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Abstract
This paper presents a tutorial on the computation of both extraordinary optical transmission and
surface electromagnetic modes in holey metal films. Our model consists of a square array of
square holes in a perfect conductor. It is shown that considering just the fundamental waveguide
mode inside the holes captures the main features of the optical transmission, which allows us to
obtain quasi-analytical results. Extraordinary optical transmission is unambiguously linked to
the presence of surface electromagnetic modes in the corrugated structure. The particular case
of surface electromagnetic modes in a perfect conductor is analyzed, paying attention to
different strategies for increasing their confinement to the surface. The use of the energy loss of
a charged particle passing close to the surface as a spectroscopic tool for these surface modes is
also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ten years ago, Ebbesen et al [1] found experimentally that the
optical transmission through an array of subwavelength holes
drilled in a metal film was, for some resonant wavelengths,
orders of magnitude larger than what was expected for a
collection of isolated holes. This unexpected result, dubbed
extraordinary optical transmission (EOT), has triggered a
wealth of experimental and theoretical studies which, in turn,
have revealed new phenomena such as: EOT and beaming of
light in single apertures flanked by surface corrugations [2–4],
the strong influence of the hole shape on transmission
properties in both hole arrays [5] and isolated holes [5–8], and
interesting nonlinear transmission effects [9–11].

Already the first report on EOT [1] pointed out the
close spectral correspondence between transmission peaks and
the wavelengths at which surface plasmon polaritons [12]
should be excited. Further theoretical work backed up
this observation, and explained EOT as being due to the
resonant coupling of electromagnetic (EM) surface modes
through the evanescent fields inside the hole [13]. Moreover,
the mathematical analysis showed that EOT-like behavior
should occur whenever two localized modes are, at the same

time, coupled between themselves and weakly coupled to a
continuum [13, 14]. This allowed for a Fano type description of
the process [15] and pointed to the possibility of extraordinary
transmission in other ranges of the EM spectrum, and even
for other types of waves. Electromagnetic wave transmission
mediated by surface modes has also been found in: perforated
metals in both the THz [16, 17] and millimeter regimes [18],
doped semiconductors [19], perforated polar semiconductors
in the infrared regime [20] and holey slabs in photonic
crystals [21, 22]. Additionally, extraordinary transmission
of both matter waves (cold atoms) [23] and sound [24, 25]
through holey slabs has also been demonstrated.

Interestingly, the calculations showed EOT peaks even
when the metal was considered impenetrable to the fields [13].
This idealization, which in the context of metals is
usually referred to as the perfect electrical conductor (PEC)
approximation, occurs whenever the dielectric constant of the
solid, εM, fulfills |εM| = ∞.3 The appearance of EOT
in perfect conductors was intriguing because, as flat PEC-
dielectric interfaces do not support electromagnetic surface

3 Strictly speaking, both a lossy Drude metal in the low frequency limit
(ε = +ı∞) and a lossless dielectric with ε = +∞ would have the same
properties as a PEC.
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modes, it looked like a different interpretation from the one
involving surface modes was needed in this case. However,
periodically corrugated PEC surfaces do support surface
waves which, in a perforated film, assist the transmission
process [26]. The link between extraordinary transmission in
real metals and in perfect conductors was more evident after
finding that the structured PEC surface could be approximately
represented by effective permeabilities which spoof those of a
Drude-like metal [26, 27].

Despite the apparent geometrical simplicity of a periodic
array of apertures in a metal film, the system is still
characterized by a large number of geometrical and material
parameters. This complexity leads to the existence of
different transmission regimes and the coexistence of different
mechanisms. For instance, while surface modes strongly
influence the EM transmission in both the microwave and
optical regimes, in the latter case also the penetration of
EM fields in the ‘vertical’ walls defining the hole has
relevant effects. This penetration affects the propagation
constants of waveguide modes which, in turn, affect the
transmission [28]. However, the existence of EOT in perfect
conductors shows that the presence of waveguide modes with
‘modified’ propagation constants is not essential for EOT.
Another quantity showing a strong dependence on the different
parameters defining the system is the lifetime of surface modes.
Surface modes involved in EOT are leaky, i.e., they are coupled
to radiative modes. Otherwise, they could not be seen by
the incoming field. Therefore, the lifetime of a surface
mode depends on both radiation coupling (strongly geometry
dependent) and absorption (strongly material dependent).
Different transmission regimes occur depending on the relation
of this lifetime to both the time needed to build coupled surface
modes and the time it takes for the surface mode to cross a finite
array.

Many theoretical works have addressed the dependence
of EOT phenomena on different parameters [13, 28–34].
However, it is still desirable to have simplified models that
neatly provide the main physics. Here we present what, in
our opinion, is the simplest possible model able to capture
the main aspects of EOT. Our aim is to provide a tutorial
presentation, both on the basics of EOT phenomena and on
how the different scattering coefficients can be obtained within
the modal expansion technique, hoping the exposition will be
useful for those interested in the more general results presented
in a succinct way elsewhere [13, 35]. We present different
formulations of the scattering problem, which allow us to
look at the solution from different points of view, therefore
improving our physical insight into the relevant mechanisms
leading to EOT. Additionally, we give expressions for different
scattering coefficients of hole arrays. These expressions
have semi-quantitative value in the optical regime for good
metals like Au or Ag, but are already good quantitative
approximations for wavelengths in the infrared and longer.
Moreover, they should have an even larger range of validity
for hole arrays in Al [36], which presents a very small skin
depth even in the visible.
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Figure 1. Schematic picture of the hole array considered in this
work: a square array of square holes in a metal film of thickness h.
The lattice parameter is L and the side of the hole is a. A polarized
plane wave is incoming from media I, into the hole array (media II)
and is transmitted into media III. The horizontal metal film interfaces
are placed at z = ±h/2.

2. Theoretical model

The system under study is an infinite array of holes, placed
periodically in a metal film of thickness h. We denote by z
the direction normal to the film, and take the metal–dielectric
interfaces to be placed at z = ±h/2 (see figure 1). The array
is illuminated by a plane wave with given polarization σ0 and
wavevector k0. The structure can be divided into four regions:
the superstrate (from where radiation is coming), the substrate
(where radiation will be transmitted to), the interior of the hole,
and the metal. Each region is characterized by a dielectric
constant.

2.1. Approximations and geometry considered in this work

Our model involves two main approximations.

• We treat the metal as a PEC, i.e. εM = −∞. The main
advantage of neglecting the penetration of the field into
the metal is that the fields inside the hole array can then
be expressed in terms of the waveguide modes in the hole,
which are analytically known for some geometries.

• Only the fundamental waveguide modes inside the hole
are considered in the expansion of the wavefield (notice
that the fundamental mode is degenerate for some hole
shapes). The formalism considering the full expansion on
waveguide modes has been presented elsewhere [13, 35].
The single mode approximation leads to quasi-analytical
expressions and is quite accurate for subwavelength
holes4, as the comparison with results obtained with the
full expansion will show.

