1 — asin®(¢/2). (2.54)

As we commented above, within this linear regime one can identify two different
sub-regimes according to the ratio n/aA. The case n/aA < 1 corresponds to a
situation where MARs are very weakly damped and give the dominant contribution
to the current. This is the usual case, except for @ < 1. In order to illustrate the
dominant contribution of the processes inside the gap in the WDR, we show in Fig.
2.15 the current density corresponding to the dc component Iy for three values of
the transmission. Three important features of this linear regime are displayed in
this figure: firstly, the current density inside the gap increases as ~ 1/n therefore
giving the dominant contribution in the weakly damped case; secondly, there is a
region inside the gap of width 2A+/1 — o in which the current density vanishes. This
is the forbidden energy region for bound states at a given transmission. Finally, in
Fig. 2.15(c) one can observe that the contribution of the continuum outside the
gap becomes important as o« < n/A. In the limit n/aA > 1 a second sub-regime
is reached where the contributions of MAR are heavily damped and the current is
dominated by single quasi-particle tunneling processes. Below, we shall analyze the
transition between these two sub-regimes.

In order to identify the actual sub-regime for a real SQPC an estimation of the
order of magnitude of 7 is needed. In Ref. [121] 7 is estimated from the electron-
phonon interaction to be a small fraction of the gap for traditional superconductors.
Thus, our theory predicts that a real SQPC would generally fall into the weakly
damped case except for extremely low transmissions.

In the most interesting case of WDR, one can show that the sum of all harmonics
gives rise to the Andreev bound states (w;) inside the gap, and that they carry all the
current. As it is shown in Appendix C, after hard algebra, one obtains the following
expression for the supercurrent Is(¢) and the linear conductance G(¢) as a function
of temperature and contact transmission

A asin ¢ Blws|
Is(é) = = tanh 2.55
o) = s ) (255

and
2

2e2 1 Aasin ¢ Blws|
G(g) =2 h BV, 2.56
0= 15y | s 1) (2.56)

where w; is the position of the bound states inside the gap and = 1/kpT.

Let us start commenting the expression for the supercurrent as a function of the
superconducting phase Is(¢). In Eq. (2.55) we recover the well-known result for the
supercurrent. This expression interpoles between the results of Ambegaokar-Baratoff
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Figure 2.15: Current density for the dc component Iy within the linear regime. (a),
(b) and (c) correspond to transmissions = 1,0.65 and 0.04, respectively. In all
cases the full line corresponds to n/A = 1/10, the dotted line to n/A = 1/25 and
the broken line to /A = 1/100. The thermal factor sech?(fw/2) (see Eq. (2.51))
has been extracted from the current density.
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[19] for tunnel limit (see Eq. (1.2)) and the Kulik-Omelyanchuk one for the ballistic
case (o = 1) [54] (see Eq. (1.6)). The general case of arbitrary transmission was
obtained for the first time by Haberkorn et al. [135] and lately for different authors
[70, 136, 134, 137, 108]. Beenakker generalized this result to the case of an arbitrary
number channels [97]. In Fig. 2.16 we show this result Ig(¢) for different normal
transmissions of the contact.
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Figure 2.16: Zero-temperature supercurrent-phase relation in a S-S contact for dif-
ferent transmissions. The current is normalized to the critical current I = eA/h.

As can be seen in Fig. 2.16, when the transmission increases, Is(¢) deviates
from the sine-like shape of tunnel limit. Although, this is a result known since
certain time ago, the first observation of a non-sinusoidal supercurrent-phase rela-
tion took place recently. In an excellent experiment, using atomic contacts created
with the breakjunction technique, Koops et al. [138] measured the current-phase
characteristic in a ring-shape junction. Their results showed at low temperatures
a clear nonsinusoidal behavior with an extremum at phase differences between 7 /2
and 7. However, they observed certain deviations with respect to the theory. The
discrepancies can be mainly due to the fact that for any quantitative comparison be-
tween theory and experiment, a detailed knowledge of the transmission distribution
is needed. They compared their experimental results with the theory for the ballis-
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tic regime, but it hard to believe that every channel transmit perfectly in an atomic
contact (as we discuss in the part IT of this thesis). In this sense we believe that the
study of the supercurrent-phase relation in SQPCs deserves further investigation.

In the previous calculations we have shown how to obtain the dc Josephson effect
starting from the finite voltage case. Thus, we have shown how this effect arises from
the infinite sum of Andreev reflection at zero voltage. In this sense, one could say
that the dc Josephson effect is simply another manifestation of the multiple Andreev
reflections.

Let us now comment the novel result of Eq. (2.56) for the linear conductance
G(¢). First, the linear conductance depends on 7 as 1/7, i.e. is proportional to
the number of MAR taking place before the quasiparticles are inelastically scattered
(roughly given by aA/n). This is the expected dependence, G ~ Ty, where 7;, =
h/n, as in the Drude model, and at variance with tunnel divergency (In(n/eV)).
Moreover, the o dependence in Eq. (2.56) indicates that the MARs dominate over
the quasiparticle processes.

Our theory yields a phase-dependent linear conductance which strongly deviates
from the tunnel theory result. In the limit of low barrier transparency, Eq. (2.56)
predicts G(¢) ~ 1 — cos(2¢) instead of G(¢) ~ 1+ ecos ¢ of standard tunnel theory
(see Chapter 1). Therefore, the tunnel theory linear conductance can never be
recovered in the weakly damped regime. On the other hand, with increasing values
of n MARs are progressively damped (the function z(w) is no longer a phase factor,
decaying exponentially with 7); eventually, when 7 > aA only the lowest-order
processes contribute to the current and the tunnel theory expression is recovered.
The Figs. 2.17(a) and 2.17(b) illustrate in an explicit way the transition from the
weakly to the strongly damped regimes, allowing to establish precisely the range of
validity of our Eq. (2.56) for G(¢). In Fig. 2.17(a) the ratio between the exact linear
conductance, obtained numerically, and the analytical expression of Eq. (2.56), is
plotted as a function of /A for increasing values of a. As can be observed, this ratio
tends to unity for /A sufficiently small, within a range n < aA. On the other hand,
the validity of standard tunnel theory in the strongly damped regime is illustrated
in Fig. 2.17(b), where the ratio between the exact numerical conductance and the
tunnel theory (O(t?)) conductance is represented against n/A. From this figure it
is clear that tunnel theory becomes valid only for sufficiently small o, provided that
a <€ n/A. In a real contact, where the inelastic scattering rate n can be expected
to be a small fraction of A, our expression for G(¢) will be valid provided that the
transparency is not extremely low.

It is worth mentioning that the strong sensitivity of the dissipative current on a
phenomenological inelastic scattering rate was pointed out by several authors during
the 1970s. This fact was used for trying to meet an agreement between the stan-
dard tunnel theory conductance and the experimental results (for a review on the
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Figure 2.17: Transition between the weakly and strongly damped regimes. The ratio
between the exact numerical conductance and: (a) the analytical expression given in
Eq. (2.56); and (b) the tunnel theory (O(¢?)) conductance, plotted against 7/A. The
values of o considered are: i) 0.15, ii) 0.48, iii) 0.64, iv) 0.78, v) 0.88, vi) 0.95 and vii)
0.99. In all cases the phase is the one corresponding to the maximum supercurrent.

discrepancy between standard tunnel theory and experiments, usually referred to as
the “cos(¢)-problem”, see Chapter 1 and Ref. [21]). However, as shown above, when
the condition 1 < aA holds, the standard tunnel theory can never give the correct
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result.

Another interesting limiting case of Eq. (2.56) corresponds to the ballistic regime.
In this case and for T' ~ T, G(¢) behaves approximately as (1 —cos ¢), in agreement
with the result given by Zaitsev [127]. However, the most unusual phase-dependence
of G(¢) appears for high values of the transmission and low temperatures (kg7 < A).
This is illustrated in Fig. 2.18, where G(¢) is plotted for two different temperatures
and increasing values of the transmission.

The only experiment where the full phase dependence of G(¢) was measured is,
to our knowledge, that of Rifkin and Deaver [42]. Their measured G(¢) strongly
deviates from a cos ¢-like form (see Fig. 1.7), being almost negligible for small
values of ¢ and exhibiting a large increase around ¢ ~ 7/2. In Fig. 2.19 we have
tried to do a comparison between the experimental results of Rifkin and Deaver and
our theoretical results. As the experiment was performed in a point contact with
many channels, we have included curves with different transmissions. In both cases
G(¢) shows an asymmetry around ¢ = 7/2, at variance with the form cos(¢) of the
standard tunnel theory.

The fluctuation-dissipation theorem [139] states that the conductance G in the
linear regime is related to the thermal fluctuations of the supercurrent, S, through
the expression S = 4kpT'G. This relation has been confirmed in an independent
calculation of the thermal noise carried out by our group [140].

On the other hand, it is interesting to point out the existence of an analogy
between our expression for G(¢) and the conductance of a normal mesoscopic loop
threaded by a magnetic flux [142]. The reason for this analogy lies in the fact that in
both systems the current is mainly carried by two-phase dependent discrete levels.

Finally, let us say a few words about the observability of the linear conductance.
The main problem is the difficulty for fixing the voltage when eV <« A. Thus, our
theory could be not directly applicable to this limit. In this case one should solve
the equation of the circuit taking into account the influence of the different circuit
elements. This has been carried out successfully by Vion et al. [141] for the case
of a tunnel junction. These authors determined the influence of the environment
in the value of the current at which the jump to the dissipative regime takes place,
known as switching current, which in general is different from the critical current.
In the case of a transmissive contact the linear conductance (G(¢)) influences the
dynamics of the superconducting phase and should be reflected in the switching
current. Thus, one would expect that a similar analysis to the one of Ref. [141] for
the case of transmissive contacts reveals the linear conductance dependence on the
transmission, phase and temperature.
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Figure 2.18: Phase dependence of the linear conductance given by Eq. (2.56) for two
different temperatures and increasing values of the normal transmission coefficient,
from left to right: 0.2, 0.5, 0.8 y 0.99. The conductance is normalized to its maximum
value for every transmission.
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Figure 2.19: Phase-dependent linear conductance normalized to its maximum value
for different values of the transmission (from left to right a = 0.4,0.5,0.6,0.7,0.8)
and kgT = 0.1A. The dots represent the data from Ref. [42].

Non-linear regimen (eV > n)

Averin and Bardas [130] described the non-linear regime as eV’ — 0 for n = 0. When
the truncation of the infinite series of MAR is caused by a finite V' (with negligible
n), analytical results have only been obtained in the quasi-ballistic limit, i.e. a — 1.
A closer inspection of the I — V' curves in the small bias region and for o ~ 1 reveals
that the supercurrent components decay exponentially from its value at V = 0 with
a collapsing width ~ (1 —a)A. This is illustrated in Fig. 2.20(a) where a blow up of
the behavior of I{ for small bias voltages and quasi-ballistic transmissions is shown.
In the limit o — 1 the supercurrent becomes a delta function at V' = 0. On the
contrary, the dissipative components in this same limit tend to a finite value outside
the region of width ~ (1 — a)A. This behavior is shown in Fig. 2.20(b) where I
is plotted in the same magnified scale as I{. The summation of these dissipative
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Figure 2.20: Behavior of the first non-dissipative (a) and dissipative (b) ac compo-
nents in the very small voltage range close to ballistic conditions. These results have

been obtained for negligible 7: non-linear regime.

components for @« = 1 and very small V yields (see Appendix C)

A A
In(¢) = == tank (%) |sin(6/2)[signV (2.57)
in agreement with the result derived by Averin and Bardas [130]. This current ex-
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pression differs from the usual one at V=0 (see Eq. (2.55)). The existence of a
region of decreasing width V' ~ (1 — a)A in which this crossover from supercurrent
to dissipative current takes place can be associated with the collapse of the forbidden
region for MAR inside the superconducting gap taking place when o — 1. In this
way, when V is small compared to the width of the forbidden region the excitation
of quasi-particles from states at w < —A+/1 — « into states at w > Ay/1 — « is neg-
ligible and there is no appreciable dissipative current; whereas the opposite situation
holds for V' > /1 — aA. Averin and Bardas [130] have described this crossover as a
Landau-Zener transition in which the non-dissipative and the dissipative components
scale with o and V' as (1 — p) and p respectively, where p = exp[—7(1 — a)A/eV].
The numerical results for sufficiently small eV/A and (1 — «) are well fitted by these
scaling laws. However, a careful analysis reveals that their range of validity around
V =0 and a = 1 decreases strongly when increasing the component number.

Comment on the observability of both small voltages regimes

In summary, in this small bias limit one can identify four different sub-regimes de-
pending on the relative values of parameters n, A and eV. The prediction of the
actual behavior of a real SQPC in this limit would therefore require a careful esti-
mation of all these parameters. In this respect, one should keep in mind that while
eV and a can be varied experimentally in a rather controlled way, the inelastic scat-
tering rate 7 is an intrinsic property of the superconducting electrodes much more
difficult to control. The unavoidable presence of some degree of inelastic scattering
can prevent the actual observability of the crossover from non-dissipative to dissipa-
tive behavior described after Eq. (2.57). The requirement of eV ~ (1—«)A together
with that of a ~ 1 can actually imply eV < n which would rather correspond to the
linear regime.

2.5 Experimental comparison

2.5.1 Introduction

Since the first observation of the subharmonic structure done by Taylor and Burstein
[30] in 1963, many authors have reported experimental data about such structure
(see Chapter 1). As we commented in Chapter 1, historically it has been difficult to
do a quantitative comparison between theory and experiment, due to uncertainties in
the crucial parameter of the superconducting junctions, in tunnel junctions or weak
links [92, 106, 93, 94]. But with the modern microfabrication techniques this problem
has disappeared in a great extent. In particular, the atomic contacts, designed with
the technique of mechanically controllable breakjunctions [74, 85, 86] or with the
STM [88], are ideal systems for investigating the transport properties of a SQPC.
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This section is devoted to an exhaustive comparison between experimental results
obtained in atomic contacts and the predictions of our model, concentrating ourselves
in the I-V characteristics (dc current).

As a first example toward a quantitative comparison it is worth mentioning the
work done by van der Post et al. [85], in which they studied the I-V characteristics
of breakjuntions of Nb and Pb in the tunnel regime. In this work the authors showed
that the height of the successive current steps in the SGS is proportional to increasing
powers of the transmission, revealing the role of multiple Andreev reflections.

Recently, in an excellent experiment Scheer et al. [143] analyzed the I-V charac-
teristics in Al atomic-size contacts using microfabricated MCBs (see Ref. [143] for
details). In this experiment, after breaking the contact, the electrodes are brought
back into contact to form a point contact with a resistance of a few ohms. Pushing
again on the substrate leads to a controlled opening of the contact, while the sample
is maintained at 7" < 100 mK. As found in previous experiments at higher tempera-
tures, the normal conductance G decreases in steps of the order of Gy = 2¢2/h, their
exact sequence changing from opening to opening. Between two jumps, G generally
tends to increase when pulling the contact. The last conductance value before the
contacts breaks is usually between 0.5Gy and 1.5G. In this last plateau one could
think naively that when G < Gy only one conducting channel contributes to the con-
ductance. Therefore, in this case we can carry out the direct comparison between
our single channel theory and this experimental situation.

Fig. 2.21 shows the comparison between different experimental curves for Al
last conductance plateau [143] and some theoretical curves obtained with our single
channel theory at zero temperature ?°. There are several remarkable features in
this figure. First, paying attention to the experimental curves, in spite of the three
curves correspond to very similar normal conductance (G ~ 0.8Gy) 2!, they are
very different. Moreover, as can be observed, these curves show a clear subharmonic
structure at the predicted voltages. However, when one compares them with the
theoretical single channel curves, one finds that they are similar, but there is no
a quantitative agreement. What is the origin of this discrepancy? The simplest
assumption is that even in the case of G < Gy, there are several channels contributing
to the current in the case of Al. This leads us to a remaining question: how are the
theoretical results obtained so far generalized to the case of an arbitrary number of
channels? The following subsection is devoted to the answer of this question.

20Let us recall that the experiment was performed at 7' < 100 mK. Therefore, the effect of a finite
temperature is negligible.

21The normal conductance is measured at voltages V' > 5A/e, where the characteristics are
perfectly linear.
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Figure 2.21: Comparison between the I-V curves in a superconducting atomic contact
of Al [143] and our single channel theory. The experimental results (open circles),
courtesy of Elke Scheer, correspond to the last conductance plateau and the total
transmission is indicated in each case. The theoretical curves correspond to the solid
lines whose transmissions are indicated in the inset.

2.5.2 Superconducting quantum point contact with an arbitrary
number of channels

In the case of a normal mesoscopic conductor it is well-known that the current in
the linear regime can be expressed as a superposition of independent contributions.
This result is contained in the Landauer formula for the zero-temperature linear
conductance [95]

2¢2 . 2¢2 Y
- = it - == .
G = A Tr{t t}EF =~ izglaz, (2.58)

where Tr denotes trace, ¢ is the transmission matrix of the system and «; are the
eigenvalues of #f evaluated at the Fermi level Er. In short, as long as the transmis-
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sion coefficients are energy independent in an intervale of the order of the voltage
around the Fermi energy, we are in the linear regime and one can find a basis which
diagonalizes the problem, in the sense that every transport property can be expressed
as a sum of independent channel contributions.

As we know, in the case of superconducting contacts the transport properties are
determined by inelastic processes: the Andreev reflections. In this sense one could
think that in this case the conducting modes are mixed. However, we have to bear in
mind that in an Andreev reflection an electron is reflected as its time-reverse state
(its corresponding hole). In particular, if the transmission coefficients are energy
independent, the hole has the same transmission as the electron and basically comes
back for the same channel, i.e. an Andreev reflection does not miz the conducting
channels. Thus, also in the superconducting case the transport properties can be
expressed as a sum of independent contributions. On the other hand, as the Andreev
reflection does not mix the conducting modes, an obvious consequence is that the
conducting channels in the normal and in the superconducting case are the same.

The rigorous demonstration of these conclusions can be found for the case of
the supercurrent in a S-S contact in Refs. [97, 75], for the N-S case in Ref. [99].
Recently, Bardas and Averin have generalized these ideas to the case of a SQPC at
finite voltage [144] 22.

In summary, the main conclusion of this discussion is that the transport in SQPC
with arbitrary number of channels can be analyzed with our single channel model,
just summing the contribution of each mode with its corresponding transmission.
This is true, as we stated above, as long as the transmission coefficients are energy
independent in the voltage range we are interested in. In particular, this is true for
the metallic atomic-size contacts for the voltage range (eV ~ A), ie. a few meV.
Thus, the current is the result of the contribution of N independent channels:

I(V) = ijz’(aiav)- (2.59)
i=1

Let us emphasize that all the results obtained in this chapter (supercurrent, linear
conductance, excess current, ac current components, etc.) are simply generalized by
summing up the independent contributions of the different modes.

Finally, let us say that this generalization allows us to analyze in an unified way
different physical situations, with the knowledge of the transmission distribution
of the corresponding system. Thus, we can use the results of our single channel
theory for studying atomic contacts, tunnel junctions or S-N-S contacts with diffusive
normal regions [144], as long as the constriction length is much smaller than the
superconducting coherence length of the leads.

22The demonstration of these properties can also done within our Hamiltonian approach, but we
shall not include it to do not do very dense this work.
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2.5.3 Definitive comparison for an atomic contact

Now, we are ready to test the conjecture that we did in the introduction of this sec-
tion about the contribution of several channels in the last conductance plateau of Al
contacts. Fig. 2.22 shows the same experimental curves as in the previous figure, to-
gether with the best theoretical fits assuming the superposition of channels. The fits
were done using the number of contributing channels and their transmissions as free
parameters (see Ref. [143] for details on the fit procedure). As can be observed, the
agreement is quantitative, what confirms not only the conjecture about the super-
position of channels, but also our theory of the superconducting transport 3. Refs.
[143, 145, 146] show many examples of the comparison for the case of Al, varying a
broad range of transmissions. In all cases the quantitative agreement is remarkable,
mainly due to the fact that Al is the best example of a BCS superconductor.

The fact that several channels contribute to the current in the case of Al even
when G < G is in principle surprising. Many questions naturally arise from these
results, but all can be summarized in the following one: what determines the number
and transmission of conducting channels in atomic contacts? The part IT of the thesis
is mainly devoted to the answer of this question. In part IT we shall show that the
number and transmission of conducting channels in an atomic contact depend on its
geometry and its electronic orbital structure. In particular, in an one-atom contact 2
the number of channels is controlled by the number of valence orbitals of such atom.
For instance, in the last conductance plateau of Al contacts typically three channels
were found. This is due to the fact that the Al is a trivalent metal where the s and p
orbitals contribute to the current. For a detailed explanation of these questions we
recommend the reading of the part II of the thesis and Refs. [146, 147, 148].

The comparison with the theoretical I-V characteristics has been also done for
other metals. Atomic contacts of different metals were investigated in a collaboration
between different experimental groups [146]. Fig. 2.23 shows a typical example of
the fits for the case of a Pb contact created with the STM. As can be seen, the
agreement is again quantitative for different transmissions. The number of channels
needed for obtaining a good fit coincides with the one of the Al case because both
are sp-like metals with similar electronic structures [147].

In the above mentioned work was also study the case of a transition metal like
Nb. Fig. 2.24 shows an example of the fit for the last conductance plateau. As can
be observed, 5 channels were necessary to get a good fit, what is due to the fact that

23Someone may think that it is not strange to obtain a quantitative agreement by introducing a
greater number of parameter. However, as it is explained in Ref. [143], the highly non-linear subgap
structure in the I-V curves provokes that slight deviations in the transmission of the individual
channels lead to great differences in the total current.

24 As we shall discuss in the part II of the thesis, the last conductance plateau of a metallic contact
corresponds to the case of an one-atom contact.
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Figure 2.22: Fits of the experimental curves of Fig. 2.21 using the single channel
theory together with the superposition of the channels. For the curve of total trans-
mission o = 0.875 were necessary two channels with aq = 0.80 and as = 0.075. For
the curve with @ = 0.817 we needed three channels with a1 = 0.682, as = 0.12 and
a3 = 0.015. For the curve with @ = 0.807 we needed three channels with a; = 0.399,
as = 0.254 and ag = 0.154.

in a transition metal the d orbitals contribute to the current providing additional
channels (see Ref. [147]). Notice that in this case the fit is not so good, mainly due
to the following effect. In the inset of Fig. 2.24 can be shown an example of the
tunnel current in this Nb contact. There is a strange structure around eV = 2A,
what seems an effect of the destruction of superconductivity due to proximity effects.

The main conclusion of the previous experiments with respect to the supercon-
ducting transport is that our model describe quantitatively the superconducting I-V
characteristics of atomic contacts. Although, the comparison has been restricted to
the dc current, we expect that a similar agreement can be found for other transport
properties.

On the other hand, due to the agreement between experiment and theory, the
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Figure 2.23: Experimental I-V characteristics (symbols) of five configurations of a
sample of Pb at 1.5 K using the STM, and the best numerical fits (solid lines).
The curves a-d have a similar total transmission, around 1.4; the curve e has been
taken in tunnel regime. The transmissions of the individual channels obtained from
the fits are: curve a: a; = 0.955, as = 0.355, ag = 0.085, oy = 0.005; curve b:
a; = 0.89, ag = 0.36, ag = 0.145, ay = 0.005; curve c: a1 = 0.76, as = 0.34,
az = 0.27, ag = 0.02; curve d: a1 = 0.65, as = 0.34, ag = 0.29, ay = 0.12; curve e:
a = 0.026. The voltage and the current are in reduced units. The measured gap for
Pbis AJe =1.37 mV.

superconducting I-V characteristics permit us to obtain information on the normal
system, due to the correspondence between normal and superconducting channels.
In particular, they give us information on the number and transmission of the con-
ducting channels in these atomic contacts. In this sense, the fits that we have shown
have given rise to what we can call a channel spectroscopy, permitting a qualitative
advance in the understanding of how the electrical current flows in metallic atomic-
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Figure 2.24: Experimental I-V characteristic (open circles) taken in the last conduc-
tance plateau of an atomic contact of Nb, courtesy of Bas Ludoph, and the best fit
(solid line) obtained with five channels. The inset shows an example of the current in
the tunnel regime for a total transmission of 0.047. Notice the anomalous structure
around 2A.

size contacts [146]. This is finally the link between the two parts of this thesis,
devoted in principle to two slightly different topics. The consequences that can be
extracted about the normal transport from these experiments will be analyzed in
detail in the second part of the thesis.

The next section is devoted to the conclusions of this chapter and we postpone
some comments about future works and open problems until the end of the part I
(section 4.6).

2.6 Conclusions

This final section is devoted to summarize the main conclusions of this chapter:
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e Our model describes quantitatively the I-V characteristics in superconduct-
ing atomic contacts [143, 145, 146]. The experimental comparison has been
restricted to the dc current, but we expect that a similar agreement can be
found for other quantities: supercurrent, linear conductance, ac current com-
ponents, etc.

e Definitively, the I-V characteristics of superconducting quantum point con-
tacts, and in particular the subharmonic structure, are controlled by multiple
Andreev reflections, thus ruling out other mechanisms (see Chapter 1).

e From the theoretical point of view it is clear that one needs a coherence and
purely quantum description for determining the electronic transport in super-
conducting quantum point contacts.

e We have shown the equivalence between the scattering formalism and our
Hamiltonian approach. Morevover, we have shown that the pathologies of
the Hamiltonian approach disappear in a natural way when one works in a
local basis and analyzes the processes up to infinite order.

e Usually the multiparticle tunneling theory (MPT) [34] and the ones based on
multiple Andreev reflections [62, 71] have been viewed as opposite, but indeed
they contain the same physics, although they usually consider different regimes.
The divergencies appearing in the MPT disappear when one sum the processes
up to infinite order.

e With respect to the small voltage regime, we have shown the importance of an
energy relaxation rate 7 associated to inelastic scattering. Depending on the
value of the different contact parameters: aA, eV and 7 one can find several
regimes. In particular, we have analyzed in detail the linear regime and we have
shown that the linear conductance (Eq. (2.56)) strongly differs from the results
of the standard tunnel theory, what can be the solution of the long-standing
cos¢ problem.

e If a normal point contact is in the linear regime, the electronic transport in
the corresponding superconducting system can be described as a superposition
of independent channels. Thus, one can describe different systems in a unified
way: atomic contacts, tunnel junctions, diffusive constrictions, etc.

e The remarkable agreement between experiment and theory in atomic contacts
allows us to use the superconducting I-V characteristics to obtain the trans-
mission distribution in these contacts [143, 145, 146]. This has permitted to
investigate in detail the normal electronic transport in these atomic contacts
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[146], and will permit in the next future the precise analysis of superconducting
transport properties like the supercurrent.
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Chapter 3

Shot noise and coherent
multiple charge transfer in
superconducting quantum point
contacts

In the previous chapter we were interested in the analysis of the current in supercon-
ducting contacts. Nevertheless, the current is not the only quantity which can help
us to understand the transport properties of these systems. In the last few years spe-
cial attention has been paid to the study of shot noise in mesoscopic systems [149].
These time-dependent current fluctuations are a consequence of the discreteness of
the carriers charge and their measurement can provide information not available in
usual conductance experiments. For this reason this chapter is devoted to the study
of shot noise in superconducting quantum point contacts.

Since 1918 we know thanks to Schottky [150] that in electrical circuits there are
two intrinsic sources of noise in the electrical current. The first type of noise is known
as thermal noise o Johnson-Nyquist noise. These fluctuations are due to the thermal
movement of electrons and take place in every conductor. The second type of noise
is known as shot noise and, as commented above, are due to the discreteness of the
charge of the current carriers. Not all the conductors exhibit shot noise.

The noise is characterized by its spectral density or power spectrum S(w), which
is simply the Fourier transform at frequency w of the current-current correlation
function:

S(w,7) = h / dr' T < §i(r + )5 (r) + sE(N)6Er +7) >, (3.1)
where 6I(7) = I(r)— < I(r) > are the fluctuations in the current. Typically the
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noise is white, which means that its power spectrum is independent of w for wide
frequency range. For this reason we shall only speak about noise at zero frequency
in this chapter.

What is the information provided by the noise analysis? The thermal noise, which
takes place at zero voltage and finite temperature, is related with the conductance
G by the fluctuation-dissipation theorem [139]:

S = 4kgTG (3.2)

whereas hw < kgT. In this sense, thermal noise does not provide additional infor-
mation with respect to conductance.

On the other hand, the shot noise, which takes place at zero temperature and
finite voltage, is more interesting because it provides us information on the correla-
tions, statistic and charge of the current carriers. In particular, in a situation where
a current [ is due to the flow of uncorrelated carriers of charge ¢, shot noise reaches
its maximum S = 2gI = Spy;sson- This result has been recently used for detecting
the fractional charge e/3 charge carriers by measuring the ratio S/2I in the fractional
quantum Hall regime [151, 152]. One of the aims of this chapter is to use this result
for extracting information on the transmitted charges in multiple processes which
take place in superconducting contacts.

The shot noise in N-S junction has been analyzed by different authors [153, 154,
155, 156, 157]. In particular, in low transmissive structures a doubling of the normal
Poisson noise-current ratio has been predicted due to Andreev processes where twice
the electron charge is transmitted. In S-N-S or S-I-S structures the situation is far
more complex. As shown in Chapter 2, the main processes contributing to the current
for subgap bias voltage are multiple Andreev reflections (MAR). At a given subgap
voltage V' the current is mainly carried by MAR processes of order n ~ 2A/eV,
in which a net charge of ne is transferred. One would then expect an increase of
the noise-current ratio roughly as 1/V for decreasing bias. This qualitative behavior
has been recently confirmed experimentally by Dieleman et al. [158] for a S-I-S
tunnel junction. Within the semiclassical theory of Ref. [62], these authors give an
explanation of the observed shot noise enhancement due in terms of MAR processes
through pinholes present in theses junctions.

As commented in previous chapters, a quantitative comparison between exper-
iments and theory in macroscopic tunnel junctions, like the ones of Ref. [158], is
rather complicated due to unavoidable uncertainties in the junction characteristics.
However, as we shown in the previous chapter, such a comparison is possible in the
case of quantum point contacts with a few number of conducting channels, like the
metallic atomic-size contacts. As was extensively commented in Chapter 2, in order
to describe properly the electronic transport in SQPCs a purely quantum mechanical
description is needed. Within the framework of these microscopic theories analytical
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results for a single quantum channel have been only obtained for some particular
cases. For instance, the excess noise (eV > 2A) for a perfect transparent channel
has been obtained in Ref. [159]. The noise has also been analyzed for zero voltage
and arbitrary transmission in Ref. [140], while the perfect transmission and finite
voltage case has been addressed in Ref. [160].

