TEST OF THE SECOND POSTULATE OF splecial relativity in tise gev region

T. ALYAGER *, F. J. M. FARLEYY, J. KJELLMAN and L WALLE! ** CERN, Geteva

Recelved 20 August 1964

The second postulate of special relativity states that the velocity of electromagnetic radiation is independent of the motion of the sowrce. In spite of recent experiments to test this postulate $1-5$), the cmpirical evidences romaln either of low accuracy or subject to duferent theoretical doubts ${ }^{6-8}$). For a detalled review of the situation, see, for example, ref. 2.

To rompare experiments on this subject, it hias been assumed for simplicizy that the velocity of the radiation from a moving source is given by

$$
\begin{equation*}
c^{\prime}=c+k v, \tag{1}
\end{equation*}
$$

where v is the velocity of the moving source and k is a constant to be determined experimentally. Special reiativity requires, of course, $k=0$. The best value quoted from astronumical arguments, nameiy considerations concerning the orbits of
 terrestrial tests the best results onty give a b value of the order of $k<0.1$. However, as there is no justification for the linear deyendence as sumed in eq. (1), this comparison of various experiments is evidently rather arbitrary.
Ii. order to increase the accuracy of the temestrial tests and in particular to searen for a breabrown of special relativity for source velocities very close to c, a raeasurement has been made of the veloctity of γ raye from the decay of π^{9} mesons of energy $>6 \mathrm{GeV}\left[\gamma=\left(1-3^{2}\right)^{-\frac{1}{2}}>45\right.$ according to special relativity). The velocity of the γ rays was measured absolutely by timing over a known distance.

The measurement was performed with the CERT Proton Synchrotror: (PS), ruming at a momentum of $19.2 \mathrm{GeV} / \mathrm{c}$. The $n^{\circ}{ }^{\prime} \mathrm{s}$ wese pro,duced is a Be target ($0=1 \mathrm{~mm}$, length $=20 \mathrm{~mm}$) and the γ rays were observed at an angle of ≈ 60 ts the proton direction. Bending raagnets close to the target were used to sweep away clarged particles giving ea essentially neutral beam, which passed thr righ a 5 mm diameter lead colLimator and a permanent megnet about 50 m from the target.

The γ rays were detected by mesns of a 4 mm thick Pb coni, erter followisd by a small plaetle scintillator in colncidenae with a lead-glas. Ct~ renkov counter. The pulse height in this was used to select γ rays of ehergy $\geqslant 6 \mathrm{GeV}$. In thont of the detector syatem a large plastic scintilletor was used as an anticounter to climinate resto clarged particles tin the team.

The time measurement wat hassd on the bunched structure of the PS beam. The circulaing beam consista of buncher of a tew nsec hali-width and separation about 105 nsec. In order to conserve this funch structure, the radio frequency sollage was maintained during the targer iryadiation (100 mscc).

The start puises for a time-to-pulse-height cor verter were taken from the small plastic scintil tor, and the stop pulses were derived from - e DS redlo irequency. The pulses from the time-to-puise-helght converter were fed to a multichannel analyser.

To measure the velocity of the γ rays two detector positions A and B were used. The distance between these ($S=31.450 \div 0.0015 \mathrm{~m}$) was chosen to be very ciose to c / f, where f is the radio frequency during the taret irradiation ($9.53220=$ 0.00005 Miz). The γ ray velocity (c^{\prime}) in then found from

$$
\begin{equation*}
c^{\prime}=S /(1 / f \div \Delta) \tag{2}
\end{equation*}
$$

where $\Delta=t_{\mathrm{B}}-t_{\mathrm{A}}$ and $t_{\mathrm{A}} \mathrm{B}$ are the times recorded in positions A, B, respectively. With this choice of the distance s the two peaks appear almost in the same channels of the tme sortor ($\alpha<1 / f$), and one obtains a very accurate velocity measurement inaenatitwe to crrors in the calibration and lineatity of the Emang electronics.

Fig. 1 shows tho cxpertmental axrangement together with sample time apectra recorded in detector positions A and B. FCT comparison, recordings for two other positions A^{\prime} and B^{\prime} are

[^0]

Fig, 1. The experimental arrangement and typical time speetra of the γ rays. recorded in the four detector positions $A, A^{\prime}, B, B^{\prime}$. Chamel width 0.35 nsec. The measuring time for 100000 counts in the peak was aboat 10 m in.
also presenced. A^{\prime} and B^{\prime} are located 4.5 m from A and B, respectively (as shown in fig. 1) and the expected shift of ± 15 nsec is well verified.