Additionally, we analyze a system with the following
restrictions.

(i) The holes are placed in a square lattice with lattice
parameter L.

4 In this work we will use the term ‘subwavelength holes’ to denote the
wavelength regime in which all modes inside the hole are evanescent.
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(ii) The holes have square cross section, of side a (in this case
the fundamental waveguide mode is double degenerate).

(iii) The incident radiation is a p-polarized plane wave, i.e., for
normal incidence the in-plane component of the incident
electric field points along the x-direction.

These three conditions allow us a further simplifica-
tion of the problem: due to symmetry we only have to
consider the fundamental waveguide mode that couples di-
rectly to the incident field.

In this paper we also consider that:
(iv) while the dielectric constant inside the holes, εhole, is

arbitrary, the dielectric constant of both substrate and
superstrate is equal to unity.

We consider this simplest case in order to focus on
presenting the main physics and different formalisms within
the mode matching technique. The treatment of the general
case would require a more cumbersome notation, thus
concealing the simplicity of the method. In any case, the
scattering coefficients in more general situations, in which
restrictions (i)–(iv) are relaxed, can be straightforwardly
obtained following the derivations that will be presented in this
paper.

2.2. Basis set for modal expansion and notation

In order to compute the transmittance through the structure,
we expand the electromagnetic field in terms of the EM
eigenmodes in each region, and match the EM field
appropriately at the boundaries.

The choice of a good representation for the electromag-
netic (EM) field greatly simplifies the calculation. In principle,
three components of the EM field are enough for a complete
representation: although the EM field comprises six compo-
nents, the full EM field can be recovered from either the elec-
tric or the magnetic field and using Maxwell equations. An
even more compact representation is possible when the field
is expanded in eigenmodes of the Maxwell equation, as each
of these has a well defined propagation constant kz in each of
the pieces of space with translational symmetry along direc-
tion z. Then, the equation ∇D = 0 can be used to relate one
of the electric field components to the other two, except for a
sign which can only be known if the direction of propagation of
the EM eigenmode is known. In the representation we choose,
we consider as basis for our field representation the x and y
components of the electric field, which thus form a bi-vector,
and keep track of whether modes propagate in the +z or −z
direction.

As well as a compact representation, a convenient notation
can greatly simplify the algebra. This can be achieved by
using Dirac’s notation: we denote by |E〉 a bi-vector such that
〈r‖|E〉 = (Ex(r‖), Ey(r‖))T, where T denotes transposition.
Notice that the z dependence for each mode is not included and
must be explicitly stated. With this notation, overlaps between
bi-vectors are written in a very economical way as:

〈E|E′〉 =
∫

unit cell
dr‖ { E∗

x (r‖)E ′
x(r‖) + E∗

y(r‖)E ′
y(r‖)}. (1)

An important property, valid for eigenmodes in both free
space and waveguides limited by PECs, is that the magnetic
field can be related to the electric field bi-vector as: |−uz ×
Hmode〉 = ±Y |Emode〉. In the previous expression Y is
the modal admittance, which is a proportionality coefficient
characteristic of the mode considered, and uz is the unitary
vector along the +z direction. The ± sign must be chosen
according to whether the wave propagates in the + or −z
direction, respectively.

We define g = ω/c, where ω is the frequency of the
incoming field and c is the speed of light, and use the cgs
system of units (so in a uniform media with dielectric constant
ε, ∇ × E = ı g H and ∇ × H = −ı ε g E). The eigenmodes
considered in the different regions of space are:

• Free space
Plane waves, denoted by |k, σ 〉 according to their

wavevector k and polarization σ (s or p). Their explicit
functional forms are:

〈r‖|k, p〉 = (
kx, ky

)T
exp(ık‖r‖)

/√
Lx L y |k‖|2

〈r‖|k, s〉 = (−ky, kx
)T

exp(ık‖r‖)
/√

Lx L y |k‖|2.

At k‖ = 0 the distinction between s and p modes is
arbitrary. Here, we take |k‖ = 0, p〉 = (1, 0)T/

√
Lx L y

and |k‖ = 0, s〉 = (0, 1)T/
√

Lx L y . These modes
are orthonormal when integrated over a unit cell,
i.e. 〈k, σ |k′, σ ′〉 = δk,k′δσσ ′ , where δ is the Kronecker
delta. The corresponding modal admittances are Yk,p =
g/kz and Yk,s = kz/g, where kz = √

g2 − |k‖|2. In order
to simplify the notation, we shall not explicitly express
that kz is a function of k‖.

• Inside the hole at lattice position R
The fundamental waveguide mode, denoted by |0, R〉.

For a square hole, 〈r‖|0, R〉 = (1, 0)T × sin[qy(y − Ry +
a/2)]/√a/2, for values of r‖ inside the hole (defined on
the support [Rx −a/2, Rx +a/2]×[Ry −a/2, Ry +a/2]),
and zero otherwise. Here qy = π/a. The admittance for

this mode is Y II = kII
z /g, where kII

z =
√

εhole g2 − q2
y

An important point is that, in order to satisfy scattering
boundary conditions at ±∞, the sign of the square root must be
chosen so that the imaginary parts of all propagation constants
are positive, i.e., Im(kz), Im(kII

z ) > 0.
With this choice of basis set, and taking into account

Bloch’s theorem, the EM fields in different regions of space
can be expressed as:

• Region of reflection, (z < −h/2)

|EI (z)〉 = |k0σ0〉eik0z (z+h/2) +
∑
kσ

rkσ |kσ 〉e−ikz (z+h/2) (2)

|−uz × HI(z)〉 = Yk0,σ0 |k0 σ0〉 eik0z (z+h/2)

−
∑
k σ

rk σ Yk,σ |k σ 〉 e−ikz (z+h/2) (3)

where, according to Bloch theorem, sums are over all k
values of the form k = k0 + KR, KR being a vector of the
reciprocal lattice, i.e., KR = (2π/L) (mux + nuy) with m
and n integers, and ux and uy being the unitary vectors in
the x- and y-direction, respectively.
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• Region inside the holes, (−h/2 < z < h/2)

|EII (z)〉 =
∑

R

eik0R |0, R〉
{

A eikII
z z + B e−ikII

z z
}

(4)

|−uz × HII (z)〉 =
∑

R

eik0R|0, R〉Y II

×
{

A eikII
z z − B e−ikII

z z
}

. (5)

• Transmission region (z >, h/2)

|EIII (z)〉 =
∑
k σ

tk σ |kσ 〉 eikz (z−h/2)

|−uz × HIII (z)〉 =
∑
k σ

tk σ Yk,σ |kσ 〉 eikz (z−h/2).
(6)

In the previous expressions, rk σ , A, B , and tk σ are
expansions coefficients to be determined through matching the
fields at the different interfaces.

