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Abstract. The scattering of light and surface plasmon polaritons (SPPs) by
finite arrays of either holes or dimples in a metal film is treated theoretically.
A modal expansion formalism, capable of handling real metals with up to
thousands of indentations, is presented. Computations based on this method
demonstrate that a single hole scatters a significant fraction of incoming light
into SPPs. It is also observed that holes and dimples scatter SPPs into light with
similar efficiencies, provided the depth of the dimple is larger than its radius.
Finally, it is shown that in arrays the normalized-to-area emittances in the out-
of-plane and SPP channels present different dependences with the number of
holes.
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1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic modes bound to a metal–dielectric
interface [1]. Their unique optical properties have, among other applications, the potential
for designing highly integrated photonic circuits with length scales much smaller than those
currently achieved. Such circuits should convert light into SPPs, propagate them to logic
elements where they are to be processed and ultimately converted back into light, as discussed
in [2].

The theoretical analysis of these processes is hampered by the difficulty of computing the
optical properties of nanostructured metals. Standard techniques capable of providing virtually
exact results to Maxwell’s equations can nowadays only treat either very small systems or
systems with a high degree of symmetry. In this way, optical transmission through a single
hole has been studied with the multiple multipole method [3], finite difference time domain
(FDTD) simulations [4], the Green dyadic approach [5]–[7], and special methods devised for
treating circular holes [8] or one-dimensional (1D) systems (slits) [9]. Optical transmission
through periodic infinite arrays of holes has been studied with FDTD [10, 11].

Nevertheless, approximate methods are required when computing either the optical
transmission through finite arrays of holes, or the scattering coefficients of SPPs impinging
on finite structures. Regarding the scattering properties of SPPs, several approaches have been
developed in order to study collections of 1D scatterers (i.e. with translational symmetry in one
direction) [12]–[15]. In the 2D case (holes, protrusions, dimples, etc) the available theoretical
formalisms are based on the coupling of dipoles, an approximation that is only valid when the
dimensions of the scatterers are much smaller than the wavelength (especially when, as usual,
the polarizability of the scatterer is represented by its quasi-static value) [16]–[18].

Our first main goal is to present a method for treating the electromagnetic properties of up
to thousands of indentations in a real metal. We apply this formalism for computing: (i) how
much energy goes into the different SPP channels when an array of holes is back illuminated
(see figure 1(a)), and (ii) the scattering coefficients of SPPs by finite arrays of 2D indentations
(see figure 1(b)).
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The indentations can be either holes or dimples (i.e. holes closed at one end), with arbitrary
size and shape, placed at arbitrary positions. Our approach is based on a modal expansion of
the fields in different spatial regions. It is a non-trivial extension from the formalism previously
developed for dealing with either 1D indentations in a real metal [19] or 2D indentations in a
perfect electrical conductor (PEC), where electromagnetic (EM) fields cannot penetrate [20].
The model we shall present has already been applied to computing the plasmon coupling
efficiency of a single defect (both with circular and rectangular shape) [21]. Furthermore, it was
used for calculating the optical transmittance through different systems: a single rectangular
hole [22], a periodic array of rectangular holes [23], and a finite array of circular holes [24].
Excellent agreement was obtained in all these cases with both experimental results [21, 24] and
FDTD simulations [22]–[24] (when available). However, no detailed account of its derivation
has been presented before.

Our second main goal in this paper is to analyze the results on launching and decoupling of
SPP by metal gratings reported in [25]. These experiments motivate our choice of geometrical
parameters.

The paper is organized as follows. Section 2 is devoted to presenting the theoretical
framework used in the paper. In order to facilitate the reading, in section 2, we give an overview
of the method and define the quantities studied throughout the paper. The derivation of the
formalism as well as several useful expressions are given in the appendices. In section 3, we
present the optical response of a single circular hole (illuminated by either a plane wave or a
SPP), whereas in section 4, we look at the scattering coefficients for arrays of circular holes.

2. Modal expansion formalism

We consider a set of indentations (either holes or dimples) of arbitrary shape, and arbitrarily
placed in a planar metal film (infinite in the x–y plane and having finite thickness h). The system
can be divided into three regions shown in figure 1. Regions I and III are dielectric semi-spaces
characterized by the real dielectric constant ε1 and ε3, respectively. Region II represents the
corrugated metal film with a wavelength-dependent dielectric function εM . Holes or dimples
could also be filled with a dielectric ε2. We assume that the system is illuminated by EM
wavefields coming from region I.

We expand the EM fields on the eigenmodes of each region, and match them at the
boundaries. The finite dielectric constant of the metal is taken into account by using surface
impedance boundary conditions (SIBCs) [26]. Roughly speaking, the results obtained with the
SIBCs can be understood as a second-order Taylor expansion in zs = 1/

√
εM . The first-order

term (zs = 0) is the result obtained within the PEC approximation, and was reported in [20].
The use of SIBCs does not simply represent a quantitative improvement over results obtained
with the PEC approximation: it also allows for the computation of scattering of SPPs (which do
not exist in flat PEC interfaces but already appear when SIBCs are employed). Notice, however,
that SIBC cannot describe tunneling of EM fields directly across the metal. Therefore, our
method is only applicable to metal thickness larger than 2–3 skin depths, when direct tunneling
is negligible. A cautionary remark: when dimples are considered, this restriction in thickness
should be applied from the bottom of the dimple rather than from the metal surface.

After some algebraic manipulations we end up with the following coupled system of
equations for Eα and E ′

α, which are essentially the modal amplitudes of the electric field at
the input and output interfaces of the indentations, respectively (α is an index labeling each
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Figure 1. Schematic lateral view of the system under study, its different
scattering mechanisms, and the frame of reference used. In panel (a) the system
is back-illuminated by a plane wave. The relevant scattering channels under
illumination by a SPP are represented in panel (b).

waveguide mode in each indentation considered in the calculation).

(Gαα − 6α) Eα +
∑
β 6=α

Gαβ Eβ − GV
α E ′

α = Iα,

(1)(
G ′

γ γ − 6γ

)
E ′

γ +
∑
ν 6=γ

G ′

γ ν E ′

ν − GV
γ Eγ = 0.

