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The nonresonant electromagnetic transmission of a normal-incident plane wave through a single hole in a
perfect conductor metal slab of finite width is studied. The cases of rectangular and circular holes are treated
in detail. For holes in the extreme subwavelength regime, in a film of finite thickness, the transmittance is
shown to have the Rayleigh dependency upon the wavelength and, in addition, is mainly suppressed due to
attenuation of the fundamental waveguide mode. In the limit of an infinitesimally thin screen Bethe’s result is
recovered for the circular hole. The numerical computations are fitted, providing expressions for the transmis-
sion in a wide region of parameters. We reformulate our results in terms of multipole expansion, interpreting
the waveguide modes inside the hole as induced multipole moments. This result provides the link between the
modal expansion method and the one based on a multipole expansion.
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I. INTRODUCTION

Electromagnetic �EM� wave transmission through aper-
tures in perfect metal screens has been the subject of multiple
studies. For a long time, up to the middle of 20th century,
theoretical treatments of diffraction by either opaque or
metal bodies are based on the Kirchhoff approach. This
method consists in setting the fields on the body equal to
their incident values. Bethe1 was the first to consider the
diffraction by a small circular aperture of radius a in an
infinitesimally thin perfectly conducting screen, providing
rigorous analysis of the Maxwell’s equations with the exact
boundary conditions in 1944. He found analytically the pref-
actor appearing in the well-known Rayleigh scattering de-
pendency ��a /��4 for the scattering cross section of small
objects in the long-wavelength limit �a���. Later on,
Bouwkamp19 improved Bethe’s result, providing additional
terms in a series expansion of the transmission over a /�.
Since then, this kind of diffraction problem has become a
classical chapter in many monographs on electromagnetism,
e.g., Refs. 2 and 3.

The interest in EM transmission through apertures has
been renewed thanks to the discovery in 1998 of the en-
hanced optical transmission through an array of small holes.4

A great deal of research has been devoted to the transmission
through periodical arrays of the holes. Nevertheless, the
analysis of the diffraction by a single hole in a film of finite
thickness is still incomplete, as results found in the literature
are only for fixed geometrical parameters. For example,
Refs. 5 and 6 provide computed transmission spectra through
a circular hole in a film of a finite thickness in a perfect
electric conductor �PEC� slab. The case of a single circular
hole in a real metal has been considered in Refs. 7–9. How-
ever, it is problematic to extrapolate these results to other
parameters and other hole shapes. An attempt to represent
the solution in an analytical form was undertaken in Ref. 10.

These authors derived the normalized cross section for a cir-
cular aperture �of radius up to half of the wavelength in PEC�
assuming that the magnetic current is uniform within the
aperture. Nevertheless, this model shows poor quantitative
agreement with both the Bethe-Bouwkamp results and the
strict numerical calculations of Roberts.5 Moreover, it is lim-
ited to a screen with zero thickness.

In this paper we study the optical transmission through
single holes in PEC. We present analytical results valid for a
wide range of geometrical parameters and provide a link be-
tween the modal expansion method and the one based on
multipoles. The paper is organized as follows: In Sec. II we
describe the modal expansion technique used for studying
the transmission through the hole in a perfect electric con-
ductor film of arbitrary thickness. In Sec. III we provide
analytical expressions for the transmission through holes of
both rectangular and circular shapes in extreme subwave-
length limit. We test our approach by applying it to the most
unfavorable conditions for the method used �when the film
thickness is zero� and obtain an excellent agreement with
known results. In Sec. IV the square hole of moderate size is
treated, when the wavelength is still larger than the hole
cutoff �therefore, the resonances found close to the
cutoff11–13 will not be discussed there, as have already been
addressed before14,15�. Finally, in Sec. V, we make the link
between the induced multipoles and the waveguide modes
inside the hole. We discuss the importance of the fundamen-
tal waveguide mode both for the formation of the induced
dipole moments on both faces of the hole and for the cou-
pling between these moments. In the Appendix we explain
the simplifications of the Green’s tensor for the small hole
limit.

II. THEORETICAL BACKGROUND

In this section we briefly outline the modal expansion
formalism for the EM field.14,16 Consider an EM wave inci-
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dent onto a PEC film of finite thickness h containing a hole,
see Fig. 1. We first assume that both the bounding media and
the medium inside the aperture are vacuum, but later on we
generalize the results to arbitrary values of the optical indices
of the semi-infinite media.