The aim of this chapter is to analyze the shot noise for the whole range of trans-
missions and voltages within the same microscopic model used for the calculation of
the current in Chapter 2. We shall paid special attention to the information which the
shot noise provides on the charge of the multiple Andreev reflections. We find that
the shot noise in a SQPC can be much large than the Poisson noise (Spyisson = 2€I)
and exhibits as a function of voltage a pronounced subgap structure. Furthermore,
we shall explicitly show that in the tunnel limit the effective charge, defined as S/21,
tends to integer multiples of the electron charge n =1 + Int [2A/eV].

We shall consider the case of a superconducting quantum point contact like the
ones described in previous chapter, with a constant applied bias voltage V. For the
range of voltages (eV ~ A) one can neglect the energy dependence of the transmis-
sion coefficients and all transport properties, in particular the zero frequency shot
noise, can be expressed as a superposition of independent contributions, i.e.

5= Si(a;, V). (3.3)

Thus, we shall concentrate in analyzing the single channel model introduced in sec-
tion 2.2. Let us recall that within this model the current operator can be expressed

as [see Eq. (2.9)]
Fir) = YN (eit(m)/2 o ib(m)/2 3.4
(r) = 5 3 (10 2], (r)ero(r) = #e @2l (Fero(r)) . (34)

g
where ¢(7) = ¢g + 2eV 7/h is the time-dependent superconducting phase difference.
Our aim is to determine the noise defined as

S(w,7) = h/dT' et < SI(r 4761 (7)+01(T)8I(r+7") >= h/dT' vt K(r,7),

(3.5)
where §I(7) = I(17)— < I(7) >. As we did for the current, we shall express the noise
in terms of the nonequilibrium Keldysh Green functions. In particular, we can write

the kernel K (7,7') appearing in the noise spectral density in terms of the functions
G;'j*(T, 7') and G;j+(7', 7') as follows
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K(rr) = (o [(H()GTy (7 )G (7, 7)+
H(r)G Ry (r ) ()G (7' 7) =
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()G () GRI (D] +(r =)}, (36)

where &, is the Pauli matrix, Tr denotes the trace in the Nambu space and { is
the hopping in this representation. To arrive at this expression for the kernel we
have factorized the two body correlation functions following a mean field decoupling
scheme consistent with the BCS theory [140].

As in the case of the current, it is easy to show that for a superconducting
contact the noise contains not only a dc components but also all the harmonics of
the Josephson frequency. This means that the noise oscillates as a function of time
as

S(w,7) =" S (w)e™m), (3.7)

m

The problem of evaluating the noise Fourier components S, can be reduced to the
calculation of the Fourier components of the Keldysh Green functions. For this
calculation we use the algorithm described in the previous chapter. Thus, in this
chapter we shall concentrate in the analysis of the results. Finally, we shall restrict
our attention to the zero-frequency dc component of the noise: S = Sy(0, 7).

The rest of the chapter is organized as follows: in section 3.2 we briefly study
the elementary case of a single channel N-N contact. Section 3.3 is devoted to the
analysis of the N-S case. Finally, in section 3.4 we shall present the novel results on
the shot noise in SQPCs.

3.1 Shot noise in a N-N contact

In this section we analyze the well known case of a N-N contact. The main aim of
this analysis is to introduce a simple argument which allows to understand the noise
results better, specially in the superconducting case. As stated in the introduction,
we assume that the normal contact is in the linear regime. With this assumption it
is easy to carry out the calculation of the noise starting from Eq. (3.6) because this
problem admits a stationary solution.

As stated in the introduction, the thermal noise (V' = 0,T # 0) is given by the
fluctuation-dissipation theorem and for the single channel case adopts the following
form

104



3.1. SHOT NOISE IN A N-N CONTACT 105

8e?

where G is the conductance of this channel.
On the other hand, the shot noise (V' # 0,7 = 0) is given by

4e?
S = TeV a(l —a) = 2el (1-a). (3.9)
This result was obtained for the single channel case by Khlus [153], Lesovik [161]
and Yurke and Kochanski [162] and generalized to the multichannel case by Biittiker
[163].

As can be seen in Eq. (3.9), the shot noise vanishes for @ = 1, what can be
easily understood. At zero temperature the lead occupations do not fluctuate, this
together with the perfect transmission make that the electron flow be noiseless. For
intermediate transmissions the noise is reduced in comparison with the Poisson limit
because the electron are correlated due to the Pauli principle. In the tunnel limit
(¢ < 1) the transmitted electrons are uncorrelated in time and the Poisson noise
(SpPoisson = 2el) is recovered.

For the general case of finite voltage and temperature the noise is a mixture of
thermal and shot noise which is given by

2
S= 4% {2kBTa2 + a(l—a)eV coth(2ZZT)} . (3.10)
This result has been obtained in Refs. [153, 164, 165].

Now, we introduce a simple handwaving argument which will help us to under-
stand better the noise results. Everybody knows how the electronic transport takes
place in a N-N contact. The current is due to transfer of electrons through the in-
terfase, whose statistic and charge are very well known. When an electron approach
the interfase two things can happen: either the electron crosses the barrier, with
probability «, or the electron does not cross the barrier, with probability 1 — a.
In this sense, one can see the current as a random variable which has a binomial
distribution. With this idea in mind we shall obtain the current fluctuations.

First of all, let us remember a well-known result. Every conducting channel
sustains a current density per spin equal to (e/h). This is a consequence of the
cancellation between the group velocity and the density of states of the system (see
Ref. [72] pag. 105). On the other hand, the total current is the difference between
the current in both directions (see fig. 3.1):
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Figure 3.1: Schematical representation of tunnel processes in N-N contacts.

With the argument of the previous paragraph, both currents can be considered as
random variables with binomial distributions. To be concrete, the current densities
per spin dI/dw are distributed as follows

diir [ e/h  with probability «fz(1— fr) (3.12)
dw 0  with probability 1— afr(1— fgr) ’
dlrr [ e/h  with probability afr(l— fr) (3.13)
dw 0  with probability 1—afg(l—fr) ’ '

where fr, g are the Fermi functions of the reservoirs 1

As we are interested in the analysis of the shot noise, we shall concentrate in the
zero temperature case, thus Igr—.;, = 0. The current is then the mean value of the
distribution (3.12) summed over the energies involved, i.e.

'The origin of these distributions can be easily understood. For instance, the distribution %‘1
can be understood as follows. An electron approaching the interfase from the left electrode gives
a contribution to the current density equal to e/h with a probability equal to the product of the
probability of this state being occupied (fr), the probability of crossing the barrier (o) and the

probability of finding an empty state in the right electrode (1 — fr).
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A ErpteV di 2eq
<1 >:/ dw (228 = 2y, (3.14)
Ep dw h
where the factor 2 comes from the sum of spins.
In the same way, the shot noise, which is basically the second distribution mo-
ment, will be the variance of a binomial random variable:

. R Ep+teV dj2 df 4e2
<12>—<1>2:/ do (Fh2ty (FLoz 2y a1 - a). (3.15)
Ep w W

Result in agreement with Eq. (3.9).

This simple argument allow us to understand a little better the shot noise ex-
pression. Indeed, we have learnt that such expression is due to the fact that the
electrons are fermions and there is only a type of current carriers. As we shall see
below, in the superconducting case the situation is more complex because there exist
the possibility of transfer multiple charges. Finally, this handwaving argument also
gives the general result of Eq. (3.10) for finite temperatures. The rigorous derivation
of the transmitted charge distribution function in a normal conductor can be found
in Ref. [166].

3.2 Shot noise in a N-S contact

As in a N-N contact, in this case the noise given by Eq. (3.6) is time independent.
In this section we shall concentrate in the results for zero temperature. The aim of
this section is to study this simple case where there is a superconducting electrode
involved, which allow us to gain some insight into the general S-S case.

As commented in section 2.3, in the N-S there are two types of processes con-
tributing to the current (see Fig. 3.2): quasiparticle processes in which an electronic
charge e is transmitted and can only take place at voltages eV > A (for zero tem-
perature). On the other hand, also Andreev reflections occur where a Cooper pair
is transmitted. This latter process can take place at any voltage. The shot noise
can be expressed in terms of the probabilities of these processes, Ty and R, whose
expressions are given by Eq. (2.27). The shot noise for arbitrary bias voltage adopts
the form

4¢e% eV

S = s dw {4R(w)(1 — R(w)) + Tn(w)(1 — Ty (w)) —4R(w)Tn(w)}. (3.16)

This result is in agreement with Refs. [153, 156]. Fig. 3.3 shows the shot noise as
a function of voltage for several normal transmissions. For comparison the current
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Figure 3.2: Current processes in a N-S contact. Panel (a) shows the Andreev reflec-
tion, which is the only process for subgap voltages at zero temperature. For eV > A
single quasiparticle processes can also take place (left panel (b)).

for the same transmissions is also shown in this figure. Before commenting the main
features of this figure we shall analyze analytically some limiting cases.

For subgap voltages (eV < A) the only process which contributes to the current
is the Andreev reflection, thus Eq. (3.16) reduces in this case to

16e2 [¢V
S = T/ dw R(w)(1 - R(w)) ; eV < A, (3.17)
0
This expression can be written explicitly in terms of the normal transmission coeffi-
cient o as

64 2 2 1— evV/A 1— 2
S = he AOZ2( a)O;) / ds — Z) . (3.18)

— —«

" 1 - o
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Figure 3.3: Shot noise and current in a N-S contact at zero temperature as a function
of the voltage for several transmissions.
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In the linear regime (eV < A) this expression yields

_ 64 a?(1 - )

S_f?fjgjafu (3.19)

This result has been obtained in Ref. [154] for the multichannel case 2.

For voltages eV > A, both quasiparticle and Andreev processes contribute to
the current and the shot noise is given by the full Eq. (3.16). The contribution of
energies outside the gap can be written explicitly in terms of the normal transmission
as

8e? eV/A  (2—a)zV2—1—a(z? -1
! [az+(2—a)\/z2—1}
Another interesting feature showed by the noise is the ezcess noise which appears

at large voltages (eV > A), i.e at voltages much larger than the gap the N-S noise
adopts the expression

(3.20)

4 2
SV >A)= %eVoz(l — ) + Seze (3.21)

where Se,. is a function of the normal transmission illustrated in Fig. 3.4. As can be
observed is a non-monotonous function. In particular, when o = 1 the excess noise
reaches the value (2/5)ely.

Once we have shown different analytical limits, we go back and remarking some
of the shot noise features which appear in Fig. 3.3. In particular, we shall pay
special attention to two characteristics: first, as can be observed, in the tunnel limit
the shot noise is similar to the current. This is due to that in this case we are in
the Poissonian limit and the shot noise is simply proportional to the current, being
the carriers charge the proportionality constant (we shall show below this charge).
Second, notice that the shot noise for perfect transmission vanishes inside the gap,
while this does not happen outside. This can be understood as follows. Inside the
gap the Andreev reflection is the only contributing process (see Eq. (3.17)). For
a = 1 one has R = 1 and the shot noise vanishes as a consequence of Pauli principle.
However, for eV > A There are two processes contributing whose probabilities sum
one (T + R =1) for « = 1. The shot noise expression then reduces to

482 eV
5= /A dw R(w)(1 - R(w)), (3.22)

%It is easy to calculate the integral appearing in Eq. (3.18) for arbitrary subgap voltage, but the
analytical result is awful looking and we do not write it here.
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Figure 3.4: Zero temperature excess noise as a function of transmission in a N-S
contact.

which does not vanishes because Andreev reflection has a probability less than one
outside the gap.

As commented in the introduction, the shot noise provides information on the
charge of the electrical current carriers. In particular, in the Poisson or tunnel limit
the noise is proportional to the current Spyisson = 2q1, where ¢ is the charge of the
uncorrelated carriers. Fig. 3.5 shows the effective charge, defined as ¢ = S/2el, as a
function of voltage for different transmissions. It is worth noticing that in the tunnel
limit (see curve a = 0.1) this charge is equal to 2e inside the gap and equal to e
for voltages greater than A. This is due to the fact that in an Andreev reflection a
Cooper pair is really transmitted and that for eV > A the transport is dominated by
single electron processes. As can be seen, for intermediate transmissions the effective
charge is not well defined.

We finish this section generalizing the handwaving argument introduced in the
previous section. At zero temperature the current distribution given by Eq. (3.12)
can now be expressed as
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Figure 3.5: N-S zero temperature effective charge ¢ = S/2I in units of the electron
charge as a function of voltage for different transmissions.

di 2e/h with probability R; w € [0,eV]
% =< e/h with probability Ty; w € [A,eV] (3.23)
w 0  with probability 1 — R — Ty;w € [0,eV],

This expression indicates that the current is distributed binomially inside the gap,
with carriers of charge 2e, while it has a trinomial distribution outside the gap
with carriers of both charges 2e and e. We can calculate the fluctuations with this
distribution in a similar way we did in the N-N case, which leads to the general
expression (3.16) for the shot noise. The rigorous calculation of the transmitted
charge distribution function in a N-S contact was carried out by Muzykantskii and
Khmelnitskii [155].

3.3 Shot noise and transfer of multiple charges in SQPCs

In this section we show the novel results of our work on the shot noise in a SQPC. We
analyze how correlations among the multiple processes in a superconducting quantum
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point contact are reflected in the noise. In particular, we pay special attention to the
study of the charges transmitted in multiple Andreev reflections. From the analysis
carried out in Chapter 2, it seems natural to infer that in MARs multiple charges are
transferred. However, by no means it is obvious how these processes are reflected in
the shot noise, since there no exist excitations of multiple charge in a superconductor.
The question is whether we are going to observe correlations between Cooper pairs
or if really the coherent transport of multiple charges takes place.

Fig. 3.6 illustrates the behavior of the the zero frequency dc component of the
shot noise, S, as a function of V for different values of the normal transmission a.
For comparison, the dc component of the current is also shown. As can be observed,
the more noticeable features in the shot noise are:

1. The presence of a strongly pronounced subgap (eV < 2A) structure, which
persists up to transmissions close to one.

2. In the low transparency limit the shot noise subgap structure consists of a
series of steps at voltages eV;, = 2A/n (n integer) as in the case of the dc
current.

3. For higher transmissions there is a steep increase in the noise at low voltages.
4. For perfect transmission the shot noise is greatly reduced.

5. In the large voltage limit (eV' > 2A) there is an excess noise with respect to
the normal case.

Before analyzing in detail the main features of the shot noise, let us have a look
to the effective charge, q(V') = S/2I, with the aim of answering the question on the
transmitted charge in a MAR. Fig. 3.7(a) shows the effective as a function of voltage
for different transmissions. As can be seen, inside the gap (eV < 2A) the shot noise
can be much larger than the Poisson noise (Spgisson = 2€I). As will be commented
below, this is due to the occurrence of multiple Andreev reflections. In particular,
we can see that as the tunnel limit is approached the effective charge tends to exhibit
a step-like behavior and integer multiples of the electron charge can be identified.
For larger transmissions ¢(V') increases when the voltage decreases more smoothly
and diverges as 1/V for small voltages.

Let us start by analyzing the low transmission regime. In this case we can make
use of the sequential tunneling picture that we introduced to study the dc current in
section 2.4. As was stated there, in the tunnel limit one can identify the probability
R, of the n-order MAR which gives the main contribution to the dc current when
2A/n < eV <2A/(n—1). Let us recall that the dc current can be written in terms
of these probabilities, given by Eq. (2.42), as
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Figure 3.6: (b) Zero-frequency shot noise in a S-S contact as a function of voltage
for different transmissions. (a) Dc current for the same transmissions as in the shot
noise.
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Figure 3.7: (a) Effective charge as a function of voltage for different transmissions
in a S-S contact at zero temperature. (b) Comparison between the exact result (full
line) and the tunnel approximation (open circles) given by Egs. (3.24-25) for a = 0.1.
The inset shows the exact result (full line) for a = 0.01 and the step-like function
(dashed line) corresponding to the az — 0 limit.
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(V) = % / do S nR(w, V). (3.24)
n=1

In terms of these R,, the shot noise in the tunnel limit can be expressed as

42 > > 2
S = T/dw {nz_:lann - (le_:l an> } (3.25)

This expression is easily understood with the handwaving argument which we in-
troduced in previous sections. Indeed, the previous expression corresponds to the
fluctuations of a random variable (the current) having a multinomial distribution.
This indicates that in a S-S contact at a given voltage several MARs coexist trans-
ferring charges ne with a probability equal to R,.

Egs. (3.24-25) permit us to analyze the effective charge in the tunnel regime.
As the transmission goes to zero the main contribution to the current at a given
voltages comes from the lowest order Andreev reflection with non-zero probability.
As can be shown from Eqs. (3.24-25), this implies that the effective charge show a
step-like behavior described by the formula

2A
gzll)% q/e =1+ Integer [W] . (3.26)
This means that in the tunnel limit the charge is transferred in integer multiples of
the electron charge, i.e. the charge is quantized. Thus, the previous result tell us
that in the tunnel regime one can isolate the n-order MAR, being its charge equal
to ne. Then, in this regime one has coherent tunneling of uncorrelated carriers with
multiple charges.

The inset in figure 3.7(b) shows the effective charge for a = 0.01 together with
the step-like function of Eq. (3.26). It is also shown in this figure the comparison
between the tunnel approximation given by Eqs. (3.24-25) and the exact result for
a transmission @ = 0.1. Notice that even for this small transmission value there
are deviations from the simple step-like behavior which are increasingly pronounced
when the voltage is reduced. These deviations are produced by the contribution of
more than one MAR process at a given voltage.

As commented in Chapter 2, as the transmission increases the sequential tunnel-
ing picture breaks down due to the interference between different processes which
form a MAR. The charge quantization found in the tunnel regime progressively dis-
appears and is eventually washed out when approaching perfect transmission. This
is illustrated in Fig. 3.7(a).

The structure of the shot noise for intermediate transmission is a consequence
of the competition between the noise reduction due to the Pauli principle and the
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contribution of a increasing number of MARs with different charges, which tends to
enhance the noise. Furthermore, there is an additional factor which complicates the
analysis of the noise. As we know, in a S-S contact one has all the harmonics of
the Josephson frequency in the current. These ac components also fluctuate in time
and give a contribution to the dc component of the shot noise. This contribution
is negligible in the tunnel limit but becomes more and more important when the
transmission increases, specially at small voltages 3.

On the other hand, in the perfect transmission limit, the analysis is again sim-
plified due to the absence of backscattering. Within our theory one obtains a simple
expression for the shot noise in this limit

862 00 oo k
S = T/dw lz R,(1 —Rn)] [1+2Z I la(w + tevV)?|, (3.27)
n=0

k=11l=1

where R,, are the multiple Andreev reflection probabilities for perfect transparency
given by Rp(w) = [} _o la(w — meV)|?; w € [neV,(n + 1)eV], where a(w) is the
Andreev reflection amplitude at an N-S interface given by Eq. (2.48). This expression
can be shown to be equivalent to the result of Averin and Iman in Ref. [160]. The
great reduction of noise that can be observed in Fig. 3.6 for perfect transmission is
a consequence of having Andreev reflection probability equal to one inside the gap.

It is also interesting to analyze the large voltage limit. As in the N-S, the shot
noise exhibits a excess noise with respect to the normal case,

4 2
S(eV > 2A) = %a(l — @)V + Sege, (3.28)

i.e. the shot noise of a normal contact with transmission a plus an excess noise
Sexc. This excess has the same physical origin as the excess current (Iep), which
arises from the contribution of the lowest order Andreev process. One should remark
that the approach to the asymptotic value is much slower for the shot noise than
for the current. We obtain that at zero temperature Se,. is twice the excess noise
of a N-S contact with the same transmission. Thus, the transmission dependence
of the excess noise can be observed in Fig. 3.4. In particular, this relation yields
Sexe = (2/5)eley for the perfect ballistic case in agreement with Ref. [159].

A word of caution should be said about the validity of this theory in the limit of
extremely small bias voltage (eV < A). As we explained in the previous chapter, in
this limit the inelastic relaxation rate n plays also a role. This finite relaxation rate
introduces a cut-off in the MAR processes which determines the behavior of current
and noise when the voltage is smaller than 7. The effect of this energy on the shot

31t is important to remark that in the results shown for the dc component of the shot noise we
have computed all the contributions, no matter where they come from.
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noise is specially important near perfect transmission. In order to illustrate its effect
we show in Fig. 3.8 the shot noise for & = 1 and different values of 7 in the small
bias voltage limit. As can be observed, its effect is more important than in the case
of the current and indicates that one has to take into account this relaxation energy
for the correct determination of the transport properties at small voltages.

S/(4€’A/h)

eV/A

Figure 3.8: Shot noise for a = 1 and different values of the energy relaxation rate n
at small voltages. 1 increases from bottom to top.

In a recent experiment Dieleman et al. [158] observed for the first time a shot
noise much larger than the Poisson noise in a S-I-S tunnel junction (NbN/MgO/NbN).
The appearance of subharmonic gap structure in these tunnel junctions is due to the
presence of pinholes in the oxide barrier which make that some channels have appre-
ciable transmissions. As stated in the introduction, a detailed comparison between
their experimental results and our theory is not possible because we unknow the
distribution transmission. In the experimental results shown in Ref. [158] a mean
transmission of @ = 0.17. If one compares the results for the shot noise and effec-
tive charge for these transmissions (see Figs. 3.6 and 3.7) with Figs. 4 and 5 of
Ref. [158], a qualitative agreement can be observed. In particular, we reproduce
the structure around eV = 2A in the shot noise and the continuous increase of the
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effective charge as the voltage decreases. Although, the agreement is satisfactory, in
order to investigate the experimental evolution of the shot noise with transmission it
would be desirable to use more controllable systems like the atomic-size contacts of
Refs. [143, 146]. Furthermore, the shot noise could be used to extract information
on the transmission distribution of atomic contacts, in the same way it was done
with the current [143].

In conclusion, we have analyzed theoretically the shot noise in a superconducting
quantum point contact for arbitrary transmission and voltage. We have shown that:

e The shot noise can be much larger than the Poisson noise (Spgisson = 2¢I) due
to the occurrence of multiple Andreev reflections in which multiple charges are
transferred.

e The shot noise exhibits a subgap structure (eV < 2A) which persists up to
transmissions close to one.

e In the tunnel regime the subgap structure consists of a series of steps at voltages
eV, = 2A/n (with n integer), i.e. like in the current.

e In the tunnel regime the effective charge ¢(V') = S/2I shows a step-like behav-
ior where one can identified integer multiples of the electron charge. In this
limit one can isolate a n-order Andreev reflection and measuring its
charge, being the result equal to ne.

e For larger transmissions the charge is not well defined due to the mixture of
MARSs which transfer different charges.

e For o = 1 the shot noise is greatly reduced because the Andreev reflections
have probability equal to one inside the gap.

e Our theoretical results reproduce qualitatively the experimental results of Ref.
[158]. However, a more quantitative comparison would require to do new ex-
periments in more controllable systems like the atomic-size contacts, where a
similar agreement as the one obtained for the current is expected.
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Chapter 4

Resonant tunneling and
Andreev reflections

4.1 Introduction

In the last decade the advances of the fabrication techniques in microelectronics
have allowed the design of nanometric-size systems, in which the density of states is
composed by a set of discrete levels whose mean spacing permits that they can be
resolved. Examples of these systems are the semiconductor quantum dots (see [167]
and references therein) and the metallic particles or islands [168, 169].

This chapter, based on Ref. [170], is devoted to the study of resonant tunneling
through these kind of systems coupled to superconducting electrodes. The motiva-
tion for this analysis is double. First, we want to analyze how the superconducting
transport studied so far is modified by the presence of a resonant transmission. On
the other hand, this work will be a starting point for the understanding of several
correlation phenomena in combination with superconducting transport. Thus, we in-
tend to study Coulomb blockade and Kondo effect in various situation like quantum
dots, impurities and metallic island with superconducting leads.

In the last years much attention has been paid to the analysis of charging effects
in superconducting island where the gap is much greater than the mean level spacing
[171, 172,173, 174, 175, 176, 177, 178, 179]. Less attention has been paid to the case
where the individual levels can be resolved [180, 181, 182]. In this chapter we shall
concentrate in the latter situation where both leads are superconducting.

When one analyzes the superconducting transport through nanosystems as the
ones mentioned before, there are many energy scales playing a role: superconducting
gap, mean level spacing, charging energy, temperature, voltage, tunneling rates, etc.
We shall analyze two cases where the mean level spacing is much greater than the
superconducting gap. The following paragraphes are devoted to the description of
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both situations.

In first place, we study the case of a recent experiment done by Ralph et al.
[168]. In this work the authors could resolve the individual electronic states in the
tunneling through nanometric Al particles weakly coupled to superconducting leads
made also of Al (see Fig. 4.1(a)). In these particles of diameter < 10 nm, the mean
spacing of the single-particle levels, §, is much greater than the superconducting gap
A . Moreover, the charging energy Ec is the greatest energy scale. As we shall
show below, the theoretical analysis of this case is quite simple because of the huge
charging energy together with the weak coupling with the leads make that only the
quasiparticles processes contribute to the current.

In second place, we shall analyze the case of a larger coupling with the leads
and smaller charging energies, where multiple Andreev reflections contribute to the
transport. To be precise, we shall study how the subharmonic gap structure is
modified by the presence of a resonant transmission. An ideal setup for exploring
these effects would be one in which both the resonant level position and the coupling
to the leads could be modified in a controlled way as in a normal artificial atom
[167]. This situation is represented schematically in Fig. 4.1(b).

The rest of this chapter is organized as follows. In section 4.2 we present the
model for analyzing resonant tunneling as well as the method used for solving it. In
section 4.3 we analyze the electronic transport through metallic particles. Section
4.4 is devoted to the study of the subgap structure in the presence of a resonant
transmission. In section 4.5 we summarize the conclusions of this chapter. Finally,
in section 4.6 we make some comments on the future work and open problems related
with the first part of the thesis.

4.2 Model for a resonant system

As stated in the introduction, a small quantum dot 2 connected to superconducting
leads is characterized by the interplay of many different energy scales. In order to
analyze in detail the basic phenomena that can be observed in the case of large
mean level spacing § > A, we shall restrict the present theoretical discussion to the
simplest case where transport takes place through a single resonant level (we shall
indicate below how to generalize the results to the multilevel case). For describing
this physical situation we use a natural extension of the Hamiltonian formalism
describe in Chapter 2. We shall describe the tunneling through a resonant level
using the following model Hamiltonian

'Because 6 > A, these Al particles do not show any feature of superconductivity.
2We use the term quantum dot for referring systems like semiconductor quantum dots, metallic
islands, etc.
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Figure 4.1: Schematical representation of the two situations studied in this chapter.
(a) Tunneling through a metallic particle weakly coupled to superconducting leads.
(b) Quantum dot defined in a 2DEG and coupled to superconducting leads. In the
upper right hand side a typical scheme of the density of states in these systems is
shown.

ﬁ = ffL + IA{R + Z(t,}é;géOU + t}:éggéyg) + Z €0Noe + U’fbofﬁ(u7 (4.1)

v, o

where H}, and Hp are BCS Hamiltonians describing the left and right superconduct-
ing leads, characterized by a gap parameter A;, = Ar = A; ¢ is the bare resonant
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level position, t, with v = L, R are hopping parameters which connect the level to
the left and right leads, and the U term describe the intralevel Coulomb repulsion
in the quantum dot. This parameter is basically the dot charging energy, E¢, and
is related to the total capacitance C by U ~ e¢2/2C. On the other hand, for the sub-
sequent discussion it is convenient to introduce the normal elastic tunneling rates
T, = 7|ty|?pu (1), where p,(u) are the normal lead density of states at the Fermi
level.

The Hamiltonian (4.1) is nothing but the Anderson Hamiltonian [183] which
has been extensively used for studying the case of dots coupled to normal leads
[184, 185, 110, 186]. This Hamiltonian together with Green functions techniques
provide a suitable framework for analyzing the correlation due to electron-electron
interaction in the quantum dot, which gives rise to phenomena like Coulomb blockade
or Kondo effect. However, in the two situations that we are going to study in this
chapter the correlation effects associated with the U term can either be neglected
or taken into account in a simple way. The experimental situation of Ref. [168]
corresponds to a case where U > A > I'r g. In this case double occupancy of
the dot level is very unlike and this situation can be simply simulated by replacing
the isolated dot Hamiltonian by a single nondegenerate effective level. The second
situation that we shall analyze corresponds to a case where the coupling with the
leads are not extremely small and the dot capacitance is large enough to smear out
the Coulomb blockade effect (I'z g ~ U). In this case the system behaves as if there
were a single spin-degenerate resonant level at € ~ ¢y + U < ng >, i.e. a restricted
Hartree approximation on the U term would be reasonable.

With this mean field approximation the problem becomes an one-electron prob-
lem very similar to the one analyzed in Chapter 2. As we did in that chapter, in
order to solve the model we shall use nonequilibrium Green functions techniques
based on the Keldysh formalism. As it was shown in Chapter 2, these techniques
allow us to obtain non-perturbative results valid for arbitrary coupling, so we can
analyzed the two mentioned situations in an unified way. Due to the resemblance
with the problem treated in Chapter 2 is not necessary to give further details on the
formalism. Finally, as in the S-S case, the average current I(7) contains all the har-
monics of the Josephson frequency wy = 2eV/h. In this chapter we shall concentrate
in its dc part Ij.

4.3 Transport through metallic nanoparticles

Let us start reviewing the experimental results of Ralph et al. [168]. These au-
thors studied the tunneling through Al particles of diameter < 10 nm coupled to
superconducting electrodes. Fig. 4.2 (upper panel) shows the results for the current
vs voltage for the case of a particle in which a charging energy Fc ~ 6 meV was
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estimated, a mean level spacing § ~ 0.7 meV and the resistances of the interfases
with the electrodes were several M€). In this situation the charging energy is much
greater than the gap (A4 = 0.18 meV'), moreover § > A and the levels can be
resolved at a temperature 7' < 2 K (the experiment was done at 320 mK). Finally,
the estimated resistances indicate that I'y p < A.

100 T T T
8ok (a) superconducting leads (0 Tesla)
< 60
a ,
- 401
20 normal leads (0.1 Tesla) -
0 , 320 mK
6 8 10
vV (mV)
8 T T T I 1
6 -
2 4
2 =
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Figure 4.2: Upper panel: current through an Al particle coupled to normal and
superconducting leads (7' = 320 mK). The superconducting curve has been displaced
10 pA. Lower panel: current through a single electronic state at 7' = 30 mK.

