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Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings
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We demonstrate the possibility of designing efficient, nonreciprocal few-photon devices by exploiting the
chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can
show nonreciprocal photon transport at the single-photon level by exploiting a single-photon routing mechanism.
Afterwards, we also demonstrate how the fundamentally different two-photon response makes the system show a
transistorlike behavior, where a first photon can open a transmission channel for a second incoming photon. The
efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the
potential of chiral waveguide-emitter couplings for applications in quantum circuitry.
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I. INTRODUCTION

The ability to enhance and tailor the interaction between
qubits and photons lies at the heart of quantum circuitry and
quantum information protocols [1]. During the last years, a
large experimental effort has been devoted to the study of
waveguides as suitable photonic devices for this purpose either
by coupling them to solid state [2,3] or atomic emitters [4,5].
Indeed, the two ends of a waveguide act as natural ports for
introducing and extracting information, making these systems
basic elements for complex quantum networks [6]. Moreover,
the two-dimensional confinement of the guided photons
not only allows for a large qubit-field interaction but also
facilitates the miniaturization of devices and, more recently,
it has allowed the generation of light-matter chiral couplings
[7–10], which opens new interesting possibilities in waveguide
quantum optics [11]. On the theoretical side, the interaction
between quantum emitters and waveguides has been exploited
to design basic operations on photonic qubits, such as a single-
photon transistor [12] or phase gates [13,14], or as mediators
of interactions between qubits for, e.g., entanglement
generation [15–19], designing quantum gates [20], or
preparing nonclassical states of light [21,22] among others.

Among the wide range of useful optical devices for quantum
circuitry, those whose behavior is intrinsically nonreciprocal
are especially interesting and challenging to devise as waveg-
uide systems lack of time-reversal symmetry breaking [23].
The simplest element in this group is the single-photon diode or
isolator, in which the propagation of light in different directions
is inequivalent or, in an ideal situation, totally suppressed
in one of them. Partially asymmetric transmission has been
proposed for systems such as plasmonic waveguides [24],
cavity arrays [25–27], or single cavity resonators [28,29].

With the recent experimental advances in waveguide
fabrication and integration of quantum emitters [2–5], the
design of nonreciprocal photonic elements has experienced a
renewed interest with several theoretical proposals either using
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nonchiral couplings and using two qubits [30–34] or V -level
systems [35], or exploiting chiral light-matter couplings with
a single quantum dot [10,36] or atomic ensembles [37], the
latest showing experimental isolations of ∼8 dB for N ≈ 30
atoms.

In this paper, we continue along the path of exploiting
chiral light-matter couplings for the design of nonreciprocal
few-photon circuitry. Our system specifically makes use of
quantum interference to cancel undesired photonic paths, thus
leading to particularly robust and efficient devices by using a
single quantum emitter in a � configuration chirally coupled to
two waveguides. In Sec. II, we introduce the four-port device
under consideration as well as its Hamiltonian. We continue
by solving the single-photon scattering for such a system in
Sec. III and showing its behavior as a single-photon rectifier
or router, a device which efficiently transfers a photon from
one waveguide into another. Additionally, we illustrate how
the same setup can be employed as a single-photon diode,
which allows a photon to be transmitted only when it travels
along a certain direction. After this, we study the scattering of
two photons in this device in Sec. IV, demonstrating how a
transistorlike behavior is obtained also for realistic parameters.
Finally, our conclusions are presented in Sec. V.

II. MODEL SYSTEM

The system under study is depicted in Fig. 1(a): two
waveguides, which we label u and d respectively, form a four
port arrangement in which each input-output port is labeled
with the numbers 1–4 as shown in the figure. Each of the
waveguides is coupled to one of the two transitions of a central
three-level system (3LS) in a λ configuration. In principle,
we allow both these couplings to be chiral, i.e., the coupling
rates to left- and right-propagating photons, labeled γjL and
γjR (j = u,d) respectively, can be different. Additionally, the
excited state of the qubit may decay into radiative modes
outside of the waveguides at a rate �∗.

The Hamiltonian of the system is a generalization of the
usual expression in the position basis [38,39], and can be
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(a)

(b)

FIG. 1. (a) Scheme of the system under study. A three level
system in � configuration interacts with two independent waveg-
uides, labeled u and d . The transition |g〉 ↔ |e〉, depicted in blue,
is chirally coupled to the right- and left-propagating photons of the
bottom waveguide, with coupling rates γdR and γdL respectively. The
second transition, |s〉 ↔ |e〉 (in red) is in turn chirally coupled to
the upper waveguide, with coupling rates γuR and γuL. Finally, the
excited state |e〉 may decay radiatively into free space modes at a
rate �∗. The usual transmission and reflection amplitudes are named
t and r respectively, whereas the processes by which the photon is
routed into the second waveguide have scattering coefficients t̃ and
r̃ , corresponding to right and left propagating photons respectively.
(b) Inverted W system in which two optically excited states |fd,u〉 are
connected to |e〉 through an off-resonant classical field with amplitude
�d,u and detuning �d,u, and to |g〉/|s〉 through the lower or upper
waveguide. When |�d,u| � �d,u, the system is equivalent to that of
panel (a), with renormalized coupling strengths γiν → (|�i |2/�2

i )γiν

[and spontaneous emission �∗ → ∑
i (|�i |2/�2

i )�∗].

separated into five contributions (� = 1),

H = H3LS + Hd + Hu + HId + HIu. (1)

Here, the first term describes the bare � system,

H3LS = (ωe − i�∗/2)|e〉〈e| + ωg|g〉〈g| + ωs |s〉〈s|, (2)

where the non-Hermitian contribution �∗ accounts for the
spontaneous emission of the excited state |e〉 into other modes
different from the waveguides ones, e.g., free space. The origin
of energies is taken at the state |s〉 for convenience, i.e., ωs = 0.
The second and third terms in Eq. (1) describe the energy of
the photonic modes in the two waveguides, given by

Hd = −ivg

∫
dx[c†R(x)∂xcR(x) − c

†
L(x)∂xcL(x)], (3)

Hu = −ivg

∫
dy[b†R(y)∂ybR(y) − b

†
L(y)∂ybL(y)]. (4)

In both of the waveguides, we assume a linear dispersion
relation, where the respective group velocities vg are to be
considered equal in this work for simplicity. The operators
c
†
R(L)(x) and b

†
R(L)(y) are the photonic creation operators in the

lower and upper waveguide, respectively. Their corresponding
action is to create a right (left)-propagating photon at positions
x or y. Note that Hamiltonians Hd and Hu are completely
equivalent, the only difference being a deliberate change in
notation for both operators and position coordinates. This dis-
tinction aims to ease the identification of quantities belonging
to each of the two independent waveguides. Finally, it is worth
noting that, because of the very general form of the above
Hamiltonians, the two photonic reservoirs in our problem do
not necessarily represent two physically separated waveguides.
Indeed, they could for instance account for two different,
uncoupled modes propagating in the same waveguide.

The last two terms in Eq. (1) represent the coupling between
the two waveguides and the 3LS, which takes place at x = y =
0. They are expressed as

HId =
∑

α=R,L

∫
dxδ(x)Vαc†α(x)|g〉〈e| + H.c., (5)

HIu =
∑

α=R,L

∫
dyδ(y)Wαb†α(y)|s〉〈e| + H.c., (6)

with δ representing the Dirac δ distribution. In these expres-
sions, we choose the four coupling constants {VR,VL,WR,WL}
to be real numbers for simplicity. They are related to the final
decay rates into the waveguides through γdα = V 2

α /vg,γuα =
W 2

α/vg for α = R,L. Note that a key feature of this Hamil-
tonian is that each transition of the 3LS interacts only with
one of the waveguides. Specifically, the transition |g〉 ↔ |e〉
is coupled to the bottom waveguide, whereas the transition
|s〉 ↔ |e〉 is coupled to the upper waveguide. This coupling
structure, essential in the rest of our work, does not isolate
one waveguide from another, as they can exchange excitations
through the excited state |e〉.