Details of the derivation, as well as the expressions for the different quantities involved can
be found in appendix A. Let us just mention that the ingredients required for the calculation
are the spatial dependence of waveguide modes in each indentation, and their propagation
constants. These modes are analytically known for some hole geometries; otherwise, they can be
numerically computed solving a 2D problem. In this section, we just give the physical meaning
of the different quantities in (1). Iα represents the direct illumination over waveguide mode α. It
is proportional to the overlapping of the incident electric field with the mode in the indentation.
The rest of the terms take into account the (self-consistent) wandering of fields between the
indentations. 6α is related to the bouncing back and forth of a given waveguide mode inside an
indentation, due to the discontinuity that the waveguide mode faces at the end of the indentation.
The main difference between holes and dimples is the presence of GV

α , which only appears for
holes, and is related to the EM field on one side of the hole due to the presence of an EM field
on the other side. The coupling between different waveguide modes is given by the ‘propagator’
Gαβ . This takes into account that the EM field emitted by each point within object β can be
‘collected’ by the object α. The propagator G ′

γ ν differs from Gαβ in the constituent parameters
only, i.e. G ′

γ ν is a function of ε3, whereas Gαβ depends on ε1.
Notice that this formalism is reminiscent of the Green dyadic approach [27]. In that

method, the EM fields must be computed in the volume inside the indentations. In contrast,
our method provides the EM fields everywhere in terms of the fields at the openings of
the indentations. This very compact representation allows for the treatment of the optical
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properties of systems involving a large number of indentations, at a relatively low computational
cost [24].

The price we pay is that the modal expansion formalism is approximate and relies on
the SIBCs, whereas the Green dyadic method is virtually exact. The implementation of modal
expansion calculations usually faces another source of inaccuracy. The required overlaps
between plane waves and waveguide modes are only known for some waveguide geometries
defined in a PEC. Nevertheless with some minor corrections, waveguide modes in a PEC can
still yield good agreement with experimental results (and exact calculations, when available).
For instance, by using the propagation constant of the waveguide in a real metal greatly improves
the prediction of the spectral position of resonances. Another improvement is to enlarge the
hole side, so as to simulate the real penetration of the field at the lateral wall defining the
waveguide. Doing so, our method has provided good agreement with the FDTD simulation
for the optical transmission through a single rectangular hole [22]. In that case, the hole was
enlarged as proposed in [28].

In this paper, we will only consider circular indentations, for which the propagation
constant of waveguide modes in a real metal can be easily computed [29]. The expressions
for the waveguide modes are borrowed from those of a circular waveguide in the PEC [29, 30].
The radius of the hole is phenomenologically enlarged by one skin depth. Such enlargement
provides the best agreement with FDTD simulations for an infinite periodic array of holes [24].

As mentioned before, once the coefficients Eα and E ′

α are known, it is possible to obtain
the fields everywhere. In particular, the energy power scattered into different channels can be
computed by integration of the relevant time-averaged components of the Poynting vector. We
define Wz as the total radiated power crossing a fictitious plane placed at constant z in region I.
The definition of W II

z and W ′

z is the same as Wz, except the appropriate fictitious plane is placed
in regions II and III, respectively. Notice that we are maintaining the notation used in the system
of equations, where primed quantities refer to region III. The values of these quantities in terms
of the set Eα and E ′

α can be found in appendix C. In a real metal, EM energy power can also
leave the system as a SPP wave. We define Wspp and W ′

spp as the energy power in the SPP channel
that crosses an ideal cylinder with axis parallel to the z-direction, placed in either region I or III,
respectively. Details and expressions for these quantities can be found in appendix D.

We shall present results in terms of normalized emittances J , defined as the total power W
divided by both the incident power impinging onto the area covered by indentations in region I,
Winc, and the total number of holes in the system N . In other words, for each scattering channel
we define a corresponding emittance as J = W/(Winc N ), independently of whether the incident
field is a SPP or a radiation field. However, when illumination is via a SPP, Winc is defined as
the total power crossing the infinite imaginary strip perpendicular to the metal surface, whose
base coincides with the maximum geometrical cross section of the collection of indentations.

For a lossy system, the total scattered power in the SPP channel Wspp (D.6) is a function
of the observation point, R, at the metal surface. As a plasmon’s decay with in-plane distance
is well known, it is possible to define the total scattered power in the plasmon channel as if
the plasmon were excited at R = 0. We denote this quantity by �spp (D.7), which satisfies
Wspp = �spp exp(−2|Im[kspp

‖
]|R) (D.6). Nevertheless, the comparison of efficiencies into the SPP

channel between systems of different sizes is not trivial in lossy systems. We need to treat
separately the case of back-illuminated and SPP illuminated arrays.

When comparing efficiencies into the SPP channel for back-illuminated arrays of different
sizes at fixed R, larger systems may have emitters of SPPs closer to that reference distance R,

New Journal of Physics 10 (2008) 105017 (http://www.njp.org/)

http://www.njp.org/


6

leading to exponentially larger values of �spp than those of smaller arrays. In order to avoid this
geometric artifact in the definition of �spp, we analyze the SPP field at a fixed distance Re from
the edge of the array. If we measure distances from the center of the array: R = Re + L sys, where
we define L sys as the distance from the center of the array to its edge. Then the normalized SPP
emittance is Jspp = σsppexp(−2|Im[kspp

‖
]|Re), with σspp = �spp/(Winc N ) exp(−2|Im[kspp

‖
]|L sys).

The ‘cross-section’ σspp is the quantity we focus on throughout the paper, as it provides the
normalized intensity into the SPP channel on a circle passing through the edge of the array.

When the array is illuminated by a SPP, however, using the same convention may lead to
spurious size dependences in the ‘cross-section’ σspp. It is not convenient to place the origin
on the center of the array since the SPP wave may not even reach the center for large arrays
and strong SPP scattering. Hence, we place the origin at the center of the first column of
indentations encountered by the incident SPP and analyze the response of different arrays at
the same distance R from this origin, irrespectively of the array size. Therefore, in this case, we
have Jspp = σspp exp(−2|Im[kspp

‖
]|R), with σspp = �spp/(Winc N ).

Let us stress that the previous conventions are chosen in order to obtain a cross-section into
the SPP channel which allows for the comparison between arrays of different sizes; however,
these conventions do not affect the total flux Wspp or the flux normalized to both area and number
of holes Jspp.

Let us close this section by reminding that current conservation imposes relations that are
useful for checking the correctness of both the derived expressions and the computer codes.
For instance, if absorption is neglected, the identity J II

z = J ′

z + J ′

spp should be fulfilled, i.e. the
fraction of the incident energy traversing the hole, J II

z , must be either radiated into freely
propagating waves, J ′

z , or scattered into SPP at the output side of the metal film, J ′

spp. On the
input side, we have a similar relation, which now depends on whether the incident field is a
plane wave or a SPP. Although all results presented in this paper include absorption, we have
checked that for a lossless metal our code provides current conservation up to a relative error of
0.1% of the incident flux.