For the representation of the EM field in-plane compo-
nents we use Dirac’s notations as follows. The tangential
component of a given Dirac’s vector in coordinate space is
obtained as the projection onto the position vector �rt�, with
rt= �x ,y�, as

�rt�E� = Et�x,y� . �1�

The projection of a vector onto another one is given by the
scalar product

����� =� drt���rt��rt����, �2�

where “�” means complex conjunction.
Let us write in Dirac’s notations the tangential compo-

nents of the fields in the lower and upper half spaces, ex-
panding them over the continuum of plane waves �see the
geometry in Fig. 1�,

�EI�z�� = eikziz��i� + �
�

r�e−ikzz��� ,

�EIII�z�� = �
�

t�eikz�z−h���� . �3�

Here �= �k ,�� represents both the in-plane wave-vector
component k= �kx ,ky� and the polarization �= p or s. The
coordinate representation of the modes in the vacuum half
spaces reads

�rt�k,s� = 	− ky

kx

 eikrt

k
, �rt�k,p� = 	kx

ky

 eikrt

k
. �4�

The plane-wave propagation constant is kz=�g2−k2 with g
=2� /�. The summation operator in Eq. �3� includes both the
integration over the k continuum spectrum and the summa-
tion over the polarizations: ��= �1 /2��2���dk. Inside the
hole, we expand the tangential components of the field over
the modes ��� of the infinite waveguide,

�E�z�� = �
�

�A�eiqz�z + B�e−iqz�z���� , �5�

where A� and B� are the amplitudes of the waveguide modes
propagating �or decaying� forwardly and backwardly with
respect to the z-axis direction; qz� represents the propagation
constant of a waveguide mode with the label �. This label
contains both the polarization of the waveguide mode and a
“spatial” index related to the number of nodes of the field
inside the hole.

By matching the EM fields at the interfaces and using the
orthogonality of the modes, we arrive at a set of linear equa-
tions for the expansion coefficients,

�G�� − ���E� + �
���

G��E� − G�
VE�� = I�,

�G		 − �	�E	� + �

�	

G	
E
� − G	
VE	 = 0. �6�

The coefficients E� and E�� are

E� = A� + B�,

E�� = − �A�eiqz�h + B�e−iqz�h� , �7�

so that the system of Eq. �6� connects the electric-field modal
amplitudes on the incoming interface z=0 and on the outgo-
ing one z=h. The term G�

V describes the coupling between
the input and output sides of the holes and �� arises from the
reflection of the waveguide mode at the openings,

G�
V =

2iY�eiqz�h

e2iqz�h − 1
, �� = iY�

e2iqz�h + 1

e2iqz�h − 1
, �8�

where Y�=qz� /g is the admittance for the TE waveguide
mode and Y�=g /qz� is that for the TM one. The coupling
matrix elements of the system of Eq. �6� are related to the

in-plane components of the EM Green’s function dyadic Ĝ.
The latter is associated to a homogeneous medium in three
dimensions and is represented in the waveguide mode space
as

G�� = ���Ĝ��� = i�
�

Y����������� . �9�

Here Y� is the admittance of the mode in free space: Yk,s
=kz /g and Yk,p=g /kz. The right-hand side �r.h.s.� term I�

takes into account the overlap between the incident plane
wave and the waveguide mode ��� inside the hole. Consid-
ering a normalization for the incident wave such that the
energy flux through the hole is unity, Re��holedSEi�Hi

��=1,
we obtain

I� = 2i�Y�i
��i��� , �10�

where Y�i
is the admittance of the incident plane wave in free

space.
Once the solution of the system of Eq. �6� is found and

the modal amplitudes are known, the normalized-to-area
transmission coefficient can be written as

Ea
2a

2 xa

2 ya

FIG. 1. �Color online� Geometry of the problem.
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T = �
�,�

Im�G���E��E��
�. �11�

Until now we have not mentioned any restrictions on the
hole shape, which in our formalism only influences the struc-
ture of the waveguide modes ���. In this paper, however, we
restrict ourselves to the consideration of both circular and
rectangular holes, where the waveguide modes are known
analytically.

For thick films the solution of Eq. �6� converges quickly.
The reason is that in the subwavelength limit the amplitudes
of the waveguide modes decay inside the hole. As the decay
is characterized by the propagation constants q�, the higher
the waveguide mode index, the weaker its influence on the
transmission. Therefore, only a few waveguide modes �with
the smallest decrements� contribute to the transmission.

In contrast, when the thickness h of the PEC tends to zero,
the solution of the system of Eq. �6� involves many wave-
guide modes �hundreds or even thousands� to provide the
precise result. However, we shall show below that a very
accurate computation of the transmission can be performed
with some tens of waveguide modes. We shall find the
asymptotic value of the transmission by a fitting of the con-
vergent result.

