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A precision measurement of the gravitational redshift
by the interference of matter waves
Holger Müller1,2, Achim Peters3 & Steven Chu1,2,4

One of the central predictions of metric theories of gravity, such as
general relativity, is that a clock in a gravitational potential U will
run more slowly by a factor of 1 1 U/c2, where c is the velocity of
light, as compared to a similar clock outside the potential1. This
effect, known as gravitational redshift, is important to the opera-
tion of the global positioning system2, timekeeping3,4 and future
experiments with ultra-precise, space-based clocks5 (such as
searches for variations in fundamental constants). The gravita-
tional redshift has been measured using clocks on a tower6, an
aircraft7 and a rocket8, currently reaching an accuracy of
7 3 1025. Here we show that laboratory experiments based on
quantum interference of atoms9,10 enable a much more precise
measurement, yielding an accuracy of 7 3 1029. Our result sup-
ports the view that gravity is a manifestation of space-time cur-
vature, an underlying principle of general relativity that has come
under scrutiny in connection with the search for a theory of
quantum gravity11. Improving the redshift measurement is par-
ticularly important because this test has been the least accurate
among the experiments that are required to support curved space-
time theories1.

Metric theories of gravity are based on the Einstein equivalence
principle (EEP), which states that the local effects of gravity are the
same as those of being in an accelerated reference frame. The EEP is
derived from three separate experimental observations1: the weak
equivalence principle (that is, the universality of free fall), local
Lorentz invariance, and local position invariance. The first two have
been verified experimentally to accuracies of 10213 or better
(although some loopholes have not been closed)1,11. Local position
invariance requires the outcome of a non-gravitational experiment to
be independent of where and when it is performed. In practice, the
highest-precision tests of local position invariance are measurements
of the gravitational redshift: the frequency of an oscillating system (a
‘clock’) is measured as a function of location. If the EEP holds, there
will be no variations other than those caused by gravity, that is, the
gravitational redshift.

The basic concept of redshift measurements like ours is to synchron-
ize a pair of clocks when they are located closely to one another, and
move them to different elevations. The gravitational redshift will
decrease the oscillation frequency of the lower clock relative to the
higher one. When we bring the clocks together afterwards and compare
the number of elapsed oscillations, there will be a measurable phase
shift between them. A famous version of such a measurement was the
comparison7 of atomic clocks in aircraft against ground-based clocks,
which confirmed Einstein’s prediction with an accuracy of roughly
10%. An accuracy of 7 3 1025 was obtained by using a hydrogen maser
clock in a rocket8; 30 years later, this remains the most precise absolute
measurement of the gravitational redshift. A higher accuracy of
3.5 3 1026 is reached by relative redshift measurements12,13, which

verify that there is zero variation between different clocks that move
together through space-time. Still, the verification of local position
invariance may be called the weakest link in the experimental under-
pinning of the EEP.

Our determination of the gravitational redshift is based on a re-
interpretation of atom interferometry experiments that have been
used to measure the acceleration of free fall9,10,14. As shown in
Fig. 1a, a laser-cooled atom launched vertically upwards in a vacuum
chamber is subjected to three pulses from a pair of anti-parallel,
vertical laser beams having respective wavenumbers of k1 and k2.
Each laser pulse transfers the momentum "(k1 1 k2) (where " is
h/2p, h being the Planck constant) of two photons to the atom
(Fig. 1b). The recoil gives a combined momentum impulse of "k,
where k ; k1 1 k2. The intensity and duration of the first laser pulse is
adjusted such that this process happens with a probability of 50%. As
a result, the first laser pulse places the atom into a coherent super-
position of two quantum states, which physically separate owing to
their relative momentum "k. The second pulse redirects the atom
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Figure 1 | Atom interferometer and Raman beam splitter. a, Atom
interferometer (schematic). The trajectories of the atom are plotted as
function of time in the laboratory frame of reference. They are accelerating
owing to gravity. The oscillatory lines depict the phase accumulation of the
matter waves. Arrows indicate laser pulses applied at times t0, t0 1 T and
t0 1 2T that change the trajectories. At time t0, the atom is put into a
superposition of two trajectories. At time t0 1 T, a laser pulse is used to alter
the trajectory of the atoms, and at time t0 1 2T, the phase difference
DQ 5DQ2 2DQ1 is recorded. b, Two-photon Raman beam splitter. An atom
in a quantum state g1,pzj i, moving upwards with momentum pz, interacts
with photons of two counter-propagating laser beams. The first one transfers
the momentum "k1 and brings the atom into a virtual excited state
e,pzzBk1j i. The second laser beam stimulates the atom to emit a photon of