Fig. 4.2 (upper panel) shows results for the cases in which the Al electrodes
are in normal and superconducting states. In the normal case the current consists
of a series of steps known as Coulomb stair, as expected in the tunneling via the
electronic levels of the particle [187]. As the leads are in superconducting state the
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I-V characteristics change dramatically. Each step moves at higher voltages with
respect to the normal case and has a shape which reminds the BCS density of states.
The detailed shape of these steps can be better observed in Fig. 4.2 (lower panel),
where the tunneling through a single level in normal and superconducting cases is
shown.

The theoretical analysis of this case is quite simple. Due to the huge charging
energy (Ec > A) and the weak coupling with the electrodes (I'r, g < A), only the
quasiparticle processes contribute to the current. This can be understood as follows.
The weak coupling provokes that the probability of an Andreev reflection be very
small. On the other hand, the charging energy destroys the Andreev reflection in two
ways: first, the charging energy creates an additional gap between electrons and holes
of the order of F¢, making that in this case the Andreev reflection be very unlike.
Secondly, the charging energy provokes that the current vanishes until the voltage
reaches eV ~ E¢, i.e. for voltages eV > A, where the Andreev reflections give a
negligible contribution. Thus, the dc current is given exclusively by the quasiparticle
term which adopts the form of a resonant-tunneling-like expression

_de [ " I (w—eV) I'w)
W)= T T =) + T

[np(w —eV) —np(w)],

(4.2)
where I’E’R are the superconducting tunneling rates defined as nyR(w) =T rp° (w),
being 5° the corresponding dimensionless BCS density of states given by j5° =
|w]/vVw? — A%, and np(w) is the Fermi function. In this expression ¢ is the ef-
fective resonant level position in which the charging effects have been included, i.e.
€ = €9 + Fc + nV. This expression means that the effective level is renormalized by
the charging energy. Moreover, this level moves with the voltage depending on the
voltage drop in both junctions. In the previous expression 7 is the relative voltage
drop which takes place in the left hand side junction: n = V., /V = Cg/(Cr + CL),
where C, g are the capacitances of both junctions.

In Fig. 4.3 is shown the dc current Iy(V) given by Eq. (4.2) for decreasing
coupling to the leads. The current has been normalized by Iy = (4dew/h)TTr/[T L+
I'g], which is the normal current at very large voltages. In this figure it is also shown
the normal case corresponding to the superconducting case represented by the full
line. This is the case that we have estimated corresponds to the experimental result
of Fig. 4.2 (lower panel). As can be observed, there is a good quantitative agreement
with that result. Moreover, notice that the line shape progressively resembles a BCS
density of states. Another interesting feature is that the threshold voltage in the
superconducting case is shifted with respect to the normal case. This is a simple
consequence of that in order to have a non-zero current in the superconducting case,
the voltage have to provoke that the lower edge of the left superconductor reaches
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Figure 4.3: Zero-temperature I-V characteristics corresponding to the case of a
metallic particle weakly coupled to superconducting leads (Eq. (4.2)). Full line:
I'y, =5 x 1073A, dashed line: T';, = 1072 A and dotted line: T';, =2 x 107*A. In all
cases 'p = 4I';, vy e = 5A.

the resonant level 2.

In Ref. [168] special attention was paid to the behavior of the I-V characteristics
near the threshold voltage, in particular to the broadening and reduced amplitude
with respect to a BCS spectral density. In fact, our theory predicts a finite height
and width of these resonances without having to resort to the introduction of any
phenomenological broadening parameter. This is a simple consequence of having a

small but finite coupling to the leads. Eq. (4.2) in the limit of vanishing coupling
reduces to

3In Fig. 4.3 the superconducting threshold voltage is the normal one plus 2A because we have
assumed that the voltage drops symmetrically in both interfases.
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_den T5(T5(0

V) = 91150 (43)

which coincides with the result one would expect from a sequential tunneling picture
[188]. Thus, the coherent processes taken into account in Eq. (4.2) are responsible
for the rounding off of the resonant peaks.

Let us also notice that in the case where eV > A the tunneling rate of the right
junction reduces to the one of the normal case, what simplifies the expressions (4.2-
3). It is also worth noticing that the expression (4.3) for the sequential tunneling
limit is only valid for extremely small couplings.

For ending this section, let us make some comments about the generalization
of our results for the transport in the multilevel case. Indeed, this generalization
is quite simple. Several authors have developed a theory, referred to as orthodoz
theory, which describes the transport through quantum dots taking into account the
charging effects by means of a simple classical argument [188, 189]. The description
of the current is based on a sequential picture of the electronic transport, where the
current is governed by a set of master equations. The generalization of this theory
to the superconducting case is trivial. One has only to replace the normal scattering
rates by the superconducting ones defined as in Eq. (4.2). This scheme has been
recently carried out by Whan and Orlando [190] and we recommend to the reader
to consult this reference for further details.

4.4 Resonant tunneling and Andreev reflections

In this section we concentrate in a case where the coupling is not so weak (U ~ I'f, r),
so that the Coulomb blockade effects are absent. As discussed above, this case can
be described by a single spin-degenerate effective level. In contrast to the previous
case, now the effect of MAR’s becomes crucial and the full formalism is needed for
the calculation of the current.

To illustrate how the subharmonic gap structure (SGS) is modified by the res-
onant transmission we show in Fig. 4.4 the I-V curves for a symmetric case where
the level position is fixed at € = 0, while I' = 'y, = ' varies between I' > A and
I' < A. As can be observed, in the limit I' > A the case of a ballistic S-S junction is
recovered (see chapter 2), where the main features are the absence of SGS and the
saturation of the current for V' — 0 given by Iy ~ 4eA/h. The departure from the
S-S behavior becomes apparent for decreasing I', where a progressively pronounced
SGS appears. Notice that, in contrast to what is found in S-N-S structures with a
continuum of states in the central region, in the present case the Iy(V) curve itself
exhibits oscillations with the concomitant appearance of negative differential con-

128



4.4. RESONANT TUNNELING AND ANDREEV REFLECTIONS 129

I'=10A
4__
2A

S
N3
<
§ A
N2
~

. A/2

A/4
0 _r?f\| | |

0.0 05 1.0 15 2.0 25
eV/A

Figure 4.4: Zero-temperature I-V characteristics corresponding to the case where
Coulomb blockade is absent for different values of I' = I';, = I'g. The effective
resonant level is fixed at ¢ = 0.

ductance. It is also noticeable the disappearance of the subharmonic structure at
voltages eV = 2A/n with even n.

The SGS found in this system is controlled by the resonant transmission. In
fact, in the limit of I' < A the position and shape of the subgap current peaks can
be understood by means of the following simple picture. When eV < 2A, current
between the superconducting leads can flow due to MAR processes. As in the case
of S-S or S-N-S junctions, there appear jumps in the subgap I-V characteristics at
voltages corresponding to the opening of a new Andreev channel. However, the
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amplitude of these subgap process is greatly modified by the presence of a resonant
level between the leads, in such a way that only those MAR trajectories that connect
the resonant level to the lead spectral densities give a significant contribution to the
current. The inset in Fig. 4.5 illustrates the second order Andreev trajectory which
gives the dominant contribution to the current when 2A/3 < eV < A. As eV
decreases towards 2A /3, the energies of the initial and final states on this trajectory
approach the gap edges, which results in a BCS density-of-states-like shape of the
current peak at eV = 2A/3 (see Fig. 4.5(a)).

1./(2eA/h)

eV/A

Figure 4.5: Detail of the subgap structure for T = 5 x 1072A with ¢ = 0 (a) and
e = 0.2A (b). Full line: complete numerical calculation; dotted line: sequential ap-
proximation discussed in the text. The inset represents a typical resonant trajectory
mediated by two Andreev reflections. The arrows indicate the position of the first
resonances for e = 0.2A.

This simple picture enables us to evaluate the SGS at I’ <« A analytically. For
this purpose we shall generalize the sequential picture for the multiple processes
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introduced in Chapter 2. The first step is to identy the generalized tunneling rates

i (w) and i (w) associated with the nth order Andreev process connecting the

dot to the leads. Here the F,(f n) give the probability of an electron or a hole to get into
the dot as an electron, while the P%““t) correspond to the complementary processes
where one electron leaves the dot and reaches the leads as an electron or as a hole.
Within the sequential picture of these processes, the rates adopt for a symmetrical
case I' =T'f, = I'g the following expressions:

Iw%out,m) (w) — 1—~2n—|—1ﬁ5(w + (2n + 1)€V/2) l—n[ f(w + (2] - 1)€V/2) 2

w—(=1JexjeV |’ (44)

=1

where f(w) is the dimensionless BCS pairing amplitude of the uncoupled leads de-
fined as f(w) = A/mv A% — w2, This expression can be understood as follows. First,
I'2|f(w)|? is the Andreev reflection probability at the lowest order in T', while the
denominator in Eq. (4.4) is related to the transmission probability through the dot.
So that, the rates are simply the product of the probabilities of the elementary pro-
cesses which form an multiple Andreev reflections. The total current can be then
computed as the sum of the contributions due to all possible combinations of in and
out processes. Every contribution must be weighted by the total charge which is
transferred in the combined process. For instance, the process depicted as an inset
in Fig. 4.5 is a combination of two processes of the first order and has an associated
charge of 3e. The resulting expression for the current is

(in) (out)
8 Iy T'm
(V) =22 n+m+1) - (€) (out()e) . (4.5)
h n,m I'y (6) +In (6)

Fig. 4.5 illustrates in further detail the SGS of the I-V curves for I' < A. For
comparison the results given by Eq. (4.5) are also shown. As can be observed, this
simple approximation fairly reproduces the exact numerical results in this small T’
limit. The rounding off of the peaks which is observed for increasing I' in Fig. 4.4
is due to off-resonant processes as discussed for the case of large charging energy. In
the limit I' ~ A the sequential tunneling picture breaks down due to the interference
among the different multiple processes.

For the general case with ¢ # 0, the SGS becomes more complex due to the
appearance of additional resonances. This is illustrated in Fig. 4.5(b) for the case
e=0.2A and T = 5x 10" 2A. As can be deduced from the sequential formulae of Eq.
(4.5), resonances appear both at eV,;F = 2(A+¢€)/(2n+1) and eV, = 2(A—e¢)/(2n+1)
corresponding to processes in which the initial or final states are at the gap edges
(notice the disappearance of the even series in the SGS). The sequential picture also
predicts the appearance of resonances at jeV = 2¢ due to resonant coupling between
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electron and hole states. In the exact numerical results the resonances are somewhat
shifted with respect to these predictions and some of them are difficult to resolve.
Nevertheless, it should be stressed that the main qualitative features of the exact
SGS are already contained in Eq. (4.5).

eR (0)l /A

0.0 0.5 1.0 15 2.0 25 3.0

eV/A

Figure 4.6: Zero-temperature I-V characteristics for different positions of the reso-
nant level e. (a) e = 5A, (b) 2A, (c) A, (d) A/2 and (e) 0. Ry(0) is the normal
resistance at the Fermi level. The curves (c), (d) and (e) have been displaced for the
sake of clarity.

Fig. 4.6 shows how the I-V characteristics evolve with the resonant level position
€. The tunneling rates are taken in this case as I';, = 'r = A. As can be observed,
when the level is far from the gap region (case a) the limit of energy independent
transmission is recovered (see Fig. 2.6). As the resonant level approaches the gap
region the subgap structure becomes progressively distorted with respect to the
energy independent transmission case. While the structure corresponding to the
opening of odd-order MAR processes is enhanced, the structure at eV ~ 2A/n with
even n is suppressed. A detailed analysis of the I-V characteristics as a function of
the resonant level position can be found in recent works [191, 192, 193].

As has been already mentioned, an ideal experimental setup to study the in-
terplay between resonant tunneling and MAR’s would be an artificial atom with
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superconducting leads as represented in Fig. 4.1. In this type of structure, for a
quantum dot area of ~ (100nm)2, the mean level spacing would be around 2.7meV
[194], which is much larger than the superconducting gap on the leads if these were
made of Al (A4 ~ 0.18meV). On the other hand, the coupling to the leads could
be given any desired value by varying the conductance of the two point contacts,
and the charging energy could also in principle be changed by varying the different
capacitances between the dot and the surrounding metallic leads and gates. Thus,
the conditions for observing this regime could be attainable. In fact, a system of
these characteristics would not be very different from the superconducting quantum
point contacts developed by Takayanagi et al. [91].

4.5 Conclusions

In conclusion, in this chapter we have presented calculations for the electronic trans-
port through discrete resonant levels coupled to superconducting leads. Firstly, we
have analyzed the case of large dot charging energy and weak coupling with the elec-
trodes. In this case the only contribution to the current comes from quasiparticle
tunneling processes. The results that we have obtained naturally explain the -V
characteristics of the experiments in Al nanoparticles of Ref. [168].

The main part of this chapter has been devoted to the analysis of a situation
in which the Coulomb blockade effect is absent. In this regime we have shown
how the subgap structure is modified by the presence of a resonant transmission.
One of the most remarkable features is the appearance of regions with negative
conductance. Furthermore, we have shown that in the weak coupling limit the SGS
can be described within a sequential picture for the multiple Andreev reflections.
Finally, we have discussed the experimental conditions that should be met in order
to observe this regime.

4.6 Future and open problems

With respect to the future and open problems related with the first part of the
thesis, there are a lot of remaining challenges both from the experimental and the
theoretical point of view. Let us first review some of the unsolved experimental
problems.

Probably, the main experimental challenge in the superconducting electronic
transport is the small bias voltage limit, and in particular the zero-voltage case.
For instance, in the atomic contacts the critical current is smaller than the predicted
one [74, 85, 86]. This discrepancy can be due to that in these experiments one does
not measure the critical current strictly but the switching current, as we commented
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in section 2.4.3. We expect that a similar analysis to the one developed in Ref. [141]
for tunnel junctions gives us the solution of this problem.

With respect to the supercurrent-phase relation, the experiment of Koops et al.
[138] showed for the first time a relation which deviated from the usual Ig(¢) ~
sin ¢. However, the agreement with the theory was not totally satisfactory, specially
because they had not a method for determining the transmission distribution of the
atomic contact. However, thanks to the channel spectroscopy introduced by Scheer
et al. [143], we believe that one could now carry out a definitive comparison between
experiment and theory.

Within the small bias voltage regime, an experimental determination of the linear
conductance G(¢) is still lacking. As we commented in Chapter 2, this conductance
could manifest in the analysis of the switching current or in a more direct way as in
the experiment by Rifkin and Deaver [42].

Another pending issue is the direct observation of the Andreev bound states
which carry the supercurrent in a superconducting contact. With respect to this
point, in the Appendix D we propose a method for determining them by means
of the analysis of the supercurrent under a microwave radiation. The coupling of
the supercurrent to a microwave laser field gives rise to an induced current whose
frequency dependence shows clearly the existence of the Andreev bound states (see
Appendix D for details).

Another experimental challenge is the analysis of biased voltage contact under
a laser radiation. Such radiation gives rise to the appearance of the well-known
Shapiro steps. As we commented in section 2.4.2, in the case of a transmissive
junctions would appear new steps with respect to the tunnel case. This is due to the
possibility of multiple processes. On the other hand, this would be a way of revealing
the ac current components and checking our predictions for such components.

With respect to the analysis of Chapter 3, the shot noise measure in an super-
conducting atomic contact is a nice experimental challenge and, in particular, the
possibility of detecting the transfer of multiple charges associated with the Andreev
reflections.

With respect to Chapter 4, it would be worthy to investigate experimentally
situations in which the superconducting transport is modified by the presence of
a resonant transmission, by charging effects or by electron correlations. In other
words, it would be important to analyze the resonant tunneling, Coulomb blockade
and Kondo effect in quantum dots coupled to superconducting leads. As we explained
in previous sections, a semiconductor 2DEG is the ideal system to study these effects.

From the theoretical point of view there are a lot of remaining tasks. In the
following paragraphs we shall remark some of the future projects which would be
worthy to face.

In Chapter 2 we have developed a theory for the so called superconducting quan-
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tum point contacts, where the constriction length is much smaller than the super-
conducting coherence length. The following step would be to generalize the theory
to the cases of contacts with arbitrary length, where the proximity effect play an
essential role. Some steps toward this aim have already been done [195]. We also
have started this projects by analyzing how the subharmonic gap structure is mod-
ified by the presence of a normal constriction whose length is comparable to the
superconducting coherence length of the leads. This has been done in relation with
the experiments in Al-Au-Al atomic contacts investigated by Scheer et al. [145, 146].

Within the analysis of SQPCs carried out in Chapter 2, there still remains the
detailed study of the small bias voltage regime. In this case is difficult to satisfy
experimentally the condition of constant voltage, as we have assumed throughout
our analysis. Therefore, we must also study the case of a current biased contact.

It would be also interesting to analyze theoretically the Shapiro steps in a su-
perconducting quantum point contact. We must still investigate how the ac current
components manifest in such steps.

On the other hand, it would be also worthy to analyze how the subgap structure
is modified by the presence of magnetism, for instance in a S-F-S quantum point
contact, where F is a constriction of a ferromagnetic material. In this case the
spin symmetry is broken and this modifies the Andreev reflections, because these
processes couple electrons and holes with opposite spins.

In relation with the work presented in Chapter 4, there are two interesting future
projects. First, it would be very interesting to analyze a situations where charging
effect begin to modify the subharmonic structure. Secondly, the study of the Kondo
effect in a quantum dot with at least a superconducting electrode would allow us
to understand how electron correlations modify the superconducting transport. In
principle, our Hamiltonian approach is well-adapted for these two projects and within
our group there is great experience in this type of problems [110].

Finally, we also intend to take advantage of the experience acquired in the con-
tacts of traditional superconductors for investigating the electronic transport in high
temperature superconductors.
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Part 11

Electronic transport in atomic
contacts
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Chapter 5

Transport in atomic contacts:
Introduction

During the present century they have been answered some of the fundamental ques-
tions about the elementary particles which form the matter. Although, we know that
atoms are the basis of the solids since many decades ago, until recently it seemed a
dream to be able to “see” the atoms or to manipulate them individually to form elec-
tronic devices. However, nowadays they are common practices in the nanotechnology
laboratories all over the world. This great change is mainly due to the appearance in
the eighties of the Scanning Tunneling Microscope (STM) [73]. This ingenious device
consists of a metallic tip, attached to a piezoelectric, which approaches a surface also
conducting. The distance between the tip and the surface is controlled by the piezo.
When one applies a potential difference between the tip and the surface a current
flows which allows us to obtain information on such surface. The most remarkable
feature of this technique is that it permits to “see” the surface in situ, exploring
defects, absorbates, etc. The STM was the first spectroscopic technique with spatial
resolution which permitted to analyze atomic systems. Moreover, it opened the door
to the manipulation of atoms, the design of atomic and molecular circuits, the study
of mechanical properties at a nanometric scale and many other applications.

The STM and similar techniques obtain information on the systems investigated
by means of a measure of the electrical current which flows through them. Thus,
it is crucial to know how this current flows. So then, the objective of the part II
of the thesis is the theoretical study of the electrical conduction through metallic
atomic-size contacts. We are not concerned with the analysis of the Scanning Tun-
neling Microscope, whose theory is relatively well-established, but to know how the
electronic transport takes place through metallic contacts with minimum sections
of just a few atoms. Motivated by the questions that arose in relation with the
experimental comparison of the superconducting I-V curves in atomic-size contacts
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(see section 2.5.3), we endeavor to understand in these atomic circuits the relation
between the electrical current and the quantum properties of the atoms forming such
circuits.

This of the chapter is organized as follows. In section 5.1 we shall review some
of the most important features of the electronic transport in atomic contacts and we
shall emphasizing some of the open problems. Finally, section 5.2 is devoted to the
presentation of our aims for the part IT of thesis.

5.1 Historical review

We begin our historical review in the moment of the appearance of the Scanning
Tunneling Microscope (STM) in 1981 [73]. The operation principle of the STM is
rather simple as we commented in the introduction. It consists of a metallic tip
which explores a surface typically at constant tunnel current (see Fig. 5.1). The
displacements of the metallic tip given by the applied voltages to the piezos thus
yield a topographic picture of the surface. The great STM resolution lies in the
strong dependence of the tunnel current with the distance between the electrodes,
i.e. between the metallic tip and the surface to be explored. This technique offered
for the first time the possibility of determining the structure of a surface in real
space, including non-periodic structures. Thus, it offers the possibility of observing
in a direct way dislocations, defects, absorbates, etc, located on the surface.

The first quantitative theory of the STM was presented by Tersoff and Hamann
in 1983 [196]. The main conclusion of this work was that the STM images at low
voltages, or in short the current in the STM, is a measure of the sample local density
of states at the Fermi level in the position of the tip. Then, an STM image is basically
a spatial map of the surface electronic structure.

In the later years there appeared a great amount of experimental and theoretical
works related with the STM. Let us mention here the theoretical works by Lang
[197, 198] in which he analyzed the images of individual atoms absorbed in a metallic
surface. His main conclusion was that the crucial parameter for determining the
apparent height of an atom in a STM image at low voltages are the s and p densities
of the absorbate at the Fermi energy.

Traditionally the STM has been used in the regime known as tunnel regime, in
which the tip and the surface are kept apart, separated by a distance (~ 10 A)
which implies that the current depends exponentially on such a distance. In 1987
Gimzewski and Moller [199] analyzed the transition from tunnel regime to contact
regime, in which the the tip and the surface “touch each other”. These authors found
that in this latter limit there are important corrections to the simple exponential
behavior of the contact resistance as a function of the distance. Moreover, they
found that the contact regime appears together with a mechanical instability which
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CU |s

Figure 5.1: Operation principle of a Scanning Tunneling Microscope. The piezos
P, and P, move the metallic tip M above the surface. The control unit applies an
appropriate voltage V), to the piezo P, to have a constant tunnel current J7 at a
given constant voltage Vr.

marks the transition between both regimes. Several authors, Lang [200] and Ferrer,
Martin-Rodero and Flores [123] discussed this transition and found that at very
short distances the current saturates at a certain value. In particular, Ferrer et al.
[123] showed that in the case of one-atom contact (with only one orbital per atom)
the resistance saturates at a constant value h/2e? ~ 12.9kQ, which is referred to as
the quantum resistance.

Let us abandon for a moment the context of atomic contacts and speak about a
fundamental phenomenon in our subsequent discussion. In 1988 there appeared two
independent experimental works which investigated the conductance of a ballistic
point contact defined on a two-dimensional electron gas (2DEG) of great mobility in
heterostructures GaAs-AlGaAs [89, 90]. Both works showed that the low tempera-
ture conductance changed in steps quantized in units of 2¢2/h as the contact width
was varied, controlled by a gate on top of the heterojunction (see Fig. 5.2).

Let us briefly explain this phenomenon known as conductance quantization. The
appearance of conductance steps of height 2¢2/h can be understood with the Lan-
dauer formula for the low temperature conductance [95]. This formula tell us that
the conductance of the system can be expressed as
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Figure 5.2: Conductance as a function of gate voltage in a point contact created
in a GaAs-AlGaAS 2DEG [89]. Notice that the conductance exhibits plateaus at
multiples of 2¢2/h.

2¢2 N
i=1
where T; is the transmission probability of the i-th conducting channel and N is the
number of conducting channels which contribute to the current. The width of these
quantum point contacts is comparable to the Fermi wave length Ap, which causes
the quantization of the transversal momentum, giving rise to a discrete number of
subbands contributing to the current. As the point contact width is continuously
reduced, the number of conducting channel IV reduces in a step-like way. This fact
gives rise to the conductance pattern which can be seen in Fig. 5.2. Moreover, when
the system is in the ballistic regime (i.e. there is no scattering with impurities),
every channel has a perfect transmission and the step heights are equal to 2¢?/h.
Let us go back to the atomic contacts. Since its invention the STM has provided
images of surfaces, atoms and molecules with an unknown resolution. But the STM
has also been used to modify surfaces, for instance positioning molecules [201] and
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transferring an atom from the STM tip to the surface [202]. It is even more impressive
the possibility which the STM offers of manipulating individual atoms with high
precision [203, 204], permitting the fabrication of rudimentary structures. Thus, at
the beginning of this decade the first steps toward the definite miniaturization of the
electronic devices were given [205, 206]. Examples of atomic-size electronic devices
are the atomic switches realized with the movement of an individual Xe atom [207],
or the well-known quantum corrals [208].

The interest in the atomic-size contacts has not been exclusively restricted to
the analysis of their electronic transport. Another aspect which has attracted the
attention is the possibility of studying at an atomic scale mechanical properties like
adhesion, contact formations, nanoindentation, separation, fracture, etc. From the
experimental point of view the study of these properties has been possible due to the
advent of the Atomic Force Microscope (AFM) [209], and from the theoretical point
of view thanks to the molecular dynamics simulations [210, 211, 212]. Although
we are not interested in studying the mechanical properties of atomic contacts, it is
important to know a little about them because they determine the process of contact
formation, defining the contact geometries which are finally reflected in the current
through these systems.

The combination of the AFM with molecular dynamics simulation have showed
that the process of a contact formation, by identing or pulling a tip over a surface,
takes place in a series of elastic and plastic stages. During the elastic stages the
atomic layers approach or are put apart keeping basically its crystalline structure.
On the other hand, the plastic stages consist of sudden atomic rearrangements due
to mechanical instabilities which give rise to abrupt changes in the contact section.
Below, we shall comment the importance of these phenomena in the determination
of the current, and in particular in relation with the conductance quantization in
metallic contacts.

At the beginning of this decade arose another technique for creating atomic-
size contacts. This is the technique of the mechanically controllable breakjunctions
(MCB) [74], which has been widely described in the section 1.2.3. Due to the control
in the breaking process in the breakjunctions it is possible to follow the evolution of
the conductance as the contact section is changed. Fig. 5.3, taken from Ref. [83],
shows two examples of the variation of the conductance G of the same Pt contact as
a function of the voltage V), in the piezoelectric, i.e. as a function of the diameter of
the constriction. As can be seen, G changes in abrupt steps, in a similar way to the
phenomenon of conductance quantization in semiconductor 2DEGs. Although the
steps have the expected magnitude of the order of 2¢2/h, a quantization as clear as
in the semiconductor point contact is not found.

Experiments like the one mentioned in the previous paragraph were the starting
point of a bitter discussion about the conductance quantization in metallic contacts,
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Figure 5.3: Evolution of the conductance of a Pt breakjunction as its section is
decreased [83]. The heights of conductance steps are of the order of 2¢2/h, but
quantization is not observed.

which unfortunately has monopolized the discussion about the electronic transport
in these systems. Early two explanation of the origin of the abrupt jumps in the
conductance arose. The first one, identical to the one commented in the context of
2DEG, is based on the discrete variation of the number of conducting channel as the
contact section varies continuously. The second explanation states that these jumps
are related to the sudden atomic rearrangements which take place in the elongation
o contraction of the contact. These explanations are based on two different pictures
of the transport in these nanostructures. The first explanation of the origin of
the conductance jumps is based on a transport picture based on the idea of free
electrons flowing through a constriction. The second explanation is based on an
atomistic picture of the electronic transport, in which the contact is described as a
set of atoms through which the current flows. Next, we shall revise some of the main
works which tried to clarify this transport phenomenon in atomic contacts.
Todorov and Sutton presented a work in which they combined a molecular dy-
namics simulation with a calculation of the conductance based on a tight-binding
description of the contact [213]. Thus, they analyzed the conductance while the con-
tact is elongated and they found that the contact section changes abruptly through
a series of mechanical instabilities, which are reflected in step-like variation of the
conductance in agreement with the experiments. In short, they claimed that the
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conductance jumps are due to the atomic rearrangements that take place during the
formation of the contact.

These abrupt conductance jumps were also observed in different experiments us-
ing STM. For instance, Agrait et al. [214] showed that in Au at low temperatures the
last conductance plateaus before breaking the contact are reproducible and quan-
tized in units of the quantum conductance Gy = 2¢?/h. On the other hand, Pascual
et al. [215] obtained similar results in Au contacts at room temperature. These
latter authors attributed the conductance quantization to the quantization of the
electron transversal momentum in the contact.

In an interesting work, Krans et al. [82] analyzed the conductance of breakjunc-
tions during the elongation (or contraction) of the contacts for three different metals:
Cu, Al and Pt. In this work they showed that the slopes of the conductance plateaus
are characteristic of each metal and change from one metal to another '. Another
interesting point of this work is that for the first time a histogram of the last conduc-
tance plateau was performed. The aim of these histograms is to investigate if some
metals show a statistical tendency of conductance quantization. The histograms of
Cu and Al showed that these metals have certain tendency to be quantized. How-
ever, Pt shows a conductance large than Gy in its last plateau. This fact together
with the different tendencies of the plateaus point out the importance of the elec-
tronic structure of each metal in the transport properties of these nanocontacts. In
particular, the authors pointed out that the fact of having a conductance greater
than Gy in the Pt last plateau could be due to the fact that Pt is a transition metal
and the d orbitals could provide additional channels for the current flow.

Another interesting work was done by Olesen et al. [216]. They presented con-
ductance measurements at room temperature in point contacts formed between a
STM tip and surfaces of Ni, Cu and Pt. With certain optimism they concluded that
the conductance in these contacts is quantized in unit of Gy, presenting so the con-
ductance quantization in metallic contact as an universal phenomenon. Naturally,
the origin of the quantization was attributed to the quantization of the electron
transversal momentum in a contact of a few atoms. This article was reply in a com-
ment by Krans et al. [217] in which they argued that: “in irregular or atomically
disordered atomic systems, where there are no well-defined transverse modes, one
loses the notion of conductance channels. Conductance jumps may still occur, as a
result, say, of atomic rearrangements, but these jumps can be of arbitrary size and
are not a sign of conductance quantization”. So, the discussion on the conductance
steps went on and has arrived until nowadays.

A work that throws some light on the quantization problem was the one done
by Krans and Ruitenbeek [218]. In this reference the authors analyzed the transi-
tion from semimetallic Sb contacts to vacuum tunnel junctions using mechanically

1We shall analyze the different tendencies of the conductance plateaus in Chapter 7.
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controllable breakjunctions. They showed that the conductance of Sb atomic-size
contacts is small compared to Gy due to the large A\r in a semimetal. Observation
of subquantum conductance steps when varying the contact area of atomic dimen-
sions gives clear experimental evidence for rearrangements of atoms building up the
contact.