Before studying the photon scattering, it is useful to
introduce three relevant quantities which will determine the
behavior of the system. First, we define the total coupling
strength of each transition of the 3LS, γj = γjR + γjL (j =
d,u), which accounts for the total decay rate of the excited
state |e〉 into each of the waveguides. The total couplings are
used to define the directionalities of each transition,

Dj = γjR − γjL

γj

(j = d,u), (7)

which quantify the asymmetry in the 3LS-waveguide cou-
plings. For nonchiral interactions Dj = 0, whereas for max-
imally asymmetric coupling Dj = ±1. The third relevant
magnitude is the Purcell factor, which accounts for the
modification of the total decay rate of an emitter when placed
in the vicinity of a nanostructure,

PF = γd + γu

�∗
0

. (8)

In the equation above, �∗
0 represents the decay rate of the 3LS

in vacuum, which we can approximate as �∗
0 ≈ �∗. The Purcell
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factor, as well as the related β factor, β = 1 − (PF + 1)−1, are
the typical figures of merit in waveguide systems.

Finally, it is interesting to mention that when several
hyperfine and excited levels are available, as occurs for
atomic systems, one can think of an alternative implementation
of a � system that allows for an independent control of
the total couplings γu and γd . One example is the one
depicted in Fig. 1(b) where two optically excited states levels
|fd,u〉 are connected to both |g,s〉 respectively through the
lower and upper waveguide. Moreover, the states |fd,u〉 are
also connected with two off-resonant classical lasers with
amplitude �d,u 
 |�d,u|. Under these conditions, the excited
states can be adiabatically eliminated giving rise to an effective
dynamics as in Fig. 1(a), with renormalized waveguide decay
rates γiν → (|�i |2/�2

i )γiν and spontaneous emission �∗ →∑
i (|�i |2/�2

i )�∗. Notice that the directionality parameter Dj

is unaltered by this renormalization, whereas the Purcell factor
only gets a factor 1/2 smaller as the spontaneous emission gets
also renormalized by the Raman factor. The advantage of this
method relies on the couplings to the two waveguides being
now fully tunable through �d,u, and the states |g,s,e〉 being
long-lived.

III. SINGLE-PHOTON DEVICES

The complete Hamiltonian of Eq. (1) can be fully diag-
onalized in the single-excitation subspace. In order to study
the single-photon scattering, we can restrict the problem to
a photon incoming from an arbitrarily selected port, in this
case port 1. The solutions corresponding to an input through
ports 2–4 are not detailed here, as their calculation follows an
analogous procedure.

A. Scattering of single photons

Our aim is to determine the scattering coefficients for a
monochromatic photon incoming through port 1. Note that if
the 3LS is initially in the state |s〉, it does not interact with the
photons in the bottom waveguide, and the scattering solution
is reduced to an unperturbed wave traveling from port 1 to port
2. Henceforth, our interest is focused on the situation in which
the 3LS is initially in the state |g〉. In this situation, the photon
can be scattered into four different ports, and we must define
four scattering coefficients which are schematically depicted
in Fig. 1.

The diagonalization of the Hamiltonian in the single-
excitation subspace is detailed in Appendix A. The single-
photon solution is completely determined by the four scattering
coefficients defined in Fig. 1(a), which are the probability
amplitudes for each of the possible scattering processes. They
are given by

t(ω) = ω − ωeg + i�∗/2 + i(γdL − γdR + γu)/2

ω − ωeg + i�∗/2 + i(γdL + γdR + γu)/2
, (9)

r(ω) = −i
√

γdRγdL

ω − ωeg + i�∗/2 + i(γdL + γdR + γu)/2
, (10)

t̃(ω) = −i
√

γdRγuR

ω − ωeg + i�∗/2 + i(γdL + γdR + γu)/2
, (11)

r̃(ω) = −i
√

γdRγuL

ω − ωeg + i�∗/2 + i(γdL + γdR + γu)/2
, (12)

where ω is the energy of the incoming photon, and ωeg =
ωe − ωg is the energy of the transition |g〉 ↔ |e〉. It is
straightforward to check that the probability is conserved as
|t |2 + |r|2 + |t̃ |2 + |r̃|2 = 1 when �∗ = 0.

B. Single-photon router

In this section we will show how to tune the system
parameters to devise a single-photon router or rectifier, able
to direct the input photon from port 1 to port 3 instead of
continuing in the same waveguide. For a clearer interpretation
of the physical mechanisms involved, let us consider for now
the ideal case in which the couplings are maximally chiral
and the losses of the 3LS are negligible, i.e., Dj = 1 and
PF → ∞ (or equivalently, γdL = γuL = 0 and �∗ = 0). In this
simple situation, the incoming photon can only be scattered
rightwards, and consequently both coefficients r and r̃ vanish.
The remaining two scattering amplitudes become

t(ω) = ω − ωeg + i(γuR − γdR)/2

ω − ωeg + i(γdR + γuR)/2
, (13)

t̃(ω) = −i
√

γdRγuR

ω − ωeg + i(γdR + γuR)/2
. (14)

From the formulas above, it is straightforward to see that
when the frequency of the incoming photon is resonant
(ω = ωeg) and the two remaining couplings are chosen equal
(γdR = γuR), the transmission coefficient t also vanishes.
In this particular situation, three out of the four scattering
amplitudes cancel out (r = r̃ = t = 0), and the incoming
photon is directed to port 3 with probability |t̃ |2 = 1.

In order to make clearer the underlying physical mechanism
of routing, we first recall the situation of a 2LS symmetrically
coupled to a single waveguide, as shown in Fig. 2(a), where
it is well known that an incoming photon whose frequency
is resonant with that of the 2LS is reflected with probability
1 [38]. Such perfect reflection is a direct consequence of a
destructive interference between the direct transmission and
the photon re-emitted after absorption. The amplitudes of these
two processes, shown in dashed lines in Fig. 2(a), cancel out
as they are equal in magnitude and opposite in sign.

The situation can be turned around when we allow the
qubit-waveguide coupling to be chiral, as Fig. 2(b) shows.
Whenever a photon is absorbed by the 2LS, the chiral
interaction introduces an imbalance between the right- and
left-re-emission probabilities. Hence, while the amplitude of
the direct transmission process (dashed blue line) remains
unchanged, the absorption + rightward re-emission amplitude
(solid blue line) increases or decreases in magnitude with
respect to the nonchiral situation. In Fig. 2(b), the maximal
chiral limit is displayed, where the coupling asymmetry is
pushed to its maximum, i.e., no photons can be emitted
leftwards. Hence, since the reflection of the photon at resonant
frequency is impossible, the rightward emission amplitude
(thick blue line) is now maximized in magnitude, and the
transmission probability tends to unity. Chirality thus allows
for a complete inversion of the scattering output as compared
to the nonchiral case of Fig. 2(a).
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FIG. 2. (a) The single-photon transmittance for a qubit nonchi-
rally coupled to a waveguide vanishes due to a destructive in-
terference. (b) When the coupling is maximally chiral, however,
the reflection is canceled and the balance between the previously
interfering amplitudes is broken, resulting in full transmission. (c) If
an extra decay channel is added to the qubit, perfect interference can
be achieved again, and both transmission and reflection are canceled.
(d) Our scheme uses a second waveguide to collect the photon emitted
through the extra channel, achieving full routing.