momentum "k2, which transfers the atom to another hyperfine ground state
g2,pzzB(k1zk2)j i. With appropriate duration and intensity of the laser

pulses, the process can have 50% or 100% probability, creating beam
splitters or mirrors for atomic matter waves.
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momentum so that the paths merge at the time of the third pulse
(Fig. 1a). More details can be found in the literature9,10,14,.

Quantum mechanics describes the atom on both trajectories as de
Broglie matter waves. As they arise from splitting a single wave by the
first pulse, their oscillations are initially synchronized. When the
waves are superimposed by the third pulse, they may add construc-
tively or destructively, depending on their phase difference, DQ. The
probability of detecting the atom is given by cos2(DQ2 2DQ1), where
DQ1 and DQ2 are the total quantum phases accumulated from the
beginning of the first laser pulse to the end of the third pulse for each
path. By performing the experiment with many atoms and counting
them at the two outputs, the probability, and hence the phase differ-
ence, is measured. The general relativistic effects on the phase differ-
ence DQ2 2DQ1 have been calculated in ref. 15 and (within a
generalized parameterized post-newtonian1 test theory) in refs 16
and 17, assuming that local position invariance is valid. As the pur-
pose of our analysis is to study violations of local position invariance,
it is useful to re-derive the phase from first principles:

General relativity states that the time measured by a clock moving

in curved space-time is given by18 t~

ð
dt:

ð
({gmndxmdxn)1=2.

The metric gmn, a 4 3 4 matrix, describes how this ‘proper time’
depends on space-time geometry and the location xm of the clock.
This includes the gravitational redshift and the special relativistic
time dilation for a moving clock. The phase accumulation DQ of each
matter wave is thus given by a free evolution term DQ free and a light–
atom interaction term DQlight. The term DQfree is given by the elegant
expression (see, for example, ref. 18 pages 315–324, and ref. 19)

DQf ree~
1

B

ð
L dt~

1

B

ð
mc2 dt~

ð
vCdt ð1Þ

where L is the Lagrangian and m the mass of the particle. This shows
that the phase is the integral of the Compton frequency vC 5 mc2/"
over the proper time dt as it varies over the trajectory. In Feynman’s
formulation of quantum mechanics19, the phase difference is calcu-
lated by summing over all possible paths. However, in the case whereð

L dt?B, the terms from all paths—except for the extremal path that

minimizes the time—cancel. Thus, the above quantum expression
requires that the atom fall along the classical, geodesic path.

It is important to emphasize that the oscillation frequency in equa-
tion (1) is given by the total energy of the atom, E 5 mc2 5 "vC, which
includes the kinetic energy, gravitational energy, internal energy, and
most importantly, the rest mass energy. Therefore, this frequency is
extremely high (for caesium, for example, vC/2p5 3.2 3 1025 Hz).
Although such high frequencies cannot be measured directly,
quantum interference provides a means of reading out small phase
differences and thus allows us to test fundamental principles in physics
to extremely high resolution. Such Compton frequency oscillations
have been used, for example, to derive an upper limit to the difference
in the gravitational attraction of a K0 meson and its antiparticle by
assuming that the difference in Compton frequencies may be the cause
of the conversion of the K-meson known as Klong into another
K-meson, Kshort (refs 20, 21). In the analysis of neutrino oscillations,
the oscillation frequency includes the rest mass difference of the oscil-
lating neutrinos. An atom interferometer thus provides a textbook test
case of general relativity: a neutral atom is almost ideal as a light test
particle and contains a built-in quantum clock.