To conclude this section we shall show how to apply the
above equations when the bounding dielectric media have
permittivities �I and �III. In this case, for a medium with the
dielectric constant �, the propagation constant of the mode
and the admittances become kz=��g2−k2, Yk,s=kz /g, and
Yk,p=�g /kz. Then the wavelength-dependent tensor G��

=G����� describing the interaction of the waveguide modes
inside the cavity through the EM continuum in vacuum be-
comes a function of �; G���� ;��. In the upper part of Eq. �6�
G�� changes to G���� ;�I�; whereas in the lower part it
changes to G���� ;�III�. Working out the expression given by
Eq. �9�, we find that the relation between the tensors is

G����;�� = ��G����/��;� = 1� . �12�

III. SMALL HOLE LIMIT

In this section we show how to simplify computation of
the transmission when the linear size of the hole, a��S is
small compared to �. More precisely, we consider the limit

  ga � 1. �13�

In this limit an accurate numerical computation of the tensor
G�� becomes problematic. This is related to the orders of
magnitude difference between imaginary and real parts of
G��. We have found that in the low order in parameter  the
nonvanishing elements of the tensor depend upon  as �see
Appendix�

Im�G��� � 2, Re�G��� � 1/ . �14�

Both real and imaginary parts of the tensor are important in
spite of their substantial difference: Re�G��� contributes into
the amplitude of the waveguide modes �see below�, while
Im�G��� takes into account the radiation into free space �see
Eq. �11��. For �1 the imaginary part of the tensor allows

analytical computation and the real part can be considerably
simplified �see details in the Appendix�.

In this paper we restrict ourselves to normal-incident
wave transmission. In this case the impinging wave can only
couple to certain waveguide modes of TE type. The analysis
of the G�� elements shows that the contribution to the trans-
mission from TM waveguide modes is always negligible.
This results from both a weak coupling between the wave-
guide modes of different polarizations inside the small hole
and a weak coupling of TM waveguide modes to the EM
continuum of vacuum half spaces.

For the circular hole the incident plane wave couples di-
rectly with only the “horizontal” TE1n waveguide modes
with integer n �where the first index indicates the number of
semiperiods of the field placed along the polar angle�.
Coupled between themselves, these waveguide modes are
the only ones contributing into the transmission.

For a rectangular hole, when the electric field is directed
as shown in Fig. 1, the illuminated waveguide modes are
TE0n, with odd n �the first and the second indices define the
number of semiperiods of the field placed along x and y
directions, respectively�. Only this set of waveguide modes
appears in the summation for the transmission according to
Eq. �11� �all other elements of Im�G��� are negligible�. How-
ever, TE0n modes couple to TEmn ones with even m and odd
n through the system of Eq. �6� and must be taken into ac-
count.

Due to the property expressed in Eq. �14�, in the extreme
subwavelength limit the transmission coefficient scales as

T = 4��h� . �15�

The thickness- and shape-dependent function ��h� is given
by the solution of the system of Eq. �6� with appropriately
normalized coefficients

��h� = �
�,�

G̃��Ẽ��h�Ẽ�
��h� , �16�

where

G̃�� =
Im�G���

2 and Ẽ� =
E��


. �17�

The amplitudes Ẽ� satisfy the system of Eq. �6�, where the
imaginary part of the Green’s tensor is neglected and its real
part must be normalized with the small parameter Re�G���
→ Re�G���. The coefficients of Eq. �8� are replaced by
G�

V→G�
V and ��→��.

A. Perfect electric conductor screen

In this section we compare the solution based on our for-
malism with some known results on the transmission through
apertures in an infinitesimally thin PEC screen. By reaching
an excellent agreement with these results, we justify the ap-
plicability of the modal expansion even in the most unfavor-
able conditions for it.

In the limit h→0, special care is needed when solving
system of Eq. �6� due to the divergency of the coefficients G�

V

and ��. In order to remove this divergency, we expand the
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amplitudes of the waveguide modes over gh,

E� = E�
�0� + �gh�E�

�1� + ¯ ,

E�� = E��
�0� + �gh�E��

�1� + ¯ . �18�

Equating terms proportional to �gh�−1, we obtain

E�
�0� = − E��

�0�. �19�

Then, keeping terms of zero order in gh, we have from Eq.
�6�

�
�

G��E�
�0� − Y��E�

�1� + E��
�1�� = I�,

�
�

G��E�
�0� + Y��E�

�1� + E��
�1�� = 0. �20�

Adding the two equations in Eq. �20� and neglecting the
imaginary part of the tensor G��, due to Eq. �14�, we arrive
at the final system of equations,

2�
�

Re�G���E�
�0� = I�. �21�

Now, when the film has been converted into a screen with
infinitesimal thickness, the amplitudes of the waveguide
modes at the incoming and outgoing faces of the film are
equivalent. Therefore, the terms �� and G�

V responsible for
the reflection and coupling of the waveguide modes inside
the cavity are not present in Eq. �21�, and the waveguide
mode amplitudes are coupled by the doubled elements of
Re�G���.