3. Single defect

In this section, we shall study the optical properties of a single circular hole in a real metal, when
illuminated by either a plane wave or a SPP. We shall analyze both the out-of-plane radiation
and how much energy goes into the plasmon channel.

Let us first consider back-illumination of the hole by a plane wave, impinging at normal
incidence. The optical transmittance through a single hole perforated in a real metal has been
largely studied both experimentally [21, 24], [31]–[33] and theoretically [3, 4, 8, 22, 34]. In
general, the transmittance is characterized by Fabry–Pérot peaks, one of them being very broad
and appearing close to the cut-off wavelength of the fundamental waveguide mode [22, 34].
The previously cited theoretical works have looked at the spatial dependence of scattered fields,
finding that a hole launches SPPs. However, to the best of our knowledge, no computation has
yet been performed on the efficiency of the SPP launching by a back-illuminated hole (Baudrion
et al [21] considered the coupling into the SPP channel at the interface of incidence). We have
performed such a calculation, analyzing the scattered EM fields arising from the SPP pole in
the Green dyadic (see appendix D). This analysis is possible even in the presence of absorption,
although in lossy metals the actual EM fields at the metal surface decay with the distance from
the hole due to the dissipation of SPP energy into heat.
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Figure 2. Optical properties of circular hole in a gold film illuminated by a
normal-incident plane wave for different hole radii r . The metal thickness is
fixed to h = 150. The system under study is schematically represented in the
inset to panel (b), illustrating the two relevant scattering channels: radiation and
launching of SPP. Panel (a) shows the spectral dependence of the normalized-
SPP-emittance σ ′

spp, whereas panel (b) renders the normalized-transmittance J ′

z .
The spectral dependence on the ratio σ ′

spp/J ′

z is shown in panel (c).

Figure 2 renders the (normalized-to-area) fraction of incident energy that is scattered by
a circular hole into either the SPP (σ ′

spp, panel (a)) or radiation (J ′

z , panel (b)) channels. Both
quantities are computed in the region of transmission. The metal considered is gold, whose
dielectric constant is fitted to Palik’s data [35]. The film thickness is h = 150 nm, and different
hole radii are studied. For the sake of simplicity, we assume a freestanding metal film since the
peak investigated in the experiment concerns the metal–air interface. As figure 2 shows, both
σ ′

spp and J ′

z present non-monotonic spectral dependencies, due to a broad resonance appearing
close to the cut-off wavelength of the fundamental waveguide mode, λc. For gold, we obtain
λc(r = 125 nm) = 589 nm, λc(r = 175 nm) = 732 nm, and λc(r = 200 nm) = 811 nm. Notice
that spectra are plotted from λ = 600 nm, because far from λ < 600 nm results are not reliable
because the SIBC approximation breaks down (i.e.

√
|εm(λ)| � 1 is not longer fulfilled in that

regime). However, in the considered spectral window, as much as 30% of the energy impinging
into the holes can be converted into SPPs.

Figure 2(c) shows that the ratio σ ′

spp/J ′

z is a smooth radius-dependent function of
wavelength. For the parameters considered, this ratio is of the order of 0.3–0.8, being larger for
smaller holes. In the long-wavelength limit (λ � r ), this ratio can be worked out analytically;
we find that σ ′

spp/J ′

z ∼ |zs| ∼ λ−1 for a metal represented by a Drude dielectric constant. This
decrease of the coupling to SPPs with wavelength originates from the weakening of the SPP
confinement to the surface, which translates into a weaker coupling to indentations.

In our formalism, the ratio σ ′

spp/J ′

z is independent of metal thickness. However, both σ ′

spp
and J ′

z depend on h, as shown in figure 3 for a single hole with r = 125. σ ′

spp and J ′

z decay
with both h and λ in the spectral window considered, where all fields inside the hole are
evanescent.

Let us consider now the decoupling of SPPs into radiation, after they have been scattered
by either a hole or a dimple (see scheme in figure 1(b)). To the best of our knowledge, this
problem is virtually unexplored. We are only aware of a study on SPP scattering by a shallow
dimple with a Gaussian profile [36].
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Figure 3. Optical properties of a circular hole in an Au film illuminated by a
normal-incident plane wave for different metal thicknesses h. The hole radius
is r = 125 nm. The system under study is schematically represented in the inset
to panel (b). Panel (a) shows the spectral dependence of the normalized-SPP-
emittance σ ′

spp, whereas panel (b) renders the normalized-transmittance J ′

z .

Figure 4 shows the spectral dependence of the energy power radiated into the region of
incidence, Jz, when a SPP impinges into either a circular hole (a) or a circular dimple (b).
In both cases, the radius is r = 125 nm. Several values of h are considered (h is the metal
thicknesses in the case of a hole, and the depth of the indentation in the case of a dimple). The
inset of figure 4(b) renders the ratio Jz/σspp (notice that this is the inverse of the quantity shown
in figure 2(c)). This ratio depends on the radius of the indentation, but does not depend neither
on h nor on whether the indentation is a hole or a dimple. For the considered case, this ratio
is always larger than unity, implying that a single hole scatters better into radiation than back
into SPPs. Figure 4 also shows that a hole and a dimple couples SPPs into radiation with similar
intensity, provided the indentation is deep enough. Dimples may provide higher values of Jz

than holes, due to the lack of radiation into region III. However, shallow holes radiate more
than dimples. This is trivial when h → 0 since the dimple then disappears. We find that, in the
subwavelength regime, h ≈ r is a rough rule of thumb for the depth at which the scattering of
SPPs into radiation is the same for dimples and holes of the same size. For smaller h, conversion
of SPPs into radiation is substantially smaller for a dimple than for a hole. Notice though that
this ‘transition’ depth depends on the evanescent decay of the fields inside the indentation, and
therefore on wavelength. For instance, a hole illuminated by an SPP at λ = 800 nm radiates 35%
more than a dimple, when both have h = 150 nm.

4. Array of circular holes

We shall now investigate scattering by arrays of circular holes of both a normal incident plane
wave and a SPP.

Let us first focus on the transmittance and the launching of SPP via back-illumination of
the array. In the perfect conductor approximation, the normalized-to-area optical transmission
through linear arrays of holes shows resonances of the same order as those in square arrays [20].
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Figure 4. Spectral dependence of the normalized out-of-plane emittance, Jz, for
a single circular indentation in gold illuminated by a SPP: panel (a) circular
hole, panel (b) circular dimple. In both cases, the radius of the indentation is
r = 125 nm and different indentation depths h have been considered. Inset to
panel (a) shows a scheme of the system. Inset to panel (b) renders the spectral
dependence of the ratio Jz/σspp (which is the same function for both holes and
dimples and for different h).