We evaluate equation (1) along the trajectories of the atom. This
shows that DQfree 5DQredshift 1DQtime is comprised of DQredshift,
which is caused by the gravitational redshift, and DQtime, which is
caused by time dilation because of the velocity of the trajectories (see
Methods). We add the light–atom interaction phase DQlight, so that
DQ 5DQredshift 1DQtime 1DQlight is the sum of three terms. If the gravi-
tational redshift is conventional, it turns out that they have the same
magnitude but opposite sign, DQ 5DQredshift 5 2DQtime 5DQlight (see
Table 1).

To describe measurements of the gravitational redshift, it is common
to use the ansatz1 Dv 5 v0(1 1 b)DU/c2. Here, Dv is the change in
frequency, DU the difference in gravitational potential, and v0 is the
original frequency of the clock. The parameter b is zero in metric
theories of gravity, such as general relativity, regardless of the type of
clock1. In general, however, different theories can be concocted that
differentiate between clocks based on, for example, atomic or nuclear
energy levels (which includes combinations of baryon rest mass, elec-
troweak and strong internal energies), kinetic energy, or potential
energy.

If the redshift parameter b is non-zero, the phase difference
becomes DQ 5DQ0(1 1 b) (see Table 1 and Methods). Here
DQ0 5 kgT2 denotes the phase difference9,10 without redshift anomaly,
where g is the local gravitational acceleration and T the pulse separa-
tion time (Fig. 1a). This is becauseDQtime 5 2DQlight cancel each other
and the interferometer phase is equal to the redshift phase,
DQ 5DQredshift. Thus, when k, g and T are known, a measurement
of the phase DQ is a direct measurement of the redshift.

The most accurate quantum mechanical gravity measurements to
date have been performed with an interferometer using caesium atoms
in an atomic fountain9,10. After correcting for a number of relatively
small fundamental10,17 and systematic10 effects (Table 1), the redshift
is determined from the measured phase DQ as zmeas 5DQ/(kT2c2).
We find zmeas 5 (1.090322683 6 0.000000003) 3 10216 per metre,
where the standard error corresponds to a 3 parts per billion accuracy.
The acceleration of gravity g varies with space and time owing to
gravity gradients and tides. Thus, we used an absolute gravimeter
(an FG-5 falling corner cube gravimeter) close by to measure g
(corrected for systematic effects, such as elevation, air pressure, tides
and polar motion10) and determine the locally expected redshift as
z0 5 g/c2 5 (1.090322675 6 0.000000006) 3 10216 per metre. These
measurements refer to a particular location (1.810 m above the floor
of the laboratory in Stanford, California). However, from the ratio of
the measured and expected redshift, we obtain the redshift para-
meter b 5 zmeas/z0 2 1 5 (7 6 7) 3 1029, which is independent of
local g and thus a universal constant of gravitation. It is compatible
with general relativity within the standard error. This result has been
achieved with a pulse separation time T of 160 ms and a peak separa-
tion of the trajectories of 0.12 mm. The experiment thus confirms local
position invariance by excluding anomalous variations of more than 7
parts in 1028 of the frequency of the Compton clocks. This corresponds
to comparing the elapsed times to ,10229 s.

We point out that similar experiments, also based on interference of
matter waves, provide a means to verify the gravitational redshift for
nanoscale elevations: in Bloch oscillation experiments22,23, an atomic
matter wave interacts with a vertical standing wave of light with a
wavelength of l. This causes periodic potential minima, spaced by
l/2, for atoms22,23. The gravitational redshift of the Compton frequency

Table 1 | Interferometer phase shifts larger than 0.3 p.p.b.