The energy current crossing a unit cell at a given z,
J (z), can be computed by integration of the Poynting vector:
J (z) = 1

2 Re[∫ dr‖uz ·(E(r‖, z)×H∗(r‖, z))] = 1
2 Re[〈−uz ×

H(z)|E(z)〉].
Using this expression, it is straightforward to calculate

the energy current of the incident field J0 = Yk0,σ0/2. The
transmittance can be computed in each region as TN ≡ JN /J0,
where JN is the current evaluated at values of z in the N th
region. We obtain:

TI = 1 −
∑
k σ

Im(ıYk,σ ) |rkσ |2/Yk0,σ0 (7)

TII =
{

Y II
(|A|2 − |B|2) /Yk0,σ0 , if kII

z is real(
2ıY II

)
Im

(
A B∗) /Yk0,σ0 , if kII

z is imaginary
(8)

TIII =
∑
k σ

Im(ıYk,σ ) |tk σ |2/Yk0,σ0 . (9)

As our model does not include absorption, current conservation
implies that all expressions for T should give the same result,
providing a useful test for the calculations.

An interesting consequence of equation (8), and the
fact that 0 � T � 1, is that the condition |A| �
|B| must be fulfilled for propagating waveguide modes.
However, for evanescent modes, current conservation only
forces Im(A B∗) � 0. Notice also that a single evanescent
mode does not carry current: a non-zero current requires both
the term decaying as A exp(−|kII

z |z) and the ‘reflected’ wave
represented by B exp(+|kII

z |z).

2.3. Expressions for the field amplitudes and scattering
coefficients

The EM field must satisfy the following matching conditions.

(i) E-field components parallel to the surface must be
continuous over the whole surface.

(ii) H -field components parallel to the interfaces must be
continuous only over the aperture. The H -field is
discontinuous at the metal–air interfaces and the value of
this discontinuity is not known a priori. Once the H -
field has been computed, its discontinuity can be used to
compute the electron current running at the metal surface.

The expansion coefficients can be obtained by projection
of each matching equation onto the set of modes that span
the spatial region over which the equation is defined. This
projection procedure provides as many equations as unknown
scattering coefficients, even if the considered basis set is not
complete (as is the case here, when all diffraction modes
enter into the expansion but only the fundamental waveguide
mode is taken into account). Therefore, relations arising from
continuity of E-field components should be expanded onto
〈k, σ | modes, and the ones related to the H -field should be
expanded onto 〈0, R|.

Matching can be enforced just over one unit cell. If
this is satisfied, Bloch’s theorem automatically ensures proper
continuity over the whole lattice. We match the fields over the
Wigner–Seitz unit cell corresponding to R = 0, and use the
simplified notation |0〉 ≡ |0, R = 0〉 and eh ≡ exp(ıkII

z h/2).
This leads to:

rk σ = −δk,k0 δσ,σ0 + (
Ae−1

h + Beh
) 〈k, σ |0〉 (10)

−
∑
k σ

Yk,σ rk σ 〈0|k, σ 〉 = −Yk0,σ0〈0|k0, σ0〉 + Y II

× (
Ae−1

h − Beh
)

(11)

tk σ = (
Aeh + Be−1

h

) 〈k, σ |0〉 (12)∑
k σ

Yk,σ tk σ 〈0|k, σ 〉 = Y II
(
Aeh − Be−1

h

)
(13)

where the two first equations of the previous set come from the
continuity of fields at z = −h/2, and the last two from the
matching at z = h/2.

The expressions for the overlaps are:

〈k, σ |0〉 = fk,σ

√
a2

2L2
sinc[kxa/2]

(
sinc

[
(ky + qy)a

2

]

+ sinc

[
(ky − qy)a

2

])
(14)

where fk,p = kx/|k‖|, fk,s = −ky/|k‖|, and sinc[x] ≡
sin[x]/x .

2.4. Formalism in terms of amplitudes of waveguide modes

The previous set of equations can be solved by eliminating
rkσ and tk σ in favor of A and B . After multiplying all
previous equations by a factor ı (the convenience of this
unusual convention will be apparent in section 2.6), we obtain:

� A + �B = I0 (15)

� A + �B = 0 (16)

with
I0 = 2ıYk0,σ0 〈0|k0, σ0〉 (17)

G = ı
∑
k σ

Yk,σ |〈0|k, σ 〉|2 (18)

� = e−1
h

(
G + ıY II

)
(19)

� = eh
(
G − ıY II

)
. (20)

Clearly, I0 is the term that characterizes the illumination
of the apertures. The quantity G depends on both the modal
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impedances in vacuum and the overlaps between plane waves
and the waveguide modes. It can be interpreted as the effective
impedance of vacuum, as seen from the fields in the hole.
Recall that, as the summation is over wavevectors of the form
k0 + KR, G = G(k0) depends on the wavevector of the
incident field k0. Notice also an important property of G:
G diverges whenever one of the diffraction modes in the sum
defining G becomes grazing. This is due to the divergence
of the modal impedance of p-polarized modes, Yk,p, when
the wavevector k is parallel to the surface (i.e. kz = 0).
As we will show, the transmission maxima are governed by
resonant denominators involving G. The rapid variation of
G close to divergencies favors the existence of minima in the
denominators, thus linking the different transmission maxima
to the deep transmission minima (known in this context as
Wood anomalies [1]).

In general G is a complex number. With the convention
used, the real part of G arises from the contribution of
evanescent modes (for which kz , and therefore the modal
impedance, is a pure complex number), while its imaginary
part is due to the radiative modes (characterized by a real kz).
For evanescent modes both eh and ıY II are real quantities.
Therefore, � and � are complex quantities which, like G,
have non-zero imaginary parts if the Bloch combination of
waveguide modes couples to radiative modes.

The physical interpretation of the quantities � and � will
be apparent after the solution of the system of equations for A
and B . We obtain, from equations (15) and (16):

A = �

�2 − �2
I0; B = −�

�2 − �2
I0. (21)

The rest of scattering coefficients, as well as the
transmission through the system can be obtained from A and
B by using expressions previously derived in this paper.

These equations reveal the possibility of resonant
behavior: even for weak illuminations, large fields inside the
holes build up when �2 − �2 ≈ 0. Actually, the condition
�2 − �2 = 0 marks the existence of surface modes. For
|k0‖| < g the coupling to radiation prevents the previous
condition from being fulfilled for real values of k0‖; it still can
be fulfilled for complex k0‖ signaling the presence of leaky
surface modes. For |k0‖| > g, and if the conditions are such
that |k0‖ + KR| > g for all reciprocal lattice vectors KR, the
condition for the existence of surface modes can be fulfilled
for real values of k0‖, meaning that the surface modes in the
system decay in the direction perpendicular to the slab.