It seemed that the atomistic point of view of the transport in metallic contacts
gathered strength. At that time an interesting questions was: is there any unam-
biguous evidence of conductance quantization in metallic contacts? The work done
by Krans et al. [219] was devoted to the answer of this question. These authors ob-
served a characteristic sequence of jumps in the evolution of the conductance upon
stretching in Na breakjunctions. The concrete jump sequence which they observed
was: 1Gy, 3Gy, 5Go, 6Gq, ... (see Fig. 5.4). In this series the jumps in 2Gg, 4Gy
and 7Gg are absent. The authors claimed that the observed sequence has a natural
explanation in terms of the conductance quantization in the contact. These jumps
correspond to those that one would expect in a contact with cylindrical symmetry
due to the degeneracy of certain modes in this geometry [220, 221, 222]. On the con-
trary, Cu contacts did not exhibit the same jump sequence, what was interpreted as
that certain atomic configurations are preferred in this case 2. The final conclusion
of this interesting work was that in these experiments the conductance variation in
metallic contacts of variable size is determined by the conductance quantization and
by the discreteness of the contacts.

On the analysis of the conditions which favor the conductance quantization it is
worth remarking two papers. In a theoretical work Bratkovsky et al. [224] combined
molecular dynamics simulations with conductance calculations and concluded that
the conductance quantization is favored at high temperatures. In the evolution of
a contact in its process of formation, a high temperature implies that the atoms of
the systems have a greater kinetic energy. Thus, the system has enough time to
rearrange itself by minimizing the surface energy and giving rise to ordered compact
structure. This absence of disorder is the cause which favors the quantization. This
theoretical prediction was experimentally confirmed by Muller et al. [225]. These
authors analyzed breakjunctions of Au and Cu at room temperature and found
more horizontal plateaus than in the case of low temperatures, and a lot of them at
integer multiples of Gog. However, they also found some deviations in the condition
of quantization.

In what we have exposed so far, it is evident the relation between the transport
properties and the mechanical ones. This relation was further clarify in a set of
experiments in which a measure of the contact forces by means of an Atomic Force
Microscope (AFM) and a measure of conductance were combined [226, 227, 228, 229,

2We now stress that this peculiar sequence of conductance steps are not observed in other metals,
like for instance Au [223].
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Figure 5.4: Evolution of the conductance in Na atomic-size contacts at 4.2 K [219].
The contact section is reduced by increasing the piezoelectric voltage.

230]. These experiments showed that the contact deformation takes place in a set
of elastic and plastic stages in agreement with the molecular dynamics simulations.
They stressed that every conductance jump corresponds to a jump in the forces,
what was interpreted as the step-like variation of the conductance is always due to
atomic rearrangements in the contact.

The first theoretical article that presented a simultaneous calculation of the con-
ductance and the forces in an atomic contact was done by Todorov and Sutton [231].
In this work they showed by means of molecular dynamics simulation and tight-
binding calculations of the conductance, that the jumps in both quantities coincide
and are due to atomic rearrangement in the contact.

With the advent of these last works it seemed quite clear that the atomistic
picture prevailed over the free electrons picture. However, both pictures are not
incompatibles. For instance, Stafford et al. [232] have recently presented a work in
which they developed an unified treatment of the cohesion and conduction properties
in terms of the scattering matrix. Using a jellium-type approximation they presented
a picture in which the conducting channels behave as delocalized chemical bonds
which provide the metallic cohesion to the contact. At the same time, they showed
a correlation between the conductance jumps and the force jumps. Several authors
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have obtained similar results using similar approaches to this latter one [233, 234,
235]. Therefore, one can obtain similar results from different points of view about
the electronic properties.

In the last paragraphes of this introduction to the electronic transport in atomic
contacts, we would like to remark the importance of an essential factor to us. As it
is clear from the experiments reviewed so far, there are evident differences between
contacts of different metals, which in our opinion is a clear evidence of the relevance
of the electronic structure in the transport properties of metallic nanocontacts. For
this reason, we now concentrate in the influence of the contact chemistry on the
current through these systems. To remind now the importance of the chemistry to
somebody in the STM business is almost a sacrilege, because the usefulness of STM
lies on the relation between the current and the electronic structure of the surfaces to
be explored. However, in the context of atomic circuits, in which we are interested it
is seem to have forgotten the importance of this item. This has been mainly due to
the possible existence of the conductance quantization and its supposed universality,
what of course would be much easier to understand within a picture of free electron
circulating through a constriction whose width is comparable to the Fermi wave
length of the system. Of course, there are notable exceptions between which we
shall bring out someones in the next paragraphs.

Lang [236] generalized his ideas developed for the STM in order to analyze the
case of atomic wires. The systems which he study consist of two semiinfinite metallic
electrodes coupled to an atomic chain with an arbitrary number of atoms. The
electrodes are describe with a jellium model within the framework of the density
functional. For instance, he has calculated the resistance of Al wires with 1 to 3
atoms, and he found resistances between 6.6 and 9.0 k2. But the relevant thing is
that he stressed the importance of the contribution to the current of the s and p
orbitals of Al, and showed how the electronic structure of individual atoms plays an
essential role in the transport through atomic wires.

Another remarkable work on the importance of the contact electronic structure
was done by Sirvent et al. [237]. In this work the authors analyzed experimentally
atomic contacts of transition metals like Ni and Pt. They showed that these metals
exhibit a last plateau before breaking the contact with conductance larger that Gy,
while Au contacts are quantized. From the theoretical point of view they showed
that the difference between transition metals and noble metals like gold is due to the
contribution to the current of the d orbitals in the case of the transition metals.

Another interesting reference is the one by Yazdani et al. [238], in which the
authors measured the resistance of wires consisting of one and two individual Xe
atoms set in series using an STM. Both the measurements and the calculation based
on the above mentioned Lang method yield a resistance of 10> Ohms for the case of
one Xe atom and 10 Ohms for the case of two atoms. These resistances are much
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larger than the quantum resistance (~ 12.9 k) because the conduction through the
Xe atoms takes place through the tail of the 6s resonance of Xe, which lies very far
from the Fermi level. Maybe, the most important thing in this work is the idea that
the transport in these nanostructures can be understood in terms of the individual
electronic states of the atoms.

In the last part of this section we shall comment the experiment which motivated
the part I of this thesis, the experiment done by Scheer et al. [143] which we
commented extensively in section 2.5 in relation with the superconducting transport.
Here, we shall briefly remember this experiment and emphasize the consequences that
it had for the normal transport in atomic contacts.

As in any mesoscopic structure, in an atomic contact the electrical transport
takes place through independent conducting channels which are characterized by
its transmission coefficient 7; and whose contribution to the total conductance G
is GoT;, where Gy = 2¢2/h is the quantum conductance [95]. In the metallic con-
tacts only a few conducting channels contribute to the current. In the traditional
experiments that we have described so far it is only obtained information on the
contact total transmission 7' = Zfil T; through the measure of the conductance G
by using the relation G = GoT. It is evident that it would be very valuable to obtain
information on the individual transmissions of the different channels. In their work
Scheer et al. [143] showed that it is possible to measure the whole set {7;} in the
case of superconducting materials (see Ref. [143] or section 2.5 for details). Here-
after we refer to the technique designed by Scheer et al., which permits to obtain the
transmission distribution, as channel spectroscopy.

As we commented in section 2.5, Scheer et al. analyzed the superconduct-
ing current-voltage characteristics of Al atomic-size contacts using microfabricated
breakjunctions. From this experiment they obtained a set of fundamental conclu-
sions with respect to the normal electronic transport in these contact, and we next
remember some of them:

1. Even in cases in which G < G several channels contributes to the current. In
particular, in the Al last plateau before breaking the contact, where typically
G < (G, they found usually three channels and in some occasions two.

2. From the previous point it is deduced that one cannot even speak, at least in the
Al case, about conductance quantization in the case of G ~ Gy, questioning the
validity of conductance histograms to elucidate about the quantization [242].

3. The evolution of the conductance along a plateau arises from changes in sev-

eral individual channels. This indicates that the channel transmissions are
determined by the atomic configuration.
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Several fundamental questions immediately arose from this work: what is the
microscopic origin of the conducting channels in a metallic contact?, what properties
determine the number and transmission of the conducting modes in a given metallic
atomic-size contact? Our main aim for the part II of the thesis to answer these
questions.

We finish this section recommending to the reader interested in a review of this
topic the references [239, 240, 241].

5.2 Objective of the part II

As stated in the introduction, the aim of this part of the thesis is the theoretical study
of the electrical current in metallic atomic-size circuits. To be exact, our aim is to
answer the questions that we presented at the end of the previous section. Eventually,
we want to find out the nature, number and transmission of the conducting channels
in metallic atomic-size contacts.

As we commented in the historical review, the advances in nanofabrication tech-
niques allow us to fuel the dream that electronic devices can be shrunk from the
current micrometre-length scale all the way down to the single-atom or molecule
scale. Nowadays we are attending to the first steps toward what is already known as
Molecular FElectronics. For instance, a single Cgg molecule has been operated as an
amplifier [243], and a single carbon nanotube has been used to make a room temper-
ature transistor [244]. It seems that soon we will be able to design electronic circuits
atom by atom. A prerequisite for successful design is a knowledge of the relationship
between the macroscopic electrical characteristics of such circuits and the quantum
properties of the individual atoms used as building blocks. Our objective is to study
what determines the electrical properties, as the conductance, of atomic circuits. In
order to obtain clear conclusions, we shall concentrate ourselves in the analysis of
the simplest imaginable circuit: an one-atom contact between two metallic banks.

It is evident that in our way toward our aims we shall have to face some of the
traditional questions of this field:

What is the origin of the differences between contacts of different metals?

What is the influence of the contact geometry on the conductance?

What kind of atomic configurations are usually formed in these nanocontacts?

In which situations one could expect conductance quantization?

What are the simplest structures one can fabricate experimentally?, exist there
and are stable the one-atom contacts?
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Chapter 6

Microscopic origin of conducting
channels in atomic contacts

6.1 Introduction

In this chapter we shall determine the transport properties of atomic-size contacts.
Typically, we are interested in the current which flows through the contact. In the
case of metallic contacts, in which the Ohm law is usually verified at the voltages
we are interested in, the relevant quantity is the conductance or the resistance. In
principle, in order to determine the resistance of these atomic circuits one should take
into account different contributions: electron-phonon scattering, impurities, defects,
etc. However, in a metallic atomic-size contact the main resistance source is the
elastic scattering in the atomic neck walls. In particular, the number of transmitting
modes is control basically by the narrowest part of the contact. One has a situation
in which only a few conducting channels contribute to the current, a slight variation
in this number may give rise to a resistance change of the order of k2. Thus, it is
quite clear the main source of resistance is concentrated in the neck region. Then,
we shall concentrate in a suitable description of what happens in the neck region.
Furthermore, at the typical temperatures of the experiments (1 K) the inelastic
scattering length is of the order of 1 um, so we can neglect inelastic effects.

For describing the electronic structure and the transport properties of atomic con-
strictions we shall use an atomic orbital basis. Moreover, the use of a semiempirical
tight-binding description, as the one we follow, permits us to analyze the influence
of different ingredients on the correct description of the transport properties. In
particular, we believe that an adequate description needs at least the following three
ingredients:

e Chemistry: when one revises the literature, as we did in the previous chapter,
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one can see clear differences between contacts of different metals. For instance,
the conductance quantization only is observed in simple metals like Na or in
noble metals like Au, while it is not observed in metals like the transition ones.
Another clear difference is the different behavior of the conductance plateaus
upon elastic deformations. Furthermore, with the new technique introduced
by Scheer et al. [143, 145, 146] it has been observed that contacts of differ-
ent metals show different number of channels. All these facts unambiguously
indicate that for the proper determination of the current one needs a suitable
description of the contact electronic structure.

e Geometry: the histograms that one can find in the literature are not a proof
of the conductance quantization [242], but a proof that the different atomic
configurations give rise to different conductance values. For this reason we
have to analyze the influence of the contact geometry on the conductance.

e Charge neutrality: in metals the screening length is of the order of inter-
atomic distances, what implies that the local charge neutrality is approximately
verified. In an atomic circuit the atoms of the neck region see an environment
different from the one of bulk and one has to assure that the local charge
neutrality condition is verified.

Finally, this chapter based on Refs. [147, 146] is organized as follows. In section
6.2 we shall describe our model for an atomic-size contact based on a semiempirical
tight-binding description of the electronic structure. Section 6.3 is devoted to the
expression of the current in terms of the microscopic quantities of the model. In
section 6.4 we shall show the theoretical results for the transport through contacts
of different metals: sp-like metals like Al and Pb, transition metals like Nb and
simple and noble metals. Section 6.5 is devoted to the experimental results of Ref.
[146] in which the direct connection between conducting channels in an one-atom
contact and the valence orbitals of central atom is shown. We shall end this chapter
in section 6.6 by summarizing the conclusions.

6.2 Tight-binding model for an atomic contact

As commented in the previous section, it seems reasonable to choose an atomic
orbital basis for analyzing the electronic structure of an atomic-size system. This
choice has been successfully used in the context of the Scanning Tunneling Micro-
scope [123, 237, 245, 246]. Furthermore, the use of a local basis in combination
with Green functions techniques provide an efficient way of obtaining the transport
properties in terms of microscopic quantities [123, 237, 245, 247, 248]. In an atomic
orbital basis the electronic Hamiltonian adopts the usual form
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H = Z emc;raocmg + Z t,-angc;a’gcjgya, (6.1)
Q,0 ia#£jp,0o

where i, j denote the atomic sites, a, § are the different atomic orbitals (the number
of orbitals in each atom will be denoted by N,,;) and ¢ is the spin. We assume that
the hopping elements t;, jg only connect first-neighboring atoms 1. Thus, we must
decide how to choose the Hamiltonian parameters, what type of contact we shall
analyze, etc. The following paragraphs are devoted to the description of how we
shall take into account the ingredients mentioned in the introduction of this chapter.

There exist different empirical procedures for determining the parameters of the
tight-binding Hamiltonian (6.1) which are known to reproduce suitably the band
structure of bulk materials [249, 250]. We shall use the parametrization proposed
in Ref. [250] within the two centers Slater-Koster approximation [251]. Within this
two centers approximation one only needs a reduced number of matrix elements
between neighbors, for instance only four to describe sp bands, all hoppings can be
determined projecting adequately these matrix elements (see Ref. [251]).

As a minimum basis for the description of the transport in each metal we choose
the one formed for those orbitals which give a significant contribution to the density
of states at the Fermi level. Thus, for the case of superconducting metals of the
group IIT and IV, like Al or Pb, we only include the s and p orbitals, while for
transition metals like Nb we have to include the d orbitals.

In an atomic contact the local environment in the neck region is very different
to that of the bulk material and therefore the use of bulk parameters in the Hamil-
tonian requires some justification. In first place, the inhomogeneity of the contact
geometry can produce large deviations from the approximate local charge neutrality
that typical metallic elements must exhibit. Within the tight-binding approximation
this effect can be corrected imposing local charge neutrality through a self-consistent
variation of the diagonal energies €;, [252]. As discussed below, this self-consistency
in the neck region turns out to be crucial for the correct determination of the con-
ducting channels. Regarding the hopping elements, t;, jg, although we shall initially
consider them as being equal to the bulk values in order to represent a neck geom-
etry with bulk interatomic distances; we shall show that the results are robust with
respect to fluctuations in the hopping elements induced by disorder in the atomic
positions.

So far we have discussed two of the three ingredients that we mentioned in the
introduction, namely, the chemistry of the contact and the importance of the charge
neutrality condition. We shall now concentrate in the third one: the contact ge-
ometry. Indeed, this is the greatest problem that we face, because in a particular
experiment the actual contact geometry is unknown. From the theoretical point

!This condition may easily relaxed.
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of view one could determine the atomic positions by means of molecular dynamics
simulations [210, 211, 212, 213]. However, for extracting conclusions as clear as pos-
sible about the nature of the conducting channels we shall adopt an static picture
assuming a given geometry. To be precise, we shall concentrate in the analysis of the
simplest contact, an one-atom contact like the one shown in Fig. 6.1. The existence
of one-atom contacts has been pointed out since several years ago [214, 82]. However,
there is no a conclusive proof of that the smallest contacts which are fabricated are
actually one-atom contacts. As we show below, the combination of the theory which
we present in this chapter together with recent experiments which use the channel
spectroscopy technique gives a clear evidence that the one-atom contacts are stable
and reproducible [146].

Even for an one-atom contact there exist many possibilities for its geometry.
Fig. 6.1 shows the ideal geometry which we shall usually analyze. It consists of a
close-packed fcc structure grown along the (111) direction (hereafter denoted as z
direction), starting from a central atom. The neck region, which contains N atomic
layers, is built starting from the central atom and choosing at each side the nearest-
neighbors. This gives rise to a sequence: -6-3-1-3-6-, where each number indicates
the number of atoms in the corresponding layer. Finally, this structure is connected
to two semi-infinite crystals describing the metallic leads. The choice of the (111)
direction is supported by molecular dynamics calculations which indicate that this
direction is preferred. Even in cases when one starts from a different crystallographic
direction, after stretching the contact close-packed structures tend to be formed (see
for instance Ref. [212]). Of course, real contacts are not exactly like the one depicted
in Fig. 6.1, so we have to study the effect of disorder in atomic positions and different
crystallographic directions. Furthermore, by taking different values of N we can
describe both cases of long and short necks.

6.3 Current and transmission in an atomic contact

In this section we determine the current through the atomic contact described in the
previous section in terms of the microscopic quantities which appear in Hamiltonian
(6.1). For the sake of clarity, the detailed derivation of the current expression for
an atomic contact of arbitrary geometry is described in Appendix E. In this section
we only give some indications of such derivation and we mainly concentrate in the
understanding of the final result.

Our aim is to obtain an expression for the electrical current through an atomic
contact due to a constant bias voltage applied between the leads. For this purpose,
it is convenient the use of nonequilibrium Green function techniques [247]. In par-
ticular, we make use of the Keldysh formalism [119], described in Appendix A. This
technique allows us to determine perturbatively the Green functions of a system ar-
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N Layers

Central Region

Figure 6.1: Idealized geometry for an one-atom contact (see text for description).
The layers are numbered from 1 to IV starting from the left lead.

bitrarily out of equilibrium. In our problem we follow a perturbative scheme in which
we divide the system into three regions: the central region formed for the contact
neck and the two leads or semi-infinite crystals (see Fig. 6.1). We treat the coupling
between the central region and the leads as a perturbation. As this perturbation is
one-electron we can carry out the perturbation expansion up to infinite order. Thus,
it should be clear that this formalism permits us to obtain the exact solution of our
atomic contact model.

Within this formalism the current can be written with an expression formally
equivalent to that of scattering theory [95]. The current evaluated between the left
lead and the central region is given by (see Appendix E and Ref. [253])

2e [

1=5 [ TEBV)ILE) - fr(B)]dE, (62
—00

where fr, r are the Fermi-distribution functions for the (left,right) leads and T'(E, V)

is an energy and voltage dependent transmission probability, which can be written
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in terms of the (retarded and advanced) Green functions of the system G"%(E) as 2

T(E,V) = 4Tr |ImSL(E — eg)éqN(E)ImiR(E + e%) T4L(B)| . (6.3)

In this expression G and G%, are matrices whose elements are the Green func-
tions connecting the layer 1 and IV, and by r,r are the self-energy matrices describing
the coupling of the central region to the leads. These matrices have a dimension equal
to the number of orbitals in the first neck layer which is in contact with the left and
right leads (Mp, r) and have a simple expression in terms of the Green functions of
the uncoupled electrodes

(EL,R(E))m 5= Do tiokr i (Bt s (6.4)
’ kJl€L,R;~,0

where the functions ia,jp aTe the advanced Green functions of the isolated semi-

infinite crystals and can be evaluated numerically by standard decimation techniques

[254].

In principle, the expression (6.2) gives the current for arbitrary bias voltage
due to elastic processes. However, we are interested in the voltage range which is
probed in the experiments with superconducting contacts, which is of the order of
the gap parameter A (typically a few tenths of meV') [143]. For this bias range
normal metallic systems behave Ohmically. Even when the atomic-size contacts
exhibit resonances around Er [252], their width will in general be much larger than
A and the linearization of Eq. (6.2) is appropriate. In this linear regime the zero-
temperature normal conductance can be expressed as

2 2
G= %T(EF,O). (6.5)
By using the cyclic property of the trace, G adopts the usual form of the Landauer

formula

G = T [i(ER) (Er)] (6:)

where the transmission matrix ¢ is defined as

1. (6.7)

i(B) =2 [nS0(B)] " Gty (B) [tmSin(B)

>The Green functions G™*(E) are formally defined as G™*(E) = [E +i0" — H]™!, where H is
the Hamiltonian (6.1).
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The existence of (Im3)'/2 as a real matrix is warranted by Im3 being positive
definite. Moreover, #t! is a hermitian matrix having M|, real eigenvalues, T;, which
are bounded by zero and one 3. Associated with these eigenvalues there will be My,
eigenvectors, which in our model are linear combinations of the atomic orbitals in
the layer which is in contact with the left lead. These eigenvectors define the way in
which the atomic orbitals contribute to each conducting channel.

Summarizing, we have seen that the linear conductance can be expressed as a
sum of independent contributions

2¢2 Mr
G= = >, (6.8)
i=1

where T} are the eigenvalues of #i' at the Fermi level. This formula together with the
expression of the transmission (6.7) are the main technical results of this chapter.
The expression of the conductance in terms of the channel transmissions allows us to
study not only the total conductance but also the its decomposition into independent
modes, what will help us to understand how the electrical current flows in atomic
contacts of different metals. This will be the aim of the following section, but the rest
of this section is devoted to the understanding of the previous expressions and we
shall try to extract some conclusions using very simple arguments. To be precise, we
shall try to get certain intuition about what is the influence of the different physical
ingredients.

In first place, let us see how the previous expressions may help us to understand
the role of the electronic structure in the electrical current. What we look for is a
simple answer to the question: how the atomic orbitals participate in the conducting
channels? In order to answer this question we go back to the analysis of Eq. (6.7).
Although the dimension of #' can be arbitrarily large depending on the size of the
central region, the actual number of conducting channels (those with a non-vanishing
transmission) are limited by the number of orbitals in the narrowest section of the
neck. In particular, we have N, channels in the case of a single-atom contact.
This fact can be shown by the following simple argument. As the division between
“central region” and leads is somewhat arbitrary, one could always redefine the leads
for the geometry of Fig. 6.1 in such a way that the new central region would only
consist of the central atom. Then, the new lead self-energy matrices i?'L r would
have a dimension of just N, and the new transmission matrix would only admit
Ny eigenmodes. Current conservation along each conducting channel ensures that

the nonvanishing eigenvalues 7; and 7] must be the same *.

3All these properties can be deduced from the analytical properties of the Green functions.
4Furthermore, from the computational point of view it is more convenient to evaluate the trans-
mission in the central atom, because there its dimension is minimum.
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The above simple argument already allows an estimate of the maximum number
of relevant conducting channels in an one-atom contact. Thus, for an sp-like metal
like Al or Pb, this number should be typically four, while for a transition metal like
Nb (having a negligible weight of p orbitals at E) this number would be of order
six. As discussed below, this rough estimate should be taken as an upper bound.
The actual number of conducting channels can be smaller as some of the channels
can carry no current due to symmetry considerations 5,

We have just seen that the atomic orbitals control the number of channels, but
what happens with the transmissions of such channels?, what is the relation between
the density of states in the neck region and the transmissions? It is evident that
the precise answers to these questions cannot be given until we do the detailed
calculations for real contacts, but at least we can extract an idea about such answers
by means of general considerations.

Following the argument of the previous paragraphs, one can write the conduc-
tance by means of Landauer formula (6.6) with the transmission evaluated at the
central atom

1/2

]1/ Y6 () [mSr(B)] " (6.9)

i(B) = 2 [ImS,,(B)
where now the self-energies describe the coupling between the central atom and
the electrodes and have a dimension equal to Ny5. On the other hand, G, is the
retarded Green function at the central atom, which can be expressed in terms of the
self-energies as

N ~ ~ -1
Gro(B) = [(BE+i0%)i - & - S1(E) - Sp(B)] (6.10)

where 1 is the identy matrix and €, is a diagonal matrix containing the atomic levels
of the central atom.

In order to simplify the discussion let us now assume that we only have an orbital
per atom with a level €. In this case the self-energies and the Green function G7,

®The fact that the maximum number of channels be N, is a consequence of working in a first-
neighbors scheme. How is the maximum number of channels modified by the inclusion of interaction
among further neighbors? Strictly, if we had coupling between atoms on the left and right of the
central atom in the structure of Fig. 6.1, the actual number of channels would be the number of
bonds which connect both electrodes, exceeding thus N,,,. However, we are only interested in those
channels with a non-negligible transmission. A hopping element between second-neighbor atoms is
typically an order of magnitude less than one between first-neighbor atoms. As the transmission
probability (for a channel in the tunnel regime) is at least proportional to the hopping square, we
have that the channels due second-neighbor couplings are usually two order of magnitude less than
the ones we are considering. Moreover, in structures like the one shown in Fig. 6.1 the atoms on
the left and right sides of the central atom are not even second-neighbors.
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are complex scalar quantities, giving rise to only one channel. The local density of
states at the central atom p.(F) is

1
pelB) = ——ImGL(E)

1 Im {S.(E) + Sr(E)}

= ;[ET—GO——Re{ZL(E)4-2R(E)H2+¢hn{ZLCE)+_ER(E)H2a11U

By defining the scattering rates I'y, g(E) = Im {X r(E)} and the effective level
€(E) = ¢+ Re{ZL(F) + Xr(E)}, we can write the density of states p. as

pe(E) = = EL *Ln 2 (6.12)
T™(E—¢)+ (I +Tk)
what looks like a Lorentzian, although we must keep in mind that both the scattering
rates and the effective level depend on energy. Here we can see clearly the two effects
that the couplings with the electrodes provoke on the central atom. First, they
renormalize the atomic level position €y, and secondly the couplings provide a width
I'r, + T'g to the bare level, which is typically of the order of several electronvolts.
On the other hand, one can see that the transmission probability T'(E) = tt is
given by a Breit-Wigner-type formula as

- AT T
T = P+ (mrto)?

This expression is quite similar to that one finds in the context of resonant tunneling
through a single level. Anyway, one must keep in mind that here the “resonant
tunneling” takes place through a level whose width is of several electronvolts. Thus,
in the case of one orbital per site we see that the transmission and the density of
states have a similar shape, as it is shown in Fig. 6.2 for the trivial case of energy-
independent scattering rates (I'z g). Let us remind that what really matters for the
transport is the transmission probability at the Fermi level T'(Er). Thus, in order
to have a perfectly transmissive channel, the Fermi level should lie in the center
of the “resonance”, and moreover we should have a symmetric situation I'f,(Ep) =
T'r(EFr) ®. Thus, the fact of having a certain transmission depends on the Fermi
level position Er, which depends on the band occupation by means of the charge
neutrality condition. This reveals the importance of this ingredient in our recipe.
In particular, if one talks about conductance quantization, he should explain what
the robust mechanism operates to make that the Fermi level lies in the center of the
band. It is not difficult to figure out situations where the Fermi level lies far from

(6.13)

5This may seem a very restrictive condition, but let us remember that the resonances are very
broad.
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the resonance. An illustrative example is shown in the work done by Yazdani et al.
in which they analyze the transport through individual atoms of Xe [238].
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Figure 6.2: Academic example of one orbital per atom: transmission and local den-
sity of states (LDOS) at the central atom as a function of the energy. Parameters:
PszRzleV,ezﬂeV.

One should be careful and must not to go too far with the analogy between
the transport through an one-atom contact and the resonant tunnel. The simple
example of Fig. 6.2 may lead us to think that the current is exclusively controlled
by the density of states at the central atom. However, in the expression of the
transmission (Eq. (6.7)) one has information on the rest of the contact by means
of the self-energies. Indeed, instead of resonant tunneling through the levels of the
central atom, we have a resonant tunneling exploring the states of the neck region.
In this sense one can say that we are doing atomic cluster spectroscopy. It will not
always be so simple to do the correspondence between the density of states at the
central atom and the transmission, but always this local density of states (LDOS)
will help us to understand the conductance results.

The next question could be: what happens in the case of several orbitals per
atom? The situation becomes more complex, but to get an idea let us consider the
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following example which is totally academic. Let us assume two levels per atom ¢;
and e2. We assume that the self-energies 3, g are identical and equal to

. {10
ZL,R_ZP<O 1), (6.14)

where T' is an energy-independent scattering rate. Thus, the problem is diagonal
giving rise to two independent channels with transmission probabilities

412
T12(F) = 5 , (6.15)
(E — 61’2) 4412
and the local density of states in the two orbitals of the central atom will be
1 2T
pra(B) =~ (6.16)

T (E — e19) 4+ 412

Both expressions are represented in Fig. 6.3. If for instance we have an electron per
atom and spin in the conduction band, the charge neutrality condition makes that
the Fermi level lies where Fig. 6.3 shows. When we have a look at the transmission,
we can see that the position of the Fermi level makes that the T; have an intermediate
value between 0 and 1.

Usually the electronic transport has been understood in terms of completely open
channels or completely closed ones (transmission 1 or 0), specially in the context of
two-dimensional electron gases. However, we see how in the atomic contacts the
concept of semi-open channels with an intermediate transmission arises in a natural
way. From the previous example it is easy to understand that in situations where
there are several orbitals contributing to the current it is possible the appearance of
channels with intermediate transmissions, even in absence of disorder. The reason
is that in this case it seems rather difficult to satisfy the “resonant” condition for
all channels at the same time. As we shall show in the next section, this is the
situation that takes place in contacts made of sp-like metals like Al or Pb and
transition metals like Nb. Thus, it seems rather complicated that in these metals
the conductance quantization appears, leaving this possibility for the case of simple
and noble metals.

The previous examples and arguments are not rigorous demonstrations and the
definitive conclusions will come out with the calculations of real contacts. However,
we hope that they serve to understand the results that will be obtained with the
complete calculations.

In the same way we have qualitatively learnt about the importance of the orbital
structure and the charge neutrality, we can now understand briefly what is the
influence of the contact geometry. The geometry or local environment of the central
atom determines the coupling and then the shape and width of the bands, as well as
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Figure 6.3: Academic example for the case of two orbitals per atom. The upper
panel shows the transmissions as a function of the energy. Lower panel shows the
densities of states for each orbital of the central atom. The Fermi level is indicated
by a dashed line.

the central atom level positions. Furthermore, they control the atomic levels of the
cluster.

Let us continue with some technical comments. One of the advantages of the
use of Green functions is that one does not need the existence of ideal leads where
the different channels are independents, as it is assumed in the scattering formalism.
Here in principle, we are dealing with an infinite system in which if there is disorder
we will never have a trivial decomposition of the modes.