Although the peaks show an asymmetry originating in the PS, an accurate estimation of the peak
positions can be obtained by utilizing the sharp left part of the curves. in spite of a slow drift in the peak positions (due in part to small changes in the PS itself), it was ciear that there was no constant difference correlated with positions A
and E. Choosing the nobt stathe perioute, and couronting for the inear drift, the mean value for the shift is found to be $A=0.005 \pm 0.013$ nsec.

The result for the velocity measurement of γ rays of energy $\geqslant 6$ GeV from a source with $\beta=0.99975$ (according to spectal relativity) as given by eq. (2) is

$$
\varepsilon^{\prime}=(2.9977 \pm 0.0004) \times 10^{10} \mathrm{~cm} / \mathrm{sec}
$$

If we interpret this rebult using eq. (1) with $c=2.9979 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$, the corresponding value for k is:

$$
k=(-3 \pm 13) \times 10^{-5}
$$

Note that the γ rays observed in this experiment pass through some beryllium, a thin mylar windew and about 60 m of air before their velosity is measured. As this material is refractive, the extinction theorem imane in that the original γ rays from the moving zowice wall be siowly absorbed and repiaced by similar radiation re emitted by the stationary medium, thus invalidating the experiment 7). Thia effect becomeg innportant if the phase delay due to the medium exceeds say $\lambda / 2 \pi$, where λ is the wavelength of the γ rays. Deriving the refractive index for γ rays from the forward scattering amplitude per elec$\operatorname{tron} A=z^{2} / m c^{2}$, the raximum allowable digtance becomes

$$
d_{\max }=(\lambda m A)^{-1} \approx 5 \mathrm{~km} \text { of air }
$$

 electront pet chn of the wadim. We ponevode that reratiation by stationtay mater ial if a ategligilue effect th this expertmont.

The authors appreclate the invaluable heip of Dr.J. M. Beiley during the setang-up and ruming of the experiment. The collaboration of the cGRN PS group, notably D. Deltere, K. Case and W. Fichter ie gratefully acmin wiedged. We Elaco wish to thank Dre. H. G. Hereward and P. H. Buandey for valuable discusbions concerning the critical operation of the $P 8$ for this expertmen. Fhally, We would like to thank Dr, B, Lasureat, Univernity of Stochholm, for several ctarifying ciscussions.

References

1) D. Sadeb, Phys, Rev. Lettera 10 (aselj 27 .
2) T.Alvager, A. Nilason and J. Kjolimwa, Nabirs 197

3) W, Kantor, d.Opt. Soc. An. 62 (1907) 528.
 112.
4) F.B. Rots, Physian Rethers 7 (1903) 252.
5) P. Noom and D. E. Spencer, J, Opt, Soc. Am. A3 (1555) 655.
6) : G. Pas, Am, J. Phys. 30 (106t 297.
7) II. Dingle, Monthly Not. Hoy. Astres. Sooc. 519 (1959) 67.
8) W. De Bittor, Proo. Aminterdam Acad. 16 (1915) 395; Phyak 2,14 (1913) 1267.
10 w. Zuthellon, Astroa. Nachr, 198 (1914) 1.

G. FURLAN
CERAV, Geneva, Swizzerland
and
R. GATTO and G. IONCHI
Istinuto ai Fintea delt Universifa, Firenze, Haty,
Lahorators Mazionalt at Frascuti del CNEN, Fyascati, Itoma, Itaty

Received 2A Angunt Tefa

In this thote ge give an evaluation of the radiaLive cormections to the colliding beam reation $\mathrm{e}^{+}+e^{-} \rightarrow \mu^{+}+\mu^{\prime}$. We use Erikseon's work on the renormalustion grom in electrozyamiss 1) to odtain a tentative estimate of the higher order
corrections in α. Our respults show that the highef ofder terma play eminoz role for colliding beam experiments in the energy cange of interest for the vaxious projects now under aevelopment ${ }^{2}$). Oue saluulation of the two-photon contribu-

[^0]: * Permanent gidresst University of Stockholm, Sweden.
 ** Research student from Thiversity of Lund, Sweden.