Effect Equation Phase shift (rad)

Leading order (1 1 b)kgT2

3,698,530.529

Redshift, DQredshift (1 1 b)kgT2

Time dilation, DQtime -kg9T2

Atom–light interaction, DQlight 1kg9T2

Systematic effects10 20.018 6 0.013

Fundamental effects17

Gravity gradient
{k

dg

dz
T3 vLTz

7

12
gT

� �
20.108

Finite speed of light 3kg2T2 20.058

Doppler shift 23kgvLT2

0.059

First gradient recoil
{

Bk2

2m

dg

dz
T3

20.001

Sum of other effects* ,0.0001

Contributions to the interferometer phase, referred to the top of the fountain. The effective wave
number k is 2p3 2,346,458.735 m21, the launch velocity vL is 1.53 m s21, and the gravity
gradient dg/dz is 22.9(1) 3 1026 s22. The gravitational acceleration is denoted g; the actual
acceleration g9 of the atom may differ slightly, for fundamental or experimental reasons (see
Methods).
* See table 1 in ref. 17.
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between these locations is vB 5 (1 1 b)gml/(2"). This frequency can
be observed as an oscillation of the atom’s velocity over time.
Strontium atoms have been used22 in an optical lattice of l/2 5

266 nm. From the measured frequency, we obtain b 5 (4.0 6
6.0 6 0.3) 3 1025, where the first standard error is the uncertainty in
g (see Methods) and the second the experimental uncertainty. A similar
measurement has been reported23 with rubidium atoms and
l/2 5 394 nm, which leads to b 5 (3 6 1) 3 1026. Here, a more precise
value for g was available (ref. 24 and F. Biraben, personal communica-
tion). The quoted standard error is statistical because no analysis of
systematic errors has been reported. See Fig. 2 for an overview of
accuracy and length scale of redshift measurements.

If an anomaly in the gravitational redshift was found, it could turn
out to be different for different kinds of clocks. Moreover, as any test
of the gravitational redshift operates outside the EEP, we cannot take
the universality of free fall for granted. Thus, it may be appropriate to
label the redshift parameter bg

clock with two indices that indicate the
type of clock and the method used for the measurement of g. Our
particular clock is special because its whole rest mass energy mc2 is
used as the clock frequency mc2/"; it is therefore possible that its
redshift is different from the one measured with conventional atomic
clocks, where the energy of the clock transition contributes only a
minuscule portion to the rest mass. Thus, redshift tests with conven-
tional clocks remain interesting, even though the high frequency of
our matter wave clocks allows us to reach much higher accuracy. In
the context of general relativity, however, the nature of the clock plays
no role whatsoever1, and our matter wave clocks are as good as any
other for the purpose of testing the relativistic gravitational redshift.

In summary, we improved the precision of measurements of the
gravitational redshift by a factor of 10,000. This compares favourably
to the European Space Agency’s ACES mission, where it is antici-
pated that the gravitational redshift can be tested to a precision of
2 p.p.m. (ref. 5). Moreover, the distance scales of our tests (micro-
metre to millimetre) are strongly different from the kilometre and
larger scales of classical tests. Our result improves the overall veri-
fication of the EEP by a factor of 500 compared to relative redshift
measurements, and by a factor of 10,000 compared to absolute ones.

Our experiment was limited by the uncertainty in g caused by local
gravity gradients in our laboratory9,10. It should be possible to
improve the accuracy 10–100 fold by more precisely mapping the
local gravity gradient. Moreover, by using different atom interfero-
meter geometries, upper limits on the validity of different metric
theories of gravity can be derived16. More sensitive atom interfero-
meters with interferometer paths separated by up to 24 photon
momenta have been demonstrated25,26. Another increase in the sensi-
tivity can be expected from devices with increased pulse separation
times16, which will also test Einstein’s field equations17. Also, one can

devise different geometries for the trajectories, for which the relative
contributions between the redshift, time dilation and interaction
phases (see Methods) can be varied.