Some authors have stated that in an atomic contact there are no well-defined
channels due to the presence of disorder in the atomic positions. In a real atomic
contact there is neither translational symmetry nor perfect crystal lattice symme-
try. This implies that neither the linear momentum of the electron nor its crystal
momentum are good quantum number, but this does not mean that one cannot di-
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agonalize the problem, as we have shown here, describing the transport in terms of
independent modes.

Atomic circuit

Figure 6.4: An one-atom metallic circuit may still have certain inner structure de-
pending on its orbital structure. In this sense it can be viewed as a set of resistances
associated in parallel.

Finally, let us summarize some of the ideas that we have discussed so far. Con-
centrating ourselves in the one-atom contact, we have seen that the valence orbitals
of the central atom control the number of channels. Moreover, we have seen the
relation between the local density of states and the transmission as well as some
simple conclusions on the conductance quantization in certain metals. But to con-
clude, we would like to remark here the following idea. Usually, a single-atom contact
has been seen as the most elementary circuit one can fabricate, assuming that an
atom-contact can only sustain one channel with a resistance of Ry ~ 12.90092 (see
Fig. 6.4). However, we have shown that when one looks at this contact in detail,
this circuit has still an inner structure provided by the atomic orbitals. Thus, this
contact can be represented as a set of resistances associated in parallel (see Fig. 6.4).
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The number and nature of these resistances are determined by the valence orbitals of
the metal. Moreover, the value of the individual resistances are not only determined
by the valence orbitals of the central atom, but also by its local environment. Let us
recall that the resistance of a quantum circuit like this is a non-local quantity, which
depends on the systems at which is connected. Finally, our aim for the next section
is to determine the number, nature and value of these resistances in parallel in the
case of real contacts of different metals: sp-like metals, transition metals, etc.

6.4 Analysis of different metallic atomic-size contacts

In this section we shall analyze the theoretical results obtained with the model
described in the previous sections. We shall cover a wide range of metals, investigat-
ing specially superconducting elements which allow us an experimental comparison.
Thus, we shall study sp-like metals like Al and Pb, transition metals like Nb, and
we end this section commenting the case of simple and noble metals.

6.4.1 sp-like metals: Al and Pb

First, we shall analyze sp-like metals of the group IITA and IVA of the periodic
table. As examples we take Al and Pb, two superconducting elements which permit
an experimental comparison using the channel spectroscopy [143] (see section 6.5).
Let us start by analyzing in detail the case of Al contacts which was the main
motivation of this work [143].

As stated in section 6.2, for these metals we choose as a minimum basis that
formed by the s and p orbitals. Moreover, we describe the p band with the basis
formed by the orbitals p;, py, p, whose wave functions are real (see for instance Ref.
[249]).

Al contacts

The atomic configuration of Alis 3s23p!, what gives rise to a conduction sp band with
three electrons per atom. Fig. 6.5 shows the Al bulk density of states decomposed
in orbitals after Ref. [250]. As it can be observed, the 3s and 3p bands give the main
contribution to the density of states at the Fermi level. The e, and t3, bands refer to
the 3d bands, which have certain weight at the Fermi level but they are practically
empty, and by the moment we do not include them in our minimum basis . The
levels 3s and 3p are separated by an energy of 7.7 eV'.

"In chapter 7 we shall show that these d orbitals have certain influence in the value of the total
conductance due to the hybridization with the p orbitals. However, their inclusion does not modify
the main conclusions of this chapter.
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Figure 6.5: Al bulk density of states: the total one and the decomposition into
orbitals [250]. The e, and ty, refer to the 3d bands.

While the simple argument discussed in section 6.3 predicts a maximum number
of four channels for a one-atom contact, the self-consistent calculation for the ideal
geometry of Fig. 6.1 yields only three channels with nonvanishing transmission. In
order to be sure that the results are not a consequence of finite-size effects, we have
analyzed contacts with different number of layer (N). We have found that although
the contact transmission depends on its size, neither the number of channels nor
their character depend on the system size. Thus for instance, in Fig. 6.6 we show
the transmission eigenvalues as a function of energy for the ideal geometry (without
disorder) for the case of a short neck (N = 1) and a long neck (N — co) 8. As it can

8The case N — oo was done using a recursive method described in [255], which is specially
adapted to efficiently calculate local quantities like the density of states in a given atom. This
method permits us to include a large number of atomic layers. In particular, in Fig. 6.6 100 atomic
layers (> 10° atoms) were introduced.
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be observed, the transmission values change slightly, but there are certain features
that are common to both cases:

1.0

(8)

Figure 6.6: Transmission eigenvalues as a function of energy for Al one-atom contacts
in the two extreme cases: (a) short neck (IV = 1) and (b) long neck (N — c0) (see
footnote 8). The solid curve corresponds to the nondegenerate sp, mode and the
dotted curve corresponds to the twofold degenerate p, — p, mode (see text).

1. There are three channels having a significant transmission around the Fermi
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energy, the fourth one (not shown in Fig. 6.6) being almost closed for every
energy.

2. The total transmission is close to one around the Fermi energy increasing to
almost three at higher energies.

3. There is a nondegenerate mode which is widely open for almost every energy.

4. The second transmission eigenvalue is twofold degenerate and has a small value
around the Fermi energy.

As commented in the previous section, the analysis of density of states may help
us to understand better the results. Fig. 6.7 shows the local density of states (LDOS)
at the central atom for the case of one atom between two surfaces, i.e. for the case of
Fig. 6.6(a). Panel (a) shows the LDOS separated in the different orbitals and panel
(b) shows a natural decomposition (as we shall see below) in a sp, hybrid orbital
and in a p; or p, orbital. Let us comment some interesting features of the LDOS
at the central atom. As can be observed, there is a splitting between the p, and
P,y orbitals, which is due to fact that the contact geometry breaks the symmetry
of bulk material (let us remember that z is the direction of the contact axis). This
fact gives rise to a p, “effective level” with a lower energy, causing that the p, band
be hybridized with the s one forming a sp, band. Moreover, the larger coupling
between the central atom p, orbital and its neighbors provokes that the p, band
be broader than the p, and p, bands. Another remarkable feature of the central
atom LDOS is the degeneracy of the p, and p, bands. This is due to the rotational
symmetry of the ideal geometry around the z axis. It is evident that this degeneracy
will be broken by the introduction of disorder in the constriction. Finally, notice
the position of the Fermi level. The charge neutrality condition tell us that we must
locate three electrons in the central atom. This implies that the Fermi level lies at
the beginning of the p,, bands, what makes that the corresponding channels have
a small transmission.

Let us next analyze the nature of the conducting channels. In the case of an one-
atom contact we can classify the different modes according to the orbital character
of the eigenvalues in the central atom (see Eq.(6.9)). Thus, every channel is a linear
combination of the central atom orbitals as follows

|C(mal Z) = Cs,i|3>c + Cpy i |px>c + pr,ilpy>c + Cp;,i‘}’z)c; (617)

where | ). indicates the corresponding orbital of the central atom. In order to
illustrate the relative weight of the different orbitals in each mode, we show in Fig.
6.8 the modules square of the coefficients for each mode (case N = 1), normalized
to the corresponding channel transmission. As can be observed in Fig. 6.8, the
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Figure 6.7: Local density of states (LDOS) at the central atom in an Al one-atom
contact with NV = 1. (a) LDOS decomposed into the four orbitals. (b) LDOS
decomposed into sp, and p;, bands.

dominant mode is a combination of the s and p, orbitals. For this reason we denote
this mode as sp,, as we did in Fig. 6.6. The second eigenvalue, which is twofold
degenerate, lives in the subspace formed by p, and p, orbitals 9. Hereafter we refer
to this mode as p; . The fourth channel, which is almost closed for every energy, is
the antisymmetric combination of the s and p, orbitals. In Appendix E we explain
in detail the mathematical reason of this destructive interference. First, due to the
contact geometry there is a splitting between the p, and p, — p, orbitals, causing

9As this mode is twofold degenerate, one can choose the character as it is shown in the figure.
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Figure 6.8: Orbital character of the conducting channels in an Al one-atom contact.
The dominant mode (mode 1) is a combination of the s and p, orbitals. The twofold
degenerate mode (mode 2, mode 3) lives in the p, — p, subspace.
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that the problem of determining the transmission divides into two (2 X 2) problems.
Thus, we have the s — p, subspace, where the fourth channels lies, and the p, — p,
subspace. As explained in Appendix E, the reason for having a vanishing eigenvalue
in the s — p, subspace is that the hoppings connecting the central atom and the
electrodes verify the approximate condition tsstp,p, ~ tsp,tp,s, Which is verified for
almost all materials. Thus, we may say that this channel is closed due to a destructive
interference due to the symmetry of the s and p, orbitals.

100 mn .

Number of Points
[é;]
o

0.0 02 04 06 08 1.0
Transmission

Figure 6.9: Typical distributions of the transmission eigenvalues for an Al one-atom
contact when disorder in the atomic positions is included (the maximum fluctuation
in the hopping parameters is of the order of 100% with respect to the bulk values,
which corresponds to variations of the order of 20% in the interatomic distances).
In this case the central region has 7 atomic layers. The two modes corresponding to
the twofold degenerate eigenvalue in the idealized case exhibit a similar distribution.

The results shown so far are in a good agreement with the experimental findings
of Scheer et al. [143] (see also Chapter 5). However, no real contact has exactly the
ideal geometry that we have analyzed. The theoretical conclusions should be robust
against the inclusion of disorder. We have studied this effect by introducing random
fluctuations in the atomic positions of the idealized structure, assuming the distance
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dependence on the hopping parameters as suggested by Harrison [249], which tell us
that the s and p hoppings decay with the square of the distance between neighbors.
Although there are certain features like the twofold degeneracy which, as expected,
disappear with the inclusion of disorder, the gross features found for the ideal geom-
etry are nevertheless robust. This fact is illustrated in the histograms shown in Fig.
6.9 for the individual transmissions. Although the channels are no longer sp, and p;
exactly, we still keep on denoting like this to indicate their approximate character.
Furthermore, the p, and p, modes have similar distributions and we only show an
histogram for them. As can be observed, the decomposition of the total transmission
consists of a dominant channel with transmission between 0.6 and 0.9, and two more
with small transmissions between 0.1 and 0.3. Maybe the most remarkable thing is
that the fourth channel remains closed with a transmission < 1072. As we explain
in Appendix E, the condition by means of which the antisymmetric sp, channel
remains closed is quite robust against the inclusion of disorder (see Appendix E).
These predictions are consistent with the experimental results of Ref. [143] for the
case of the Al last plateau.

Finally, we have checked that other factors, like the inclusion of second-neighbors
hoppings or different crystallographic directions, do not modify the main conclusions
about the number and nature of the conducting channels. This is an indication of
that the channels are basically controlled by the central atom. The only difference
that one finds is in the transmissions of the individual channels. For instance, we
have found that the total transmission in a contact grown in the (100) direction
tends to be greater that the one of a contact grown along the (111) direction. Thus,
we can say that the local environment of the central atom mainly control the channel
transmissions.

Pb contacts

After the analysis of Al contacts, one wonders how these results are generalized for
the case of an arbitrary sp metal. From the analysis of the previous subsection one
could conclude that the number of channels will be three for every sp-like metal,
because this number only depends on the orbitals which play a role. Moreover,
one would expect a similar classification for the channels: a sp, channel and p; ,
channels. On the other hand, the main change in the transmission can be due to the
valence of the metal, since this will determine where the Fermi level lies. To confirm
these impressions, we shall analyze the case of Pb, which has a different valence and
is also a superconductor, allowing thus the experimental comparison.

Pb is a metal of the group IVA with an electronic structure 6s26p?, which gives
rise to a sp conduction band with four electrons per atom. Fig. 6.10 shows its bulk
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Figure 6.10: Pb bulk density of states: the total one and its decomposition into
orbitals [250]. The bands ey and o4 refer to 6d bands.

density of states after Ref. [250] 0. In its decomposition into orbitals we see that the
main contributions around the Fermi level come from the s band and specially from
the p one. On the other hand, the d bands are practically empty and do not play an
important role. The 6s and 6p energy levels are separated 10 eV approximately in
the bulk material.

Fig. 6.11 shows the local density of states at the central atom and the transmis-
sion as a function of energy for an Pb one-atom contact. The result corresponds to
the ideal geometry of Fig. 6.1 with N = 1 . With respect to the transmission,

0Tn this calculation of the Pb bulk density of states spin-orbit coupling has not been included.
This effect can be relevant in the case of Pb.

1 As in the Al case, this is a representative case of what happens for any number of layer in the
neck contact.
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Figure 6.11: Local density of states at the central atom and transmission as a function
of energy for a Pb one-atom contact. The LDOS has been decomposed into a sp,
band and a p, — py band. We find three transmission eigenvalues: one with sp,
character and a two-fold degenerate with p, — p, character.

there are several remarkable features:

1. There are three channels with non-negligible transmission, the fourth one is
almost closed for every energy (T; < 1073) and is not shown in Fig. 6.11.

2. The total transmission is ~ 2.8 around the Fermi level.
3. There is a mode which is open for a wide range of energies.
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4. The second transmission eigenvalue is two-fold degenerate and is almost per-
fectly open around the Fermi level.

As it can be observed in Fig. 6.11, the energy dependence of both the density
of states and the transmission is similar to the ones of Al case. This implies that
the number of channels and basically their character are the same as in the Al case.
However, there is an important difference. As in the Pb case there are four valence
electrons, the Fermi level lies at higher energies than in the Al case. To be precise,
the Fermi level lies around the center of the p bands where the three channels are
almost perfectly open. This implies that the total conductance, in the case of Fig.
6.11, is of the order of 2.8. As we shall show in Chapter 7, the fact that the Fermi
level lies in the center of p bands has also repercussions in the behavior of the Pb
last conductance plateau, which exhibits a different tendency to the one of Al.

Fig. 6.12 shows the orbital character of the different channel in the same way
we did in Fig. 6.8 for Al. As can be seen, the decomposition is similar to the one
found for Al. We have a mode which is a combination of the s and p, orbitals,
and the two-fold degenerate lives in the subspace p, — p,. The fourth channel is a
combination of the s and p, orthogonal to the one of mode 1, and it remains almost
closed for every energy for the reason explained in the Al case.

Thus, we have confirmed the conjecture that we did at the beginning of this
subsection, in the sense that the number and nature of the channels only depend on
the number and nature of the valence orbitals of the central atom.

6.4.2 Transition metals: Nb

As an example of transition metal we shall next study one-atom contact of Nb, a
metal which is superconductor below 9.26 K, and in the next section we shall show
an experimental comparison using the channel spectroscopy.

Nb is a transition metal whose atomic structure is 4d*5s', with five valence
electrons. Fig. 6.13 shows the bulk density of states [250]. As can be observed, the
main contribution around the Fermi level come from the s and d bands. The p bands
(coming from the 5p orbitals) is practically empty and we do not include them in the
calculations. For describing the d bands we choose the basis formed by the orbitals
Ay, dyz, dyzy dy2_,2 and d,», whose wave functions are real (see for instance Ref.
[249]).

As commented in section 6.3, in this case the maximum number of conducting
channels is expected to be six due to the contribution of 5s and 4d orbitals. The
idealized one-atom contact geometry yields in this case a total transmission between
2 and 3 depending on the number of layers in the central region. The channel decom-
position shows that this total transmission is mainly built up from the contribution
of five conducting channels, and in some occasions six depending on the size of the
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Figure 6.12: Orbital character of conducting channels in a Pb one-atom contact.
The mode 1 is a combination of s and p, orbitals and the two-fold degenerate mode
(mode 2, mode 3) lives in the subspace p; — py.

central region. Fig. 6.14 shows the transmission for the case of a long neck, obtained
by means of the recursion method commented in footnote 8. We believe that this is
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Figure 6.13: Nb bulk density of states: the total one and its decomposition into
orbitals [250]. The bands ey and o4 refer to 4d bands.

the most representative situation. As can be observed, the d bands cause a strong
energy dependence of the transmission eigenvalues, with typical energy scales of the
order of 0.5 eV. The s and d,» hybridize strongly and give rise to the conducting
channel with highest transmission around Er (mode 1 in Fig. 6.14). The almost
closed channel (mode 6 in Fig. 6.14) corresponds to the orthogonal combination of
these two orbitals. There also appears a twofold degenerate channel with transmis-
sion ~ 0.7 and another twofold degenerate channel with transmission ~ 0.3 '2. The
total transmission is 2.5 for this case.

Let us analyze in more detail the origin of the transmission decomposition in

2This double degeneracy is due to the symmetry of the ideal geometry and it is also due to the
fact of that we have not taken into account the splitting between the different d levels in order to
simplify the analysis of the problem.
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Figure 6.14: Transmission eigenvalues as a function of energy for a Nb one-atom con-
tact for the long neck case (N — oo, see footnote 8). Notice the twofold degeneracy
of modes 2-3 and 4-5.

the case of this transition metal. As usual the study of the density of states will
help us for this purpose. Fig. 6.15(a) shows such density at the central atom for
the case of the ideal geometry with N = 1, decomposed into the six orbital that we
are considering. As one can see, there are two twofold degeneracies due to contact
symmetry. This double degeneracy is reflected in the transmission, giving rise to two
twofold degenerate modes, as can be observed in Fig. 6.15(b). It is evident that these
degeneracies will disappear in a real contact due to the presence of disorder. As can
be observed, for the case of one atom between two surfaces we have a non-negligible
contribution of the sixth channel.

The symmetry of the orbitals controls again the nature of conducting channels.
Fig. 6.16 shows the character of the modes defined as in the same way as for Al and
Pb. We can see that the dominant channel is, as we said above, a combination of
the s and d,» orbitals (mode 1 in Fig. 6.16). The orthogonal combination of these
two orbitals gives rise to a channel with transmission ~ 0.3 at the Fermi level (mode
4 in Fig. 6.16). This is similar to the situation that takes place in sp-like metals for
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transmission
¢ o ¢ ¢

Figure 6.15: (a) Local density of states at the central atom and (b) transmission
eigenvalues as a function of energy for a Nb one-atom contact for the short neck case
(N =1). Notice the degeneracy of modes 2-3 and 5-6. The Fermi level position is
indicated by a vertical dashed line.

the dominant channel and the closed one. On the other hand, the two modes with
transmission ~ 0.7 (modes 2 and 3 in Fig. 6.16) are combinations of the d,, and d,,
orbitals, and d,, and dxg_yz. At the Fermi level they have a dy, and d,, character
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respectively, what is similar to the decomposition in channels p, — p, in the sp-like
metals. Finally, the other two modes with transmission ~ 0.1 (mode 5 and 6 in
Fig. 6.16) are the orthogonal combinations to the previous two modes, having at the
Fermi level a character dy, and d,2_,2 respectively.

In summary, in the case of contacts of transition metals the d orbitals play a cru-
cial role in the transport properties, providing additional conducting channels [237].
In general, this implies that in the context of atomic circuits the transition metals
are better conductors than other types of metals, inverting the typical situation that
takes place in macroscopic circuits. The contribution of the d orbitals provokes that
the last plateau conductance in transition metal contacts be usually greater than the
quantum [82, 237], thus there is no conductance quantization in this case.

6.4.3 Simple metals and noble metals

Our theory, as well as the experimental results that we shall show in the next section,
show that atomic contacts of metals which have an important contribution from the
p and d orbitals do not necessarily, even in the one-atom case, exhibit an integer
number of perfectly transmitting modes. In other words, there is no conductance
quantization neither in the sp-like metals nor in the transition metals.

This situation is at variance with that of simple metals like Na or noble metals
like Au, Ag and Cu, in which the conductance exhibits certain tendency to adopt
multiples of the quantum, specially in the last plateau where G ~ Gy [214, 82, 216,
219, 223]. Traditionally, there is the extended belief that this case is well-understood.
The free electron models obtain the conductance quantization in these metals ad hoc
and some tight-binding calculations also show it [248]. But, it is difficult to find
in the literature an argument explaining why the quantization is so robust, in the
sense that is not affected by disorder and remains along the last plateau (which is
completely flat). Within our model these metals are described simply with a s band
with one electron per atom. Therefore, in this case we obtain a single conducting
channel. But still one has to explain why this channel is usually completely open.
A possible explanation has been pointed out in a recent paper by Levy Yeyati et al.
[252]. In this work it is shown the possibility of the existence of resonances in the
local density of states in contacts of monovalent metals. Due to the charge neutrality
condition the Fermi level lies in the center of a resonance giving rise to a quantum
conductance for the case of an one-atom contact. Moreover, this result is robust
with the inclusion of disorder.

In the next chapter we shall analyze the different tendencies of the conductance
plateaus under elastic deformations. In particular, we shall study the case of Au
contacts, which shows a flat last conductance plateau. Thus, we postpone the results
for a monovalent metal until that chapter. Let us say that the results that we shall
show are in agreement with the ones obtained in Ref. [252].
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Figure 6.16: Orbital character of the channels for the Nb case of Fig. 6.15. The
nature of each channel is indicated in each panel and the Fermi level position is
indicated with a vertical dashed line.
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6.5 The signature of the chemical valence in the electri-
cal conduction through a single-atom contact

So far we have seen that the number of conducting channels in an one-atom contact
is determined by the available valence orbitals, and thus varies for metals along the
periodic table. These predictions were tested experimentally in a collaboration which
gave rise to Ref. [146]. For this purpose we analyzed atomic-size constrictions of
four elements (Pb, Al, Nb y Au), covering a broad range of valences and orbital
structures. In order to obtain information on the individual channels we made used
of the superconductivity through the channel spectroscopy [146]. This section is
devoted to the description of the experimental results which were obtained in the
mentioned work.

In this work [146], various experimental methods to achieve stable atomic-size
contacts were used: a scanning tunneling microscope (STM) for the measurements
on Pb [214], mechanically controllable break junctions for Nb [240], and lithograph-
ically fabricated versions of the latter [256] for Al and Au. Fig. 6.17 shows the
typical development of the conductance G for the four metals as the contacts are
stretched. The total conductance decreases by steps until the contact breaks. After
that it decreases exponentially with distance, the signature of the tunnel regime.
The stepheights are in the order of Gy, while the series of “plateaux” is different
for each individual opening of the contact. It has been shown that the origin of the
steps is in atomic rearrangements [230, 257, 213] which occur while the constriction
is elongated. The typical value of G at which the contact breaks, the lengths of the
plateaux, and the behavior within the plateaux are characteristic of each material.
Pb shows plateaux with negative slope, and an almost continuous decrease of G
between 3 Gy and 1 Gy, where the contact usually breaks. Al has plateaux with
positive slope, and breaks at around Gy with a jump to G < 0.1 Gy. Nb displays
negatively inclined plateaux, smallest contacts with conductances between 2 G and
1 Gy, and a jump to a tunneling conductance as high as G =~ Gy. For our litho-
graphic Au samples we obtain less well defined plateaux. The last contact before
break typically has a conductance between 0.3 Gg and 0.6 Gp.

We can stop the elongation at any point and record the IVs. With the junction in
the vacuum tunnel regime, the IV corresponds well to the one expected for a single
channel as shown for Pb in curve (e) of Fig. 6.18. In the contact regime one observes
IVs as depicted in curves (a) to (d) of the same figure. These curves were recorded
on the same sample for different last plateaux before breaking. It is usually assumed
that these smallest stable contacts are one-atom contacts [240]. As we shall show
this analysis will give further support to this assumption. The occurrence of IVs with
different sub-gap structure for the same total conductance (see Fig. 6.18) reveals the
importance of the geometrical environment of the central atom for the conduction
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Figure 6.17: Typical conductance G as a function of distance, recorded in a continuous opening of the
samples, for four different metals. The distribution of transmission values {7, } is establish by fitting the
IVs recorded at each point. The data have been taken at a temperature of 1.5 K for Pb, below 100 mK for
Al and Au and 1.6 K for Nb. The opening speeds were in all cases in the range 1-10 pm/s. The symbol
”? >” means that only a lower bound for N could be determined. Plateaux corresponding to different N are
separated by dotted vertical lines. The horizontal arrow indicates that N decreases in the tunnel regime.

Filled symbols indicate contact regime, open symbols tunnel regime.

properties. In general, the IVs in the contact regime cannot be described by the
single channel theory. We shall assume that the total current can be decomposed as
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(see Chapter 2)
N

I(V) =Y i(Ty,V) (6.18)
n=1
where i(T},,V) is the current of channel n. The solid curves in Fig. 6.18 are fits
to the experimental IVs using the previous expression, and the theoretical curves
i(T,V) calculated in Chapter 2 [112], with the set {T},} and the number of channels
N as fitting parameters. Details of the analysis are given in [146].
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Figure 6.18: Measured current-voltage characteristics (plotting symbols) of five dif-
ferent configurations of a Pb sample at 1.5 K using STM, and best numerical fits
(lines). Curves a-d have a very similar total transmission, close to 1.4; curve e has
been taken in the tunnel regime. The individual channel transmissions obtained from
the fits are: (a) T} =0.955, To = 0.355, T3 = 0.085, Ty, =0.005; (b) T =0.89, T5 = 0.36,
T5=0.145, T, =0.005; (c)T1=0.76, T»=0.34, T5=0.27, T, =0.02; (d) T} =0.65,
T,=0.34, T5=0.29, T, =0.12; (e) T=0.026. Voltage and current are in reduced
units. The measured superconducting gap was A/e =1.37 mV.

For Pb it turns out that three or four channels contribute to the total current for
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the smallest contacts. Despite the fact that more than two channels are available,
G can be well below 2 Gy. For larger contacts with G > 3 Gy, we find six or
more channels. The numbers N of channels we found at the different plateaus are
indicated in Fig. 6.17. Only channels with a transmission larger than 1% of the total
transmission are taken into account when determining N. Applying a similar analysis
to different metals, we arrive at the important conclusion that the maximum number
of channels N, for the smallest contacts is characteristic for a given metal. In the
IVs of Al smallest contacts we find typically the contributions of three channels,
whereas for Nb we detect five channels. These results support the idea that Nz
for one-atom contacts is limited by the number of valence orbitals of the central
atom N.p.

Our theoretical predictions are in good agreement with these experimental obser-
vations: smallest Pb contacts just before breaking most frequently have a G between
1 Gy and 3 Gy. The decomposition usually results in three or four channels, where
the T, of the fourth one, if present, is usually smaller than 0.03. We neither find
last plateaux before breaking with only one or two, nor with five channels. Typically
the analysis of the last plateau yields one well transmitted mode with T,, > 0.6 and
two smaller non-degenerate ones with 7;, < 0.4. We attribute the lack of degeneracy
and the smaller T,,’s to an asymmetrical environment around the central atom in
the experimental contacts.

In the previous section we already pointed out that there exists an agreement for
Al in relation with the experiment of Ref. [143]. Again, in Fig. 6.17 one can see a
last plateau with G just below G distributed over three channels. The case of an
Al atom sandwiched between two flat surfaces has already been treated with density
functional [236] and other ab initio calculations [258], which predicted G ~ 2 Gj.

Let us recall that for the case of Nb our calculation predicted a total conductance
G ~ 2.5 Gy (see Fig. 6.14) decomposed in five channels, again in agreement with the
experimental findings (see third panel of Fig. 6.17). The experimental determination
of {T},} is less precise than for Pb and Al, because the quasiparticle density of states
for Nb differs slightly from the one used for calculating the (T, V'). (Deviations of the
quasiparticle density of states from the case considered in the theory mostly affect the
shape of the current steps around V' = 2A /me but not the current values in between.
Therefore the analysis with the unmodified density of states is still possible.) An
additional difference from the Pb and Al case is observed in the tunnel regime: for
Nb contacts just after breaking, three channels contribute to the tunnel current.
With increasing distance between the electrodes, one channel becomes dominating.

The cases discussed so far correspond to superconducting elements having sev-
eral valence orbitals per atom. A crucial test for the validity of our analysis would
be provided by monovalent metals like Au and Na. As commented in the previous
section, these metals can be described by a single s orbital, and the model predicts
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a single channel with 7"~ 1 for an one-atom contact [252] in accordance with calcu-
lations based on molecular dynamics simulations [259]. As these monovalent metals
are not superconducting, our method of characterizing channels is not directly ap-
plicable. However, a small piece of normal metal in good contact with a large piece
of a superconductor develops a gap in its quasiparticle density of states [260]. The
lithographic MCB technique allows for the fabrication of a constriction, where the
central region consists of Au atoms, embedded in a superconducting Al environment.
Using shadow evaporation through a suspended mask we evaporate 400 nm thick Al
electrodes separated by 50 nm wide spacing, which is filled with a 20 nm thick Au
layer deposited at a different angle under the same vacuum. The large asymmetry
in thickness limits the influence of the normal metal on the quasiparticle density of
states. As depicted in the lowermost panel of Fig. 6.17, we find indeed that the
smallest Au contacts accommodate one single channel, contrary to the results for
the sp-like and transition metals. However, we usually measure transmission values
significantly below one. As for the other metals we interpret this reduced T" with
respect to the model predictions as arising from disorder in the contact. Our Au
samples are presumably more prone to disorder because of the very small Au layer
thickness. Considering that the accuracy in determining {7, } is limited also because
of the slightly modified quasiparticle density of states, the single channel fit is still
very satisfactory in the case of Au.

6.6 Conclusions

From the experimental results that we have shown in the previous section we draw
the following conclusions. First, these results provide clear evidence that the small-
est contacts produced by the different experimental techniques are indeed one-atom
contacts, as the number of channels never exceeds the number of valence orbitals.
We stress that in these experiments a single atom determines a macroscopic quantity,
that is, the total conductance of the macroscopic circuit in which it is embedded.
The current which an one-atom contact can sustain can be as large as 100 uA, cor-
responding to the very large current density of 10! Acm—2. This large current is
carried by a small number of conducting channels.

On the other hand, the ensemble of the experimental and theoretical results show
unambiguously that the conducting channels in an atomic contact are determined by
the orbital electronic structure and the local atomic environment around the neck
region. In particular, for the case of one-atom contacts the conducting channels
are determined by the chemical nature of the central atom. As a simple rule, we
could say that the number of active channels corresponds to the number of valence
orbitals of such atom. For the case of an one-atom contact, the detailed calculations,
in agreement with the experimental results, predict the presence of three conducting
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channels for sp-like metals like Al or Pb. For transition metals like Nb, we expect
the presence of five conducting modes due to the contribution of d orbitals. In the
case of simple metals like Na or noble metals like Au, we expect the presence of a
single conducting channel due to the contribution of the s band. These essential facts
cannot be understood within a free electron model. Only a microscopic model that
takes into account the atomic orbital structure as well as the local atomic geometry
can fully explain the conduction properties of these contacts.

