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When a collection of quantum emitters interacts with an electromagnetic field, the whole system can
enter into the collective strong coupling regime in which hybrid light-matter states, i.e., polaritons can be
created. Only a small portion of excitations in the emitters are coupled to the light field, and there are many
dark states that, in principle, retain their pure excitonic nature. Here we theoretically demonstrate that these
dark states can have a delocalized character, which is inherent to polaritons, despite the fact that they do not
have a photonic component. This unexpected behavior only appears when the electromagnetic field
displays a discrete spectrum. In this case, when the main loss mechanism in the hybrid system stems from
the radiative losses of the light field, dark states are even more efficient than polaritons in transferring
excitations across the structure.
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The ability to create and engineer hybrid light-matter
states, i.e., polaritons, can bring together the most advanta-
geous properties of both worlds, such as the high speed and
delocalization of photons together with the stability and
interacting character of matter excitations [1]. In order to
create such hybrid light-matter states, it is usually necessary
to reach the so-called collective strong coupling (CSC)
between a light field and an ensemble of quantum emitters
(QEs). This CSC regime is characterized by the coupling of
the electromagnetic field to a set of states in the ensemble
(the bright states) forming the polaritons [2]. However,
many states of the QEs stay uncoupled to the photons and
are thus called dark states. Since its first experimental
demonstration with Rydberg atoms [3], CSC has been
reached in a variety of systems, ranging from atomic beams
to ion Coulomb crystals and organic materials [4–11].
Polaritons display a wide range of basic phenomena such as
superfluidity [12], Bose-Einstein condensation [13], or
lasing [14]. Besides fundamental prospects, polaritonic
systems are also interesting for many applications that
cover, among others, future quantum technologies [15–17],
both light harvesting [18,19] and transport of energy and
charge in organic materials [20–22], and even control of
chemical reactions [23].
Despite the great deal of attention received by polaritons,

the uncoupled dark states have often been ignored as they
are assumed not to benefit from the light-matter coupling.
Indeed, these pure matter states are considered only a
source of losses for polaritons [24], their potential appli-
cations being limited to passive operations such as qubit
storage [25]. In this Letter, we challenge this standard view
of dark states as passive elements in the CSC regime. We
show that, whereas this customary picture of dark states

being strongly localized works for photonic structures in
which the electromagnetic (EM) spectrum is continuous,
dark states display a delocalized character, similar to that
exhibited by polaritons, in systems that support a discrete
EM spectrum. Moreover, we also demonstrate that if the
main loss mechanism resides within the EM modes, dark
states can be much better excitation carriers than their
polariton counterparts.
In this work we consider a very general light-matter

system, where we define a set of photonic modes with
energies ωα and creation operators a†α. These modes
interact with an ensemble of N QEs with energies ϵj
and spin operators σj. According to the dipole approxi-
mation, the coupling rate is proportional to both the dipole
moment of the QEs and the electric field amplitude,
gjα ¼ −μj ·EαðrjÞ. The system is described by an exten-
sion of the Jaynes-Cummings Hamiltonian [26] (ℏ ¼ 1),

H0 ¼
X
j

ϵjσ
†
jσj þ

X
i;j

Vijðσ†i σj þ σ†jσiÞ

þ
X
α

ωαa
†
αaα þ

X
j;α

ðgjασ†jaα þ g�jασja
†
αÞ; ð1Þ

where in the second term we include the dipole-dipole
interaction between the emitters, Vij, which we will
consider only to first neighbors in this work. In order to
describe the losses in both QEs and light modes, both
energies ϵj and ωα contain a non-Hermitian imaginary part
[26]. As we are interested in the weak pumping regime, this
way of introducing losses is completely equivalent to the
Lindblad master equation [27]. Under driving, the full
Hamiltonian of the system will be H ¼ H0 þ VðtÞ, where
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VðtÞ describes a weak coherent pump of the first QE in the
ensemble,

VðtÞ ¼ Ωp cosðωLtÞfðtÞðσ†1 þ σ1Þ; ð2Þ

where the pump strength Ωp is smaller than any other
energy scale in the system. The modulation function fðtÞ is
assumed to vary slowly in time such that the pulse is
quasimonochromatic. Notice that the coherent optical
excitation as modeled by Eq. (2) is only feasible in open
EM cavities, where the QEs are coupled to both the cavity
modes and free-space radiation. In this way, QEs can be
addressed locally, for instance, by near-field optical probes
[28], or by an external QE [29].
For illustrative purposes, we will study two particular