In order to gain further insight on the resonant mechanism,
let us consider the case of a very thick metal film. For a
subwavelength hole kz is a complex imaginary number, eh =
exp(−|kz|h/2) decays exponentially with h, and so does �.
So, in this limit, � is very small and the resonant condition
� = 0 marks the existence of two (virtually uncoupled) surface
modes, one at each metal-vacuum interface. These two surface
modes are coupled for � �= 0 leading to two split resonances,
occurring when the condition � = ±� is fulfilled. At these
resonances A = ∓B , so they correspond to the antisymmetric
and symmetric combination of surface modes.

I

II
τ

ρk,σ

I

II

τ k,σ

ρ
1

1
(a)

(b)

Figure 2. Schematic definition of the different scattering coefficients
for EM fields at isolated interfaces dividing two semi-infinite media.
(a) Incidence from medium I into medium II, (b) incidence from a
waveguide mode in medium II into either medium I or III.

Notice that the expressions above can also be used to study
the related system of an array of indentations, i.e, holes closed
at the exit side. In that case, continuity of the field at the
exit implies E‖ = 0, leading to B = −e2

h A. Of course,
no transmission through the system is possible in this case,
but surface modes still appear at the input interface whenever
� − e2

h� = 0.

2.5. Multiple scattering formalism

Although the scattering problem was solved in the previous
section, additional physical insight is obtained by solving the
transmission problem within the multiple scattering formalism.
This technique expresses the scattering coefficients of a
stratified media in terms of scattering coefficients of isolated
interfaces. This is particularly useful when surface modes are
present, as they clearly show up in the two-media scattering
coefficients.

In the case of a three-layer system, we must solve three
two-media scattering problems (see figure 2):

(i) A plane wave coming from medium I with wavevector k0,
impinges onto medium II which is considered as a semi-
infinite medium. The incoming field has unit amplitude at
the interface, being reflected back into the different modes
in medium I with amplitude ρk,σ , and transmitted into the
Bloch combination of waveguide modes with amplitude τ .

(ii) The field coming from medium II impinges into medium
I which is considered as a semi-infinite medium. The
incoming field is a Bloch combination of waveguide
modes, with crystal momentum k0 and unit amplitude
at the interface, and is reflected back into the Bloch
combination of waveguide modes with amplitude ρ and
transmitted into the different plane waves in region I with
amplitudes τk,σ .

(iii) As (ii) but for the II–III interface. Obviously, in the case
we are considering, in which media I and III have the same
dielectric constant, the scattering coefficients for the II–III
interface coincide with those for the II–I interface.

5
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Within the multiple scattering technique, the transmission
coefficient of the perforated metal film tk,σ can be computed as

tk,σ = τe2
h τk,σ + τe2

h(ρe2
h ρe2

h)τk,σ +τe2
h(ρe2

hρe2
h)

2τk,σ + · · ·

= τ e2
h

{ ∞∑
n=0

(ρ2 e4
h)

n

}
τk,σ = τ e2

h τk,σ

D
(22)

where D = 1 − ρ2 e4
h . The origin of this expression is the

following: the first term in the series for tk,σ represents the
direct process of: transmission into the holes, propagation
inside them to their exit end and transmission into medium III.
The second term is similar but takes into account that, before
propagation into medium III, the EM field can: reflect at the
exit end back into the holes (factor ρ), propagate inside the
holes (factor e2

h), reflect back at the II–I interface (factor ρ)
and propagate again inside the holes to the exit end (factor e2

h).
This intermediate process repeats itself an infinite number of
times; each time adding a partial amplitude for the process of
transmission into medium III. Fortunately, this infinite series is
geometric and can be summed up. The result is that the ‘direct
process’ amplitude (the first term in the sum) is ‘renormalized’
by the presence of the denominator D. Large values of tk,σ are
possible if 1/D is large, due to the constructive interference
of the waves transmitted in all steps of the multiple scattering
process. Similarly, destructive interference of partial waves
may lead to small transmission coefficients for the three-media
system.

The rest of three-media scattering coefficients can be
obtained using a similar reasoning. Their expressions are:

rk,σ = ρk,σ + τ e4
h ρ τk,σ /D (23)

A = τ eh/D (24)

B = τe2
hρeh/D = ρe2

h A. (25)

Two-media scattering coefficients should, in general, be
calculated by imposing the proper continuity conditions for
the fields across the different interfaces. Here we take
advantage that the two-media coefficients can be obtained from
equations (15) and (16).

• Coefficients for the I–II interface can be obtained from
equations (15) by setting B = 0 (in the semi-infinite media
there is no reflected wave), and identifying τ = Ae−1

h .
Therefore

τ = e−1
h I0/�; ρk,σ = −δk,k0 δσ,σ0 + 〈k, σ |0〉 τ.

(26)
• Coefficients for the II–III interface are obtained from

equations (16) by setting A = e−1
h (the incoming

wave must have unit amplitude at z = +h/2), and
identifying ρ = Be−1

h (recall that the two-media scattering
coefficients are defined right at the interface, while A and
B are the modal amplitudes at the center of the hole). With
this:

ρ = −�

�
e−2

h = − G − ıY II

G + ıY II
,

τk,σ = 2ıY II

G + ıY II
〈k, σ |0〉.

(27)

Recall that G, � and �, and therefore all two-media
coefficients, depend on the wavevector of the incident plane
wave k0.

All two-media scattering coefficients (τ, ρk,σ , ρ and τk,σ )
present resonances whenever � = 0 which, as we have seen
previously, is the mathematical condition for the existence of
surface modes. However, three-media scattering coefficients
(rk,σ , A, B, tk,σ ) do not diverge at � = 0; instead they
diverge for D = 0, which, substituting the expression for ρ

is equivalent to �2 − �2 = 0. So, as expected, three-media
coefficients have information on the coupled surface modes.

2.6. Formalism in terms of amplitudes of the electric field at
the openings

An alternative reformulation of the scattering problem is
obtained by defining the modal amplitudes of the electric field
at the input side (E) and output side (E ′) through E ≡ e−1

h A +
eh B , and E ′ ≡ −(eh A + e−1

h B).
These quantities satisfy the following system of equations

(G − �)E − Gv E ′ = I0 (28)

−Gv E + (G − �) E ′ = 0 (29)

where

� ≡ ı Y II e2
h + e−2

h

e2
h − e−2

h

, Gv ≡ 2 ı Y II 1

e2
h − e−2

h

. (30)

The case of an array of indentations can also be described
by these equations. In this case, the condition E‖(z = h/2) =
0 imposes E ′ = 0.

The scattering coefficients and the transmittance (evalu-
ated in different regions) are given in terms of E and E ′ as

rk σ = −δk,k0 δσ,σ0 + 〈k, σ |0〉 E (31)

tk σ = −〈k, σ |0〉E ′ (32)

TI = [
2 Re(〈k0σ0|0〉E) − Im(G) |E |2] /Yk0,σ0 (33)

TII = Im(G∗
v E∗ E ′)/Yk0,σ0 (34)

TIII = Im(G) |E ′|2/Yk0,σ0 . (35)

These equations have a direct physical interpretation [35].