Interestingly, it is possible to cancel out both transmission
and reflection coefficients by adding an extra decay channel
[Fig. 2(c)]. Here, the coupling to left-propagating photons
is again set to 0, but we now allow the excited state to
decay into a second and in principle arbitrary environment.
If we now choose the two decay rates to be equal as
shown in the figure, only half of the probability absorbed
into the excited state will decay back into rightward guided
modes. But as the discussion in Fig. 2(a) revealed, this is
exactly the fraction of re-emitted probability which leads to
perfectly destructive interference in transmission. Hence, the
transmission coefficient is 0 again and, having no option of
being either reflected or transmitted, the incoming photon
is redirected into the secondary environment with maximum
probability. The only remaining task in order to recover our
four port system is to assume that the extra environment is a
second waveguide, as depicted in Fig. 2(d). With this addition
we introduce the possibility of addressing the routed photon
to a particular port for further use.

The routing device is thus achieved by canceling both
transmission and reflection coefficients, therefore forcing the

photon to switch into the second waveguide. Note, however,
that the vanishings of r and t respond to very different
causes, in the first case to chirality alone (through γdL = 0),
and in the second to destructive quantum interference. In
any case, chirality is essential both to extract the photon
from the initial waveguide and to redirect it to the selected
output port after the routing. Similar quantum interference
effects, not based on chirality, have been exploited previously
in the literature to, e.g., enhance photon blockade [40–42]
or achieving deterministic down-conversion of photon pairs
[43–45].

Let us now study the performance of the single-photon
router in a more realistic situation, in which the device
operation is affected by losses �∗ 
= 0 as well as imperfect
directionalities Dj < 1. In principle, we consider the four
coupling rates γjα to be different in this case. First of
all, note that even in this general situation we can tune
the system parameters so that the transmission coefficient
vanishes. Indeed, from Eq. (9) it is straightforward to see
that t = 0 for an incoming photon in the resonance condition
(ω = ωeg) whenever the couplings fulfill

γdR = γdL + γuL + γuR + �∗. (15)

Note, however, that this condition is limited by physical
constraints, and cannot be always achieved. Indeed, if we
rewrite Eq. (15) in terms of Purcell factor and directionalities,

γu = γdR − γdL − �∗ = γd

DdPF − 1

PF + 1
, (16)

it is clear that a physical solution (i.e., γd,γu > 0) requires the
Purcell factor to fulfill

PF � 1

Dd

. (17)

In other words, there is a threshold for the Purcell factor
above which the routing condition t = 0 can be achieved.
The reason behind this fundamental constraint relies on the
aforementioned destructive interference, which requires half
of the probability emitted in the decay of |e〉 to be directed
towards port 2. If the losses �∗ are so large as to represent
more than half of the decay rate of |e〉, there is no possible
way of distributing the couplings γjR,γjL in order to fulfill
this requirement. Equation (17) thus determines the regime of
operation of the single-photon router.

In practical terms, the limitation expressed by Eq. (17) is
not very restrictive for a wide variety of realistic systems.
Indeed, for perfectly directional couplings (Dj = 1) we can
achieve the routing condition t = 0 for Purcell factors as low
as 1, whereas for usual experimental values of 0.8 < Dj <

0.95 [10] the limit only increases up to PF � 1.25. These
Purcell factors are very common in most waveguide systems,
where values as high as PF ∼ 30 have been reported [46].
Therefore, from now on we consider the case in which the
assumption t = 0 is fulfilled. By doing so, the only two factors
decreasing the performance of the router will be the losses
�∗, and the leakage into ports 1 and 4 caused by imperfect
directionalities. Finally, note that the efficiency of the device
can also be diminished if the incoming photon is detuned with
respect to the transition frequency ωeg , a situation in which
the transmission towards port 2 would not completely vanish.
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FIG. 3. (a) Total routing probability into port 3 vs Purcell factor,
for different directionalities Dd = Du. (b) Reflection probability
determining the efficiency of the diode vs directionality Dd . Inset:
Rectifier acting as a single-photon diode with respect to the bottom
waveguide. A photon introduced through port 1 is routed with
probability 1, and cannot reach port 2. On the other hand, a photon
in port 2 is transmitted to port 1 with maximum probability. In both
panels we fix t = 0.

However, this is a minor problem as compared to the finite
directionalities and the free-space losses. Indeed, the effect
of the detuning is only relevant if such detuning is large as
compared to the emission linewidth of the state |e〉, namely
γd + γu. However, for the system to behave as a router, we
must tune the coupling rates to fulfill Eq. (17), a condition
that can be also written as γd + γu > �∗(D−1

d − 1). Therefore,
the emission linewidth of the state |e〉 is always relatively
large in the router, making it intrinsically robust against small
variations of the resonance condition ω = ωeg .

The efficiency of the single-photon router can be quantified
through the total routing probability which, under the condition
t = 0, is given by

T̃ = |t̃ |2 = 1 + Du

1 + Dd

DdPF − 1

PF + 1

(
for PF � 1

Dd

)
(18)

for a photon in the resonance condition. Note that in the ideal
case (PF → ∞ and Dj → 1) the efficiency defined above is
equal to 1, whereas in a realistic case the probability leakage
into the undesired channels (free space, as well as ports 1
and 4) will reduce this value. The scattering probability |t̃ |2 is
displayed in Fig. 3(a) as a function of the Purcell factor and for
different values of the directionalities Dd and Du, considered
equal for simplicity. The routing probability is shown to remain
rather close to unity for realistic directionalities, for instance

as high as ∼80% for easily achievable values of PF = 15,
Dj = 0.9.

The problem of single-photon routing has received a lot
of attention in the field of waveguide QED, where many
different schemes have been devised. While some proposals
also show a nonreciprocal behavior [25,33], this is in principle
not a requirement. Indeed, various reciprocal and efficient
routing protocols in waveguide setups have been introduced
both theoretically [47–49] and experimentally [50,51]. In our
four-port device, however, the nonreciprocal routing mech-
anism stemming from the chirality is also the fundamental
process over which more complex nonreciprocal operations
can be implemented. Among these, the most straightforward
possibility at the single-photon level is to block one of the
propagation directions in one of the two waveguides, i.e., to
design an optical isolator or diode as defined in reference [37].