This occurs if the array is lined up parallel to the incident electric field. In contrast, the
normalized-to-area optical transmission through an array of holes perpendicularly oriented to
the incident field is very similar to that of a single hole. Here, we consider these configurations
and analyze whether the same phenomenology holds for the launching of SPPs.

Take a set of holes with radius r = 125 nm, separated by a distance P = 760 nm in a metal
layer of thickness h = 150 nm (again, the geometrical parameters of [25]). Figures 5–7 render
the results for a linear array lined up parallel to the incident electric field (‘horizontal’ array),
a perpendicularly aligned one (‘vertical’ array), and a square array, respectively. In all three
figures, panel (a) shows the spectral dependence of the normalized-to-area SPP emittance, σ ′

spp,
whereas panel (b) renders the normalized-to-area transmittance J ′

z , for a different number of
holes.

Clearly, holes in the ‘vertical’ configuration (figure 6) are virtually independent.
Conversely scattering of light by ‘horizontal’ arrays (figure 5) shows resonances due to
interaction between holes. These resonances also appear in the square arrays (figure 7)4.
Notably, the wavelengths of SPP emittance peaks appear slightly redshifted with respect to
the periodicity. Actually, the position of the SPP emittance peak is also slightly redshifted
with respect to the wavelength of SPPs of the flat metal interface with in-plane wavevector
kspp

= 2π/P (this wavelength is λ = 777 nm for gold and period P = 760 nm). This redshift
reflects the fact that the EM field spends some time inside the indentations, slightly modifying
the resonant conditions obtained by considering geometrical arguments only.

At resonance, the normalized-to-area transmittance J ′

z is larger in the square array than
in the ‘horizontal’ one. Additionally, the normalized-to-area emittance σ ′

spp has already reached

4 Notice that, in order to better resolve the details close to the peaks, the spectral window shown here is smaller
than the one used when presenting results for the single hole.
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represented in the inset, is back-illuminated by a plane wave.
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Figure 6. Spectral dependence of both σ ′

spp (a) and J ′z (b) for a ‘vertical’
linear array of circular holes with radius r = 125 nm, h = 150 nm, and period
P = 760 nm, for different array sizes. The system under study, schematically
represented in the inset, is back-illuminated by a plane wave.

saturation for arrays with 20 × 20 holes, while it has not saturated yet for ‘horizontal’ arrays with
N = 30 holes. This different behavior with number of holes can be understood by analyzing
the angular dependence of the power scattered into SPP, σ ′

spp(λ, θ) (θ = 0 coincides with the
direction of the incident electric field). Panel (a) of figure 8 renders a contour plot σ ′

spp(λ, θ)

for an isolated circular hole in Au (r = 125 nm, h = 150 nm). As the figure illustrates, a hole
launches SPPs mainly in the directions parallel and antiparallel to the incident electric field.
This is because a SPP is partly a longitudinal wave, with its in-plane wavevector parallel to the
in-plane electric field. The SPP launched by a ‘horizontal’ array of holes at angles that are not
close to either θ = 0◦ or θ = 180◦ are not further scattered and thus contribute to σ ′

spp. In a square
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Figure 7. Spectral dependence of both σ ′

spp (a) and J ′z (b) for a square array
of circular holes with radius r=125 nm, h=150 nm, and period P = 760 nm, for
different array sizes. The system under study is schematically represented in the
inset.
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Figure 8. Angular and wavelength dependence of the emittance of SPPs,
σ ′

spp(λ, θ), by a back-illuminated set of holes. The incident field is a plane
wave with electric field pointing along one of the Cartesian axis of the array,
direction from which θ is measured (in degrees). Panel (a): single circular hole,
panel (b): 10 × 10 square array of circular holes with P = 760 nm. In both
cases r = 150 nm and h = 150 nm. Panel (c) renders the curves of intensity
maxima (heavy lines) and minima (thin lines) for a diffraction grating of point
emitters [37].

array, however, those ‘off-axis’ SPPs which are launched by holes close to the center of the
array can be scattered by other holes. This scattering can be either into SPPs or into radiation.
Such process increases J ′

z and decreases σ ′

spp, and explains the different size dependencies of
‘horizontal’ and square arrays.

The angular dependence of the SPP emittance for a square array of 10 × 10 holes, is
shown in figure 8(b). The hole radius and metal thickness are those of the single hole case
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Figure 9. Spectral dependence of σ ′

spp (a), J ′

z (b), and the ratio σ ′

spp/J ′

z for a
‘horizontal’ linear array of 30 circular holes with period P = 760 nm and varying
radius r and metal thickness h. The system under study is back-illuminated by a
plane wave.

of figure 8(a), while the period is P = 760 nm. The angular dependence of the SPP emittance
by the array can be understood as the one due to the single hole, modulated by the interference
pattern characteristic of a diffraction grating [37]. We recall that, for light impinging normally
on a finite ‘vertical’ diffraction grating composed of N point emitters, intensity maxima appear
at angles θ given by the relation λ/d = 2sin2(θ/2)n/N , where both n and n/N are integers.
Angles of intensity minima satisfy the same equation with n integer and n/N non-integer.
Similarly, finite ‘horizontal’ gratings satisfy λ/d = 2| sin θ |n/2N , with the same conditions as
the previous case governing the presence of maxima and minima in terms of n/N . The maxima
of both horizontal and vertical gratings are represented by heavy lines in figure 8(c), while
the minima are represented by thin lines. The emittance of SPP by a hole array (figure 8(b))
combines both the pattern of maxima and minima observed in figure 8(c) and the single hole
emittance figure (8(a)).

The influence of hole geometry on the SPP and radiation efficiencies in arrays is illustrated
in figure 9, which renders the emittance spectra for a ‘horizontal’ linear array of 30 circular holes
with period P = 760 nm as function of both its radius r and metal thickness h. The hole array
with r = 125 nm and h = 150 nm, already studied in figure 5, is compared with both an array of
smaller h and the same r and an array of larger r and the same h. Reducing the film thickness
to h = 100 we increase the total transmission through the system increasing the amount of
energy scattered in both channels, σ ′

spp in figure 9(a) and J ′

z in figure 9(b), keeping the same
radio as for h = 150, see figure 9(c). On the other hand, when the circle radius is increased to
r = 150 nm the transmittance of the system is favored against σ ′

spp, leading to a lower relative
ratio. Notice, however, that these properties may present different dependences with number of
holes for different hole sizes. This point deserve further investigation which exceeds the scope
of the present paper.