EM environments, namely, the plasmon modes supported
by an infinite silver nanowire (continuous EM spectrum)
and those corresponding to a silver nanoparticle (discrete
spectrum), but we stress that our findings are very general.
Both metallic structures are described as cylinders of radius
r0 ¼ 55 nm lying along the z axis, characterized by a
Drude-Lorentz permittivity εmðωÞ [30], and embedded in a
dielectric with εd ¼ 2.4. The plasmon eigenmodes of the
nanowire can be analytically calculated [31], whereas
the localized surface plasmon (LSP) modes supported by
the nanoparticle have been obtained numerically by using a
finite element method software (COMSOL MULTIPHYSICS).
In order to comply with the full quantum description
in Eq. (1), the calculated plasmon modes have been
adequately quantized [30]. As for the QEs surrounding
both structures, we choose as an example similar param-
eters than J-aggregated molecules at room temperature
[34–36], namely, dipole moment jμjj ≈ 0.75 e nm, and
energy ϵj ≡ ϵ0 − iγ0=2, with frequency and decay rate
given by ϵ0 ¼ 1.378 eV and γ0 ¼ 1 meV, respectively.
For simplicity, we assume they are homogeneously dis-
tributed on a cylindrical layer 35 nm above the metallic
surface, with a first neighbor distance of 3 nm, and dipole
moments oriented radially.
Let us first analyze the case of an infinitely long

nanowire (NW). The dispersion relation of this structure
is shown in Fig. 1(a) (red line), along with the correspond-
ing polariton dispersion (blue lines). Note that the system is
in the CSC regime, since the energy separation between the
two polaritons at the anticrossing point (kz ≈ 12 μm−1),
known as Rabi splitting, is much larger than the plasmon
losses ImðωÞ, shown in Fig. 1(b). In this case, such losses
originate from absorption in the metal, and give rise to a
finite plasmonic propagation length, displayed in the green
curve in Fig. 1(b).
For the infinite NW system, we emulate the continuum

nature of the EM spectrum by imposing periodic boundary
conditions over a 30 μm long unit cell, containing
N ¼ 1.88 × 106 QEs. We choose a finite-duration pump

pulse, fðtÞ ¼ e−ðt=τÞ2 , where the pump is kept

quasimonochromatic through a very small frequency win-
dow, τ−1 ¼ 0.01 eV. Since the pumping rate Ωp is very
weak, the system wave function jψðtÞi is calculated by
standard first-order perturbation theory [30], giving

jψðtÞi ¼ j0i − ie−iH0t

Z
t

0

dt0eiH0t0Vðt0Þj0i: ð3Þ

The solid lines in Fig. 1(c) show the spatial distribution of
the QE population jhjjψðtÞij2 ≡ jh0jσjjψðtÞij2, at three
different times, when the pump is tuned at the frequency
of the dark states, i.e., ωL ¼ ϵ0. In this case, the wave
packet is localized at the origin z ¼ 0, and the probability
spreads along the system in a diffusive manner due to
the widening of the initial distribution. Both the strong
localization and the diffusive behavior of the wave packet
are expected since the pump frequency lies on a flat region

(a)

(c)

(d)

(b)

FIG. 1. (a) Plasmon dispersion relation of the infinite nanowire
(red) and the corresponding polaritons (blue). (b) Decay rate
(black) and propagation length (green) of the plasmons supported
by the nanowire. The inset shows the electric field norm of the
fundamental mode at 1.4 eV. (c) Population of the QEs as a
function of their position, zj. Solid lines represent the diffusive
behavior when pumping the flat region of the band, ωL ¼ ϵ0.
Dashed lines show a polariton propagating along the system
(ωL ¼ 1.2 eV). (d) Population in the steady-state versus ωL,
evaluated at three different values of zj. The vertical line
indicates ϵ0.
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of the dispersion relation, where the group velocity is
practically zero, and the associated modes have a purely
excitonic, i.e., localized character. Naturally, when the
pump frequency lies on a region of nonzero group velocity
(ωL ¼ 1.2 eV), a polariton propagates through the whole
nanowire thanks to its photonic component, as visualized
by the dashed lines in Fig. 1(c). This distinct spatial
behavior between polariton and dark states is also observed
in a steady-state situation. For simulating this, a purely
monochromatic pulse is chosen, i.e., fðtÞ ¼ 1, which, as a
result of the various loss mechanisms, will eventually lead
the system into its steady state. In Fig. 1(d), we render the
population of the QEs at different positions along the NW,
jhjjψij2, as a function of the pump frequency ωL. The three
curves show a similar structure in which two maxima,
associated with the delocalized polariton modes, are
separated by a dip corresponding to the strongly localized
dark states.
The spatial extension of dark states, however, is very