Let us study in more detail the performance of the
system acting as the above-mentioned single-photon diode,
specifically with respect to the bottom waveguide as depicted
in Fig. 3(b). Here, we can define two different paths for the
single photon, namely a photon incoming from port 1 towards
port 2, and the opposite situation in which the photon is
introduced through port 2 towards port 1. We will name these
paths l → r and r → l respectively. Due to the chiral coupling,
the single-photon scattering coefficients are different for these
two paths. On the one hand, for the path l → r the scattering
amplitudes have already been calculated in Eqs. (9)–(12).
Here, if the routing condition t = 0 is fulfilled, a photon from
port 1 can never reach port 2 since it is routed into the second
waveguide. On the other hand, for the path r → l the scattering
coefficients can be calculated in the same fashion and, for a
photon in the resonance condition ω = ωeg , they are equal
to tr→l = 1 − Rl→r , rr→l = rl→r , t̃r→l = t̃l→r

√
γdL/γdR , and

r̃r→l = r̃l→r

√
γdL/γdR respectively. With the exception of

photon transmission to port 1, all the processes in these
expressions explicitly require the absorption of the left-
propagating photon by the 3LS, and are therefore proportional
to γdL. In the ideal case of perfect directionalities we have
γjL = 0, and thus the photon is always transmitted to port 1.
As a consequence, in the ideal situation and under the routing
condition the system fulfills

tl→r = 0; tr→l = 1, (19)

which is by definition the behavior of a single-photon diode.
In a realistic case, the performance as a diode is even better

than as a router, since its operation imposes less restrictive
conditions on the route covered by the incoming photon, as
we will see below. Let us study the operation along the two
different paths, assuming that the t = 0 condition, Eq. (15),
is fulfilled. First, when the photon is sent along the path
l → r , it cannot be transmitted to port 2 since t = 0, and
therefore still perfectly fulfills the desired behavior for a diode.
The only decrease in performance in this situation originates
from reflections back into port 1, which can introduce noise
in the device. Hence, the efficiency of the diode along this
photonic path is determined exclusively by the reflection
probability

Rl→r ≡ R = 1 − Dd

1 + Dd

(
for Dd > 0, PF � 1

Dd

)
. (20)
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On the other hand, for a photon incoming along the opposite
path r → l, two sources of loss arise, namely a possible
reflection back into port 2, and photon leakage into either free
space or the upper waveguide. The overall effect of such losses
is to reduce the total transmission probability below 1. Hence,
the total efficiency along the path r → l is determined by the
transmission probability Tr→l which, after manipulation, can
be shown to be

Tr→l = (1 − Rl→r )2 = (1 − R)2

(
for PF � 1

Dd

)
. (21)

According to Eqs. (20) and (21), the performance of the
diode is a function only of the directionality Dd , through the
reflection probability Rl→r ≡ R. This is easily understood for
the path r → l, where all the undesired processes depend
on γuL (and thus on Dd ) as we have seen above. On the
other hand, for the path l → r we only need the photon to
be extracted from the waveguide, but its final destination
(namely free space modes, port 3, or port 4) is irrelevant.
The operation of the diode is thus not dependent on the the
particular value of �∗, γuR , and γuL, but on the total external
loss rate γuR + γuL + �∗. Since such a rate is related to Dd

through the t = 0 condition [see Eq. (15)], the performance
of the diode depends exclusively on the parameter Dd . The
reason behind the diode being more robust relies on the less
restrictive conditions for its operation, specifically regarding
the route of the photon incoming through port 1. Whereas
for the diode it is enough to extract such a photon from the
waveguide d, the router additionally requires it to be addressed
to a given port of waveguide u. For this reason, any deviation

from the ideal conditions will affect the router in a more drastic
way. In Fig. 3(b) we characterize the losses of the diode by
displaying the probability R versus the directionality Dd . For
directionalities Dd � 0.9 the reflection losses are very low,
R ∼ 5%, and the transmission probability along the path r → l

remains at Tr→l ∼ 90%.

IV. TWO-PHOTON TRANSISTOR

In this section we will first characterize the two-photon
response of our system by calculating the two-photon wave
function, and study how it also shows nonreciprocal features.
In particular, we will study how this device shows a transis-
torlike behavior [12] when two photons arrive simultaneously
through port 1, whereas both of them are transmitted when
impinging through port 2.

A. Scattering of a two-photon state

There exist several methods to calculate the multiphoton
response of nonlinear systems such as LSZ reduction [52]
or input-output formalism [53–55]. In this paper, we choose
to diagonalize directly the Hamiltonian Eq. (1) in the two-
excitation subspace. We have checked the consistency of
the results with S-matrix calculations using input-output
methods [53].

First of all, we need to solve the scattering eigenstate
associated with a two-photon input, i.e., two waves with well
defined momentum k1 and k2 incoming through port 1, the
initial state of the 3LS being |g〉. Following the same steps
as in the single excitation subspace, we define the general
two-excitation eigenstate for our problem,

|ε〉 =
∫

dx1

∫
dx2

( ∑
α=R,L

φαα(x1,x2)c†α(x1)c†α(x2) + φRL(x1,x2)c†R(x1)c†L(x2)

)
|g〉

+
∫

dx

∫
dy

∑
α,β

ψαβ(x,y)c†α(x)b†β(y)|s〉 +
∫

dx
∑

α=R,L

ϕα(x)c†α(x)|e〉. (22)

In the above equation, the wave functions φαβ correspond to
states in which both photons are in the bottom waveguide. Two
of these functions are subject to a bosonic symmetry constraint
φαα(x1,x2) = φαα(x2,x1). The wave functions ψαβ describe
states with one photon in each of the waveguides, whereas the
functions ϕα account for states in which one of the excitations
is in the state |e〉 of the 3LS. The explicit calculation of the
wave functions above is detailed in Appendix B.

The two-photon wave functions have a complicated form,
their scattering outputs being thus not straightforward to
quantify. Instead of particular scattering coefficients, we will
make use of the general detection probabilities Pmn, which
represent the total probability of detecting one photon in port
m and another photon in port n after the scattering event occurs.
In order to calculate these quantities, we will follow a similar
procedure as in Ref. [56]. We start by splitting the above
eigenstate into two contributions,

|ε〉 = |εi〉 + |εo〉. (23)

The first term in the above equation is the input state
|εi〉, formed by all the terms in Eq. (22) containing a
right-propagating photon in x < 0 (see Appendix C for de-
tails). The remaining contributions form the scattering output
state |εo〉.

Let us briefly summarize the definition of the detection
probabilities Pmn by using a particular example, namely P23,
and leave the general calculation of all the Pmn to Appendix C.
The photons detected at port 2 will be those propagating
rightwards in the bottom waveguide. In the same fashion,
photons addressed to port 3 are right-propagating modes of
the upper waveguide. Therefore, we can write the position
probability density associated with one photon in port 2 and
another in port 3 as the following second-order correlation
function

ρ23(x,y) = 〈εo|b†R(y)c†R(x)cR(x)bR(y)|εo〉
〈εo|εo〉|�∗=0

, (24)
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where the normalization constant is fixed to the lossless
output state. This normalization is also implicitly used in
all the scattering problems solved with this formalism in the
literature [56]. The total probability of detecting two photons
in such ports is then straightforward,

P23 =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dyρ23(x,y), (25)

where L is the total length of the waveguides, for which
the limit L → ∞ is considered in this work. The explicit
expressions for all the Pmn are calculated in Appendix C.

The detection probabilities defined above account for the
scattering outputs in two particular ports, m and n. Note
that, nevertheless, there are additional possible processes in
the output state |εo〉 which should be taken into account.
In particular, the contributions from states in which one
of the excitations is in the state |e〉 while the second is a
propagating photon, described by the wave functions ϕα(x).
These processes can be relevant for incoming wave packets
whose frequency width is comparable to the intrinsic linewidth
of the transition |g〉 ↔ |e〉 [56]. However, for monochromatic
inputs and in the long waveguide limit we are working on,
it is possible to demonstrate that the detection probability for
any of these processes is infinitely small as compared to the
two-photon probabilities Pmn (see Appendix C for details).
Hence, the processes described by the wave functions ϕα(x)
can be safely ignored in the study of the scattering output.