Let us now focus on the scattering of an incident SPP by a ‘horizontal’ linear array of
indentations. As seen, the properties of a square array of indentations are very similar to those
of ‘horizontal’ arrays. It has been experimentally found [25] that square arrays of holes (with
radius r = 125 nm drilled in a gold film 150 nm thick) decouple SPPs into radiation, while
dimples with the same radius and 50 nm depth do not radiate any measurable EM signal. In
both cases, the period of the array was P = 760 nm. Figure 10 presents the spectral dependence
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Figure 10. Normalized emittance, Jz, as function of the wavelength, for a
‘horizontal’ linear array of indentations illuminated by a SPP. (a) Hole array
with h = 150 nm. (b) Dimple-array for both h = 150 nm and h = 50 nm. In all
cases, r = 125 nm, P = 760 nm and different array sizes have been considered.
The single hole spectra is included to facilitate the comparison.

of the normalized out-of-plane radiation, Jz, for ‘horizontal’ arrays (holes: panel (a), dimples:
panel (b)). The same geometrical parameters as in the experiments were used. Additionally, in
figure 10(b), we present results for dimples with the same depth as that of the holes considered
in the experiment. For the geometrical parameters and spectral window considered, this figure
shows that Jz develops a resonance, which appears slightly redshifted from the period. As
figure 10 shows, arrays formed with either holes or dimples with h = 150 nm scatter SPP into
radiation with similar efficiencies. However, in line with the experimental results, the computed
intensity of this process for arrays of dimples with h = 50 nm is around five times smaller, at
the wavelength considered in the experiment (λ = 800 nm). In any case, notice that for these
geometrical parameters, for which scattering by a single indentation is weak, the normalized
out-of-plane radiation is of the same order for arrays and for single indentations (results for the
single hole of figure 4 are included in figure 10 in order to facilitate the comparison).

As we have seen, ‘horizontal’ arrays of holes produce resonant behavior in both the
launching of SPPs and the radiated energy. This occurs independently of whether the array
is illuminated with a plane wave or by a SPP. However, all these efficiencies present very
different dependencies with the size of the array. In order to illustrate this point, we consider
‘horizontal’ arrays of holes, with r = 125 nm and P = 760 nm, drilled in a gold film of thickness
h = 150 nm. Figure 11(a) renders the evolution of the maximum value of both σ ′

spp and J ′

z with
the number of holes (at the resonance around λ ≈ 790 nm), when the array is back-illuminated
by a plane wave. This figure completes the analysis of the peaks in figure 5 considering arrays of
larger sizes. For the geometrical parameters analyzed, σ ′

spp reaches a maximum for arrays of
about 35 holes. In contrast, the saturation of J ′

z has not yet been reached even for arrays of
150 holes. In Figure 11(b), we plot the size dependence of both the maximum of Jz and the
maximum of σspp when the ‘horizontal’ array is illuminated by a SPP. We recall that these
quantities are normalized to the total number of holes. In this case, for large arrays, both Jz

and σspp decrease with the size of the array. This is because part of the incident SPP current
is radiated as it progresses along the array, therefore weakening the illumination of the holes
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Figure 11. Normalized out-of-plane and SPP emittance at resonance for a
‘horizontal’ linear array of circular holes (with radius r = 125 nm, h = 150 nm,
and period P = 760 nm), as function of array size. (a) Back-illumination by a
plane wave. (b) Illumination by an SPP.

at the further end of the array. The values of Jz are even smaller in ‘horizontal’ arrays than in
single holes. Consequently, ‘vertical’ arrays (which, as we have seen behave as a collection of
independent holes) are a better choice for out-coupling of SPPs than ‘horizontal’ arrays.

As a result of the hole–hole interaction, we find that in a hole array at resonance Jz > σspp,
in contrast with the result for the single hole. This behavior can be understood in terms of
simple physical arguments. In-plane emittance for a single hole occurs essentially along the
forward–backward direction, see figure 8(a). Along this direction, at resonance, the EM fields
of the individual holes are in phase, interfering constructively. Therefore, the total EM field
along these directions of favored SPP emission increases with number of holes. On the other
hand, the out-of-plane single hole emission (not shown here) is practically isotropic. Therefore,
the interference of the individual holes is either constructive or destructive, depending on the
optical path to a given observation point. As a result of having both constructive and destructive
interference, the total contribution to this scattering channel is smaller than for the in-plane
radiation.

It is important to emphasize that the emittances reported in figure 11 are measured at
resonance. This explains why the figure considers N > 5: for smaller N , the peak is practically
not yet developed, see figures 5 and 10.

5. Summary

We have presented a theoretical formalism for dealing with optical properties of sets of
indentations in an optically thick metal film. The indentations may have arbitrary shape and
can be arbitrarily placed at any of the two metal interfaces. The formalism is based on a modal
expansion of the fields in the different regions of space. Fields are matched by SIBCs. These
boundary conditions take into account the dielectric constant of a real metal and can therefore be
used to approximately describe SPPs. Hence, our formalism can be used for analyzing optical
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problems like transmission through hole arrays, scattering of SPP by sets of indentations and
launching of SPP by back-illuminated arrays, among others. Our systematic study of the optical
properties of both circular isolated indentations and arrays of indentantions in gold has found
that:

• Close to the cutoff condition, a back-illuminated hole scatters a significant fraction of light
into SPPs in the region of transmission (≈30%).

• A hole and a dimple of the same size scatter SPPs into radiation with comparable efficiency
if, roughly speaking, the depth of the indentation is not smaller than its radius. Otherwise,
holes couple SPP into radiation more efficiently.

• Linear arrays oriented along the direction of the impinging electric field exhibit resonances
similar to those appearing in square arrays of holes. This holds in the coupling into both
radiation and SPPs. Furthermore, the appearance of these resonances is independent of
whether the illumination is via a plane wave or a SPP.

• Linear arrays oriented perpendicularly to the direction of the impinging electric field
essentially behave as collections of independent holes.

• Illuminating by a SPP or a plane wave results in a substantially different behavior of the
emittance as a function of the array size.

• The SPP channel saturates for a smaller number of holes than the radiation channel, when
a hole array is illuminated by a plane wave.
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Appendix A. Derivation of the modal expansion formalism with SIBCs.

We solve Maxwell’s equations (written in CGS units) for the electric, E, and magnetic, H , fields
in a system comprising a planar metal film corrugated with a set of indentations. The film is in
the x–y-plane and has a finite thickness h. The indentations can be either holes or dimples (i.e.
holes that do not pierce through the film), with arbitrary shape and placed at arbitrary positions
at both input and output interfaces.

