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In this letter we present a theoretical study on the acoustic wave propagation along a periodically
corrugated perfect rigid wire surrounded by air. It is shown how acoustic surface waves �ASWs� can
be engineered with their propagation properties controlled by geometrical means. These highly
localized ASWs give rise to strong acoustical field confinement along the wire, whereas the slowing
down of sound decelerate the group velocity down to zero. What is believed to be a promising
feature of these low-loss propagation properties is the ability to tune sensing and screening
applications with good transducer coupling. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2975966�

Manipulating the natural properties of acoustic waves
remains a subject of growing interest. With the emergence of
the concept of acoustic metamaterial,1–3 several different
phenomena have been reported, such as acoustic focusing
and beaming4–9 or cloaking.10,11 In this letter we present a
theoretical work devoted to the analysis of the propagation of
acoustic surface waves �ASWs� along cylindrical wires. A
perfectly rigid cylindrical wire does not support the propaga-
tion of ASWs. However, it is known that when a flat inter-
face between two fluids is periodically corrugated, ASWs are
supported,12 which is also the case for an equivalent solid-
solid interface with shear-horizontal waves.13 Our aim is to
study these geometrically induced ASWs in a cylindrical ge-
ometry. Sound wave propagation along corrugated wires has
been studied before.14–17 However, our motivation is to dem-
onstrate the capabilities of these ASWs for acoustic wave
focusing and slowing. Scanning and probing for acoustical
nondestructive testing and high-intensity focused
ultrasound18,19 would take advantage of the ASWs described
in this letter. In what follows, we assume that the longitudi-
nal sound wave propagation takes place in inviscid stationary
air, which is governed by the linear continuity and momen-
tum equations

�u� −
i�

c0
2�0

p� = 0, � p� − i��0u� = 0, �1�

where � is the frequency and c0 is the sound velocity. For the
pressure p, velocity u, and density �, one can write p= p0
+ p�, u=u�, and �=�0+��, where the terms p0 and �0 denote
the background pressure and density in an undisturbed me-
dium, respectively. The primed quantities p�, u�, and �� de-
scribe the variation in the corresponding magnitudes due to
the presence of a low-amplitude acoustic field in the me-
dium. In deriving Eq. �1�, only linear terms in the primed
quantities are taken into account while all higher-order terms
are neglected. Consider an acoustically perfect rigid ��np�
=0� cylinder of radius Ro into which periodically rings are
grooved �see Fig. 1�a��. The rings that are separated with
constant � have depth h=Ro−Ri and width a. Since the

structure is considered to be perfectly rigid, � is chosen to be
the unit length of the structure. Initially, we are interested in
calculating the dispersion relation �kz���� of the geometri-
cally induced ASWs propagating along the corrugated wire.
To simplify the problem, we will assume that the pressure
field does not have azimuthal ��� dependence. As a possible
solution for the Helmholtz equation in region I �see Fig.
1�a��, a Sommerfeld-type20 wave is sought, composed of a
discrete set of Bloch waves:

pI��r,z� = �
n=−�

�

CnK0�qnr��n�z� , �2�

where �n�z�=eikz,nz /�� and the expansion coefficients are
Cn. The radial dependence is governed by the zero-order
modified Neumann function K0. The wave vector component
in the r direction is qn=�kz,n

2 −k0
2 with kz,n=kz+n�2� /�� and

k0=2� /�. Our main interest is devoted to regimes where
kz	k0, in which pI� decays exponentially with r as r→�. In
this case, the geometrically induced ASWs are truly bound.
As no pressure field can penetrate into the sound-hard wire,
the only nonzero field distribution in region II wire occurs
within the radial grooves:

pII� �r,z� = �
m=0

�

Am�J0�
mr� − ��m�N0�
mr���m�z� , �3�

where ��m�=J1�
mRi� /N1�
mRi� and 
m=�k0
2− �m� /a�2.

The pressure field inside the grooves is expanded in
terms of the ring waveguide modes, in which the z
dependence is controlled by the functions �m�z�
=��2−m,0� /a cos m� /a�z+a /2� and the radial dependence
by the zero-order/first-order Bessel and Neumann functions
J0, J1, N0, and N1, respectively. By applying the appropriate
boundary conditions �radial component of the velocity being
continuous everywhere along the I-II interface but pressure
being continuous only at the openings�, a set of linear equa-
tions for the expansion coefficients, �Am�, can be built up.
Then, the dispersion relation for the ASWs can be extracted
by just looking at the zeroes of the determinant of the corre-
sponding matrix. Figure 1�b� displays kz��� for acoustica�Electronic mail: johan.christensen@uam.es.
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metawires with fixed a=0.5� and Ro=1.5� but for different
values of h. For very shallow grooves �h=0.3��, a corru-
gated wire has weak sound guiding properties as kz��� runs
very close to the sound line �kz=� /c0�. However, as the ring
depth h becomes more and more pronounced, the tailored
ASWs are getting more localized as the increase in the
propagation constant �kz�k0� gives rise to a large value for
qn	�kz