As for the different scattering outputs, note that although
there are 16 possible combinations of indices m,n ∈ [1,4], not
all of them represent independent processes. Indeed, we can
reduce the number to 10 by noticing that some probabilities
represent the same scattering output (Pmn = Pnm). Addition-
ally, from the general form of the eigenstate in Eq. (22) we
can immediately deduce that P33 = P34 = P44 = 0, as the
Hamiltonian does not allow for two photons to be routed.
Therefore, only seven possible scattering outputs remain,
namely P1n and P2n, in which one photon is addressed to port
n and the second is reflected or transmitted, respectively. Note,
finally, that these are the only possible output processes in the
absence of free-space losses �∗, and therefore add up to unity,

∑
m=1,2

4∑
m=n

Pmn

∣∣∣∣
�∗=0

= 1. (26)

Under this convention, the probabilities Pmn play a similar
role in the two-photon scattering process as the scattering
probabilities T ,R,T̃ ,R̃ did in the single-photon case.

B. Operation and performance of the two-photon transistor

Let us consider first the ideal case in which the 3LS is
lossless and the directionalities are maximized, i.e., �∗ =
0 and Dj = 1. Additionally, we will always assume the
frequency of both incoming photons to be resonant with
the transition |g〉 ↔ |e〉. Under these conditions the detection
probabilities have very simple expressions,

P11 ∝ R2 = 0, (27)

P12 ∝ RT = 0, (28)

P13 ∝ RT̃ = 0, (29)

P14 ∝ RR̃ = 0, (30)
P24 ∝ R̃(1 + T ) = 0, (31)

P22 = T 2, P23 = 1 − P22. (32)

Here, we have defined {T ,R,T̃ ,R̃} ≡ {|t(ωeg)|2, |r(ωeg)|2,
|t̃(ωeg)|2, |r̃(ωeg)|2}, where t,r,t̃ , and r̃ are the single-photon
scattering coefficients defined in Eqs. (9)–(12). Naturally, all
the processes involving the reflection coefficients r or r̃ vanish
in the limit Dj = 1, and only two processes remain: first, direct
transmission of two photons towards port 2, with probability
P22 = T 2, and second, the process by which one of the photons
is routed into port 3 and the second is transmitted to port 2,
with probability P23 ∝ 1 − T 2.

The ideal situation described above can be extremely useful
under the routing condition discussed in the single-photon
case, where the transmission probability T also vanishes if the
couplings are adequately tuned. When this condition (T = 0)
is fulfilled, the probability P22 also vanishes, and only one pos-
sible scattering output remains, namely the one described by
P23. In other words, there is only one possible path for the two-
photon wave packet, with probability 100%. This surprising
result can be used to build a transistorlike device. For the sake
of comparison with an ordinary three-terminal transistor, let us
name port 1 the source or gate and port 2 the drain. For a single-
photon input in port 1 (the source), transmission towards port
2 is prevented by the routing process as discussed in Sec. III.
However, if we introduce a second photon through port 1, one
of the input photons is routed while the second is addressed
to port 2. In this way, a transmission channel between ports
1 and 2 can be opened by means of a second gate photon.
A single-photon transistor has therefore been achieved which,
in the ideal situation we are considering, has an efficiency of
100%. Note that the two-photon response of this device is still
nonreciprocal, since a two-photon input introduced through
port 2 would travel unperturbed towards port 1.

We now consider the more realistic system in which the
directionalities are not perfect and the Purcell factor is finite,
i.e., Dj < 1 and �∗ 
= 0. As we have discussed above, the
routing process is a key requirement for the operation of
the device. Hence, we will assume again that the system
parameters have been tuned to fulfill the routing condition T =
0, as described in Sec. III. In this situation, the probabilities
Pmn can be expressed in terms of both the directionalities and
the Purcell factor as

P23 = 1 + Du

1 + Dd

PF Dd − 1

PF + 1
, (33)

P11 = Q2
d, (34)

P13 = QdP23 (35)

P24 = Qu(1 + Qd )P23 (36)

P14 = QdQuP23, (37)

P12 = P22 = 0, (38)
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FIG. 4. Performance of the single-photon transistor. (a) Success
probability P23 as a function of the directionalities Dd and Du. Each
subpanel corresponds to a different value for the Purcell factor, and
its domain is constrained by the fundamental limit Eq. (17). (b) P23 vs
Purcell factor PF , for different values of the directionalities Dd = Du.
In both panels the couplings are tuned to fulfill t = 0.

where we have defined Qj = (1 − Dj )(1 + Dj ).
The efficiency of the single-photon transistor is determined

by the probability P23, which is displayed in Fig. 4(a) as a
function of the two directionalities Dd and Du and for different
values of the Purcell factor. Note that, whereas Du can have any
value between 0 and 1, the allowed interval of directionalities
Dd is restricted by the constraint T = 0, as described by the
condition Eq. (17). Moreover, the probability P23 depends
more dramatically on the directionality Dd than on Du. The
reason behind this imbalance is that a value Du < 1 introduces
losses only in the path of the routed photon, not in the photon
traveling towards port 2. On the other hand, when Dd decreases
below 1, both the transmission and routing probabilities are
affected, increasing the losses of the device in a more drastic
way. Therefore, an adequate optimization of Dd is a crucial
step towards an efficient photon transistor. In Fig. 4(b) we
show the total efficiency as a function of the Purcell factor,
for different values of the directionalities Dd = Du. The
performance of the transistor rapidly approaches 0 when PF

decreases toward its fundamental limit Eq. (17). However,
such performance saturates to a constant value above a certain
Purcell Factor. For experimentally reported values, such as
Dj = 0.9 and PF = 20, the efficiency of the device reaches
P23 ∼ 80%. This makes our proposal a feasible device for state
of the art experimental setups.

To conclude this section, our most relevant result is
the demonstration of chirally coupled systems as highly
promising platforms for devising photonic devices beyond
the single-photon level. This has been shown by explicitly
diagonalizing the system Hamiltonian in the two-excitation
subspace. By engineering the nonlinear response of the system
using chirality, we have devised a transistorlike device whose
efficiency does not depend on the temporal delay between
the two incoming photons. Additionally, although we have
focused on one particular application, namely the transistorlike
behavior, our four-port arrangement is very flexible and could
therefore be tuned to perform a wide variety of other operations
on the incoming two-photon inputs such as 50:50 beam
splitters or photon substractors. The possibility of performing
efficient operations also at the two-photon level is key for a
waveguide-based quantum network and, therefore, our work

confirms chirality as a very valuable resource in quantum
optical circuits [11].

V. CONCLUSIONS

A family of few-photon nonreciprocal devices has been
presented whose operation is based on quantum interference
tuned by chiral waveguide-emitter coupling. By studying a
simple four-port system, we have shown how an adequate
tuning of the parameters can lead to perfect single-photon
routing, an effect we have employed for the design of a
single-photon diode. After, we have analyzed the performance
of our device for a two-photon input, demonstrating how
a transistorlike behavior can be achieved. All these devices
are shown to operate with high efficiency for experimentally
reported parameters. The set of devices that we have introduced
represents an additional application of chiral photon-emitter
interaction for quantum applications, and provide a flexible
and efficient resource for the design and miniaturization of
quantum circuits.
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APPENDIX A: DIAGONALIZATION IN THE
SINGLE-EXCITATION SUBSPACE

Several works contain detailed information on the single-
excitation diagonalization of these kinds of Hamiltoni-
ans [38,57], hence we will only briefly summarize the key
steps. First, we define the general form for our single-excitation
eigenstate,

|ε〉 =
∫

dx(φR(x)c†R(x) + φL(x)c†L(x))|g〉

+
∫

dy(ψR(y)b†R(y) + ψL(y)b†L(y))|s〉 + α|e〉, (A1)

where the coefficients α,φα(x),ψβ(y) are unknown functions
to determine. In order to do so, we solve the time-independent
Schrödinger equation H |ε〉 = ε|ε〉 by directly applying the
Hamiltonian H in Eq. (1) to the eigenstate above. In this way,
we obtain the following system of equations:

(ε − ωe + i�∗/2)α =
∑

β=R,L

Vβφβ(0) + Wβψβ(0), (A2)

(ε − ωg + ivg∂x)φR(x) = αVRδ(x), (A3)

(ε − ωg − ivg∂x)φL(x) = αVLδ(x), (A4)

(ε + ivg∂y)ψR(y) = αWRδ(y), (A5)

(ε − ivg∂y)ψL(y) = αWLδ(y), (A6)
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where we use the shorthand notation ∂x ≡ ∂/∂x. We now
proceed to make an ansatz for the photonic wave functions
in terms of scattering coefficients,

φR(x) = ei(ε−ωg)x/vg [θ (−x) + tθ (x)], (A7)

φL(x) = e−i(ε−ωg)x/vg rθ (−x), (A8)

ψR(y) = eiεy/vg t̃θ (y), (A9)

ψL(y) = e−iεy/vg r̃θ (−y), (A10)

which allows for an integration of the system of
Eqs. (A3)–(A6) around x = y = 0 in order to get rid of the
δ functions. After such integration, the problem is reduced
to a 5 × 5 system of algebraic equations. The solutions to
this system, after the trivial substitution ω = ε − ωg , are the
scattering coefficients Eqs. (9)–(12) in the main text.

APPENDIX B: DIAGONALIZATION
IN THE TWO-EXCITATION SUBSPACE

The basic steps for the diagonalization in this case are
the same as in the single-excitation problem, starting by the
general form of the two-excitation eigenstate Eq. (22). By
directly applying the Hamiltonian (1) to the eigenstate |ε〉
we obtain a system of differential equations relating all the
coefficients. For the sake of compactness, let us first define the
variable

ηα =
{

1 for α = R

−1 for α = L
, (B1)

as well as the function

Gα(x1,x2) = ϕα(x1)δ(x2). (B2)

With these useful definitions at hand, we can express the
system of equations in the following form:

[ε − ωg + ivg(ηα∂1 + ηβ∂2)]φαβ

= [VαGβ(x2,x1) + VβGα(x1,x2)]
2 − δαβ

2
, (B3)

[ε + ivg(ηα∂x + ηβ∂y)]ψαβ = WβGα(x,y), (B4)

[ε − ωe + ivg∂x]ϕR(x)

=
∑

α

[WαψRα(x,0) + VαψRα(x,0)(1 + δαR)], (B5)

[ε − ωe − ivg∂x]ϕL(x)

=
∑

α

[WαψLα(x,0) + VαψαL(0,x)(1 + δαR)], (B6)

where ∂j ≡ ∂/∂xj and δαβ represents the Kronecker δ. In a
general case the losses are included as an imaginary part in ωe,
i.e., ωe → ωe − i�∗/2.

The homogeneous solution to the above differential equa-
tions is a two-variable plane wave. The only difficulty is posed
by the δ functions, which account for the matching conditions
for these waves at the position of the 3LS, x = y = 0. It is then
necessary to carefully define the different domains in which
the functions ψ,φ are well defined:

Region (i): x1,x2 < 0, or x,y, < 0.
Region (ii): x1 < 0 < x2, or x < 0 < y.
Region (iii): 0 < x1,x2, or 0 < x < y.
Region (iv): x2 < 0 < x1, or y < 0 < x.
We can do the same for the one-variable functions ϕα(x),

ϕα(x) = ϕ<
α (x)θ (−x) + ϕ>

α (x)θ (x). (B7)

Once the different regions are defined, it is possible to simplify
the problem by imposing physical restrictions. In particular,
as we are interested in the scattering of two photons incoming
through port 1, we can impose the condition that no photons
are introduced through other ports. This restriction applies as
a series of constraints in our wave functions, in particular

φ
(iii)
LL = φ

(ii)
LL = φ

(iii)
RL = φ

(ii)
RL = 0, (B8)

ψ
(i)
RR = ψ

(iv)
RR = 0, (B9)

ψ
(ii)
RL = ψ

(iii)
RL = 0, (B10)

ψ
(i)
LR = ψ

(iii)
LR = ψ

(iv)
LR = 0, (B11)

ψ
(ii)
LL = ψ

(iii)
LL = ψ

(iv)
LL = 0, (B12)

ϕ>
L = 0. (B13)

Finally, we can integrate Eqs. (B3) and (B4) around x,y = 0
to get rid of the δ functions, obtaining the following system of
equations and boundary conditions:

[ω + ivg(ηα∂1 + ηβ∂2)]φ(j )
αβ = 0, (B14)

[ω + ωg + ivg(ηα∂x + ηβ∂y)]ψ (j )
αβ = 0, (B15)

ivg

[
φ

(ii)
RR(x,0) − φ

(i)
RR(x,0)

] = VR

2
ϕ<

R (x), (B16)

ivg

[
φ

(iii)
RR (0,x) − φ

(ii)
RR(0,x)

] = VR

2
ϕ>

R (x), (B17)

ivgφ
(i)
LL(x,0) = VL

2
ϕ<

L (x), (B18)

ivgφ
(i)
RL(x,0) = VLϕ<

R (x), (B19)

ivgφ
(iv)
RL (x,0) = VLϕ>

R (x), (B20)

ivg

[
φ

(iv)
RL (0,x) − φ

(i)
RL(0,x)

] = VRϕ<
L (x). (B21)

ivg

(
ψ

(ii)
RR (x,0)

ψ
(iii)
RR (x,0)

)
= WR

(
ϕ<

R (x)
ϕ>

R (x)

)
, (B22)

ψ
(iii)
RR (0,y) = ψ

(ii)
RR (0,y), (B23)

ivg

(
ψ

(i)
RL(x,0)

ψ
(iv)
RL (x,0)

)
= WL

(
ϕ<

R (x)
ϕ>

R (x)

)
, (B24)

ψ
(iv)
RL (0,y) = ψ

(i)
RL(0,y), (B25)

ivg

(
ψ

(i)
LL(x,0)

ψ
(ii)
LR (x,0)

)
=

(
WLϕ<

L (x)
WRϕ<

L (x)

)
, (B26)

ψ
(ii)
LR (0,y) = ψ

(i)
LL(0,y) = 0. (B27)
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[ω − ωeg + ivg∂x]ϕ>
R (x) = VR

[
φ

(iii)
RR (0,x) + φ

(ii)
RR(0,x)

] + VLφ
(iv)
RL (x,0)/2 + WRψ

(iii)
RR (x,0)/2 + WLψ

(iv)
RL (x,0)/2, (B28)

[ω − ωeg + ivg∂x]ϕ<
R (x) = VR

[
φ

(ii)
RR(x,0) + φ

(i)
RR(x,0)

] + VLφ
(i)
RL(x,0)/2 + WRψ

(ii)
RR (x,0)/2 + WLψ

(i)
RL(x,0)/2, (B29)

[ω − ωeg − ivg∂x]ϕ<
L (x) = VLφ

(i)
LL(x,0) + VR

[
φ

(iv)
RL (0,x) + φ

(i)
RL(0,x)

]/
2 + WRψ

(ii)
LR (x,0)/2 + WLψ

(i)
LL(x,0)/2. (B30)