With respect to the conductance quantization, the results shown in this chapter
indicate that this phenomenon does not take place in atomic contact of sp-like metals
or transition metals due to the contribution of p and d orbitals respectively. As we
have shown, in these contact there are channels with intermediate transmission, even
in absence of disorder. The conductance quantization is thus reserved for simple
metals or noble ones, where we have only the contribution of the s band.

Several authors have pointed out that the histograms are an indication of the
statistical origin of the conductance quantization in metallic contacts [261, 262].
However, as we have shown in this chapter, even in the case of an one-atom of a sp-
like metal or a transition metal we have always the contribution of several channels
with intermediate transmissions. Thus, it seems difficult the appearance of integer
multiples of the quantum conductance, and even the appearance of peaks in the
histograms. Indeed, when one revises the literature this is precisely what happens
in contacts of transition metals like Pt, Ni, Co, Ti o el Fe [82, 237, 263, 265], there
is neither quantization nor peaks in the conductance histograms.
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Chapter 7

Evolution of conducting
channels under elastic
deformation

7.1 Introduction

In recent experiments a combination of scanning tunneling microscopy (STM) and
atomic force microscopy was used to study simultaneously the electrical and mechan-
ical properties of atomic-size contacts [226, 227, 228, 229, 230]. In these experiments
a metallic contact formed between tip and substrate is elongated or contracted. This
deformation proceed in a sequence of elastic stages alternating with sudden atomic
rearrangements [210, 211, 213]. During the elastic stages the conductance changes
gradually resulting in gently sloped plateaus while the atomic rearrangements show
as sharp conductance steps which are hysteretical. The conductance of the last
plateau before rupture is of the order of one quantum of conductance, Gy = 22 /h.
As commented in the previous chapter, this last plateau corresponds to an one-atom
contact.

As it was shown in section 6.5, the observed dependence of the conductance
on elastic deformation varies from contact to contact but it is characteristic for a
given metal. The first work which paid attention to the tendencies of the plateaus
under elastic deformation of contacts of different metals was done by Krans et al.
[82], using breakjunctions. These author analyzed three metals: Cu, Al and Pt,
finding that they presented different behaviors. Cu contacts exhibit negative sloped
plateaus upon elongation, i.e. what one would expect naively. The last plateaus
are rather flat, in particular the last one has a conductance ~ 1Gy. Surprisingly,
Al contacts show positive inclined plateaus upon elongation, what means that the
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conductance increases as one separates the electrodes. Finally, Pt is more irregular
showing positive sloped plateaus upon elongation, except the last one which has a
positive slope. The main conclusion of these experimental results, and of other like
the ones presented in section 6.5, is that the observed dependence of the conductance
on elastic deformation varies from contact to contact but it is characteristic for a
given metal.

The aim of this chapter is to understand the tendencies of the plateaus appearing
in metallic atomic-size contacts of different metals. For this purpose we shall study
experimentally and theoretically the evolution of the conductance of metallic atomic-
size contacts under elastic deformation. We concentrate ourselves in the last plateau
where the contact is formed presumably by only one atom. We shall analyze contacts
made of Au, Al and Pb which exhibit the three possible tendencies. This chapter
is based on a work done in collaboration with G. Rubio, C. Untiedt y N. Agrait
of The Low Temperature Laboratory of the Autonoma University of Madrid [148].
In this work we study from the experimental point of view these three types of
contacts using a STM at low temperatures. We will show not only results for the
total conductance but also its decomposition into eigenchannels using the channel
spectroscopy. From the theoretical point of view we make use of the model presented
in Chapter 6, adding the simulation of the elongation of the contact.

The elongation or stretching of the contact provide us an additional parame-
ter which permits us to gain further insight into the transport properties of these
nanocontacts. As we will show, the different tendencies reveal important aspects of
the electronic and atomic structures of these contacts. Following the ideas exposed
in Chapter 6, we shall show that the different tendencies can be naturally under-
stood in terms of the different atomic orbital structures. Moreover, the possibility of
analyzing the problem in terms of independent channels provides a further insight
into the nature of this phenomenon.

The rest of this chapter is organized as follows. In section 7.2 we shall briefly
describe the experimental results about the conductance of the last plateau for the
three mentioned metals. Section 7.3 is devoted to describe the implementation of
the elastic deformation in our model as well as the theoretical results obtained for
the tendencies of the last plateau. In section 7.4 we shall make some comment and
summarize the conclusions of this chapter. Finally, we will finish in section 7.5 with
some comments about the future and open problems related to the topics treated in
the second part of the thesis.
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7.2 Experimental conductance evolution under elastic
deformations

In Fig. 7.1 we show experimental results of last plateaus for three metals: Au, Al
and Pb. In the case of Au, the plateaus are rather flat, specially the last one with
a nearly constant conductance ~ Gy. In the case of Al, the conductance increases
as the contact is stretched varying typically in the last plateau between 0.5 and
1Gp, while for Pb this variation is in the opposite direction and within the range 3
to 1Gy for its last plateau. These experiments were conducted with a STM at low
temperatures (4.2 K for Au and Al and 1.5 K for Pb). The detailed description of the
set up and experimental procedure can be found in Ref. [266]. For the experiments
with Al and Au, the conductance was obtained by measuring the current at a fixed
voltage of 10 mV. In the case of Pb, since it was in the superconducting state, the
conductance is given by the high-voltage differential conductance.

These are not the only experimental results that we are going to show. In the
next section we shall also show the decomposition of conductance into eigenchannels
in the case of Pb, which is the most interesting material.

7.3 Theoretical model and results for the elastic evolu-
tion of conductance

From the theoretical point of view we face this problem with the model described in
the previous chapter. In particular, we shall study the evolution of conductance in the
last plateau analyzing the case of one-atom contact. As we showed in Chapter 6, our
model allows us to analyze not only the total conductance but also its decomposition
into different channels, what will help us to understand the different tendencies of
the three metals. Furthermore, in this chapter we pretend to give more quantitative,
so that we shall increase the size of our basis and we will introduce new effects.

We now discuss how the effect of an elastic deformation can be studied within the
formalism described in the previous chapter. A detailed description of the evolution
of the ideal constriction geometry with a tensile stress requires knowledge of the
force constants between every pair of atoms. However, when analyzing the elastic
deformation on the last plateau it is reasonable to assume that the most important
effect is due to the weakening of the coupling of the central atom. Thus, we simulate
the elastic deformation by changing the distance between the central atom and its
neighbors, as illustrated in Fig. 7.2. As shown below, this simple modelization is
sufficient to account for the observed tendencies. The distance dependence of the
hopping elements is well described by power laws provided that deformations are
not larger than 5%-10% of the bulk interatomic distances. To be exact, Ref. [250]
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Figure 7.1: Evolution of conductance vs tip-sample displacement for several repre-
sentative nanocontacts of Au, Al, and Pb in STM experiments. The black and grey
curves correspond to elongation and contraction, respectively.

proposes the following decay law for a hopping #;y between two orbitals of angular
momentum / and !’ separated by a distance d

1

tlll ~ m

(7.1)

Then, for instance hoppings t,, decay as d~!, hoppings tpp as d=3, tygq as d7°, tsp as
d~2, etc. For larger deformation one would expect exponential decay of the hoppings
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267).

Figure 7.2: Schematical representation of the elongation model for an one-atom
contact. In this model the elastic deformation is simulated by changing the distance
between the central atom and its neighbors.

In order to study the last plateau conductance we shall analyze the one-atom
contact shown in Fig. 6.1. Let us recall that this contact consists of IV layer grown on
a fcc lattice along the (111) direction (denoted as z direction), and this neck is finally
connected to two perfect semiinfinite crystals which describe the reservoirs. The
results that we present below have been obtained for a short neck model geometry
(N = 1), i.e. one atom between two surfaces. Of course, we have verified that for
longer necks and different elongation models similar results are obtained. Moreover,
we shall comment what happens in different crystallographic directions to the (111),
what will reveal the type of structures which are formed in these nanocontacts.

Figure 7.3 summarizes the results obtained for the evolution of the last plateau
total conductance and its decomposition into individual channel contributions for
the three metals considered. In this figure we show the conductance as a function of
the distance between the central atom and its first neighbors d in units of their bulk
interatomic distance dg, from a stretched situation (d < dg) to an elongated one !.
Notice that both the approximate values of the total conductance as well as their
variations upon elastic deformation are in good agreement with the experimental
results of Fig. 7.1. To get a deeper insight into the observed trends it is convenient
to analyze the evolution of the local density of states (LDOS) at the central atom and
the individual channel transmissions as a function of the energy. Fig. 7.4 shows both
quantities for the metals considered in the case where the contact is in equilibrium
d = dp. Fig. 7.4 show the same for a case where the contact is elongated (d = 1.2dy).

Let us start commenting the case of Au which is a remaining task that we post-

Notice that we cannot predict within our model when the contact breaks.
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Figure 7.3: Calculated last plateau conductance (full line) and its decomposition
for Au, Al and Pb as a function of the distance between the central atom and its
first neighbors d in units of the equilibrium distance dy. In the case of Au only one
channel contributes to the conductance. For Al there are three channels (dotted and
dashed lines), the one with lower transmission is two-fold degenerate. For Pb the
total conductance for a case without spin-orbit coupling and with spin-orbit coupling
are shown (see text), and the decomposition into three eigenchannels of the latter
case.

poned in the previous chapter. The Au atomic configuration is 5d'%6s!, which gives
rise to a conduction s band with one electron per atom. The d band is completely
filled and we have checked that it does not play an important role in the transport
properties. However, the 6p bands have a small weight at the Fermi level and we
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Figure 7.4: LDOS at the central atom and channel transmissions vs energy for the
ideal geometry (d = dp) in Au, Al and Pb. In the case of Pb only the total s and p
LDOS are shown. The character of the eigenchannels in this case is neither sp, nor
Pz,y due to the spin-orbit coupling. The vertical lines indicate the position of the
Fermi level.
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Figure 7.5: Same as Fig. 7.4 for a stretched contact (d = 1.2dp).

have introduced them in the calculation to study their influence.

Our results predict the presence of a single relevant channel at the Fermi energy,
whose contribution arise from the 6s orbital slightly hybridized with the 6p,. As can
be observed in the top panel of Fig. 7.4, the local density of states at the central
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atom and the transmission exhibit a resonance around the Fermi energy. In this case
the charge neutrality condition pins the Fermi level at the center of the transmission
resonance. This provides a strong mechanism accounting for the almost perfect
conductance quantization for Au at the first plateau [252]. The effect of elastic
deformation around this situation is to either broaden or narrow the resonance at
the Fermi energy without modifying the value of the total conductance (see top
panel of Fig. 7.5). Similar findings using a local density approximation for Au were
reported by Brandbyge et al. [259].

As we already know, in the case of Al the 3s and 3p orbitals give the main
contribution to the current. This time we have introduced the 3d orbitals which,
although they are situated 9 eV above the p band center and therefore practically
empty [250], they have certain influence in the total conductance value as we shall
comment below. Although the relative position and shape of the s and p bands are
similar to the case of Au, the Fermi level lies closer to the center of the p bands. Thus,
as shown in Chapter 6, one finds three channels with non-negligible transmission: a
widely open channel with sp, character and two less transmissive ones with a p,,
py character. This splitting between p, and p,, bands (which are degenerate in
the bulk) is due to the neck geometry which shifts the sp, band into lower energies
with respect to the center of p,, bands (see middle panel in Fig. 7.4). As it was
commented, the double degeneracy of the low transmissive channel is due to the
symmetry of the ideal geometry and is broken when introducing disorder.

The inclusion of the d orbitals in the calculation does not modify the conclusions
of the previous chapter relative to the number and character of conducting channels
in Al one-atom contacts. However, they slightly reduce the total transmission value.
For instance, we now have a conductance ~ 0.8Gy for the perfect system (d = dp).
This effect is due to the hybridization between the p and d bands which somewhat
shifts the p bands to higher energies reducing the transmission of the sp, channel
with respect to what was found without d orbitals. In the case of Al, the bond
weakening induced by stretching produces a narrowing of the sp, and p,, bands.
This narrowing is more pronounced for the p, , because of the faster decay of the ?,,
hoppings (see Eq. (7.1)), and as a consequence the Fermi level tends to lie around
the center of the sp, transmission resonance. This is the reason why Al contacts
usually break when the conductance is ~ G 2. As can be observed in middle panels
of Figs. 7.3 and 7.5, the conductance at the maximum elongation is not exactly Gy.
This is a consequence of while the sp, is opened completely, the p; , are not totally
closed as probably happens (see Fig. 4 in Ref. [143]). This kind of deficiencies
should be mend by a more sophisticated model where the self-consistency and the
precise orbitals decay be determined in a more appropriate way.

The s and p orbitals also play the most important role in the case of Pb and the

2However, this does not explain why these contacts usually break just after reaching this point.
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number of conducting channels is the same as for Al 3 However, Pb has an extra
valence electron which moves the Fermi level to an energy region where both sp,
and p; , channels are widely open. The calculated total conductance for the ideal
geometry is ~ 2.8Gy. On the other hand, around the Fermi energy the sp, has
basically a p, character, what makes that the three channels evolve in the same
way upon stretching. This gives rise to a rather flat conductance plateau, as can
be seen in Fig. 7.3 (lower panel without spin-orbit), which is at variance with the
experimental finding (see Fig. 7.1). A much better agreement can be obtained by
including the effect of spin-orbit coupling in the model calculations. This effect is
known to play an important role in the adequate description of the Pb bulk band
structure [268]. Within an atomic orbital basis, the spin-orbit coupling leads to an
extra term in the Hamiltonian (6.1) of the form

Hyo=Xso Y. (ao|LS|Bo")clyycigor (7.2)

i,a8,00"

where L and § are the orbital and spin angular momentum operators respectively.
The indexes o and f3 refer to p orbitals at the same lattice site with spin o, ¢’ respec-
tively. Typical values of spin-orbit coupling constant Az, are of the order of 0.7 eV
[268]. This spin-orbit term makes that neither the orbital angular momentum nor
spin be good quantum numbers of the problem. In the new basis which diagonal-
izes the atomic problem, instead of p orbitals, we have the total angular momentum
eigenstates j = 1/2 and j = 3/2, two-fold and four-fold degenerate respectively. In
spectroscopy these orbitals are denoted as py /2 and p3/o. The splitting between these
two levels is 3\;,/2, and pq /2 state has a lower energy. The evolution of the total
conductance and its decomposition into eigenchannels including spin-orbit coupling
is shown in Fig. 7.3 (lower panel). As can be observed in this figure, now not only
the tendency is the correct one but also the conductance values are more adequate.
For instance, for the ideal geometry (d = dy) one has G ~ 2.25G,. In spite of intro-
ducing the spin-orbit coupling we keep on obtaining three channel (the transmission
of the fourth one is of the order of 1073). However, the character of the channels
change with respect to what we found in Chapter 6.

One can take advantage of the fact that Pb is in the superconducting state
at the temperature at which the experiments were performed (1.5 K) to obtain the
decomposition of the experimental conductance into eigenchannels using the channel
spectroscopy introduced in Ref. [143]. Figure 7.6 shows a typical example of the
evolution of the decomposition for Pb. As we can see there appear three channels
whose evolution under elastic deformation is in agreement with the theoretical results
that we have just commented.

3We have verified that the d orbitals in the case do not play an important role because they are
farther than in the Al case.
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Figure 7.6: Experimental conductance for Pb and its decomposition into three dif-
ferent channels (represented as diamonds, dots, and triangles).

The pronounced decreased of the conductance can be understood by analyzing
the LDOS at the central atom. For the ideal geometry (Fig. 7.4 lower panel) the
Fermi level lies in the middle of the p band which does not exhibit any structure
associated with the splitting of the atomic levels, since the broadening of central
atom levels due to the coupling with electrodes is much greater than such splitting
(~ 1 €eV). However, the decomposition into sp, and pgy channels is no longer valid
due to the spin-orbit coupling which also breaks the p, , degeneracy. In the elongated
contact (Fig. 7.5 lower panel) the splitting of the atomic levels manifests itself in the
appearance of a doubled peaked structure at the p LDOS having a p; /5 and a p3/»
character. The Fermi level lies between these two peaks in order to approximately
accommodate two electrons in the p;/ band. The double peaked structure is also
present in the transmission as a function of energy explaining its pronounced decrease
with elongation.
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7.4 Comments and conclusions

The theoretical results presented so far have been obtain for a closed packed contact
model grown along (111) direction. This seems the natural choice since (111) faces
are known to be energetically favored in fcc metals. We have nevertheless also
studied model geometries grown along other crystallographic directions like (100).
As commented in Chapter 6, the number of channels and the approximate values
of the total conductance are not dependent on the geometry choice. However, for
the particular case of Al one finds a decrease in conductance upon stretching for the
(100) case [269] at variance with the experimentally observed tendency. This result
could indicate that in these nanocontacts compact structures tend to be formed.

In summary, in this chapter we have shown that the conducting channels in
metallic one-atom contacts are in general neither completely open nor completely
closed, which reflects in the variations of the conductance with strain. Conduc-
tance increases or decreases with strain depending on the electronic structure of the
element.

The correct description of these transport properties requires going beyond the
free-electron approximation. A good semiquantitative agreement has been achieved
using a tight-binding model Hamiltonian based on fits to the bulk valence bands and
a close packed model geometry with the addition of the charge neutrality condition.
No special treatment is necessary for each metal indicating the power of our approach.

7.5 Future and open problems

With respect to the future, there are still many problems that we may analyze with
our model. For instance, we can analyze other metals like the ones of the group
IIB. In Fig. 7.7 we show preliminary results for Zn and Cd. These two metals have
electronic structures Ar 3d'%4s? and Kr 4d'%5s? respectively. They are conducting
material because the p band is hybridized with the s valence band *. These material
are superconducting at low temperatures, which makes possible the experimental
comparison. As can be seen in Fig. 7.7, both the local density of states at the central
atom and the decomposition of the transmission into eigenchannels are similar to the
ones of Al. Indeed, this is what one would expect since the transport takes place
through the s and p bands. This preliminary results allow us to get some ideas about
these metals, but we must still study in detail the influence of disorder or the d band,
etc.

Another interesting case is the one of semimetals like Sb or Bi. As we com-
mented in Chapter 5, Krans et al. [218] showed that a Sb atomic contact exhibits
conductance plateaus below the quantum, which is probably due to the low density

“In the calculation of the Fig. 7.7 we have only included the s and p bands.
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Figure 7.7: Local density of states and transmission as a function of energy for Cd
and Zn one-atom contacts without disorder. In both cases the transmission has
3 eigenvalues with non-negligible transmissions. The dominant channel has a sp,
character. The second channel is two-fold degenerate with a small transmission at
the Fermi level and has a sp, character. The fourth channel is closed for the reason
explained for the Al case. The density of states at the central atom is decomposed in
two sp, and p, — py bands. The position of the Fermi level is indicated as a vertical
dotted line.

of states of a semimetal at the Fermi level. However, there have appeared a new
work in which it is shown the possibility of conductance quantization in an atomic
contact of Bi [264], which is at variance with results of other laboratories (C. Untiedt,
private communication).

In principle, we can analyze semimetals with our theoretical model. However, in
the case of semimetals the charge neutrality condition is not a very good approxi-
mation because of the large Fermi wave length. Anyway, the neutrality condition is
always a first approximation in the self-consistent treatment of the electron-electron
interaction. The analysis of semimetals is one of our remaining tasks.
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Another interesting case is the one of ferromagnetic material as Fe, Co or Ni.
In contacts of these metals the spin symmetry is broken and the channels split into
spin up and spin down channels. As an example of a ferromagnetic case, in Fig. 7.8
we show preliminary results on Co one-atom contacts. It can be seen in this figure
that there are spin up and spin down channels, and one can have funny situations
like this, in which one has basically one channel for spin up due to the Co 4s orbital,
and six channels for spin down due to the contribution of the 3d band. The analysis
of contacts of ferromagnetic materials is one of challenges for the future both from
the theoretical and experimental point of view.

In this work we have concentrated in the analysis of the simplest contact, an
one-atom contact. Such contact corresponds to the last conductance plateau before
breaking the contact. One of our aims is to extend the analysis to higher plateaus. In
principle, our theoretical scheme is valid for analyzing contacts of arbitrary section,
but our main problem is to determine the contact geometry. One of our aims is
to combine our calculations of the transport properties with molecular dynamics
simulations for determining the actual evolution of the contact geometry.

Of course, there are still several open problems in the context of metallic nanocon-
tacts. For instance, what is the origin of the peculiar series of conductance steps in
the case of simple metals [219]7 (see Chapter 5), or in general, what is the origin
of the peaks in the conductance histograms? As we pointed out in Chapter 5, the
transport and mechanical properties are closely related. In our opinion the answers
of the previous questions can be found in the mechanical properties of the contacts.
It is very likely that certain atomic configurations are favored for energetic reasons,
and this fact would be reflected in the patterns of the conductance evolution upon
deformations. But this is only a speculation that would be interesting to explore in
molecular dynamics simulations of the contact formations.

The following step in the study of electronic transport in nanocontacts could be
the extension of our model to the case of molecular contacts. In the last years
a growing attention has been paid to the investigation of the electrical current
through individual molecules. Molecular circuits can be fabricated with the STM
[270, 271, 272, 273] or with the breakjunction technique [274]. Recently several the-
oretical schemes have been developed for describing the transport in these circuits
[270, 275, 276, 277, 278, 279], which use similar ideas to the ones we have presented
here. Practically all theories make use of atomic orbital basis and Green functions
techniques. The new ingredient, with respect to the atomic contacts, is the deter-
mination of the molecular levels and their coupling to the leads. The electronic
structure of a molecule is usually determined with an extended Hiickel method. The
main conclusion of these theories is that the electrical current through contact of
individual molecules is determined by individual molecular levels, in a similar way
to what we have shown in these chapters for the case of atomic circuits.
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Transmission

Transmission

Figure 7.8: Transmission as a function of energy for a Co one-atom contact. The
eigenvalues are separated in spin up and spin down due to the broken spin symmetry
in a ferromagnetic material. The electronic structure of Co is Ar 3d"4s2. Around
the Fermi level we find one channel with s character for spin up and 6 spin down
channels due to the contribution of the d bands. The Fermi level is indicated with a
vertical dotted line.

We have started answering some fundamental questions in the context of atomic
and molecular circuits, but for the definitive success of the molecular electronics we
should to answer other fundamental questions like:

e What type of atoms or molecules should we use, in order to integrate them in
a macroscopic circuits and may realize millions of operations per second?
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e What experimental techniques must we developed to incorporate the atoms or
molecules with precision and rapidity?

Without any doubt we are in a crucial moment of the development of the na-
noelectronics. Soon we shall know if the molecular electronics will be one of the
technological revolutions of the next century, or if by the contrary it will remain as
a mere academic curiosity.
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Appendix A

Keldysh Formalism

This appendix is devoted to the study of non-equilibrium Green functions, in partic-
ular to the study of the Keldysh formalism [1]. Apart from the original paper, there
exist excellent works devoted to this technique in the literature [2, 3, 4]. In spite of
this, we have decided to include this appendix because this formalism is the basic
tool of this thesis. We have tried to explain it didactically, in such a way that it be
accessible for those who are familiar with the standard perturbation theory for the
Green functions of a system in equilibrium [5, 6, 7].

In his original paper Keldysh developed a diagrammatic technique for calculating
the Green functions of systems arbitrarily out of equilibrium [1]. This technique is
a natural extension to the non-equilibrium case of the well-known diagrammatic
theory that Feynman introduced in Quantum Field Theory [8]. The importance
of the Keldysh formalism lies in that it allows us to go beyond of the usual linear
response. Indeed, this technique provides us a quite general method for studying
Non-equilibrium Statistical Mechanics from a perturbative point of view. Since its
appearance it has been used in a great amount of different topics (see Ref. [4] and
references therein). In particular, it has been applied to the study of electronic
transport in many types of junctions (for instance see Ref. [9]).

This appendix is organized as follows: in section A.1 we lay the foundations of the
Keldysh formalism. In section A.2 we describe the matrix representation of the non-
equilibrium Green functions. In particular, we discuss some of the relations between
the different Green functions which make this technique so useful. In section A.3 we
briefly discuss the Feynman rules which govern the construction of the diagrams for
the non-equilibrium case. Finally, we end with the references of this appendix.

A.1 The Keldysh contour

Let us consider a physical system represented by the time-independent Hamiltonian
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=, + (A1)

where Hy describes free particles and H' the interaction between the particles.
In thermodynamic equilibrium, we describe the state of the system in the grand
canonical ensemble by the density matrix

p= —BH ; Z=Tr [e_ﬂg] , (A.2)

where 3 = T~' ! and we measure the particle energies with respect to the chemical
potential y, i.e. H is indeed H — MN , where N is the particle number operator.

We are interested in how this system evolves when it is subjected to the action
of a time-dependent perturbation V() since an initial time to. For a latter time
t > tp, the system evolves governed by the Hamiltonian

H(t) = H+V'(t), (A.3)

where V' (t) =0 for t < ty. In order to describe the dynamics of the system we use
the Heisenberg picture. In this representation the states are time-independent and
the observables obey the equation of motion

i An(t) = [An(0), A0 (a4)

where the subindex H indicates Heisenberg picture. The average value of the oper-
ator A at a time ¢ is given by

(A#) = Tr [puAn(®)] . (A.5)

where let us recall that the density matrix in the Heisenberg picture does not depend
on time.

In this appendix we are mainly concerned with the evolution of Green functions,
as for instance the causal function

i G(1,1') = (T o (1), (1)), (A.6)

where 1 = (41, t1), I’ = (477, t1r), ¥y(1) and 1[1;{(1') are field operators in the Heisen-
berg picture and T is the time-ordering operator

T@H(I)I&’L(ll) = { 7(1 )iﬂ ( ) if t1 >ty (A7)

FOLA )y (1) ity <ty

1We use throughout this appendix units % = kp = 1.
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where the sign — is for fermions and + for bosons. From now on we shall only
consider the case of fermions. In principle, from the knowledge of Green functions
as the one in Eq. (A.6) every one-particle property may be derived.

As we mentioned in the introduction, the Keldysh formalism allows us to de-
termine these Green functions using a perturbative technique. This technique is
formally equivalent to the well-known expansions of Feynman [8] and Matsubara
[10], and as they it is based on the Wick theorem [11]. This theorem states how
a many-particle correlation may exactly be decomposed into sums and products
of one-particle correlations. The most general proof of the Wick theorem is due to
Danielewicz [12]. He showed that the Wick theorem holds if and only if the operators
to be averaged are noninteracting and the initial density matrix is an one-particle
density matrix. By noninteracting operators we mean operators in the Interaction
picture with respect to a free Hamiltonian. Thus, if we want to use the Wick the-
orem for expanding the Green functions we find two problems. First, the initial
density matrix j(tg) given by Eq. (A.2) is a many-body density matrix. Secondly,
in general the Hamiltonian 7(¢) contains many-body contributions and therefore
the corresponding time-development operator as well. The following paragraphs are
devoted to the solution of both problems.

Let us start analyzing the second problem which is the central idea of this formal-
ism. Our problem consists of studying the time-development of the Green function
(A.6). For this purpose, if we want to make use of the Wick theorem, we must
express it in terms of operators in the Interaction picture with respect to a free
Hamiltonian Hy. The relation between an operator flq{ in the Heisenberg picture
and the corresponding A H, in the Interaction picture is given by

Ap(t) = S(to, 1) A, (£)S (8, t0), (A-8)

where S is the time-development operator in the Interaction picture

S'(t,to) — ¢iHot ,—iF(t—to) ,~iHoto (A.9)
This time-development operator satisfies the following differential equation

. 8 JAS A A
ZES(t,to) = VH0<t)S(t,t0), (AIO)
where VHO(t) represents the interaction expressed in the Interaction picture. Here,
the interaction V (t) = H* + V'(t) includes the interaction between particles and the
time-dependent potential.

The previous differential equation admits the formal solution

A~ A~ t A~
S(t,tg) =T exp (—i dt' Vg, (t’)) , (A.11)
to

205



206 APPENDIX A. KELDYSH FORMALISM

where 7' is the time-ordering operator. Using this result one can express Eq. (A.8)
as

Ay(t) = [:Fexp (z t:dt’ VHO(t')>] A, (t) [Texp (—z’ tz dt’ VHO(t'))], (A.12)

where T is the antiordering operator 2

~ A A N A(tl)B(tg) if t1 <t

T Alt)B(t) = { —B(ta)A(t1) if t1 > to. (A.13)
One can conveniently compact the expression (A.12) making use of the so called
Keldysh contour, which is shown in Fig. A.1 [13]. This contour runs on the upper
branch (branch +) from ty = t§ to t and on the lower branch (branch —) back to
to = t, . Nevertheless, both branches are still lying on the real time. The vertical
offset in Fig. A.1 is only a graphical method to demonstrate the different sense of
ordering. On the branch + the time ordering is chronological, whereas in the branch
— is antichronological.

tL=1 C branch +

\ 4

\ >
time

A

_ branch-
L=1
Figure A.1: ¢ = Keldysh contour.

With this contour ¢ the expression (A.12) reduces to

Ap(t) = {T exp (—z’ / dt' Vi, (ﬂ)) } Ay (D), (A.14)

where T, is the time-ordering operator along the Keldysh contour and the integral
runs along this contour. Defining the time-development operator on the Keldysh
contour as

S.(tg,t1) = T.exp (—i dt' Vy, (t')) , (A.15)

where t1,t2 € ¢, finally we have

Let us recall that we only consider the case of fermions.
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Ay (t) =T, So(ty , td) Amy(t). (A.16)

Using this results it is easy to convince oneself that the Green function (A.6) can
be expressed in terms of noninteracting operators in the following way

i G(1,1") = (T, Sc(ty . 1) Do (1) Dl (1)) (A.17)

Thus, we have solved our first problem.

There is still a problem. Namely, the averages of the type of Eq. (A.17) are
still calculated with a many-body density matrix. Thus, if we want to use the Wick
theorem we must expand the density matrix in terms of a free density matrix (non-
interacting density matrix). The solution to this problem was found by Matsubara
in his famous work on the finite temperature expansion [10]. Next, we explain this
solution.

Let us analyze the exponential appearing in the density matrix (A.2). We may
write it as

e PH — o~ BHoBHo —BH (A.18)

On the other hand, we can trivially extend the expression (A.9) for the time-
development operator to the case of an imaginary time, thus

S (—if,0) = eﬂﬁoe_ﬂﬁ, (A.19)

where ¢’ indicates that the time runs along the imaginary axis as it is shown in Fig.
A2

- B
Figure A.2: ¢ = Matsubara contour.