(i) E and E ′ provide the electric field at the surface due to
the presence of holes. More precisely, as the expressions
for rk σ and tk σ show, E and E ′ provide the variation of
the EM fields in the holey film with respect to those in the
uniform slab. Nevertheless, recall that as equations (28)
and (29) follow from equations (11) and (13), these
equations express the matching of magnetic fields at the
openings, in terms of the amplitude of the electric field
there.

(ii) The expression of EM fields everywhere in terms of those
at the opening indicates an alternative interpretation for G:
writing G = ı

∑
k σ Yk,σ 〈0|k, σ 〉〈k, σ |0〉, it is apparent

that G involves the coupling of the field at the opening
in a waveguide mode into plane waves (weighted by Yk,σ ,
which acts as a ‘density of plane waves’), and the coupling
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back from these into the waveguide mode. Physically
this occurs because, according to Huygens principle, each
point in the opening acts as an emitter of secondary
wavelets. The radiation by a given waveguide mode is
the integral of this point emission over all points in the
opening, weighted by the modal wavefield. The term G E
thus provides how much of this radiation is recollected
by other points in the aperture, onto the waveguide mode
under consideration.

(iii) � is ı times the admittance at the aperture (i.e., the
quotient between magnetic and electric field components).
The term �E therefore gives the magnetic field at the
opening arising from the presence of an electric field
(due to Faraday’s and Ampere’s law). This ‘aperture
admittance’ differs from the modal admittance by the
factor (e2

h + e−2
h )/(e2

h − e−2
h ), which arises because

radiation that couples to a waveguide mode at one end
of the hole is reflected back after finding a change in
geometry at the other end. Actually, this process repeats
itself an infinite number of times, with the field bouncing
back and forth inside the hole. The reflection at the bottom
changes both E and H, and therefore their quotient. Notice
that � has the same value for both open and ‘closed’ holes.
Of course, the properties of these two configurations are
different due to the presence of Gv, which only couples
fields at top and bottom openings (recall that E ′ = 0 for
closed holes).

The formalism in terms of E and E ′ is reminiscent of
Green’s Dyadic method. There, the full EM field when some
‘scatterer’ has been placed in a reference stratified system
is solely represented in terms of the electric field inside the
scatterer [37]. For a hole array, the reference system is the
uniform metallic film, while the ‘scatterers’ are the collection
of holes. In Green’s Dyadic formalism, EM fields must be
computed in all the volume inside the hole. By contrast,
only the fields at the surface are needed in the formalism
presented in this section, as fields are represented in terms of
the waveguide eigenmodes with known propagation along the
hole. No attempt has been made here to re-derive the modal
expansion expressions from Green’s Dyadic formalism, but
the expression for G involves some components of Green’s
Dyadic. Actually, this relation to Green’s Dyadic is the origin
of the notation of the quantity G, which in the modal expansion
formalism appears as a ‘weighted admittance’.

An additional advantage of the formalism presented in
this section is that the set of equations governing E and E ′
have an appealing similarity with the tight-binding formalism,
used for describing a collection of atoms in terms of localized
orbitals. Within this analogy, the ‘localized orbitals’ are
the (Bloch) linear combinations of EM field amplitudes at
both entrance and exit hole surfaces. In quantum mechanics,
the tight-binding Hamiltonian preserves current, provided the
orbital energies are real quantities. Energy losses are often
represented by complex values of the orbital energy, with a
positive imaginary part. The introduction of the, up to now
mysterious, factor ı in the definition of I0 and G is related to
this analogy. With this factor, and if all terms are placed at the
left-hand-sides of equations (28) and (29), real quantities (like

� in the case of subwavelength holes) represent the energy that
remains at the surface. Quantities with positive imaginary part
(like G) correspond to energy that leaves the surface (entirely
through radiation, in the lossless case we are considering).
Finally, pumping energy into the surface is represented by −I0

which, correspondingly, takes negative imaginary values.
Of course, the existence of EM modes also appears in the

formalism involving E and E ′. Surface modes bound to an
isolated interface appear when G − � = 0, and the modes of
two coupled interfaces whenever (G − �)2 − G2

v = 0. These
equations may not have a solution for a given frequency as,
for subwavelength holes, � is a real quantity while, in general,
G is a complex one. However in the following we will show
that, as a function of frequency and angle of incidence, |G−�|
presents deep minima which, if different from zero, correspond
to leaky modes. Under more restrictive conditions, zeroes of
|G − �| are indeed possible, signaling the existence of truly
bound surface modes which, of course, can not be excited by
an incoming propagating plane wave (otherwise they would
couple back to radiation and become leaky).

All previous expressions have been derived assuming that
the metal is a PEC. In what follows we present results obtained
with this approximation. Before this, let us mention that this
approximation can be relaxed in several ways, through the
redefinition of the quantities appearing in the formalism, but
maintaining the structure of the theory. First, the penetration
of EM fields inside the vertical walls defining the hole can
approximately be taken into account by effectively enlarging
the hole [14, 38, 39]. This allows for a more accurate
representation of both overlaps between waveguide modes and
plane waves and, more importantly, of the propagation constant
of waveguide modes (notice that the coupling between surface
modes depends exponentially on this quantity). Second, the
penetration of the EM fields at the top and bottom metal
interfaces can be approximately taken into account by the use
of the ‘surface impedance boundary conditions’ (SIBC). Again
in this case, the structure of the theory remains unaltered within
this refined formalism; only the expressions for the different
functions G, Gv , I0 ... are slightly modified [13, 41].

3. Numerical results

3.1. Transmittance through a hole array

Electromagnetic properties computed within the PEC approx-
imation (for which εM is frequency independent) remain unal-
tered if all lengths defining the problem are scaled by a com-
mon factor. In what follows we take the lattice parameter as
the unit length.

Figure 3 renders the transmittance spectra for a square
lattice of holes in a PEC film of thickness h = 0.2L. The holes
have square cross section, with side a = 0.4L. The cutoff
wavelength for the fundamental waveguide mode in the hole is
λc = 2a so, for λ > 0.8L all waveguide modes in the hole are
evanescent. The black curve in figure 3 is the full multimode
result, obtained using the method derived in [13]. The red
line in figure 3 renders the transmission spectra computed
within the single mode approximation (SMA), by considering
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Figure 3. Transmittance through a hole array drilled in a perfect
electrical conductor. The side of the hole is a = 0.4L and the film
thickness h = 0.2L . The black curve is the result from the converged
multimode expansion. The red curve is obtained within the single
mode approximation discussed in this work. The green curve
corresponds to the minimal model described in [13]: single mode
where, additionally, only the terms with p-polarization and reciprocal
lattice vectors KR = 0,±2π/L ux have been considered in the sum
defining G.

as many diffraction modes as needed for convergence in
the sum defining G. The green curve was also computed
within the single mode approximation, but considering only
the terms with p-polarization and reciprocal lattice vectors
KR = 0,±2π/L ux in the sum defining G (this is the ‘minimal
model’ described in [13]). While clearly the consideration
of additional diffraction modes modify the final numerical
result, the basics of EOT are already present in this extremely
simplified model.