METHODS SUMMARY
The free evolution termDQfree (equation (1)) is evaluated for a central symmetric

gravitational field as given by the Schwarzschild metric18 gmn with the Earth as

central body. We simplifyDQfree using the fact that the atom’s velocities are much

smaller than c and the separation z of the trajectories much smaller than the

Earth’s radius. We thus obtain DQfree 5DQredshift 1DQtime as the sum of two

terms, where DQredshif t~vC

ð
(gz=c2)dt is the integral of the gravitational red-

shift over the trajectory and DQtime is caused by time dilation. In the case of an

anomalous gravitational redshift Dv 5 v0(1 1 b)gz/c2, where b is the redshift

parameter, DQredshift is modified to (1zb)vC

ð
(gz=c2)dt . We calculate DQlight

using conventional methods27 and express the phases in terms of the wavenumber

k and pulse separation time T. The result (see Table 1) agrees with the non-

relativistic calculation9,10 if b 5 0. This is because in both pictures it is the integral

of the gravitational potential energy over time that determines the phase. The

essential realization of this Letter is that the non-relativistic formalism hides the

true quantum oscillation frequency vC. Thus, if we allow for a departure from
local position invariance, our analysis shows that the atom interferometer’s phase

provides a test of general relativity.

It is important to note that, for the interpretation given here, we do not need to

know whether the non-standard redshift will lead to modified trajectories of the

atom, so long as any such modifications do not significantly change the distance

between the interferometer arms. Also, in the case of modified trajectories, tests

of the universality of free fall and local position invariance remain conceptually

different, as the former search for the variation for different matter at the same

location28, whereas the latter search for effects on similar matter at different

locations.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 2 | Absolute determinations of the gravitational redshift. The
accuracy (defined as the standard error) in b is plotted versus the relative
height of the clocks.
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METHODS

The free evolution term DQfree, given by equation (1), can be written as

DQf ree~
1

B

ð
L dt~

1

B

ð
mc2 dt

dt
dt ð2Þ

so that the integral is now over time coordinate dt. The proper time t of a clock is

given by:

c dt~½{gab dxadxb�1=2 ð3Þ
For central symmetric gravitational fields, we use the Schwarzschild metric18

gtt ~{(1{m=r)c2,

grr~1=(1{m=r),

ghh~{r2,

gQQ~{r2 sin2 h,

ð4Þ

where t, r, h, Q are the time, radius, and angular coordinates, respectively, and

m 5 2GM/c2, with G the gravitational constant and M the Earth mass. Then,

mc2 dt

dt
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{gtt {grr _rr2

q
~mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 1{

m

r

h i
{

1

1{m=r
_rr2

s

<mc2 1{
1

2

m

r+
{

2gz

c2

� �
{

1

2

_zz

c

� �2
" #

,

ð6Þ

where r~r+zz with z=r+, where r+ is the radius of the Earth and

g~mc2=(2r2
+

) the acceleration of free fall at the Earth’s surface. In calculating

the phase difference between the two paths, the constant terms can be dropped,

and we are left with:

DQ~
1

B

ð
L(z, _zz) dt~{

mc2

B

ð
gz

c2
{

1

2

_zz2

c2

� �
dt~{vC

ð
gz

c2
{

1

2

_zz2

c2

� �
dt ð7Þ

Thus, the free evolution phase shift is given by the integral of the Compton

frequency over time, as it is modified by the gravitational redshift gz/c2due to

the gravitational potential U 5 gz and by time dilation _zz2=(2c2) due to the

velocity _zz.

For modelling anomalies in the gravitational redshift, we replace the redshift

factor by (11b)gz/c2. Equation (7) then becomes:

DQ~{vC

ð
(1zb)

gz

c2
{

1

2

_zz2

c2

� �
dt ð8Þ

By evaluating the integral over the trajectories of the atom and expressing the

result in terms of the wavenumber k and the pulse separation time T, we obtain

the phases listed in Table 1.

Since the integrals depend on the trajectories of the atom, it might appear

necessary to consider whether the physics underlying the violation of local posi-

tion invariance may also lead to any anomalies in the trajectory of the particle.

There is, however, no unique answer. A violation of local position invariance

would ultimately be a consequence of refined fundamental laws of physics, such

as a version of string theory and loop quantum gravity. No definite version of

such a theory, however, exists11. Fortunately, it turns out that under some very

general assumptions, the interpretation of the redshift test is independent of

possible changes in the atom’s trajectories. To see this, we consider two scenarios:

First, that there is no modification besides the modified gravitational redshift; in

particular, that the non-standard value of b does not alter the trajectories. We

then evaluate equation (8) and the interaction phase27 DQlight along the standard

trajectories. Table 1 shows that the magnitude of the redshift, time dilation, and

laser interaction phases are the same if b 5 0 and two of these terms cancel each

other out. If b is not zero, the time dilation and laser interaction phase still cancel,
and the modified redshift directly determines the total phase.