A

According to Eq. (A.11) S.(—i3,0) can be expressed as
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~i8 ! 11 '
Se(—if,0) = cfexp< /0 dt’ Hp, (t )>, (A.20)

where ﬁ},o is the interaction between particles in the Interaction picture, and T,
orders along the Matsubara contour ¢ = [0, —if]

To A(t1)B(t2) = { Al (> )Eﬁ?s ) i 2 Z Z E Z: ' (A-21)

Inserting this into Eq. (A.18) we get
e BH = ¢=BHo & (i, 0). (A.22)
On the other hand, the partition function can be written as
7 =Tr e P7] =Tr [e P15, (~iB,0)] . (A.23)
So, we can then write the density matrix as follows
e_ﬁI:IO gc’ (—iﬂ, O) A

Zo
b= ¢ = 29 50 8. (—iB,0), A24
. [e*ﬂHOSc,(—iB,O)] z Po 5¢(=ih0) (4.24)

where gy is the single-particle density matrix

efﬂﬁo
Zy

Thus, we have solved our second problem, i.e. we have expanded p in terms of a free

density matrix gg and now we may use the Wick theorem.
Combining the results (A.24) and (A.17) we can write the Green function as

o = Zo = Tr [e—ﬁ’ﬂ . (A.25)

§G(1,1) = 2 (80(=i6,0) 8ulty 1) D (1) Py, (o, (A.26)

where ( )¢ indicates that the averages are calculated with py.

The twofold expansion of the initial density matrix and the time-development
operator may conveniently be combined to a single expansion. To this end we uti-
lize the striking similarity between the treatment of the initial density matrix and
the time-development operator, both of which are exponential functions. Following
Wagner [14], we link the two contours ¢ and ¢ together, ¢* = /¢ as illustrated in
Fig. A.3 [15]. Moreover, we introduce a c*-contour-ordering operator T = TuT,.
Hence, a point on c is always earlier than a point on ¢

Furthermore, we define a Heisenberg picture with respect to H, along the contour
and we extend the time-development operator to the ¢* contour in the following way
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+ *

tO: tO C‘
\ A -
P 7 i -
O t ime

_|B

Figure A.3: Generalized contour c*.

~

S = 8o (—iB, 1) = S (—ifB,0) Sty tg) = T exp (—z’ / dt’ KHO(t')) , (A.27)
C*
where K, is the perturbation in the Interaction picture

V#) tinec
Kuy(f) = { H( (t),) Lol (A.28)

With these definitions we can write Eq. (A.26) as

§GL1) = 20 (e B iy (1) By, (1) (429
The crucial point is that this expression meet all requirements for the application of
the Wick theorem to each of the terms in the expansion of S First, the average is
taken over an one-particle density matrix py and secondly, all operators are given in
an Interaction picture corresponding to a noninteracting system described by Hy.
Let us summarize what we have obtained so far. In principle, with the theory we
have developed so far we can describe the temporal evolution of a system initially in
thermodynamical equilibrium, including the possible transient effects due to the ini-
tial correlations. However, in the Keldysh formalism one does not take into account
transient effects or initial correlations. This can be achieved taking tg — —oo. Thus,
if we assume that the Green functions decay rapidly as a function of the difference
of times, we can neglect the contribution coming from the contour ¢’. A detailed
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discussion about this point can be found in an excellent work by Mathias Wagner
(Ref. [14]). In this work Wagner developed a general formalism which permits to
take explicitly into account the initial correlations, and he showed that there appear
corrections to the Keldysh formalism due to such correlations. Thus, the study of
transient effects is out of the scope of the Keldysh formalism. Nevertheless, this
technique allows us to analyze systems out of equilibrium in which after certain time
a “stationary” situation is reached 3.

Thus, if we neglect the initial correlations, the ¢* contour reduces to the Keldysh
contour ¢, which now starts at —oco (see Fig. A.4).

- 00 branch +‘ Cc
> — S

A

.00 branch - +00 time

Figure A.4: The Keldysh contour.

Furthermore, in the Keldysh formalism it is assumed that the interaction between
particles, H i can be switched on adiabatically in such a way that the interaction
vanishes at t — —oco and we can use gy the initial density matrix. From now on, we
concentrate strictly in the Keldysh formalism as it is commonly used. It we take into
account the two mentioned simplifications, the Green function (A.29) now reduces
to

~

i G, 1) = (T2 S, duy (1) Dy, (1)) (A.30)

where ¢ indicates the Keldysh contour of the Fig. A.4 and S, = S’c(—oo, —0). As
before, the Green function (A.30) is expressed in a suitable way for using the Wick
theorem in the expansion of S, given by Eq. (A.15). However, it is easy to realize
that in this expansion other different Green functions will appear. Thus, we do not
get a closed equation for the Green function which we are analyzing. The reason
is the following: while the Green function temporal arguments ¢; and ty/ lie in the
branch +, S, has temporal arguments in both branches giving rise to functions with
the four possible pairings of the arguments on c¢. An elegant way of solving this
problem is to study a function which comprises all the functions occurring in the
expansion. This function is the so called c-contour-ordered Green function, which is
defined as

3The electronic transport problems that we analyze in thesis belong to this type of stationary
problems.
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. . .
i Gel1, 1) = (T bVl (1)) = { Wrllom(l)) - dfi>drone i, )
—(y(1)Yn(1)) ifty <ty onc
where t; and ¢y lie on the whole contour ¢ and the operators are expressed in the
Heisenberg picture. This function covers all possible pairings of the operators 1&7{(1)
and ﬂ{(l’) defined on c¢. For instance, if ¢; and ¢y/ lie on the branch +, G¢(1,1")
reduces to the Green function (A.6).
Using Eq. (A.30) we have for G,

i Ge(1,1') = (T, S Py (1) Dy (1)) (A.32)
It is evident that now the expansion of S, leads to a closed equation for G.. Due to
the Wick theorem, every term in this expansion can be expressed as a sum of products
of one-particle Green functions of the unperturbed system. The resulting terms in
each order in the interaction may be described diagrammatically. It is easy to show,
(see Ref. [1] for details) that the diagrammatic structure is identical to the one of the
equilibrium case. In the same way, we have connected and disconnected diagrams,
topologically distinct, etc. The only difference with the equilibrium expansion is
the appearance of the integrations along the contour c instead of over the inverse
of the temperature for the case of finite temperature, or over the real axis for the
zero-temperature case.
As in the equilibrium case the expansion of the time-development operator S,
gives rise to an infinite geometrical series, where arises the concept of self-energy and
the Green function G. obeys a Dyson equation

GL(1,1) = go(1,1) + /dth@ dtsd go(1,2) £(2,3) Go(3,1)), (A.33)
C

where g. is the unperturbed Green function and the self-energy X is as usual defined
as a sum over all topologically distinct proper self-energy diagrams.

This is a closed equation for G, which allows us to determine it, once the self-
energy has been calculated. However, the Green functions in which we are interested
in have not the form of G., but they have both temporal arguments defined in a
concrete contour branch. Thus, for practical calculations it is more convenient to
use a matrix representation for the c-contour-ordered Green function. This is the
aim of the next section.

A.2 Matrix representation

As stated above, it is convenient to express the perturbative expansion in terms of
Green functions defined on the real time axis. For this purpose we shall make use
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of a matrix representation of the c-contour-ordered Green function. This function
has two time arguments ¢; and ¢;» which can be placed on both Keldysh contour
branches. There are four different possibilities to distribute these two parameter
over the two branches. These four possibilities can be grouped in a (2 x 2) matrix

é(lvll) = < G—,+(1:1/) G—,—(ti/) > s (A'34)

where the hat of G(1,1") indicates that it is a (2 x 2) matrix in the so called Keldysh
space. The superindexes of the matrix elements denote the position of the time
arguments on the contour. So, the left hand side superindex + tell us that the
argument t; lies in the branch £. The right superindex tell us the same for the
argument t1,. The matrix elements are determined according to the effect which has
T.. on the product ¢(1)(1') for each configuration of ¢;, t1/ on the contour ¢. Thus,
4

N N s @Dty =i G, 1) ity > by
§ETHLL) = (T oA _{ @A) =i G (1,17) if ti < t;

(A.35)
e [ @YADY =i G (A,1) it <ty
FETLT) = E ) = { S =i @R i >
(A.36)
i G (1,1) = —(@T ()P (1)) (A.37)
i GT(1,1) = (@)PT(1)). (A.38)

The function G 1(1,1") is simply the causal (time-ordered) Green function
(A.6). G—(1,1) is the antitime-ordered Green function. Finally, the non-diagonal
elements have the order of the time arguments fixed, since they lie on different
branches. The two functions are basically distribution functions which are incorpo-
rated to the perturbative expansion in this formalism.

In the same way the self-energy admits a similar matrix representation

++(1.1/ (1.1
THF(L, 1) 2_’_%,1 ) ) , (4.39)

f}(l,ll) = ( $-H(1,1) Bo(1,1)

where the matrix elements obey the relations

4We suppress the subindex # in the field operators to shorten the notation.
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1, 1’) t1 >ty
(1,1 = { SR f <ty (A.40)

_ —27’4'(1 1') t1 <ty
> n — ’
(L) —{ _SE(L1) f > b

It is easy to realize that within this matrix representation, the Dyson equation
(A.33) admits a matrix representation in the Keldysh space given by

(A.41)

G(1,1") = g(1,1") + /dtzd:c'é dtsdss §(1,2) £(2,3) G(3,1), (A.42)

where now the time integration are along the real axis. Then, we finally arrive at a
(2 x 2) matrix Dyson equation. As can be seen, the Keldysh formalism is formally
identical to the equilibrium one, except that now every Green function becomes a
(2 x 2) matrix in the Keldysh space. Thus, the only price that we have to pay for
analyzing a non-equilibrium system is to handle with a greater number of Green
functions. As can be observed in Eq. (A.42), the equation for the time-ordered
Green function is coupled to the equation for GT~ and G—1, what is natural in a
non-equilibrium problem since we must have an equation which describes the particle
distribution in the system.

It is remarkable the elegance of this formalism summarized in the Dyson equation
(A.42). It has a great resemblance with the Green functions formalism developed for
studying phase transitions [16]. In general, when one analyzes a breaking symmetry
the Green functions of the “normal” phase are coupled to new “anomalous” Green
functions which are only non-zero in the new phase. Thus, a (2 x 2) matrix formalism
arises, which is formally identical the normal case one. Typical examples are the
superconducting transition, ferromagnetic transition, solid-gas transition, etc. The
same happens in the case of the Keldysh formalism, what is easy to understand
taking into account that we are handling with another breaking symmetry, namely
the time breaking symmetry. Here, the “anomalous” Green functions are basically
the nonequilibrium distribution functions.

The matrix structure can be further simplified. From the Egs. (A.35-41) we
can see that the different elements in the Keldysh space are non-independent. In
particular, there exist the relations

Gt + G =GP+ G (A.43)

TPt 43T = (EhT + 2. (A.44)

We can eliminate this redundancy by means of a canonical transformation [1] gen-
erated by
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s 11—y . [0 —i
L= 7z Oy = ( i 0 ) (A.45)
We denote by G the new (2 x 2) matrix generated by f), then
- N A A a
G:LGLT:(C?T gK> (A.46)

where G® is the advanced Green function.

G'(1,1) =GP (L) -G (L) = G*’( 1) -G (1,1)

1
=0ty —t)([$(1), 911 )]+>, (A.47)

where [, ], represents the anticommutator and © is the step function which in this
case selects times t1/ > t1. On the other hand, G" is the retarded Green function

Gr(1,1) = GHT(1,1) - GH=(1,1) = G—+(1,1') - G—(1,1')

. . A48
= —i0(t — an)([9(1), 1)), ). (449
Finally, GX is the Keldysh function
GK(L1) = GHHLI) + G (L1) = G (L) +GHLY)
= —i([b(1),9t(1)] ), (4.49)
where [, |_ is the commutator.
On the other hand, the self-energy is transformed as follows
. A EK T
_ T
E—LZL—(Ea O)’ (A.50)

where the following relations for the advanced, retarded and Keldysh self-energies
hold

ye — yht + woot — (27’7 + E""*) (A51)
S =yht 4ot = (07 4 201 (A.52)
ZK - _ (2+7+ + 2_7_) — 2‘1‘:"‘ + Z_’+ <A53)
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Shonot =y o ne (A.54)

From the new matrix Dyson equation the following relations can be extracted:
first, the advanced and retarded Green functions satisfy their own Dyson equations

G = g% + ¢°5°GY (A.55)

G'=¢"+4¢"¥G", (A.56)
where integration over intermediate arguments is understood 5. Secondly, the Keldysh
function satisfies the following expression

GK — gK +gKZaGa +gTZTGK —l-gTEKGa. (A57)

It is easy to convince oneself that the solution of this equation for G¥ is

GK =(1+G2"g"(1+x2G? + G2 Ge. (A.58)
Now, it is clear that the number of independent equation is indeed two, since G"
and G are hermite conjugated. The physical content of the functions G™® and G¥
is different, while G™® basically give information on the states of the system, G¥
informs on the occupation of those states.
We use more the function G~ than the Keldysh function GX. Thus, for ending
this section we shall see how to express the function G~ in terms of the advanced
and retarded functions. Coming back to the original Keldysh space

G=g+IL'gSaGL. (A.59)
Taking the element (4, —) and making use of the relations (A.47-54), we obtain
Gh =g¢gh +g" RG +¢'S"GTT + ¢ TG, (A.60)
whose solution, as in the case of Eq. (A.57), is given by
G~ =01+GY)g" (1 +3°G*) +G'ESH~ G (A.61)
In the same way one obtains the following expression for G

Gt =1+GY)g T (1+3GY) + G TG (A.62)

Eq. (A.61) for Gt together with the Dyson equations (A.55-56) for the ad-
vanced and retarded functions form the set of equation that we have to solve in each
concrete problem.

5We shall do the same for the rest of equations in this section in order to simplify the notation.
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A.3 Feynman diagrams

Finally, in this section we briefly study how to build the Feynman diagrams in the
Keldysh formalism, pointing out what are the main differences with the equilibrium
case. Let us consider a simple example of a free electron system subjected to an
external potential V' (Z,¢) which constitutes the perturbation

V(1) = / 7 O1(7, 1) V(& 1) d(7, 1) (A.63)

As stated in section A.1, the diagrammatic theory for the c-contour-ordered
Green function is identical to the one for an ordinary Green function, except for the
integrations along the Keldysh contour. The first order in the perturbative expansion
of the Green function G, is obtained from the expression (A.32) introducing the first
order term in the expansion of S, and applying the Wick theorem. This first order
term G((;l) is given by

a1, 1) :/d@ /azt2 9e(1,2) V(2) go(2,17). (A.64)

We are interested in the diagrammatic structure of each of the G elements in the
Keldysh space. For obtaining them we decompose the integration along the contour
into two integration along the real time axis

o0 o0
[a= [~ [ o e
Cc —o0 —0o0

Splitting G, (see Eq. (A.64)) into its components in the Keldysh space

Y1) = [di [ dt ginl1,2) Viw(@) gey(21), (A6

where ¢, = 4+, —, sum over repeated indexes is assumed and

Vii(2) = V(2)(62)y 3 62 = ( o0 ) . (A.67)

For the sake of simplicity, we shall implicitly assume integrations over intermediate
arguments. Thus, we can write down Eq. (A.66) as

GO =54V g. (A.68)

The only difference with the case of the corresponding equilibrium Green function is
the appearance of &, in the perturbation. As in the equilibrium case the complete
diagrammatic structure is the one shown in Fig. A.5. That is, the matrix Green
function can be written as
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G=g+3V @ (A.69)
This lead us to a self-energy

=V =Vs,, (A.70)
Thus, ¥t = —¥ >~ =V and ¥© = ¥+ = 0. Moreover, taking into account
Egs. (A.51-52) we have that £ =3" =V.

Figure A.5: Diagrammatic structure of a Green function in the case of an one-electron
perturbation given by the external potential of Eq. (A.63).

As far as the perturbation is one-electron, the self-energies ¥~ and 37" vanish.
These self-energies are associated to inelastic processes and then they will only be
non-zero for many-body perturbations induced for example by an electron-electron
interaction, electron-phonon interaction, etc. Finally, for the case of a two-body
interaction, like the ones mentioned before, the diagrams are easily built following
the same prescriptions that we have shown in this example.
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Appendix B

Calculation of the current in
single channel N-N and N-S
contacts

In this appendix we shall give the details of the calculation of the current in constant
biased N-N and N-S single channel contacts using our Hamiltonian formalism.

As we explained in section 2.2, in these two cases the problem admits a stationary
solution, so it is convenient to adopt a time-independent formulation based on the
Hamiltonian (2.7). We assume that the left electrode is in normal state and the
right one is either in normal or superconducting state. Moreover, we choose the
energy origin at the right electrode chemical potential (ur = 0). Let us remember
that the current evaluated between the electrodes can be written in terms of the
nonequilibrium Green functions G~ (see section 2.2 for definition) as follows *

1(r) = 2 [iGg (r.7) — G (r7)] (B.1)
where L and R denote the outermost sites of both electrodes, (1,1) indicates the
corresponding element in the Nambu representation and the hopping ¢ is given in
this representation by the expression (2.14), being time-independent in the gauge
which we have chosen.

As we commented in section 2.2, in order to solve this model we follow a per-
turbative scheme, based on the Keldysh formalism, in which we consider the elec-
trode coupling term in the Hamiltonian (2.7) as a perturbation. Thus, it is easy
to show that the self-energies of this problem have the form ZATZ% = ﬁigﬁz = 0 and

~

Sih = (SRp)7 =1

1We assume that there exists spin symmetry and we only work in the electron space.
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Due to the gauge choice that we have taken, the Green functions only depend
on the difference of their temporal arguments. This permits us to write the current,
after Fourier transforming, as follows

2e [ 2O A= ()5
1=>¢ /700 do [iG (@) ~ Gir@)i'], (B.2)
On the other hand, using their Dyson equations (see Appendix A) we can express

the Green functions appearing in the current as

~ ~ ~

Gipw) = 3l (WIGHRW) + §70(W)IGhR(w)
Ghr(w) = Grr)'gl] (W) + Ghrw)iet, (W), (B.3)

where as usual § are the (retarded, advanced, etc) Green functions of the uncoupled

electrodes, which are given by the expressions (2.16-17). On the other hand, G"®

are the retarded and advanced Green functions of the perturbed system.
Introducing these expressions in the equation (B.2) and taking into account the

general relation G¢ — G" = Gt~ — G~ we can write the current as
MQ/ dw [921;,11(00)01_2;,11(‘”) - 91;;11(“))6121_%,11(“)] ) (B.4)
where let us remember that g7~ (w) = 2ming(w) and §~ 1 (w) = —271ip(w)[1 —np(w)],

where p(w) = (1/7)Im[§*(w)] and np(w) is the Fermi function.

What remains is to determine the perturbed Green functions Gt and G *. To
do this we firstly express them in terms of advanced and retarded functions by means
of the relation

G (W) = (T4 6 WE W) 8D w) (T+ 5w (W) . (BS)

If we take the (R,R) element in the previous expression we obtain

e " = (T4 Grad) i "7 (T +81G3R) + Cratlalh M ViR, (B.6)

where we have not explicitly written the argument w to make lighter the notation.
Then, we take the (1,1) Nambu element in the latter expression having in mind
that the left electrode is in the normal state, and thus, its Green functions §;r are
diagonal. Finally, we substitute in the current expression. Thus, we obtain that the
current can be expressed as a sum of five terms: I = E?Zl I;, where
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no= 2 [T aw (14 Gy ut) (144G TR — 9L 198k
L= It] . w \L+Grr 11 + 10 Grr11) \90L,119rR,11 — 9L, 119RR11
2e o0 - _ _ _
I = —f|t|2/ duw t (1 + G%L,llt) Glr2 {gz—L,llgRE,lQ - QLEL,ng;LzR,lz}
—00
2e R N - _ _ —
I; = —f|t|2/ dw t*G'rp, 12 (1 +t*GaLR,11) {QELL,HQRE,m - gLE,llgER,ﬂ}
—o0
2e o0 - _ _ _
Iy = f|t|4/ dw G?’EL,lZGaLR,Zl {QZL,119RE,22 - QLZF,HQERQQ}
—0oQ
- — §t4 o dw G el +— -+ _ -+ +- (B 7)
5 = 7 I¢| e W G RR12V RR21 \9LL,1190L,22 — 9rp,1190L,22 .

The different perturbed Green functions G™® which appear in the previous ex-
pression can be determined using their Dyson equations:

GP (W) = §PH(w) + § (@) Z" (W) G (w), (B.8)
just taking the corresponding sites and Nambu elements. Moreover, relations like
A% glw) = G’g 4(w) can be deduced, and they allows us to simplify the expression of
the current and to reduce the number of Green functions to be determined.
In the N-N case, i.e. when the right electrode is in the normal state, only the
first term in the current expression survives. Then, the normal current adopts the
form

2e o0 _ _ _
Inny = F|t|2 /_OO dw |1 + G%L,11t|2 {92—1),1193;,11 - QLE—,HQER,H} . (B_Q)

From the Dyson equation (B.8), assuming that the R electrode is in normal state,
one can obtain

T * T
Jrr 11V 9LL11

?zL,n = (B.lO)

1- gTRR,llt*gzL,llt.
Finally, we introduce this expression in the current and we express the functions
(+=).(=1) in terms of the density of states and Fermi functions of both electrodes.
g y
So, we can write the current Iy as in the scattering formalism
2e [
Iny = - T(w,V)[np(w—eV) —np(w)] dw, (B.11)
—00

where T'(w, V) is an energy and voltage dependent transmission coefficient given by
2

In the following expression we have suppressed the Nambu indexes because we are in the normal
case.
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T(w, V) = Ar? |t pro(w — eV)prr(w)

’ 11 —tgrr(w — eV)grr(w)|?’
where now we have explicitly written the voltage dependence (let us remember that
we had taken the right electrode chemical potential as the energy origin).

In principle, this expression is valid for an arbitrary voltage. If the system is in
the linear regime we can assume that the density of states is energy independent in
an interval around the Fermi level. Thus, in this range the normal Green functions
are given by ¢¢; = g%r = i/W, where W is an energy scale related to the density of
states at the Fermi level: p(ep) = 1/(7W). So, in the ohmic regime the transmission
probability becomes energy independent, adopting the form

(B.12)

2 /772
AW _ (B.13)
(14 t2/W?2)2

The zero temperature normal linear conductance will be given by the expression
Gnyn = (2¢%/h)a, which is nothing but the Landauer formulae for a single channel
contact.

If the right electrode (R) is in superconducting state, the current is given by the
full equation (B.7). If we assume electron-hole symmetry, the terms Iy and I3 give
the same contribution. On the oter hand, I5 is just the Andreev term, which we
have denoted as I4 in Chapter 2. Thus, it is easy to realize that the expression (B.7)
reduces to the expression (2.26) for the N-S current. In order to calculate this Ing
current one has to determine the different perturbed Green functions by solving the
Dyson equations (B.8). Moreover, let us remember that the Green functions of the
uncoupled electrodes are given by Eq. (2.16). Thus, after some elementary algebra
one may obtain the results that we showed in section 2.3 for the N-S case.

T(w,V) ~
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Appendix C

Calculation of the current in a
single channel S-S contact

In this appendix we shall describe the algorithm for determining the current in a
constant voltage biased single channel S-S contact. We shall start analyzing the
general case, then we shall concentrate in several limits, in which analytical results
can be obtained, like the large voltage limit, the perfect transmission case and the
small bias voltage regime (eV < A).

C.1 General algorithm

As it was explained in section 2.2, in the case of a S-S contact it is convenient to do
a gauge choice in which the voltage appears as a phase factor in the hopping element
which connects the electrodes. Thus, we describe a single channel S-S contact by
the Hamiltonian

H(r)=Hp+ Hp + Z (tei‘z’(T)/chLUCRa + t*efw(T)/ZCJJ[%o—CLU) J (C.1)

where Hy g are the BCS Hamiltonians for the isolated electrodes, in the coupling
term L and R stand for the outermost sites of each electrode and ¢(7) = ¢g+2eV7/h
is the time dependent superconducting phase.

Within this model the total current through the system evaluated between the
electrodes is given by

I(r) = e z:(tei‘z’(ﬂ/2 < CEU(T)CRU(T) > — e ()2 < CEU(T)CLU(T) >). (C.2)

225



APPENDIX C. CALCULATION OF THE CURRENT IN A SINGLE CHANNEL
226 S-S CONTACT

We write the expectation values appearing in the current in terms of the Keldysh
Green functions G*~ (see section 2.2 for definition), then

I(r) = % Tr [6, (i(r) Gy (r.7) = Glr (r, 1) ()], (C.3)

where G, is the corresponding Pauli matrix, Tr denotes the trace in the Nambu space
and { is the time dependent hopping that in the mentioned matrix representation is

written as
R tet®()/2 0
t= < 0 _preiv(n)f2 ] - (C.4)

As we said in section 2.4, we analyze this problem in terms of the renormalized
hoppings. So, the following step is to express the current in terms of the dressed
hoppings and the Green functions of the uncoupled electrodes. As usual we follow
a perturbative scheme in which we consider the coupling term in the Hamiltonian
(C.1) as a perturbation. Thus, the self-energies of this problem have the form XA]Z% =
3% = 0 and 27% = (37)* = . Within this scheme, we make use of the Dyson
equations fulfilled by the Green functions appearing in the current to express them
as (see Appendix A)

Gt = [ dn {376 — i) Chalr7) + Gialr i) Chrlr )
GE;(T,T) = /dTl {CA?'}IR(T, Tl)fT(Tl)f]zL_(Tl —-7)+
Glr(r )i (m)gt(n =)}, (C.5)

where § represent the (retarded, advanced, etc) Green functions of the uncoupled
electrodes, which are given by the expressions (2.16-17). On the other hand, G™® are
the retarded and advanced Green functions which verify their own Dyson equations:

Gro(r, ) = (r —7') + / dri §™(r — 1)E" ()G (7, 7). (C.6)

Next, we define the renormalized hoppings in terms of which we will finally
express the current. Such hoppings are defined in terms of the Green functions as



C.1. GENERAL ALGORITHM 227

Taking into account the Dyson equation (C.6) and the definition of the dressed
hoppings, it is easy to realize that there exist relations like

Ara 3t aTa gma AT,G § _ AT,Q AT,G
Grrt'=9rr Thr 5 GLot=3rL Tig
> ATa ~Ta AT, . 3T ATG TG AT,a
tGRr=Trr d5r 5 G717 =T 11, (C.8)

where integration over intermediate arguments is understood, as we will do from
now on, except if we say explicitly the contrary.

In order to achieve our aim of expressing the current in terms of the renormalized
hoppings, we write the Green function CAJE}}, which appears in Eq. (C.5), in terms of
the retarded and advanced Green functions. To do this we make use of the relation

Gl = (1+Grit) gin (1+1C1r) + Grat'ef[ iGha. (C.9)
Now, we introduce this relation in the expression (C.5) and substitute in the current

expression. Taking into account the definition of the renormalized hoppings and the
relations of Eq. (C.8), it is easy to check that the current can be written as follows

€ R A A R R A L
I(r) = % Tr [Uz (T}:RQERTI%LQ%L - gELTERgERT}%L
+iraThedls Tin — Thedis TErdfe)] . (C10)

where again there is an implicit integration over intermediate temporal arguments.

Once we have expressed the current in terms of the dressed hoppings, it only
remains to determine them. It is easy to realize that these hoppings verify their
own Dyson equations. If we introduce the Green functions Dyson equation in the
definition of the renormalized hoppings and make use of relations (C.8), we arrive
at the following Dyson equation

Tg‘}g(T, ) = 5(7)5(7' -+
/d’TldTQ f(T)f]}l%’;z(T — Tl)ff(n)gi’z(n — TQ)TLa’I;(TQ, ')
T8 (r ) = #(n)6(r— )+

/dTldT2 Hr)tgpr(r — )i () iR (1 — m2) T (12, 7'), (C.11)

where we have explicitly written the time integration for the sake of clarity.

As usual, in order to solve these equations is more convenient to pass to the
frequency space where they become algebraic equations. Thus, we Fourier transform
the hoppings with respect to the temporal arguments
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~ 1 - ISP
T(r,7') = Q—/dw /dw' e T T T(w,w'). (C.12)
m

Indeed, both frequencies are not independent. It is easy to convince oneself that the
renormalized hoppings admit a Fourier expansion of the form

~

T(r,7) = % > e /dw T (w,w + nwo/2), (C.13)

where wy = 2eV/h and ¢(7) is the time-dependent superconducting phase difference.
One can see that this is true by checking that the Dyson equations (C.11) admit
solutions of the previous form.

Taking into account the latter expression one can write the current as

o0
I(T) = > Ine™m, (C.14)
m=—00
where the different Fourier current components can be expressed in terms of the
Fourier components of the dressed hoppings Ty, (w) = T'(w + nwo /2, w + mwp/2) as
follows

e ~ ~ ~ -
_ ~ T ~t— a ) AT T ~t— a
Iy, = h / dw Z Tr [Uz (TLR,OngRR,nnTRL,nmgLL,mm - gLL,OOTLR,OngRR,nnTRL,nm
n
AT 7 ~+— T ~+— ~aQ
+9rR,00TRL,0n91L nn L LR M — TRL,OngLL,nnTLR,nngR,mm)] . (C.15)

Using the Dyson equations of the renormalized hoppings it can be shown that
the general relation Ty .. (w) = Tzﬂmn(w) holds. Thus, we can express the cur-

rent only in terms of the hoppings TLa’I;,nm' In order to simplify the notation we

denote these latter hoppings as TT‘% So, we can write the current components for a
symmetric junction as

e . PN A
Im = E /dw Z Tr [UZ (Tgng:n T;;mggnm - ggOTgng:n T;ann
n
+g00T'rCLL(J)rg7_;z_Trlzlm - ﬁgg:n_Trlemggnm)] ) (0'16)

where we have got rid of the site indexes L and R in the Green functions of the
uncoupled electrodes because we shall only deal with a symmetric junction.

Now, we have reduced the problem of the current calculation to the evaluation of
the hopping Fourier components, Ty, (w). As it can be seen from de Dyson equations
(C.11), these components fulfill the following set of algebraic linear equations
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Tnm = fnm + énTnm + Vn,n—2Tn—2,m + Vn,n+2Tn+2,m7 (017)

where the matrix coefficients €, and Vnm can be expressed in terms of the Green
functions of the uncoupled electrodes, given by Eq. (2.16), as

~ _ 42| 9n+1dn In+1fn
€, =1
In-1fn Gn-19n

Vn7n+2 _ _t2f11—|—1 ( fn0+2 gnJZ )

~ 0 0
Vi = —t2 fn_ , C.18
n,n—2 fn 1 ( Gn—2 fn—2 ) ( )

where we have used the notation g(w) = g11(w) = go2(w) and f(w) = g12(w) =
g21(w), due to the electron-hole symmetry. Moreover, in the above equations the
shorthand notation g, = g(w + nwp/2) has been used.