2−k0
2. Note that this increasing confinement is accom-

panied by a strong reduction in the group velocity c
=�� /�kz toward a flat dispersion relation kz���. The increase
in confinement is visualized by virtue of the pressure field
plots shown in Fig. 1�c�, which show the pressure field am-
plitudes �evaluated at � /�=0.23� for different ring depths. In
the subwavelength regime ���a�, we have checked that the
fundamental ring mode �m=0� suffices the expansion within
the grooves provided a�� /2. In this case, kz��� can be
extracted via the transcendental equation
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, �4�

where s=0, t=1, and S0n=�a /� sinc�kz,na /2�. From Ref. 21,
it is known that the dispersion relation for the geometrically
induced surface plasmon polaritons �SPPs� propagating
along a perfectly conducting wire takes the same form as Eq.
�4� but with s=1 and t=0. This is a very interesting result as,
due to the difference in the boundary conditions �either per-

fectly rigid or conducting for geometry-induced ASWs or
SPPs, respectively�, the dispersion relations for the surface
waves in the electromagnetic and acoustic cases are quite
similar but not identical. Remarkably, this is not the case in
one-dimensional �1D� structures �periodic array of 1D
grooves in a flat interface� where the dispersion relation of
the surface waves is given by12,13,22

kz = k0�1 +
a2

�2 tan2 k0h �5�

independently of the type of wave. This last result �Eq. �5��
can be recovered from Eq. �4� by taking the limit Ro ,Ri
��. In order to illustrate the confining properties that are
connected to the excitation of ASWs, finite element �FE�
�COMSOL MULTIPHYSICS� simulations have been employed
for a metawire of finite length, L=40�, with the parameters
corresponding to Fig. 1�b� for h=0.5�. Depending on the
wavelength of the impinging acoustic wave, this can be
guided along the corrugated wire or be radiated away �simi-
lar to phononic crystals23�. This is exposed in Fig. 2 for three
different wavelengths. For k0=0.25�2� /��, which is in the
nearest vicinity of the sound line, only poor field confine-
ment to the wire is expected, but as one tends to higher
frequencies �k0=0.30�2� /��� a strong acoustic wave local-
ization can be observed. Note that when the ASW reaches
the end of the metawire, this surface wave is scattered and
yields a strong sound radiation at the wire tip. For the last
case with k0=0.35�2� /��, the gap of the ASW band is
reached and the incident pressure field is being radiated away
at the entrance of the wire as no ASWs are supported at that
wavelength. Apart from the possibility of subwavelength
field confinement of sound by taking advantage of the strong
localization associated with the ASWs, in this letter we pro-
pose two schemes for focusing sound at the end of a corru-
gated wire and/or stopping sound of different frequencies at
different places along the rod. The basic structure able to
support these two phenomena is a corrugated wire in which
the depth of the grooves is adiabatically increased along the
wire �see Fig. 3�a��. If the gradual increase in h is chosen
such that the depth of the grooves at the final end leads to an
asymptote frequency �4, then an incident acoustic wave of
that particular frequency will be focused at the tip of the
corrugated wire. Moreover, if now the incident acoustic
wave is not monochromatic but contains several frequencies
above �4, each of these frequencies will be stopped at dif-
ferent places along the wire. This is due to the univocal
relation between h and the frequency of the ASW band edge,
as demonstrated in Fig. 1�b�. The slow sound phenomenon is
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FIG. 1. �Color online� �a� Schematic view of the acoustic metawire ana-
lyzed. �b� Dispersion relation for infinite structures with a=0.5�, Ro

=1.5�, and several values of h. The bands are obtained by means of the
modal expansion technique. �c� Pressure field �
p�
� within one unit cell �rz
plane� for metawires of various depths h at fixed frequency �� /�=0.23�,
which corresponds to the intersections of the dash-dotted line with the ASW
bands.
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FIG. 2. �Color online� Numerical �FE� pressure field-mapping 
p�
 of a
truncated metawire �40�� for three different wavenumbers k0. Geometries
are as in Fig. 1 with ring depths h=0.5�.
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illustrated in Fig. 3�b� in which the evolution of the group
velocity, c, as a function of h for four different frequencies is
displayed. For calculating these four curves we have consid-
ered infinitely periodic corrugated wires with uniform h. It is
then envisaged that in a finite wire presenting a gradual and
adiabatic increase in h, the wave component associated with
each frequency will be stopped at the spatial location �h� in
which c→0 for that particular frequency. The prospect of
engineering an acoustic surface wave along a corrugated
wire opens up a possibility to confine and slow down sound.
Moreover, by gradual energy concentration, superfocusing
on the submillimeter range could be achieved and the possi-
bility to create an axial guide with tunable frequency pass-
bands is facilitated. With minor technical extensions, acous-
tical scanning, spectroscopy, medical ultrasound

instrumentation, and imaging could obtain good field reso-
lution.
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FIG. 3. �Color online� �a� Schematic of the metawire with adiabatic reduc-
tion in Ri and incident wave packet. �b� Normalized c vs h calculated with
the mode matching technique for k0=0.15�2� /��, 0.175�2� /��,
0.2�2� /��, and 0.25�2� /�� with a /�=0.2 and Ro=2�.
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