Our second scenario is the more general case that a non-standard value of

b does lead to a modified trajectory, which is characterized by a modified

acceleration of free fall g9. Such a scenario results, for example, from determining

the trajectories by a principle of least action, which states that the trajectories will

be the ones for which the phase difference given by equation (8) is lowest. The

redshift affects the phase and, therefore, the trajectory. The new trajectory can be

derived using the Euler-Lagrange equations. This gives rise to a modified

acceleration of free fall g’, which, in turn, determines the time dilation and

interaction phases. As Table 1 shows, the time dilation and laser interaction

phase still cancel, and the result for the total leading-order phase is still directly

determined by the redshift. The only assumption we need to make is that any

modification due to non-standard physics is common to both trajectories. The

relative elevation z, which determines the redshift in equation (8), is then un-

affected. This assumption can be expected to hold, because any differential

influence should be suppressed by a power of the ratio of the relative velocity

or distance of the arms to the velocity and distance scales of the metric,

j( _zz1{ _zz2)=cj*10{10 and j(z1{z2)=r+j*10{9.
We remark that even in the case of modified trajectories, tests of the univer-

sality of free fall (UFF) and local position invariance remain conceptually dif-

ferent:1 Tests of UFF search for the variation for different matter at the same

location. For example, the hypothetical modification of trajectories for different

matter has been used28 to derive bounds on the coupling of fundamental con-

stants to gravity. Tests of local position invariance, on the other hand, search for

effects on similar matter at different locations.

Thus, the leading-order phase shift is the same in both scenarios,

DQ~DQPath 2{DQPath 1~
mc2

B
(1zb)

g(BkT=m)T

c2
~(1zb)kgT 2 ð9Þ

This result is equal to the outcome of the non-relativistic calculation9,10 if the

redshift agrees with general relativity. In particular, equation (7) agrees with the

expression of the non-relativistic Lagrangian:

DQ~{
1

B

ð
½mgz{

1

2
m _zz2� dt~{

1

B

ð
½PE{KE� dt ð10Þ

The similarity of the two formalisms when general relativity is valid roots back to

the fact that it is the integral of the gravitational potential energy over timeð
U dt:

ð
PEdt that determines the accumulated phase due to the redshift

U/c2. The essential realization of this paper is that the non-relativistic equation

(10) hides the true quantum oscillation frequency, vC, given in equation (7).

Thus, if we allow for a departure from local position invariance, our analysis

shows that the atom interferometer’s phase provides a test of general relativity.

Other atom interferometer geometries can also be described in our frame-

work. For example, Ramsey-Bordé interferometers25,26 have four pulses, at times

0, T, T 1 T9, and 2T 1 T9, respectively. The three leading order phases for those
are (1 1 b)kgT(T 1 T9) for the redshift, ("k2/m)T 1 kgT(T 1 T9) for time dila-

tion, and 22("k2/m)T 2 kgT(T 1 T9) for the laser phase. The sum of these three

terms is 2("k2/m)T 1 (1 1 b)kgT(T 1 T9).

To estimate g in Florence, Italy, for the experiment ref. 22, we apply the

international gravity formula, with corrections for the elevation and the geoid

height29. To estimate the accuracy of this method, we apply it to four Italian cities

for which measurements30 have been reported and compare prediction and

experiment.

29. Lemoine, F. G. et al. The Development of the Joint NASA GSFC and NIMA
Geopotential Model EGM96 (NASA Goddard Space Flight Center, Greenbelt,
Maryland, 1998).

30. Fuchs, K. & Soffel, H. in Landolt-Börnstein – Group V Geophysics Vol. 2a 317–321
(Springer, 1984).
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