We assume the system lies in a rectangular supercell, with lattice parameters L x and L y

along the x- and y-axes, respectively. This supercell may be real (if we are considering a bona
fide periodic system) or artificial, if the number of defects is finite. In the latter case, the limit
L x , L y → ∞ must be taken. The space within the supercell is divided into three regions shown
in figure 1. Regions I and III are dielectric semi-spaces characterized by the real dielectric
constant ε1 and ε3, respectively. Region II (which extends from z = 0 to z = h) represents the
corrugated metal film with a wavelength-dependent dielectric function εM . Holes or dimples
could be also filled with a dielectric ε2. We assume the EM energy incident on the metal layer
is coming from region I (see figure 1).

In order to take advantage of known solutions of Maxwell’s equations, the EM fields of
the constituent media are represented in a convenient basis. We use Dirac’s notation, such that
〈r‖|E〉 = E(r‖) = (Ex(r‖), Ey(r‖))

t where t stands for transposition and r‖ = (x, y).
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In region I, see figure 1, the fields are expanded into an infinite set of plane waves with
parallel wavevector k‖ = (kx , ky) and polarization σ . We consider that the incident radiation
(labeled by the superscript 0) is either a plane wave or a SPP. Arbitrary illumination can be easily
considered by decomposing first the incident wavepacket into plane waves, and subsequently
integrating the optical response of the array to each plane wave. The fields can be written in
terms of the reflection amplitudes ρk||σ as

|E〉 = eik0
z z

∣∣k0
‖
σ 0

〉
+

∑
k‖σ

ρk‖σ e−ikz z
∣∣k‖σ

〉
,

(A.1)

|−uz ×H〉 = Yk0
‖
σ 0eik0

z z
∣∣k0

‖
σ 0

〉
−

∑
k‖σ

Yk‖σρk‖σ e−ikz z
∣∣k‖σ

〉
.

where uz is unitary vector directed along the z-direction and the summation runs over
wavevectors of the form k‖ = k0

‖
+KR, KR being a vector of the supercell reciprocal lattice.

The real space representation of the plane waves is given by〈
r‖|k‖σ

〉
=

exp(ik‖ · r‖)

k‖

√
L x L y

{
(kx , ky)

t , p-polarization,

(−ky, kx)
t , s-polarization,

(A.2)

where we assume a k‖σ -independent normalization 〈k‖σ |k‖σ 〉 = 1. The electric and magnetic
fields in (A.1) are related through the admittance Yk‖ p = kωε1/kz and Yk‖s = kz/kω, where
kω = 2π/λ (λ is the wavelength of the incident radiation), and k2

‖
+ k2

z = ε1k2
ω.

In the transmission region (region III in figure 1, where z > h), the EM fields are also
expanded in plane waves, and expressed in terms of the transmission amplitudes tk‖σ∣∣E′

〉
=

∑
k‖σ

tk‖σ eik′
z(z−h)

∣∣k‖σ
〉
,

(A.3)

| − uz ×H ′
〉 =

∑
k‖σ

Y ′

k‖σ
tk‖σ eik′

z(z−h)
∣∣k‖σ

〉
.

Note that all quantities in region III are primed in order to distinguish them from those in
region I.

Waveguide modes are the most natural choice for expanding the EM field inside the
indentations. The main ingredients needed in the present formalism are both the propagation
constants and the EM fields of waveguide modes in all indentations. In general, these quantities
are attained by solving an EM problem with reduced (cylindrical) symmetry. For holes with
a given symmetry (circular, rectangular, etc) these modes are known analytically, if the
surrounding metal is considered a PEC. In such a favorable situation, the penetration of the
EM field into the real metal can be taken into account by phenomenologically enlarging
the hole.

Writing the fields as function of the expansion coefficients Cα and Dα, we have∣∣EII
〉
=

∑
α

(
Cαeikαz z + Dαe−ikαz z

)
|α〉,

(A.4)∣∣−uz ×H II
〉
=

∑
α

Yα

(
Cαeikαz z

− Dαe−ikαz z
)
|α〉,
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where α labels a certain waveguide mode inside a certain aperture. In what follows, we shall
refer to a given element of the set {α} as an object. The propagation constant along the
z-direction of eigenmode α is given by kαz, while Yα = kαz/kω and Yα = ε2kω/kαz are the
admittances for TE and TM modes, respectively.

In order to take into account the dielectric properties of a real metal, we impose SIBCs [26].
SIBCs establish the following relation between the tangential components of the EM fields at the
horizontal interfaces: E = zs H × un, where un is the vector normal to the surface and pointing
to the interior of the metal and zs = 1/

√
εM .

The previous continuity equation must be satisfied at each interface. Projecting over the
different plane waves, at both z = 0 and z = h, we get

ρk‖σ = −
f −

k‖σ

f +
k‖σ

δk‖,k
0
‖
δσ,σ 0 +

1

f +
k‖σ

∑
α

〈
k‖σ |α

〉
Eα,

(A.5)

tk‖σ = −
1

f ′+
k‖σ

∑
α

〈
k‖σ |α

〉
E ′

α,

where f ±

α = 1 ± zsYα and δi j is Kronecker’s delta. We have also defined the quantities
Eα = Cα f −

α + Dα f +
α and E ′

α = −Cα f +
α eikαzh

− Dα f −

α e−ikαzh , which (approximately) represent
the modal amplitudes of the electric field at the input and output interfaces of the indentations,
respectively. The overlapping integral,

〈
k‖σ |α

〉
, of the plane wave and the waveguide mode

are analytically known for simple geometries of the indentations. For circular holes, these
expressions can be found in [30, 38].

Let us now impose the continuity of the tangential component of the magnetic field. As
this boundary condition only holds at the openings, we must project over waveguide modes,
which form a complete set in that region. Plugging ρk‖σ and tk‖σ (A.5) into the projection over
waveguide modes, we end up with the following set of equations for Eα, E ′

α

(Gαα − 6α) Eα +
∑
β 6=α

Gαβ Eβ − GV
α E ′

α = Iα,

(A.6)(
G ′

γ γ − 6γ

)
E ′

γ +
∑
ν 6=γ

G ′

γ ν E ′

ν − GV
γ Eγ = 0,

where

Iα = 2
Yk0

‖
σ 0

f +
k0

‖
σ 0

〈
α|k0

‖
σ 0

〉
. (A.7)

6α =


Yα

f +
α eikαzh + f −

α e−ikαzh

f +
α

2eikαzh − f −
α

2e−ikαzh
, for a hole,

Yα

f −

α eikαzh + f +
α e−ikαzh

f +
α f −

α (eikαz − e−ikαzh)
, for a dimple.