As figure 3 shows, the single mode approximation already
provides a very good estimation to the exact transmission curve
even when the condition a/λ � 1 is not satisfied (in the
considered case a/λ ∼ 0.3–0.5). The good agreement between
the SMA and the exact results stems from the properties
of the coupling between the relevant diffraction orders and
the waveguide modes: the coupling with the fundamental
waveguide mode is stronger, as this mode presents the slower
spatial variation. This mechanism takes precedence over the
faster decay of higher order waveguide modes inside the hole,
thus explaining why the SMA is still a good approximation
even for relatively thin films (standard EOT studies in the
optical regime are usually done for h/L ≈ 0.3–0.5).

Three features are readily visible in figure 3: one very
deep minimum at λ = L and two transmission peaks. The
deep minimum is related to a divergence of G. Recall that G
diverges whenever a p-polarized diffraction mode has kz = 0.
In this case, the equations previously derived give A = B =
E = E ′ = 0, so there is no transmission because the EM
field does not enter into the hole. Let us consider first the
particular case of normal incidence. Then the diffraction order
characterized by the reciprocal lattice vector KR has kz = 0
for |KR| = g. Therefore, for a square lattice, transmission
minima occur at λmin

m,n = L/
√

m2 + n2, where m and n are
integers. So, the largest wavelength at which a deep minimum
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Figure 4. Transmittance for p-polarized light impinging into a hole
array, within the single mode and PEC approximations. The side of
the hole is a = 0.4L and the film thickness is h = 0.2L . The black
curve is for normal incidence, while the red curve is for incidence at
5◦. In both cases the incoming electric field points along the x-axis.

occurs is λmin
±1,0 = λmin

0,±1 = L. Actually, this is the result
obtained within the PEC approximation. If the penetration
of the field into the metal is taken into account by using the
SIBC, similar calculations to the ones presented here show
that the spectral positions of the transmission minima are more
accurately represented by the solutions of the equation cg =
ωP(KR). Here, ωP(k) = c|k|√(εM + 1)/εM is the dispersion
relation of the surface plasmon polaritons of the flat air–metal
interface. Therefore, when the dielectric constant of the metal
is taken into account, transmission minima are expected at
λmin

m,n = L
√

εM/(εM + 1)/
√

m2 + n2 (notice that this is an
implicit equation for λmin

m,n , as εM is wavelength dependent).
Coming back to the PEC approximation, for the general

case of incidence at an angle θ , the condition of grazing
diffraction occurs at | g sin θ ux + KR| = g. Therefore, at
θ �= 0, the minima associated to λmin

±1,0 split, appearing now at

λmin
±1,0 = (1 ± sin θ)L and λmin

0,±1 =
√

1 − sin2 θ L. Figure 4
shows such splitting between transmission minima, for a hole
array with the same geometrical parameters as in figure 3,
but illuminated with a p-polarized plane wave impinging at
θ = 5◦: the expected minima are clearly seen at wavelengths
λmin

−1,0/L = 0.913, λmin
0,±1/L = 0.996 and λmin

1,0 /L = 1.087.
Transmission peaks are due to the presence of leaky

surface modes of the corrugated metal film. In order to
support the previous statement, it is convenient to analyze
the properties of the two-media coefficient ρ, that gives the
reflection for fields coming from the interior of the hole.
Figure 5 renders the real and imaginary parts of ρ, for the
cases considered in figure 4. Large values for Im(ρ) and
anomalous behavior for Re(ρ) occur at spectral positions close
to the transmission resonances, both for θ = 0◦ and θ =
5◦. The spectral dependences of Re(ρ) and Im(ρ) are the
ones expected, through Kramers–Kronig relations, for causal
functions close to localized resonances [40] (a reflected field
obviously requires a preexisting incident one, so ρ must satisfy
causality). Recall that ρ is a two-media scattering coefficient,
so its resonances mark the existence of surface modes bound
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Figure 5. Real (discontinuous lines) and imaginary (continuous
lines) parts of ρ, the reflection amplitude for a Bloch combination of
waveguide modes impinging into vacuum. The Bloch wavevector
forms either 0◦ with the normal to the surface (black curve) or 5◦ (red
curve). The side of the hole is a = 0.4L , and the film thickness is
h = 0.2L .

to a single interface. The width of the Im(ρ(λ)) peak, �ρ, is
related to the lifetime of the EM surface mode, tR , which can
be estimated from �ω tR ∼ 2π as tR ≈ tL (λ/L)2/(�ρ/L),
where tL is the time it takes for the surface mode to cross a unit
cell.

Figure 5 presents spectral regions with |ρ| > 1, implying
that the reflected field has larger amplitude than the incident
one. This is counter-intuitive, as it seems to indicate that the
reflected current is larger than the incident one. However,
a similar calculation to that leading to equation (8) shows
that, for evanescent modes, current conservation only dictates
Im(ρ) > 0, saying nothing about |ρ| (see also discussion at the
end of section 2.2).

Obviously, the transmission through a slab involves two
interfaces. How do surface modes couple in a metal film? How
are they related to the transmittance spectra? The answer to
these questions is illustrated in figure 6, which presents results
for an array of square holes with a = 0.4L, illuminated at
normal incidence. The upper panel shows the transmittance
spectra for different metal thicknesses, while the middle panel
renders the corresponding spectral dependence for both e−2

h
(which in the subwavelength regime is always larger than one
and increases exponentially with h) and |ρ| (that, being a
two-media scattering coefficient, does not depend on metal
thickness).

As figure 6 shows, transmittance maxima occur at the
wavelengths of minimal distance between the |ρ| and e−2

h
curves. This corresponds to the graphical solution for the
minima of the ‘renormalization’ denominator D which, as we
have previously shown, mark the presence of coupled surface
modes. Depending on the metal thickness, two transmission
regimes appear for any given resonance of |ρ|. For small metal
thicknesses (but still larger than 3–4 skin depths, so the metal
is optically opaque and the considered model makes sense),
the curves for |ρ| and e−2

h cross twice, leading to the presence
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Figure 6. Upper panel: normal-incidence transmittance spectra
through a hole array in PEC, for different metal thicknesses, h. The
side of the hole is a = 0.4L . Middle panel: spectral dependence of
|ρ| (black curve) and e−2

h (color lines, for the corresponding metal
thicknesses represented in the upper panel). Lower panel: spectral
dependence of |G − �| (continuous lines) and |Gv | (discontinuous
lines). The thin vertical discontinuous lines are guides to the eye
marking the wavelengths of minimum distance between |ρ| and the
different e−2

h curves.