different when the ensemble of QEs interacts with a
discrete set of electromagnetic modes. In order to illustrate
this, we consider a cylindrical nanoparticle (NP) 300 nm
long, terminated by two hemispherical caps as depicted
schematically in Fig. 2(a). In the same panel we display the
first 9 eigenfrequencies of this structure as a function of
mode index n, whereas their corresponding electric field
intensities are shown in Fig. 2(b). Note that the second EM
mode, n ¼ 2, is resonant with the QEs, i.e., ω2 ¼ ϵ0. The
number of emitters in this system is N ¼ 1.88 × 104,
maintaining the same density as in the infinite nanowire
case. In a similar manner as in the infinite NW case, we
have calculated the steady-state wave function jψi both
with and without dipole-dipole interaction Vij, in order to
have a more complete picture. In the former case, we also
account for disorder by performing a statistical average
over 104 realizations, each of them including a random
inhomogeneous broadening in the energy of the QEs,
ϵj→ ϵjþΔj. The random broadening rate Δj ∈ ½−γϕ; γϕ�
is bound by the dephasing rate of J-aggregated molecules
(γϕ ∼ 25 meV) [35].
Let us consider first the case where only the resonant

LSP mode (n ¼ 2) is included in Eq. (1). For this situation
and neglecting dipole-dipole coupling between the QEs, we
render in Fig. 3(a) (blue curve) the steady-state population
of the QEs lying farthest from the pump region jhNjψij2 as
a function of the pump frequency ωL. Notice that similar
plots displaying a clear three-peak spectrum are obtained
for the populations of every emitter in the ensemble.
Therefore, the three maxima in the figure correspond to
extended states, where the population is largely delocalized
across the system. The two peaks at higher and lower
energies are associated with the two polaritons, which
inherit the delocalized character of the photonic excitations
thanks to their hybrid nature. However, the emergence of a
peak located at the frequency of the dark states implies that

the population of these modes also extends over the whole
system. Notably, this population is several orders of
magnitude larger than those of the two polaritons. This
is in sharp contrast with the results obtained for an infinite
NW. The crossover between these cases, which corre-
sponds to the transition from a discrete to a continuous EM
spectrum, happens roughly when the discrete eigenmodes
become closely spaced enough to overlap in frequency.
A detailed study of this crossover is shown in the
Supplemental Material [30].
The peak in the population spectrum related to the dark

states remains when both dipole-dipole interaction and
disorder are taken into account, as shown by the red curve
in Fig. 3(a). No qualitative changes are observed as
compared to the previous case, since the tendency to
localization introduced by disorder is partially compen-
sated by the dipole-dipole interaction, which induces
delocalization. Moreover, the delocalized character also
persists when several EM modes supported by the NP are
included in the Hamiltonian, as demonstrated in Fig. 3(b).
In this case, the additional strongly detuned plasmon modes
induce energy shifts on the QEs, leading to a sideband
below the energy of the dark states in Fig. 3(b). Although
the population spectrum is modified due to the presence of
several EM modes in the system, the larger population
associated with the dark modes as compared to those
of the polaritons is maintained when the full spectrum of
the EM environment is taken into account. Figure 3
demonstrates that our main finding, namely, that dark
states can inherit the delocalized character of the polaritons,

(a)

(b)

FIG. 2. (a) Numerical results for the real (red) and imaginary
parts (black) of the eigenmode frequencies of the metallic
nanoparticle. (b) Intensity of the electric field for the correspond-
ing eigenmodes, which are labeled by the mode index n. In our
calculations we assume that the n ¼ 2 mode is resonant with the
excitations in the QEs and this mode is highlighted in both panels.
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is very robust against disorder, dipole-dipole interactions
between the QEs, and the existence of several discrete
EM modes.
To provide an analytical foundation for our main finding,

we now elaborate a simple model that is able to capture the
basic ingredients of the interaction of an ensemble of QEs
with a photonic structure that displays a discrete EM
spectrum. In this model we neglect dipole-dipole coupling
and only consider a single EM mode since, as shown in
Fig. 3, these two effects play a minor role. We also assume
that, as in the numerical calculations presented above, the
EM mode is resonant with the excitations within the QEs.
In this simple case, the eigenstates of the unperturbed
Hamiltonian H0 are formed by the (N − 1) dark states jDi,
and the upper and lower polariton jUPi and jLPi, respec-
tively. The former have the same energy as the bare QEs,
ϵj ¼ ϵ0 − iγ0=2. On the other hand, within the CSC regime
(