(A.8)

GV
α =

 2Yα

[
f +
α

2eikαzh
− f −

α

2e−ikαzh
]−1

, for a hole,

0, for a dimple.
(A.9)
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Gαβ =

∑
k‖σ

Yk‖σ

f +
k‖σ

〈α|κ〉 〈κ|β〉 (A.10)

and G ′

γ ν differs from Gαβ only in the constituent parameters, i.e. G ′

γ ν is a function of ε3, whereas
Gαβ depends on ε1.

The interpretation of these quantities is as follows: Iα takes into account the direct
illumination over object α, 6α is related to the bouncing back and forth of the waveguide fields
inside the indentations, GV

α reflects the coupling between EM fields at the two sides of a given
indentation, whereas Gαβ and G ′

αβ are propagators that couple ‘objects’ at the same side of the
metal film.

If the system is periodic, with periodicity defined by L x and L y , Gαβ is calculated
through the discrete sum over Bragg diffraction modes defined above. For non-periodic systems,
L x and L y define a fictitious supercell and the limit L x , L y → ∞ must be taken. This can
be done analytically, simply replacing all sums in diffraction modes by integrals in k‖, i.e.∑
k‖σ

→ L x L y(2π)−2
∑

σ

∫
d2k‖ . Notice that the diverging factor L x L y cancels out with the

normalization factor of the plane waves.
Once the self-consistent Eα, E ′

α are found, equations (A.5) give the expansion coefficients
ρk‖σ and tk‖σ , which in turn can be used to obtain the EM fields everywhere (appendix B is
devoted to derive the expressions for the EM fields in region III). So far we have focused on
in-plane components of the EM fields. The z-components of the field can be readily computed
using Maxwell’s equations.

For zs = 0 (perfect conductor case), the expressions presented in this appendix simplify to
those derived in [20]. Notice, however, that in [20] the definitions of Iα, 6α, Gv, Gαβ and G ′

αβ

contain an additional multiplicative factor ι. As explained in [39], this extra factor is useful for
drawing a parallelism with the ‘tight-binding’ method employed in solid state physics, but it
will be omitted here.

Appendix B. EM fields in the region z> h

Substituting the expression (A.5) of tk‖σ in (A.3), we can write the EM fields for z > h as

〈r |E′
〉 = −

∑
α

∫
d2r ′

‖
Ĝ′

E(r, r ′

‖
)〈r ′

‖
|α〉E ′

α,

(B.1)

〈r | −uz ×H ′
〉 = −

∑
α

∫
d2r ′

‖
Ĝ′

H (r, r ′

‖
)〈r ′

‖
|α〉E ′

α,

where

Ĝ′

H (r, r ′

‖
) =

∑
k‖σ

Y ′

k‖σ

f ′+
k‖σ

〈r |k‖σ 〉〈k‖σ |r ′

‖
〉eik′

z(z−h) (B.2)

and the corresponding function for the electric field, Ĝ′

E(r, r ′

‖
), is obtained from Ĝ′

H (r, r ′

‖
)

setting Y ′

k‖σ
= 1 in the numerator of the fraction given in the argument. Note (i) that the

integration is limited to the area of the indentations, and (ii) that we are not using the whole
3 × 3 matrix representation of the EM propagator but the 2 × 2 sub-matrix needed for projecting
the EM fields in the bi-vectorial representation employed in this paper. An expression similar
to (B.1) can be obtained for z < 0.
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The integral in the 2D k‖-space can be greatly simplified transforming into polar-
coordinates and working on the proper frame of reference. In order to do this, the kx -axis
should be oriented along the direction R = r‖ − r ′

‖
rotating the k‖-coordinate system by an

angle θ around the z-axis. The angular integration can be performed analytically by using
the integral representation of the Bessel function, J0(x) = (2π)−1

∫ 2π

0 exp(ix cos φ) dφ. After
some straightforward algebra, the Green dyadic in the rotated coordinate frame is given by the
following diagonal matrix:

Ĝθ
H (R) =

1

4π

∫
k‖dk‖eik′

z(z−h)

{
diag[102, 402]

Y ′

k‖ p

f ′+
k‖ p

+ diag[402, 102]
Y ′

k‖s

f ′+
k‖s

}
, (B.3)

where 102 = J0(k‖ R) − J2(k‖ R) and 402 = J0(k‖ R) + J2(k‖ R).
In general, Ĝθ

H must be computed numerically. Once this is done, Ĝ′

E(r, r
′

‖
) is given by

Ĝ′

E(r, r
′

‖
) = 2̂

t
(θ) Ĝθ

H (R) 2̂(θ), where 2̂(θ) is the matrix representation of the operator for a
rotation by the angle θ around the z-axis:

2̂(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.

Appendix C. Transmitted power

The power transmitted along the z-direction to region III, W ′

z , is obtained after integrating the
time-averaged z-component of the Poynting vector, Sz, at the output side of the indentations5,
i.e.

W ′

z = Re[〈−uz ×H|E〉] =

∑
k‖σ

p
Y ′

k‖σ
|tk‖σ |

2
=

∑
αβ

E ′∗

α E ′

βGW ′

αβ , (C.1)

where

GW ′

αβ =

∑
k‖σ

p Y ′

k‖σ

| f ′+
k‖σ

|2

〈
α|k‖σ

〉 〈
k‖σ |β

〉
. (C.2)

The superscript p indicates that only propagating plane wave solutions should be taken into
account.

Similarly, the energy power crossing the plane z = 0 at the input side of the indentations in
region I, Wz, is

Wz = Yk0
‖
σ 0 −

∑
k‖σ

p
Yk‖σ |ρk‖σ |

2
= Re

 f −∗

k0
‖
σ 0

f +
k0

‖
σ 0

∑
α

Eα I ∗

α

 −

∑
αβ

E∗

β EαGW
βα, (C.3)

for the case of an incident plane wave, and

Wz = −

∑
k‖σ

p
Yk‖σ |ρk‖σ |

2
= −

∑
αβ

E∗

β EαGW
βα, (C.4)

if the system is illuminated by a SPP.
The only difference between the definition for GW

αβ and GW ′

αβ (C.2) is that the former depends
on ε1 and the latter on ε3.