of two transmission maxima which, for a lossless metal reach
100% transmission [13, 32]. This is the regime of strong
coupling between surface modes: before being radiated, the
EM field stays long enough at the surface to be able to build
coupled resonances. For films thick enough, e−2

h is larger than
the maximum value of |ρ|. In this case, the curves for |ρ| and
e−2

h do not cross but there is still one transmission maximum
at the wavelength of minimum distance between them, i.e,
very approximately at the spectral position of the maximum of
|ρ|. In this situation, the surface modes of the two surfaces
are weakly coupled: the time it would take to build up the
resonance (tres) is smaller than the radiation lifetime (trad) or,
in other words, the EM field does not stay long enough in the
system to realize that there are two coupled modes. Conversely
to what occurs in the strong coupling regime, transmission
maxima in the weak coupling regime decay exponentially with
h, even in the absence of absorption. Clearly, whether an EOT
peak is in the strong coupling or weak coupling regime strongly
depends on both the metal thickness (which controls the time
for the resonance build-up) and the geometry of the openings
(which determines the radiation lifetime). The existence of
these two transmission regimes was experimentally confirmed
in [42].

The analysis of the existence of coupled leaky modes,
and their relation to transmission maxima, can also be done
within the formalism involving E and E ′. In this case the
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resonant condition is expressed in terms of the denominator
(G − �)2 − G2

v . The lower panel of figure 6 renders the
spectral dependence of both |G −�| and |Gv|, for the different
metal thicknesses considered in the upper and middle panels
of the figure. As the figure shows, there is a bi-univocal
correspondence between the spectral position of transmission
maxima and the wavelengths of minimum distance between
|G − �| and |Gv|. Notice that the resonances appear close to
the divergences of G occurring at the wavelengths λmin

m,n (both
for a PEC and for a real metal).

The previous analysis was done for an infinite hole array
and a lossless metal. Going beyond this idealization introduces
(at least) another two time scales: the typical time the EM field
needs for crossing the finite array and the typical time the EM
field can stay in the system before being absorbed. EOT peaks
will be largely impaired whenever any of these times is smaller
than tres.

3.2. Spoof surface plasmons

As mentioned before, an array of indentations in a PEC is able
to bind surface electromagnetic modes. The band structure
of these modes can be obtained by finding the solutions of
G − � = 0 (or, alternatively, from the spectral position of
scattering resonances) as a function of the incident wavevector
k0. Complex values of k0 must be considered in the search for
leaky modes, while truly bound surface modes can only show
up for evanescent incident wavefields (with |k0‖| > g).

However, the overall form of the band structure can be
obtained without the need for numerical computations. For
this, it is convenient to consider that the metal has an arbitrarily
large (but not infinite) negative dielectric constant. In this
case, a flat metal surface supports truly bound surface plasmon
polaritons. The presence of a periodic array of small holes can
be considered within a perturbative approach. The result is that
the dispersion relation of EM surface modes in the corrugated
structure will closely follow the one for surface plasmon
polaritons, except for k0 values lying close to a Brillouin zone
boundary, where bands bend in order to accommodate for band
gaps. For frequencies above the first band gap, surface modes
couple to radiation, thus becoming leaky. However, the band
sector below the first band gap still represents a truly bound
surface mode. As a result of the band bending caused by the
array of holes, the lowest band of surface modes separates from
the light line (ω = ck), therefore binding the EM field more
strongly to the surface. This reasoning has been discussed
before [43], and is at the heart of the whole field of frequency
selective surfaces. Notice that this structure of the dispersion
relation is based on general arguments, being applicable not
only to plasmon polaritons but to all kind of waves in periodic
media.

However, in the particular case of the EM field in patterned
surfaces, there is an additional mechanism to periodicity-
induced band bending for binding the field to the surface. In
order to illustrate this point, we compute the bands of a holey
metal surface within the PEC approximation, in which case flat
surfaces do not support bound plasmon polaritons. In a first
approximation, we consider the hole array as a metamaterial
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Figure 7. Dispersion relations for spoof surface plasmons in a
semi-infinite perforated metal, after matching of the average fields at
the surface (see text). The side of the hole is a = 0.4L . A medium
with dielectric constant ε = 1 (black curve), or ε = 9 (red curve),
fills the holes. The discontinuous line marks the spectral region of
leaky modes.

and compute the band structure of surface modes by matching
the average fields over the surface; the effect of periodicity
will be included in a second stage, following a reasoning
similar to the one described above. Matching of average fields
can be readily done by using the techniques described in this
paper (for instance by computing the resonances in ρ), but
considering only the term with KR = 0. Notice that, in this
way, all information about the lattice is lost.

Figure 7 renders the band structure along the �–X
direction for surface modes bound to an isolated holey
interface, for both εhole = 1 (black curve) and εhole = 9. Notice
that bands flatten at certain frequencies, although no diffraction
effects have been included yet.

This result can be expressed in the metamaterial language
by assigning an effective dielectric constant (εeff) and effective
magnetic permeability (μeff) to the structured surface. In
order to find the value of these coefficients, we consider an
incoming wave from medium I, impinging into a semi-infinite
medium II. The two-media reflection coefficient ρkσ is given
by equation (27). From the expressions for I0 and � and the
average value for G = ı YI S2 (coming from the term with
KR = 0), we obtain:

ρkσ = S2YI − Y II

S2 YI + Y II
= YI − Y II/S2

YI + Y II/S2
(36)

where we have used the shortened notation YI ≡ Ykσ and
S ≡ |〈k, σ |0〉|2.

This expression resembles the reflection coefficient ρA→B

of waves coming from media A (characterized by an
admittance YA) into media B (with admittance YB). For a
flat interface, ρA→B = (YA − YB)/(YA + YB). Therefore,
equation (36) states that the field coming from medium I ‘sees’
the structured metal surface as if it were a uniform medium
with (effective) admittance Yeff ≡ √

εeff/ μeff = Y II/ S2.
The effective admittance involves a combination of both

εeff and μeff, so these coefficients cannot yet be extracted. We
obtain a second equation involving εeff and μeff by enforcing
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the EM fields to decay in the effective media as they do in the
structured surface, i.e., by imposing keff

z = kII
z , which implies

g
√

εeffμeff = gY II.
Finally, we get εeff = (Y II)2/S2, and μeff = S2. The

expression for εeff is of the form:

εeff(ω) = εhole S−2

(
1 − ω2

p

ω2

)
. (37)

This functional form for εeff(ω) is similar to Drude’s
expression for the dielectric constant of a metal. Therefore, it
can be said that a corrugated PEC surface spoofs a flat surface
of a real conductor, characterized by a (geometry dependent)
‘effective plasma frequency’ ωp = (c/

√
εhole)π/a, which

coincides with the cutoff frequency of the hole.
This is the result derived in [26]. Actually, the

system is anisotropic, so care must be taken about the
different components of the effective dielectric constant tensor
(see [26]). The anisotropy is also responsible for the fact
that the flat region of the dispersion curve for spoof surface
plasmons appears at εeff = 0, whereas the dispersion relation
for surface plasmons bounded to the interface between two
isotropic media flattens at ε = −1.