ffiffiffiffi
N

p
g ≫ γ0, γm), the energies of the states jUPi and jLPi

are given by ϵ� ≈ ϵ0 − iðγ0 þ γmÞ=4�
ffiffiffiffi
N

p
g, where γm is

the loss rate of the light mode, and g is the coupling rate of
the mode to each of the QEs, which is assumed to be equal
for all of them. These eigenstates span the full single-
excitation subspace of H0, i.e.,

jUPihUPj þ jLPihLPj þ
X
D

jDihDj ¼ 11: ð4Þ

To analyze the dynamics, we start with the general
expression for the system wave function jψðtÞi given in
Eq. (3). By introducing the closure relation, Eq. (4), we can
calculate the population probability amplitude for a generic
emitter j, i.e., pj ¼ hjjψðtÞi, where jji≡ σ†j j0i. In the
steady state, this magnitude is given by

pj ¼ −
Ωp

2
e−iωLt

� hjjUPihUPj1i
ϵ0 − ωL þ ffiffiffiffi

N
p

g − iðγ0 þ γmÞ=4

þ hjjLPihLPj1i
ϵ0 − ωL −

ffiffiffiffi
N

p
g − iðγ0 þ γmÞ=4

þ
X
D

hjjDihDj1i
ϵ0 − ωL − iγ0=2

�
: ð5Þ

According to Eq. (5), the population jpjj2 will display
three well-separated Lorentzian peaks centered at ϵ0 and
ϵ0 �

ffiffiffiffi
N

p
g, respectively. Therefore, Eq. (5) is able to account

for the numerical results as displayed in Fig. 3(a). It is also
straightforward to calculate the ratio between the population
peak height associated with the dark modes and those
associated with each of the two polaritons; this ratio is
proportional to ð1þ γm=γ0Þ2. In the case under study, loss
associated with the predominant EM mode of the NP
[γm ≈ 100 meV, see Fig. 2(a)] is much larger than the loss
rate of the QEs (γ0 ≈ 1 meV). This explains why the
population peak of the dark modes in Fig. 3(a) is 4 orders
of magnitude higher than the heights of the polariton peaks.
It is interesting to note that in the opposite limit, γ0 ≫ γm,
our analytical formula predicts similar heights for the three
population peaks.
Finally, we can also understand the process of dark-state

delocalization by first considering ωL ≈ ϵ0 and introducing
also the closure relation Eq. (4) into Eq. (5), obtaining

pjjðωL≈ϵ0Þ ∝
hjjð11 − jUPihUPj − jLPihLPjÞj1i

ϵ0 − ωL − iγ0=2
: ð6Þ

This expression shows that, in situations in which hjj1i ≈ 0,
the dark-state population can be expressed as a function of
the two polaritons only. Since both these polaritons are
spatially extended, dark states are therefore constrained to
display the same delocalized behavior. Note that this is not
a property of any particular dark state but of the dark
subspace as a whole. In other words, by strongly coupling
the QEs to a discrete electromagnetic mode, one extended
state is removed from the singly excited Hilbert space. This
leaves an imprint on the remaining dark subspace, which
hence inherits the delocalized character of the polaritons.
This also implies that it is not possible to choose the basis
of dark states in such a way that they are completely
localized. Note that in principle, Eq. (6) is only valid in the
limit of weak disorder and inhomogeneous broadening.
However, the numerical results in Fig. 3 demonstrate that
dark state delocalization survives even for significant
disorder. Importantly, the dark states only acquire the
delocalized nature of the polaritons but not their associated
losses. As the dark modes do not couple with the EM
modes, their losses are only governed by the loss rate of the
QEs. When these loss rates are smaller than the radiative
losses of the EMmodes, dark modes become more efficient
in transferring excitations across the system than polaritons.

(a)

(b)

FIG. 3. Steady-state population of the last emitters in the chain,
as a function of the pump frequency ωL. (a) Situation in which
only the resonant photonic mode n ¼ 2 is taken into account.
(b) Same results when including all the modes. Blue lines show
the case where dipole-dipole interaction and disorder are ne-
glected, while red lines show the more realistic situation with
both included in the Hamiltonian.
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To conclude, in the collective strong coupling regime of
an electromagnetic field to an ensemble of emitters, not
only the polaritons but also the dark states can feature a
delocalized behavior across the system. This unforeseen
result, given the fact that dark states are uncoupled to light,
is of a very general nature, requiring only the discrete
character of the relevant electromagnetic spectrum. While
dark states delocalization is inherited from the correspond-
ing polaritonic behavior, losses are not. This is very
advantageous when the population decay is dominated
by photon absorption. Thanks to this different perspective
on the properties of strongly coupled systems, resonant
structures with low to moderate quality factors could thus
find a broad range of applications in, among others,
excitonic circuits, energy transport, and quantum circuitry.
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