In the above equations, we define the total energy of the two-photon wave packet, ω = vgk = vg(k1 + k2) = ω1 + ω2, where k1

and k2 are the wave vectors of the two photons.
The following step is to make an ansatz for the input state, i.e., the two photon wave function introduced through port 1. We

assume the following plane-wave structure:

φ
(i)
RR(x1,x2) = A(eik1x1eik2x2 + eik2x1eik1x2 ), (B31)

which fulfills the required bosonic symmetry, and where A is the normalization constant. By inserting the above ansatz into the
equations, it is possible to compute the rest of the unknowns following a similar procedure as in [56]. In order to express the final
solutions in a more compact way, let us define the general two-photon plane wave function as

fp,q = eipx1eiqx2 , (B32)

where the variables may switch from x1,x2 to x,y when necessary. In terms of these functions, the eigenstate coefficients
normalized to A are given by

ϕ<
R (x) = 2VR

(
eik1x

ω2 − ωeg + iγ /2
+ eik2x

ω1 − ωeg + iγ /2

)
, (B33)

ϕ>
R (x) = 2VR

(
eik1x

t1

ω2 − ωeg + iγ /2
+ eik2x

t2

ω1 − ωeg + iγ /2
+ 2iγdRei(k−ωeg )x

(ω1 − ωeg + iγ /2)(ω2 − ωeg + iγ /2)
e−γ x/2

)
, (B34)

ϕ<
L (x) = 2VR

r1

ω2 − ωeg + iγ /2
(e−ik1x + e−ik2x − 2eγx/2e−i(k−ωeg )x), (B35)

φ
(ii)
RR(x1,x2) = t2fk1,k2 + t1fk2,k1 , (B36)

φ
(iii)
RR (x1,x2) = t1t2

(
fk1,k2 + fk2,k1

) − 2(t1 − 1)(t2 − 1)e−γ |x2−x1|/2
[
fωeg,k−ωeg

θ (x2 − x1) + fk−ωeg,ωeg
θ (x1 − x2)

]
, (B37)

φ
(ii)
RL(x1,x2) = 2

(
r2fk1,−k2 + r1fk2,−k1

)
, (B38)

φ
(iv)
RL (x1,x2) = 2

{
r2t1fk1,−k2 + r1t2fk2,−k1 − 2r1(t2 − 1)e−γ |x1+x2|/2

[
fk−ωeg,−ωeg

θ (x1 + x2) +fωeg,−k+ωeg
θ (−x1 − x2)

]}
, (B39)

φ
(i)
LL(x1,x2) = r1r2

{
f−k1,−k2 + f−k2,−k1 − 2e−γ |x2−x1|/2

[
f−k+ωeg,k−ωeg

θ (x2 − x1) +f−ωeg,−k+ωeg
θ (x1 − x2)

]}
, (B40)

ψ
(ii)
RR (x,y) = 2t̃2fk1,k2+ωg

+ 2t̃1fk2,k1+ωg
, (B41)

ψ
(iii)
RR (x,y) = ψ

(ii)
RRθ (y − x) + 2

[
t̃2t1fk1,k2+ωg

+ t̃1t2fk2,k1+ωg
− 2t̃1(t2 − 1)fk−ωeg,ωeg+ωg

eγ (y−x)/2
]
θ (x − y), (B42)

ψ
(i)
RL(x,y) = 2r̃2fk1,−k2−ωg

+ 2r̃1fk2,−k1−ωg
, (B43)

ψ
(iv)
RL (x,y) = ψ

(i)
RLθ (−x − y) + 2

[
r̃2t1fk1,−k2−ωg

+ r̃1t2fk2,−k1−ωg
− 2r̃1(t2 − 1)fk−ωeg,−ωeg−ωg

e−γ (y+x)/2
]
θ (x + y), (B44)

ψ
(i)
LL(x,y) = 2r̃1r2

(
f−k1,−k2−ωg

+ f−k2,−k1−ωg
− 2eγ (y−x)/2f−k+ωeg,−ωeg−ωg

)
θ (y − x), (B45)

ψ
(ii)
LR (x,y) = 2t̃1r2

(
f−k1,k2+ωg

+ f−k2,k1+ωg
− 2eγ (y+x)/2f−k+ωeg,ωeg+ωg

)
θ (−y − x), (B46)

where γ = γdR + γdL + γuR + γuL, and the coefficients tj
stand for t(vgkj ) (and the same for rj ,t̃j ,r̃j ). In the above
equations, whenever the energies γ , ωeg , or ωg appear in the
argument of exponential functions, they represent a shorthand
notation for their corresponding wave vectors, γ /vg , ωeg/vg ,
and ωg/vg respectively. Finally, note that in general all
the wave functions have two different possible components,
namely a plane-wave component and a two-photon bound
state proportional to exp(−γ |x2 − x1|). This nonlinear term
is related to the 3LS’s saturable absorber properties, and has
been studied in detail in the literature [38]. In the plane-wave
limit we will work on, these bound states will not play any

role in the scattering outputs. However, it is important to take
into account that they could be relevant for incoming wave
packets whose frequency width is comparable to the intrinsic
linewidth of the 3LS transitions [56].

APPENDIX C: CALCULATION
OF THE DETECTION PROBABILITIES

We devote this section to the calculation of the detection
probabilities Pmn, as well as to demonstrate that any con-
tribution from the wave functions ϕα vanishes. We start by
noticing that the two-photon components of the eigenstate
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calculated above split into contributions of three different
types, which arise naturally from the separation between the
regions i, ii, iii, iv imposed by the boundary conditions.
First, the state corresponding to the incoming two-photon
wave packet is given by φ

(i)
RR as defined in Eq. (B31).

Secondly, the two-photon wave functions φ
(ii)
RR, φ

(i)
RL, ψ

(ii)
RR ,

and ψ
(i)
RL represent transient states, in which one of the two

photons has interacted with the 3LS and the other has not.
Finally, the rest of the two-photon contributions, namely
φ

(iii)
RR , φ

(i)
LL, φ

(iv)
RL , ψ

(iii)
RR , ψ

(iv)
RL , ψ

(ii)
LR , and ψ

(i)
LL, describe the

asymptotic limit in which both photons have interacted with
the 3LS, and travel towards the exit ports of our system. This is
a general structure for the eigenstates of any system calculated
using the same method [56].

Once the different contributions are isolated, we can
properly define the so-called input state, |εi〉, which contains
only the parts of |ε〉 for which a right-propagating photon is
present in the region x < 0. In other words, it is the fraction
of the two-photon eigenstate |ε〉 containing both the input
and the transient contributions described above. From this
definition, the state |εi〉 can be obtained directly from the
general two-photon eigenstate |ε〉 in Eq. (22), by making
the substitution φ

(i)
RR, φ

(ii)
RR, φ

(i)
RL, ψ

(ii)
RR, ψ

(i)
RL, ϕ<

R → 0. Finally,
we can use the input state defined above to calculate the
output state as |εo〉 = |ε〉 − |εi〉. Such a state contains only
the asymptotic contributions to the eigenstate, as well as the
functions ϕ<

R and ϕ>
R which, however, do not contribute to

any detection probability, as we will see below. The reason
behind this definition of the output state will become clear in
the following.