Periodicity has two effects on the spoof plasmon band
structure: it opens gaps at wavevectors k close to Brillouin
zone boundaries and couples bands with |k| > π/L to radiative
modes. This is illustrated in figure 7, where the discontinuous
lines represent modes that become leaky when diffraction
effects are considered.

Notice that spoof surface plasmons can still be expected
if the holes are not arranged on a crystalline two-dimensional
lattice. In this case, however, spoof surface plasmons will be
leaky surface modes for all frequencies.

Spoof surface plasmons close to the flat region of the
dispersion curve are interesting because they are strongly
bound to the surface. As previously said, this occurs for
wavelengths close to the cutoff of the hole, i.e., λ ≈ 2

√
εholea.

More generally, all plane-wave components of any truly bound
surface mode must be evanescent, which translates into |k‖ +
KR| > g for all KR, where k‖ is the in-plane component of k.
For ky = 0, the previous condition requires kx − 2π/L < −g,
and kx > g. Therefore, truly bound modes can only exist
for λ > 2L, independently of how tightly bound they are.
Together with the obvious condition that a should be smaller
than L, this implies that strongly bound surface modes can only
exist in square lattices of square arrays if the holes are filled
with a material with εhole > 1. Figure 7 renders such a case: all
surface modes depicted by the red curve (for which εhole = 9)
are truly bound to the surface, even if diffraction modes are
considered.

Up to here in this section, we have considered only
the case of an isolated interface and subwavelength holes.
Interesting phenomena appear when we consider a metal film,
and/or modes inside the hole are not evanescent. This last
situation resembles the slit array case [27], when the effective
surface admittance can be further engineered, by playing with
the depth of the hole. Here it is even possible to make the
corrugated metal surface mimic a dielectric, in which case

bound modes are better pictured by waveguide modes in the
‘effective’ dielectric film than by surface plasmons.

Surface EM modes still appear if higher order waveguide
and diffraction modes are included in the calculation, and
their dispersion relation still flattens at ω = ωP, given by
the hole cutoff. However, strong confinement only occurs
for frequencies much closer to ωP than what the effective
parameter expression predicts [44]. Also, the couplings
between waveguide modes and plane waves depend on the
wavevector direction of the latter [44]. In order to take this
effect into account, one must go beyond a local theory, limiting
the applicability of the ‘metamaterial’ effective parameters.
Still, the effective parameter concept is useful for guiding our
intuition in different circumstances, for instance in the pursuit
of spoof surface plasmon controlled propagation through
modulation of the underlying periodicity.

At frequencies above the cutoff frequency of the hole,
spoof surface plasmons are leaky and can be detected in
transmission [18] or reflection experiments [45]. But below the
cutoff frequency they can not be accessed by radiation. One
possible way to excite and detect truly bound spoof surface
plasmons is to use the energy loss of a charged particle passing
close to the surface [46]. In the next section we describe how
such a problem could be analyzed within the present model.

3.3. Energy loss of a charged particle passing close to a holey
surface

Consider a particle with charge q , moving with constant speed
v at a distance d from a holey metal surface (so, with our
definitions, at z = d−h/2). Assuming that the energy loss into
the surface is much smaller than the particle’s kinetic energy,
the calculation of the power loss spectra can be translated into
that of the reflection coefficients of the EM fields associated to
the particle.

Let us briefly sketch the method described in [47]. First,
the fields associated to the particle in its rest reference frame
are Lorentz transformed onto the surface reference frame (in
which the particle moves with β = v/ c). Decomposing this
field into plane waves, the parallel components of the electric
field can be expressed as:

E‖(r, t) = C
∫

dg E‖(r, g) exp(−ı c g t) (38)

where ω = c g, C is a proportionality constant (important
for the actual value of the power loss but not for its spectral
dependence), and:

E‖(r, g) =
∫

dky
(
kx(1 − β2), ky

)T
exp(ık‖r‖)

× exp(ıkz |z − d + h/2|)/kz. (39)

In the previous expression, for each frequency the value of
kx must satisfy kx = g/β . As kx > g, all plane waves in
equation (39) are evanescent, which reflects the well-known
result that an isolated charged particle moving at constant
speed does not radiate energy.
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The projection of this wavefield into the basis set of plane
waves considered in this paper gives:

|E‖(z, g)〉 =
∑

σ

∫
dky Ck,σ |k, σ 〉 exp(ıkz |z − d + h/2|)

(40)
with Ck,p = (k2

x(1 − β2) + k2
y)/(kzk‖), and Ck,s =

(kxkyβ
2)/(kzk‖).

These are the fields attached to the isolated moving
particle. In order to calculate the EM fields everywhere in
space, the formalism described in this paper can be applied,
considering each of the plane waves in the integral describing
|E‖(r, g)〉 as an ‘incident field’.

Once this is done, the power loss spectra can be obtained
by computing the energy current across two surfaces with
constant z: one between the particle and z = −∞ (which
would give the energy radiated away into vacuum), and another
one at z between the particle and the surface (giving the energy
radiated into the surface). Part of this energy loss is due to
modes that become radiative, after picking up a reciprocal
lattice wavevector. Another part of the energy loss is due
to evanescent modes: the presence of an evanescent reflected
wave takes energy away from the particle. A straightforward
computation gives that this contribution is proportional to

Power loss ∼ |Ck,σ |2 Re(ıYk,σ ) Im(rk‖,σ→k‖,σ )

× exp(−2 Im(kz)). (41)

We have explicitly included in rk‖,σ→k‖,σ the dependence
on both incident and reflected wavevector, in order to stress
that only the ‘specular’ reflection coefficient is required. The
fact that this reflection coefficient diverges when surface modes
are excited makes energy loss an interesting technique for the
study of spoof plasmons.

In practice, our model is too simple to obtain realistic
values for the energy loss. Recall that we have only considered
in this paper one of the degenerate fundamental waveguide
modes. Electric fields associated to the particle also have
y components and their consideration requires a multimode
expansion. Therefore, no attempt has been made to estimate
the energy loss in this paper.

4. Summary

Our paper contains a tutorial presentation for the modal
expansion formalism, applied to the optical properties of a
holey metal film. We have developed the simplest possible
model able to capture the phenomenon of extraordinary optical
transmission through hole arrays, by considering the metal as
a perfect conductor and using a single mode approximation.
We re-derive several results known in the field within this
simple model which, we believe, makes the relevant physical
mechanism very transparent. We show that EOT is intrinsically
related to the presence of leaky surface EM modes. Finally,
we study the properties of these surface modes and derive a
formalism for analyzing them through the energy loss of a
charged particle passing close to the surface.
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