5 The term 1/2 is dropped for we normalized by the incident flux containing the same factor.
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The energy power crossing a plane with constant z in region II, W II
z , can be expressed as

function of the expansion coefficients Cα and Dα:

W II
z =

∑
α

[
Re[Yα]

(
|Cα|

2e−2Im[kαz]z
− |Dα|

2e2Im[kαz]z
)

+ 2Im[Yα]
(
C∗

α Dαe−2iRe[kαz]z
)]

. (C.5)

If absorption is neglected, the previous expression simplifies to W II
z = Re

[∑
α Eα E

′
∗

α GV
α

]
.

Appendix D. Energy power scattered into SPPs

The power scattered parallel to the metal plane is difficult to compute due to multiple
integrations over several components of the EM fields (B.1). However, it can be shown that at a
large distance R from the indentations, the main contribution to the propagator given by (B.3)
comes from the divergent term 1/ f +

k‖ p. The propagator presents a pole at the SPP wavevector
which, within the SIBCs, occurs when6

kspp
‖

= kω

√
ε(1 − ε/εM). (D.1)

We also assume that the rest of the integrand, F(k‖), is practically constant in the region of the
upper complex semi-plane close to this SPP pole, and that we can replace the exact result of the
integral by its residue, i.e.

∫
∞

0 dk‖F(k‖)[kz + zs
√

εkω]−1
≈ 2π iεzskω F(kspp

‖
)/kspp

‖
.

Special care must be taken when integrating the Bessel function, as this function diverges
for large arguments both in the lower and upper complex semi-planes. This problem can be
solved by using the identity 2Jn(x) = H (1)

n + H (2)
n , where H (1)

n and H (2)
n are the nth order

Hankel functions of first and second kind, respectively. The part of the argument containing
H (1)

n must be integrated in the upper complex semi-plane, whereas H (2)
n has to be integrated

in the lower semi-plane. Only the integration over the upper complex semi-plane encloses the
SPP pole. The integral in the lower semi-plane vanishes identically. As a result, and using the
asymptotic expression H (1)

n (x � 1) ≈
√

2/(πx) exp[i(x − nπ/2 − π/4)], we arrive at the long-
distance asymptotic expression for the propagator governing the launching of SPP

Gspp
H (R) = γ diag[1, 0][kspp

‖
R]−1/2 exp[i(kspp

‖
R + kspp

z z)],
(D.2)

Gspp
E (R) = Y −1

spp Gspp
H (R),

where γ = iε2k2
ωzse−iπ/4[2π ]−1/2 and Yspp = −z−1

s is the admittance evaluated at kspp
‖

.
Comparison with numerical results shows that the previous expression is an excellent
approximation in the optical regime for good metals (like Au and Ag) already for R & λ, despite
being a long-distance asymptotic result.

Up to this point we have assumed a single indentation is placed at the origin of the system of
reference. We now consider the case of an arbitrary number of indentations, located at arbitrary
positions Rα = |Rα| uα. In order to compute the long-distance asymptotic expression, at a given
observation point R, of the SPP field launched by the indentations, we only take into account
terms of order O(Rα/R). Then |R − Rα − r ′

| ≈ R − Rα · uR − r ′
· uR, where uR is a unitary

vector directed from the indentation to the point R and r ′ is the local coordinate inside the hole.
The SPP EM fields can be computed after integrating the propagator over the different areas
occupied by the indentations, as indicated in (B.1).

6 In this part of the text, we do not make a distinction between the region I with dielectric constat ε1 and the region
III with ε3. A generic value of ε is used instead since the deduced formulae are valid for both regions.
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After performing the integration, we obtain for the non-vanishing components of the SPP
field:

H spp
θ (R) = γ [kspp

‖
R]−1/2 exp[i(kspp

‖
R + kspp

z z)] f (uR),

E spp
R (R) = H spp

θ (R)/Yspp, (D.3)

E spp
z (R) = V H spp

θ (R)/Yspp,

where V = −kspp
‖

/kspp
z .

The function f (uR) gives the angular dependence of the total launched SPP field, and
accounts for the interference of the SPPs launched by all the different waveguide modes in all
the different indentations

f (uR) =

∑
α

fα(uR)e−ikspp
‖

(Rα ·uR)Eα, (D.4)

where the angular dependence of the SPP field scattered by a given normalized waveguide mode
(with in-plane electric field given by Eα(r ′)) is provided by

fα(uR) =

∫
dr′e−ikspp

‖
·r′Eα(r

′) ·uR. (D.5)

The SPP scattered power, Wspp, is computed by integrating the time-averaged radial
component of the Poynting vector, Sspp = Re[Espp

× H spp∗] on the lateral side of an imaginary
cylinder of radius R, i.e Wspp =

∫
∞

0 dz
∫ 2π

0 R dθ Sspp ·uR, ending up with

Wspp = �spp exp(−2|Im[kspp
‖

]|R), (D.6)

where

�spp = ε2 |zs|k2
0 f̄ 2

2

[
1 +

Re[kspp
z ]2

Im[kspp
z ]2

]1/2
[

1 +
Im[kspp

‖
]2

Re[kspp
‖

]2

]−1/2

, (D.7)

and f̄ 2 = (2π)−1
∫ 2π

0 | f (uR) |
2 dθ .

This is the result integrated over all angles. Clearly, the quantity | f (uR)|2 determines the
angular distribution of the SPP scattered power.

For a lossless material zs = iIm[zs], Im[kspp
‖

] = 0, and Re[kspp
z ] = 0. Therefore Wspp is

independent of R; otherwise Wspp decays as function of R. For lossy systems �spp still provides
the total energy scattered into the plasmon channel; the dependence with distance to the
scatterers of Wspp follows the decay of the energy stored in the SPP, due to absorption by the
metal.

Finally, we adopt the following normalization for the scattering problem related to the
out-coupling of a SPP into propagating radiation. We assume a SPP propagating at the metal–
dielectric interface is incident on the system composed of either hole or dimples, at an angle θ0

taken from the x-axis, see figure 1(b). The incident EM fields are given by

Einc = eikspp
·r(cos θ0, sin θ0, V )t/Y spp,

(D.8)

Hinc = eikspp
·r(− sin θ0, cos θ0, 0)t ,

from which we derive the time-averaged Poynting vector along an arbitrary radial direction r ,
i.e. Sinc

r = e−2|Im[kspp
·r]|Re[kspp

·ur]/(εkω). We define the incident power, W spp
inc , integrating Sinc

r
in the rectangular area at x = 0, which extends along the side of the defect in the y-direction,
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and along z > 0 in the z-direction. For a SPP impinging onto a single circular indentation (with
radius r ), we obtain

W spp
inc =

∫
2r

dy
∫

∞

0
dzSinc

r ·ux =
r

εkω

Re[kspp
‖

]

|Im[kspp
z ]|

. (D.9)
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