Once the output state is properly determined, we can
calculate the detection probabilities Pmn. In order to obtain
a general expression, we define the generalized coordinate

zj =
{
x for j = 1,2
y for j = 3,4 , (C1)

as well as the generalized photonic operators

ai(zi) =

⎧⎪⎨
⎪⎩

cL(x) for i = 1
cR(x) for i = 2
bR(y) for i = 3
bL(y) for i = 4

. (C2)

By using these definitions we can obtain a general expression
for the position probability density in ports m and n, as

ρmn(zm,zn) = 〈εo|a†
m(zm)a†

n(zn)an(zn)am(zm)|εo〉
〈εo|εo〉|�∗=0

. (C3)

The normalization of the above probability densities corre-
sponds to the lossless version of the eigenstate. Otherwise, we
would be overestimating the probabilities in the lossy case,
neglecting the reduction of the norm inherent to the radiative
losses. This normalization method is the one implicitly chosen
in all the single-photon scattering problems, both in this work
and in many others [38,39]. From the equation above, the total
detection probability can be expressed as

Pmn = 1

1 + δmn

∫ L/2

−L/2
dzm

∫ L/2

−L/2
dznρmn(zm,zn). (C4)

In this expression, L represents the length of the waveg-
uides, which we consider infinite. Additionally, the factor
(1 + δmn)−1 prevents a double counting of the states subject to
a bosonic symmetry constraint.

The first step in the calculation of the probabilities Pmn is to
prove that the norm of the output state |εo〉|�∗=0 is proportional
to L2, where L → ∞ is the length of the waveguide. Note that
this result would be trivial in the case of a bare waveguide, as
it is the natural norm of a two-variable plane wave. We start
by directly calculating the norm of such state as

〈εo|εo〉 =
∫

dx1

∫
dx2

(
2
∣∣φ(i)

LL

∣∣2 + 2
∣∣φ(iii)

RR

∣∣2 + ∣∣φ(iv)
RL

∣∣2)
+

∫
dx

(∣∣ϕ(<)
L

∣∣2 + ∣∣ϕ>
R

∣∣2)
+

∫
dx

∫
dy

(∣∣ψ (iii)
RR

∣∣2 + ∣∣ψ (iv)
RL

∣∣2

+ ∣∣ψ (ii)
LR

∣∣2 + ∣∣ψ (i)
LL

∣∣2)
, (C5)

which is valid for any value of �∗. In principle, we could
expand the wave functions by using their expressions above,
but we can greatly simplify the calculation in advance. Indeed,
note that apart from external factors, the overlap (C5) can be
expressed as a sum of simple integrals, all of them with one of
the following general shapes (or equivalent after a change of
variables):

Ia =
∫ L/2

0
dx

∫ L/2

0
dy 1 = L2/4, (C6)

Ib =
∫ L/2

0
dx

∫ L/2

0 or x

dyeipxeiqy (p,q ∈ R), (C7)

Ic =
∫ L/2

0
dx

∫ L/2

x

dyeipxeiqye−κ|y−x| (p,q ∈ R), (C8)

with κ > 0. It is straightforward to demonstrate that

Ib ∝ δpqL
2/4, (C9)

Ic ∝ δp0L/2, (C10)

which means that only the pure plane-wave terms contribute
to the norm, the bound states adding a negligible contribution
of order 1/L → 0. In other words, the norm fulfills

〈εo|εo〉 ∝ L2 + O(L) (C11)

for any �∗, which is the first important result of this section.
Note that the contributions of the wave functions ϕα are only
proportional to L, therefore in the limit L → ∞ they do not
have any weight in the norm.

The two-photon detection probabilities Pmn as defined in
the main text can be split into elementary integrals exactly
in the same way as we have done with the norm 〈εo|εo〉. An
analogous treatment allows us to also demonstrate that

Pmn ∝ 1

〈εo|εo〉|�∗=0
[L2 + O(L)] → const, (C12)

where we have made use of Eq. (C11). This apparently trivial
result is extremely helpful when calculating the probabilities
Pmn. Indeed, from Eq. (C11) it is straightforward that the
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eigenstate norm will cancel out any contribution of order O(L)
or lower, hence we only need to compute a fraction of the
integrals appearing in Pmn.

By using the above simplification, we can directly introduce
the eigenstate wave functions in the definition of Pmn,
obtaining the following expressions for two photons of wave
vectors k1,k2 in the L → ∞ limit:

P11 = R1R2, (C13)

P12 = (R1T2 + R2T1), (C14)

P22 = T1T2, (C15)

P13 = T̃1R2 + T̃2R1

2
, (C16)

P14 = R̃1R2 + R̃2R1

2
, (C17)

P23 = T̃2(T1 + 1) + T̃1(T2 + 1)

2
, (C18)

P24 = R̃2(T1 + 1) + R̃1(T2 + 1)

2
, (C19)

P33 = P34 = P44 = 0, (C20)

where {Tj ,Rj ,T̃j ,R̃j } = {|tj |2,|rj |2,|t̃j |2,|r̃j |2}. Importantly, it
can be shown that in the lossless case the above probabilities
add up to 1,

4∑
m=1

4∑
n=m

Pmn

∣∣∣
�∗=0

= 1. (C21)

This implies that the two-photon processes whose probabilities
we calculate above are the only output possibilities, and

completely describe the scattering in the two-photon case. In
other words, such probabilities are equivalent to the square
modulus of the single-photon scattering amplitudes defined
in Eqs. (9)–(12). This is the reason behind the definition
of the probability densities in Eq. (C3) in terms of the
output state |εo〉. By removing the contributions in which
part or all of the interaction has not yet occurred, we obtain
consistent two-photon probabilities which, additionally, can be
proven to coincide with the results obtained with the S-matrix
formalism [53]. Finally, note that when we particularize the
expressions of Pmn for two equivalent photons, k1 = k2, we
recover Eqs. (33)–(38) of the main text for t = 0.

From the above arguments, demonstrating that the contri-
bution of the states ∝ϕα(x)c†α(x)|e〉 is negligible is straightfor-
ward. In principle, we could extend the definition of Pmn and
associate a detection probability to these states,

P (ϕ>
R ) = 1

〈εo|εo〉|�∗=0

∫ L/2

−L/2
dx|cR(x)σge|εo〉|2, (C22)

P (ϕ<
L ) = 1

〈εo|εo〉|�∗=0

∫ L/2

−L/2
dx|cL(x)σge|εo〉|2, (C23)

where σge = |g〉〈e|, and P (ϕ>
L ) = 0 by definition as ϕ>

L (x) = 0
(see the previous section). Now, it is straightforward to see that
the largest contribution to these integrals has the form∫ L/2

−L/2
dxeipx ∝ L, (C24)

i.e., even the largest term in the numerator of Eqs. (C22)
and (C23) is canceled by the denominator 〈εo|εo〉|�∗=0 ∝ L2.
Any possible contribution of these states to the scattering
output will then be of order ∼1/L → 0 as compared to the
two-photon probabilities of Eq. (C12). As a consequence, as
we mentioned above, the detection probabilities Pmn are the
only relevant scattering variables in this case.
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A. Auffèves, D. Gerace, and M. F. Santos, Fabry-Perot Interfer-
ometer with Quantum Mirrors: Nonlinear Light Transport and
Rectification, Phys. Rev. Lett. 113, 243601 (2014).

[35] L. Yuan, S. Xu, and S. Fan, Achieving nonreciprocal unidi-
rectional single-photon quantum transport using the photonic
aharonov-bohm effect, Opt. Lett. 40, 5140 (2015).

[36] D. Roy, Few-photon optical diode, Phys. Rev. B 81, 155117
(2010).

[37] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P.
Schneeweiss, J. Volz, and A. Rauschenbeutel, Nanophotonic
Optical Isolator Controlled by the Internal State of Cold Atoms,
Phys. Rev. X 5, 041036 (2015).
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