As commented in section 2.4, the linear equations (C.17) are analogous to those
describing a tight-binding chain with nearest-neighbor hopping parameters Vn7n+2
and Vnm_Q. A solution can then be obtained by standard recursive techniques. It is

straightforward to show that the following recursive relations between the coefficients
Tym hold:

Trniomw) = 27w+ (n— Dwg] Thm(w), n>1
Thoom(W) = 27w+ (n+ Dwo] Trm(w), n<-1, (C.19)

where the transfer matrix 5% (w) satisfies the equation

N -1
W) = [ - s — Vasest* (Wt wo)| - (C.20)

One can see from the previous equation that 2% (w) and 2~ (w) are related by 2~ (w, V) =
622" (w, —V)6,, where G, is the corresponding Pauli matrix.

By virtue of the relation T}, (w) = Tj,—m.0(w +mwy/2), one can write the current
components given by Eq. (C.16) in terms of Tno(w) =1, Using recursive relation
(C.19) the calculation of the components Ty, can be reduced to a closed system for
the coefficients T} and 7"_;:

[f - €1 - V132+(w)] Tl = fl() + Vlﬁljll
[[—t =V 387 ()] T = a0+ Vol (C.21)
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The remaining task is the calculation of the transfer matrix 2% (w). It can be
shown that the solution of Eq. (C.20) is a diagonal matrix whose elements can be
expressed in terms of a scalar function A\ (w)

oot
n , [ fafssEy 0
z (w) = —t 071 (51_1(53_ 3 (022)
0 fifes73F
01

where \f = AT(w + nwp/2) and 67 = (\F — gnto)/t?f2,5. The function AT (w)
satisfies the following equation

A = g2+ (/WA + 2gad{ N (C.23)

In principle, this expression gives rise to a infinite quadratic system, which will be
truncated depending on the voltage and transmission. For arbitrary bias voltage,
this system can only be solve numerically. However, as we will show below, it is
possible to obtain analytical solutions in special cases like wg — 0, wy — oo and the
perfect transmission case.

Once 27 (w) has been determined one can calculate the coefficients 71 and T_4
from Eq. (C.21)

~ —t ttfofidy 65, 2 f1675,
TN =—— _ C.24
L= T Ee ( 2 foo; 1 (C:24)
Tfl(wa V) = _6wT1(wa _V)a-:ca (025)

where A\, (w, V) = A\t (w,—V) and §,, (w, V) = 6, (w, —V'). The rest of the coefficients
T, can be calculated from Egs. (C.19):

n
Tony1 = lH Frw+ (i - 1)%)1 Ty, n>0
=1
T, = —6,1(w,~V)os, n>0. (C.26)

We finish the discussion about the general algorithm dividing the current into its
dissipative, Ip, and nondissipative part, Ig,

Ip(r) = Iy + Z {I£008m¢(7)}

m>0

Is(t) = Z{Iisinmgé(ﬂ}, (C.27)

m>0
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where Iy is the dc component, I? = I, + I_,, are the dissipative components and
IS =i(I, — I_,) are the nondissipative components.

In the case of a symmetric junction it can be shown that the relation 77 Ronm =
—&wﬁ%_n (w+ nwp)d, holds, where we have used the new notation in the right hand

side of the equation. This expression permits us, after some algebra, to write the
current components as

fo==2 [ aw ¥ Re{m (6.2 w)gTo(w)38) ) (C.28)
h - n=odd
2 = - 5 Re{r (6 [Faln o — man/2) + Tl (o mio2)]
n=odd
g Tewig) } (C.29)
4 ~
n=3 Tdw Y tm{Tr (6, [F 0w — mai/2) — T2 (0 + ma/2)]
- n=odd
gt T (w@)gd) }- (C.30)

So far, we have describe the general algorithm. In the next sections we shall
concentrate in some limiting cases where analytical results can be obtained.

C.2 Excess current

In this section we give the details on the evaluation of the excess current in a S-S
junction. In the limit eV//A — oo only the dc current component I survives. The
infinite summation over n in Eq. (C.28) can be truncated in this case neglecting
the |n| > 1 terms. This is justified as the product f,fn,+1 are negligible in this
limit leading to a vanishing transfer matrix % (w). Physically, this is equivalent to
neglecting multiple Andreev processes for eV/A > 1. Then, Eq. (C.28) reduces to

—%/_O;dw P> Re {Tr (.73 (w)g; T ()36 ) } (C.31)

where now

R —t 0 2f167
Tl ~ ﬁ 2 —
1— 22507, \ t°fod; 1
T_1(w,V) = —6,T1(w,—V)é,.
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On the other hand, when neglecting contributions of order A/eV Eq. (C.23)
simply yields A, ~ (gnt2 +it2/W?3)/(1 — it2gn12/W). Carrying this solution to the
current and after some trivial algebra, we obtain the results 12 = 2IYS for the
excess current at zero temperature and any value of the transmission coefficient.

C.3 Dc current for a =1

This section is devoted to the analysis of the dc current in the perfect transmission
case, whose results were commented in section 2.4.1.

The case a = 1 is reached when the condition ¢t = W (see Eq. (2.25)) takes place.
This implies that Eq. (C.23) admits a simple solution: A, = i/t (we refer to the
advanced parameter). This solution makes that the transfer matrix 2% (w) adopts a
very simple form:

a1a2

A aa 0
z+(w):( 203 ) (C.32)

where a(w) is the probability amplitude of an Andreev reflection in a N-S interfase
with perfect transmission and it is given by a = (i — ¢%)/f®, what yields an energy
dependence given by Eq. (2.48). Moreover, we have used the shorthand notation
an = a(w + nev’).

On the other hand, the hopping Fourier components adopt the expressions

~ t apal aj
ll___
= 2( a 1 )

2n
. t
T =—3 [H az-] < Aot fanit ) ) (C.33)

i—1 0
If we introduce these expressions in Eq. (C.28) for the dc current, we obtain the
expression (2.47) after elementary algebra.
One of the main features of the dc current at perfect transmission is its saturation

at zero voltage. In order to obtain the saturation value is convenient to regroup the
series appearing in Eq. (2.47) to write the dc current as follows

I = %/Z o 3 Rul@) {np(w+ (0 —1/2)eV) — np(w+ (n+1/2)V)}

n=-—00

(C.34)
where ng is the Fermi function and R, is the probability of a multiple Andreev
reflection for perfect transmission given by R, = [[i; |a;_1 /2|2 forn >0, Ry =1
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and R_, = [[}-1 la_i11/2> con n > 0. When the bias voltage tends to zero at zero
temperature, the integrand in the previous expression tends to one inside the gap
and zero outside. This is just a consequence of having a probability equal to one
inside the gap for the multiple Andreev reflections. Then, the saturation value of
the dc current at zero voltage is Iy = (4e/h)A.

C.4 Small bias voltage limit

In this section we give the main steps in the analytical calculation of the current
components in the limit eV/A — 0, commented in section 2.4.3.

C.4.1 Linear regime (1> eV)

Let us start analyzing the linear regime case which takes place when the relaxation
energy 7 is greater than the voltage. In this case  becomes the natural cut-off of
the Andreev reflections, giving rise to a linear regime which we are going to study
now.

The small voltage response can be straightforwardly derived from Eqs. (C.28-30)
by expanding the Fermi functions appearing in g™~ up to first order in eV: np(w +
nwo/2) ~ np(w) — (B/8)nwesech?(Bw/2), where 3 is the inverse of the temperature,
and evalutating the rest of these expressions at eV = (. The current components
can be written as

~

2¢2 o0 Bw . gt R R
Iy = TBV /_OO dw SechQ(T) > nRe {Tr (UZTT‘Z”L(QS - gS)TﬁgS)} (C.35)

n=odd>0
2¢2 o0 Bw . [ - R AT\ A A
Ig = TﬂV/ dw sech2(7) Z nRe {Tr (az [Tf:j_m + Tﬁim] (96 — gS)TﬁgS)}
-0 n=odd>0

(C.36)

oo A A
Iy = % [ dwnr@) Y tm{T (o [Tl - Ti] 68 - 9)Tias) )
- n=0dd>0
(C.37)
Thus, the dissipative contribution, Ip, goes to zero as Ip(¢) ~ G(¢)V, G(¢)
being the phase-dependent linear conductance, while the supercurrent part Is(¢),
tends to a finite value at V = 0.
In the zero-voltage limit the coefficients 7}, adopt a simple form. The transfer
matrix 2%(w) becomes a scalar function: 3 (w) = 27 (w) = 2z(w)I; with z(w) =
—t2£62 /A2, where AT (w) = A~ (w) = A(w) satisfies the simple quadratic equation
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Pg(w)\2(w) — (1 — %)/\(w) +g(w) = 0. (C.38)

The physical solution of this equation for 7 = 0 is *

eiﬂo)\ (w)

A= o AV1 —a < |w <A, (C.39)

where

a(w) = arcsin (ﬁ \/w2 —(1- a)A2> . (C.40)

As we see X is just a phase factor in the indicated energy range. Due to this fact,
this range will be the most important one in this problem because, as we will show
below, in this interval the Andreev bound states move giving the most important
contribution to the current in the weakly damped regime.

Finally, the coefficients T}, adopt the form

. _ 40262 12
Tons1(w) = 2™ ()T (W), n > 0. (C.42)

Due to these simple recursive relations, the series appearing in the current com-
ponents become geometrical series, which can be summed up without difficulty. In
the weakly damped case, n/aA < 1, these summations lead to analytical expressions
for the dissipative and nondissipative parts of the current. By solving Eq. (C.38) up
to corrections of order n/a/A one obtains

z(w) = ele(w) _ % [i + cotg(p(w))], AV1 —a<|w| <A, (C.43)

where

() = arcsin (%mw - aw) . (C.44)

The summation of the geometrical series appearing in the current components
yields

!This solution refers to the advanced parameter, i.e. considering that the Green functions ap-
pearing in Eq. (C.38) are advanced. Let us recall that we are expressing the current in terms of
advanced hoppings.
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1+ 2)?

2 o0
I, = 2%@/ [m dw sechQ(%u)Re {A(w)} 1—22)?

(C.45)

2 00
1D = Q%BV /_OO dw sechZ(%d)Re {A(w)

m oy LI 2mem
(= +()>u—wm2+1—m4}

(C.46)

IS = %/_O; dw np(w)Im {A(w)(z?fi‘gjm} , (C.47)

where A(w) = Tr[6,T} T(ga — §")T%§%. This expression is valid for arbitrary 7
within the linear regime and allows us to identify the two subregimes we spoke
about in section 2.4.3. It can be noticed that in the weakly damped limit (n <
aA) the integrands in the previous expressions go like 1/n and the energy interval
Av1—a < |w| < A gives the main contribution to the current. On the other hand,
in the strongly damped case (n > «A) an important contribution to the current
comes from the continuous band. This is illustrated in Fig. 2.15 where the current
density for the dc component is shown for different values of 7.

Finally, we sum up all the current components to obtain the total contribution to
the dissipative and nondissipative parts. When carrying out these sums, the current
densities become singular at the condition ¢(w) = ¢. This condiction is satisfied for

w=wg = :I:A\/l — asin?(¢/2), i.e. at the Andreev bound state energy levels. In
the weakly damped regime these sums lead us to

2,2 A4 00 )
Ip(¢) = c ;}h ﬂV/ dw sechQ(%d)smwﬂ X
—0oQ

1
Im{w-mm—me+WA—m>

} (C.48)

1
(W= lws| = in)(w + |ws| —in)

Is(¢) = —%QAZ sin¢/o:o dw nF(w)Im{ } . (C.49)

All the contributions to the current come from the poles at the Andreev bound
states, what makes the evaluation of these integrals quite simple. Egs. (C.48-49)
yield the expressions (2.55-56) for the supercurrent and phase-dependent linear con-
ductance.
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C.4.2 Nonlinear regime (1 < eV)

When n < eV there is no a linear regime. In this subsection we give technical details
about this case which has been analyzed by Averin and Bardas [130].

First, making use of the relation 7", (w,V) = 6,1}, (w, —V )64, we can rewrite
the current components (Egs. (C.28-30)) as

de [ a
I = 4 / dwtanh (ﬁ_w) > Re {Tr (&ZT;L”(w —nwo/2)(g5 — 9o) %
h J- 2 n=odd>0

T,

2w — nwo/2)5%,) b
4 (e 9]
D = Fe/ dwtanh(%) Z Re{Tr (6,x
e n=odd>0

(T8 (w0 = nao/2) + Tt (w0 — meo/2)] (98 — 36) T (w0 — e /2)§%, ) }

4 [e e}
s = —{/ dw tanh (52_&)) Z Im {Tr (6, x
- n=odd>0

[Tl (@ = mewo/2) = Tty (w = mewo/2)] (36— 35)T5(w — nuwo/2)3,) } - (C.50)

In the limit eV — 0 the solution of Eq. (C.23) is A} = Aw + (n + 2)wo/2], where
Aw) satisfies the quadratic equation (C.38). The coefficients Ty, (n > 0) can then
generated starting from 77 and using the transfer matrix 2% (w). These quantities
are obtained from Eqs. (C.22) and (C.24) making use of the eV — 0 solution for
At

For the nonlinear regime analytical results can only be obtained for perfect trans-
mission. In this case, as it was shown above, we have A} = i/t, what yields the
expression (C.33) for the hopping components. As discussed in Ref. [130], when
written as in Eq. (C.50), the main contribution to the current in this limit comes
from a small energy range around the gap edges. Moreover, one can see that when
eV — 0 the nondissipative components vanish, while the nondissipative ones tend to
finite values. Evaluation of the integrals appearing in Eq. (C.50) leads to expression
(2.57) for the total dissipative current Ip.
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Appendix D

Josephson current and
microwave radiation: Detection
of the Andreev bound states

As discussed in Chapter 2, the Andreev states play a central role in the adiabatic
dynamics of an SQPC at low bias voltage. From the theoretical point of view nobody
doubts about their existence, however there is no yet a direct experimental evidence
of it. The aim of this appendix is to propose a method for the direct detection of the
Andreev states in a Josephson junction at zero bias voltage. Considering that the
typical subgap energies are in the microwave range, it seems natural to propose using
microwave radiation for a direct detection of these bound states. This possibility has
been suggested in a previous work by us [280] and in Ref. [281].

In order to analyze the effect of a microwave radiation on the dc Josephson
current we shall study the single channel model introduced in section 2.2. We shall
describe the laser field by a classic vector potential A(7,7) = Ay (7) cos(w,7), which
means neglecting quantum fluctuations in the photon field. The precise distribution
of the electromagnetic field around the junction interfase is dependent on materials
and geometry, and its direct calculation is a complicated problem. However, for a
wide range of frequencies we may assume that the field intensity is maximum in
the interfase region and we can neglect the effect of the field penetrating inside the
electrodes.

In the presence of a laser field the Hamiltonian (2.8) for a single channel Josephson
junction is modified by an extra contribution given by

SH = —%/d3r J(7) 6A(7) (D.1)

-

where J(7) is the current density in the junction.
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Within the previous assumptions the field can be introduced as a phase factor

modulating the hopping which connects the electrodes in Hamiltonian (2.8) as follows
[128]

t('T) — tei(¢°+a° COS(;.),«T)7 (D2)

where ¢ is the superconducting phase difference across the junction, w, is the mi-
crowave frequency and ag = eVopt/(hw;), Vopt being the optical voltage induced by
the field across the constriction. The parameter oy measures the strength of the
coupling with the external field.

I./(eA/R)

o
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o
=
|

=
T

I
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4

hw,/ 24

Figure D.1: Induced dc current in a SQPC under microwave radiation for different
normal transmissions in the limit of weak coupling (ap = 0.1).

The time-dependent hopping can be expanded as

t(r) = tz i T ()T, (D.3)
n
where J, is the n-order Bessel function. For small coupling one can keep the lowest

order terms in Eq. (D.3) and obtain some analytical results [280]. In the general case,
the model Hamiltonian can be viewed, according to Eq. (D.3), as a superposition of
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processes where an arbitrary number of energy quanta hAw, are absorbed or emitted.
As the temporal dependence of each term in Eq. (D.3) is formally equivalent to that
in the constant voltage case, the generalization of the algorithm discussed in Chapter
2 to the present case is straightforward.

o ©
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Figure D.2: The same as in Fig. D.1 for ag = 0.4.

Fig. D.1 shows the induced dc current ! as a function of the microwave frequency
for the case of low coupling constant (ap = 0.1). All the results correspond to the
situation in which the contact is carrying the maximum supercurrent. In this weak
coupling limit the induced current is mainly due to the excitation from the lower
to the upper Andreev state, which carries a negative current, i.e. opposite to the
supercurrent. As a consequence the induced current exhibits a maximum for the

resonant condition w, = 2¢(¢), where €(¢) = A\/l — T'sin?(¢/2) is the position of
the Andreev state inside the gap. For low transmission this feature becomes the
Riedel peak at w, = 2A [20]. At resonances, the induced current can be of the same
order as the critical supercurrent. One can also notice a second satellite peak around
€(¢) associated with two-photon processes and a continuous band above A + €(¢).
When the coupling constant g increases the contribution of higher order pro-
cesses becomes progressively more important, as illustrated in Figs. D.2 and D.3,
giving rise to a greater number of resonances in the region w, < 2A. Finally, for

'The induced dc current is defined as Io(¢, wr) = Is(¢)—I(¢,w.), where Is(¢) is the supercurrent
without radiation and I($,w) is the total dc current in the presence of the laser radiation.
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g > 1 the resonant condition for the excitation of the upper Andreev state can no
longer be resolved.

0.8

o
@
|

I,/(eA/h)

o
T

0.14

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
hw,/2A

Figure D.3: The same as in Fig. D.1 for ag = 0.8.

Finally, we have shown in this appendix that the analysis of the dc Josephson
current under a non very high microwave radiation (op ~ 0.1 — 0.5) would allow to
reveal the Andreev bound states responsibles of the supercurrent.
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Appendix E

Current 1in an atomic contact

This appendix is devoted to the analysis of several technical issues related to the
calculation of the current and transmission in a metallic atomic-size contact. In
section E.1 we shall deduce the current expression in these systems, and in section
E.2 we shall analyze the problem of why the fourth channel in the sp-like metals is
closed.

E.1 Expression of the current through an atomic con-
tact

First, we face the problem of the calculation of the elastic current in an atomic
contact with arbitrary geometry in terms of its microscopic parameters.

Let us consider an atomic contact with arbitrary geometry like the one depicted
in Fig. E.1. In this contact we distinguish three different parts: the reservoirs L
and R, with their respective chemical potentials, and a central region formed by N
atomic layers ! numbered as indicated in the figure, which can contain an arbitrary
constriction. In principle, the reservoirs L and R can have an arbitrary shape and we
assume that they provide a region where the temperature and the chemical potential
are constants. This separation of the contact in these three subsystems is somewhat
arbitrary and one can play with that.

As explained in Chapter 6, we describe an atomic contact with the following
electronic tight-binding Hamiltonian:

f{ = Z emcjaaciow + Z tia;jﬁcga,acjﬂ;m (El)

1,0 ta#£jp,0o

!The existence of ordered layers is not necessary. In the picture is shown like this to make easy
their numbering.
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Central Region
o o
Electrode (L) 00g0°% Electrode (R)
o000 O0CGO
KL (NN N NN He

o0 o0
o o
2 3

eV = - Mg

Figure E.1: Schematical representation of an atomic contact. We distinguish three
parts: a central region and two leads.

where ¢, j run over the atomic sites and «, 5 denote the different atomic orbitals (the
number of orbitals in each site is denoted by N,.;). We assume that the hopping
elements only connect nearest-neighbor atoms.

Our aim is to determine the current through the contact induced by a constant
bias voltage, eV = ur — ugr- Let us start evaluating the current at the interfase
between the left lead L and the layer 1, which in the tight-binding representation
adopts the form

I= % > {tisslEantive) = tisialEls,tiao) } (E2)
i€L;jeL;a,8,0
where ¢ runs over the atoms of the left electrode which are connected with the atoms
in the layer 1, and j runs over the atoms of the layer 1. The indexes « and 3 indicate
the different atomic orbitals.

As stated in Chapter 6, to calculate the current we make use of nonequilibrium
Green functions techniques, the so called Keldysh formalism which is described in
detail in Appendix A. We can express the expectation values appearing in the current
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expression in terms of the Keldysh Green functions G*~. These functions give
information on the distribution function of the system, and in an atomic basis have
the following form

— ! . A~ ~
Gid” (') = i(ely o (7)éiao (7)) (E.3)
Using this expression one can write the current as
I==< tiai8GT0% (1 7) — tipiaGio%(r,7) (E.4)
= Z iw,jiBY 84 \TH T JBiaTiq 58 \THT) (- .
iel;jelanfo
The current can be expressed in a more compact way by defining the hopping

matrix 77, y t17, whose elements are given by

(ALl)ia,jﬂ = tia,jﬂ coni € L; ] el
(tlL)ia,jﬂ = tia,j/j coni €1; 7 € L.

~

(E.5)

In the same way, similar matrix can be defined for the Green function GT~.
Then, one can express the current as

=21 {6y ()t — huGiy ()}, (E.6)
where Tr denotes the trace over orbitals in layer 1. The prefactor 2 comes from the
sum over spins, since we are not going to consider any magnetic situation, and we
can thus suppressed the superindex o in the Green functions.

The different Green functions only depend on the difference of temporal argu-
ments, what makes that the problem admit a stationary solution. This fact allow
us to Fourier transform with respect to the difference of the temporal argument and
expressing the current as

2¢ o0 ) o
1== [ _dE TGy (B)in — huGiy ()} (E.7)

As we can see, the current is expressed in terms of the trace of a matrix whose
dimension is My X Ny, where M; is the number of atoms in the layer 1. Then, in
principle there are M7 x N, entry channels. The problem has been now reduced
to the determination of the functions G* in terms of the hoppings and energy
levels of the Hamiltonian (E.1). We shall calculate these functions considering the
coupling term between the electrodes and the central region as a perturbation. Then,
starting from the Green functions for the three isolated systems we shall determine
the corresponding functions for the whole system. With this choice, the self-energies
of the problem are the hopping matrix defined in Eq. (E.5) and the equivalent one
for the interfase between the layer N and the right electrode.
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We make use of the Dyson equation in Keldysh space to write the functions G~
as follows 2

At _atoi G o O
Gry =9rptGh + JrptnGh

Nl P P E.8
Gip =G gt + Ghtinglr (E8)

where g are the (retarded, advanced) Green functions of the corresponding uncou-
pled subsystems. Introducing this equation in the current expression and making
use of the relation Gt~ — G~ = G% — G" we obtain

=2 [T ap e {Gtigiin — Ghiug i E.9

=7 1 tingrpton 1 tegrpto g - (E.9)
—0oQ

Then, we determine G(+-)(=+) by means of the relation

GO = (14.Grd) gD (1 4+ 860) (E.10)

Taking the element (1,1) (referred to the layer 1) we obtain

G&F)(iﬂ = @iﬂ?m@(ﬂf)(iﬂ&l@fl + GQNfNRﬁj(LzJ;;)(iJF)ERNé?w- (E.11)

Sustitution of this equation in the expression of the current yields

2e [ An A A AL A A
I = f/ dETF{GQNtNRQREtRNG?wtngfLtLl—
—00
G NinkIF RN Gt gr Tt E.12
ININRIRRVRNG N1VILY L, VL1 [ - (B.12)

+

Let us recall that the unperturbed functions g™~ y g~ satisfy the relations:

g7 ="-9") f=2iIm{g*} f
g =@ -9 (f - 1) =2 m {g} (7 — 1), (13)

where f is the Fermi function. Thus, the current can be expressed as
e [° Ar o F ~a n Yo F ~a \}
I=— [ dETr {GlninrTm {ghg} irnGintioTm {68} ua } [fr — fr]. (B.14)
—00

One can further simplify the current expression noticing that the following self-
energies appear in the previous expression:

We do not write the argument E explicitly. Moreover, since there are no inelastic processes
involved in this model, the self-energies ¥~ associated with them vanish.
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Aﬁ]L =t108% (E.15)
Yr = tNRIRRLRN
These self-energies describe the coupling between the reservoirs and the central re-
gion. The current is expressed in terms of these self-energies as

1= [T aBTE V) lf - a), (E.16)

where T(E,V) is an energy and voltage dependent total transmission probability
given by

T(E,V) = 4Tr [GyIm { Sk} GhaIm {5, }] . (E.17)
One can further symmetrize this expression by using the cyclic property of the
trace and write T(E,V) = {(E,V)#(E,V), where

i(B,V) = 2im (£} @1 1m {5} (E.18)

is the transmission matrix of the system. The existence of (Im3.)/? as a real matrix
is warranted by Im> being positive definite.

Finally, the current adopts the form

j %‘3 /_°:o 4B T {{(B,V)I' (B} 1 - fal. (E.19)

valid for arbitrary bias voltage. In the linear regime this expression is simplified
giving a zero-temperature conductance given by the Landauer formula

2¢2 ) . 262 M1 X Nopp
G = TT]r{t(}}?F,o)ﬂ(EF,0)} =5 X T (E.20)
i=1

where T; are the eigenvalues of #! at the Fermi level. As one can see, in principle
the number of channel would be M; X Ny, which is the dimension of the matrix
it" evaluated in layer 1. But as we stated at the beginning of this appendix, the
separation in three subsystems in somewhat arbitrary and one can evaluate the
current in any point. Thus, it is evident that the actual number of channels is
controlled by the narrowest part of the constriction. So, in the case of an one-atom
contact analyzed in chapters 6 and 7, the number of channels is the number of
orbitals of the central atom, and the transmission evaluated in the central atom can
be expressed as

iE) = 2Im{i:L}l/2 chlm{i:R}l/Q, (E.21)
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where G, is the Green function of the central atom and now the self-energies describe
the coupling between the central atom and the rest of the system. Then, the trans-
mission evaluated at the central atom is a matrix whose dimension is (Nyqp X Nopp),
i.e. the actual number of channels is N,.. Using the analytical properties of the
Green functions, it can be shown that the whole spectrum of the transmission matrix
is conserved from layer to layer, giving rise to the same channels in any case. Thus,
it is convenient from the computational point of view to evaluate the transmission
at the central atom, where its dimension is minimum.

To end this section we shall briefly comment some details about the calcula-
tion of the Green functions of the system. As we have seen, the calculation of the
transmission is reduced to determine the different retarded and advanced Green
functions of the system in equilibrium 3. These functions are formally defined as

Gre = [Ei +i0" — ﬁ] 1. In particular, for the one-atom contact it is easy to show,
following the perturbative scheme indicated above, that the central atom Green
function is given by G¢ = G = [Ei —i0T — Hy— 3 — f]R] 1, where Hy is the
Hamiltonian of the central atom, i.e. it is a diagonal matrix which contains the
atomic levels. On the other hand, the self-energies correspond to the ones of Eq.
(E.15), which describe the left and right electrodes starting from the central atom.

The self-energies are determined in terms of the Green functions of the uncoupled
electrodes. As commented in chapter 6, the system that we study consist of a
central neck of arbitrary length finally connected to two perfect semiinfinite crystals,
which represent the electrodes. The Green functions of a infinite surface can be
determined with arbitrary precision by means of standard recursive methods, like
the ones described in Ref. [254]. The idea behind these methods is to determine
the Green functions of a plane, transforming to a Bloch basis which diagonalizes the
problem, and then connecting the different planes with interplane hoppings. This
converts the problem in a one dimensional problem, like the one of a tight-binding
linear chain, easily solvable by means of recursion.

E.2 Fourth channel in sp-like metal contacts

This subsection is devoted to the analysis of why the fourth channel in sp like metals
one-atom contacts is closed for all energies. Fig. E.2 shows the transmission of such
channel as a function of energy for the Al one-atom contact of Fig. 6.6(a).

First of all, due to the splitting between the p, and p, — p, central atom levels,
provoked by the contact geometry, the problem is separated in two subspaces: the
s —p, subspace and the p, — p, subspace. This converts the problem of the analysis

3The readers who want to learn more about the techniques used for determining the Green
function of a tight-binding system are encouraged to consult Ref. [122].
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Figure E.2: Transmission of the fourth channel as a function of energy for an Al
one-atom contact (N =1).

of the transmission in two (2 x 2) problems. As we are interested in what happens
to the fourth channel, which is a combination of the s and p, central atom orbitals,
we shall concentrate in the first subspace.

In the subspace s —p, the transmission evaluated at the central atom is a (2 x 2)
matrix given by Eq. (E.21), where

. . ]_"L PL
Im{3, =7, = ( 5 P ) (E.22)
{ } szS szpz

is the matrix scattering rate which describes the coupling between the central atom
and the left electrode in the sp, subspace. On the other hand, Im{f]R} =Tgis
given by a similar expression. In order to have a vanishing eigenvalue of the matrix
ttt it is sufficient that one of the scattering rate matrix has a vanishing determinant.
This determinant is zero if the following condition holds: *

F55szpz = PS;Dz sz57 (E23)

Let us recall that I is a positive definite matrix, what makes that TssTp.p, > Tsp. Tp.s.
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where we have suppressed the indexes L and R because no matter what electrode
we are referring. Let us recall that these rates are given by the expression I, =
terIm {9% L}ELC, where %.7 is the hopping matrix which connects the central atom
and the left hand side electrode, like the one in Eq. (E.5). It is easy to convince
oneself that in order to verify the condition (E.23) it is sufficient that the hopping
connecting the central atom and its neighbors satisfy the relation

Usstp,p, = Lsp,tp,s- (E.24)

150
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Figure E.3: Histogram of the fourth channel for the Al one-atom contact of Fig. 6.9.

It is worth noticing that the hoppings we are considering are projections of the
matrix elements Vs,, Vipo and V.. For any metal the relation Vo Vipe ~ Vipos
is approximately verified, so that the condition (E.24) holds approximately for the
considered geometries and so does the condition (E.23).

It is important to remark that in order to have a vanishing eigenvalue of #t! it is
only necessary that the condition (E.23) be verified approximately. Great deviations
of this condition are necessary for having a non-negligible transmission for this chan-
nel, what explains why it is closed even in presence of disorder due to the symmetry
of the orbitals (s y p,) involved. This is illustrated in Fig. E.3 where the histogram
of the fourth of the Al one-atom contact corresponding to Fig. 6.9 is shown. As it
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can be seen large random deviations of the hoppings are not enough for opening this
channel at the Fermi level.
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