Using the normalization defined by Eqs. �16� and �17�, the
transmission coefficient can be written in the form �15�,
where the function ��h� becomes a constant defined by the
shape of the hole,

T = 4C . �22�

The simplest solution of the system in Eq. �21� is obtained
by retaining only the fundamental waveguide mode. For the
circular hole, the Green’s tensor element corresponding to
the fundamental waveguide mode is GTE11TE11

=1.1951 /

+0.2789i2. For the square hole GTE01TE01
=0.9577 /

+0.344i2. Within this single-mode approximation, taking
the right-hand side from the Appendix, the transmission pref-
actors of Eq. �22� are found immediately: for the circular
hole C�=0.1634 and for the square one C�=0.3041. For a
circular hole, this minimal model provides the transmission
of the order of 30% with respect to the exact Bethe’s result
C�=64 / �27�2��0.2402. Therefore, more waveguide modes
must be taken into account in order to obtain the correct
result.

The convergency of the constant for the circle C� and for
the square C� with respect to the number of waveguide
modes are shown in Fig. 2. After having computed the value
of this constant for several tens of waveguide modes, we fit it
by a polynomial

C = �
m=0

mmax am

Nm , �23�

where N is the number of the waveguide modes.
The value a0 gives us the constant C. In the calculations

shown in Fig. 2, the fitting has been done by a fourth-order
polynomial �mmax=4� using 50 waveguide modes. For the
circular hole we obtain C�=a0=0.2403 with an error of only
0.05% with respect to the exact Bethe’s value. For the square
hole we obtain C��0.4565. Notice that the normalized
transmittance through a square hole with the side 2a is about
two times larger than that of the round hole with the radius a.

In the case of rectangular holes, it is useful to write the
transmittance as T=x

2y
2C���, where x=axg, y =ayg, and �

is the aspect ratio,

� = ax/ay . �24�

In this representation C��� reflects the dependency of the
transmittance upon the aspect ratio for a constant area of the
hole. As seen from Fig. 3, this dependency is a fast function
of �. This is due to a strong dependency of the polarizability
of the hole upon the aspect ratio.17,18 From the point of view
of the modal expansion formalism, the cut-off wavelength of
the fundamental waveguide mode is �c=4ay, when the field
is parallel to x axis. Therefore, the larger the ay, the closer
the hole to the resonant regime.14

We have fitted the dependency shown in Fig. 3 in the
region �� �1 /3,3� by the following function,

C��� = 0.0132 + 0.2127/� + 0.2174/�2. �25�

This fitted function provides an excellent approximation to
the transmittance: In Fig. 3 the curve given by Eq. �23� is
indistinguishable from that obtained from the numeric calcu-
lations. In the interval ��1 the dependency C��� can be
extracted from Ref. 18 and we have checked that it coincides
with Eq. �25�.

Let us now turn to the dependency of the transmittance
upon dielectric permittivities of the bounding media. Ad-
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FIG. 2. �Color online� Normalized by �ga�4 transmittance for
the circular and square apertures of the size a in the PEC screen.
The asymptotic values are shown by the dashed lines.
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dressing to the general property of G�� in Eq. �12� and to the
scaling given by Eq. �14�, where �1 /�, we see that the
imaginary part of the tensor is a function of �l, namely,
Im�G��

l ���l
3/2, where l=I , III. In contrast, Re�G��

l � is not
dependent upon �l, so that the amplitudes of the waveguide
modes depend upon �I only through the right-hand side
E� ,E�� ��Y�i

=�I
1/4. Then it follows directly from Eq. �11�

that the transmittance for arbitrary substrate and superstrate
is related to the one when the system is in vacuum as

T��,�I,�III� = ��I�III
3 T��,�I = 1, �III = 1� �26�

for ��I�1 and ��III�1. Note that the transmission is not
symmetric with respect to the region of incidence:
T�� ,�I ,�III��T�� ,�III ,�I�. This may seem to be paradoxical,
as the transmission coefficient of the incident plane wave
into the plane wave with the same in-plane wave vector is
symmetric due to the symmetry of the scattering matrix. The
total transmittance T���, however, takes into account the
transmission of a plane wave into a continuum of states. As
the density of final states depends on the dielectric constant
in the transmission region, so does T���. The integration over
the scattering amplitudes yields a factor proportional to the
wave-vector squared modulus in the transmitted medium T
����IIIg�2��III and breaks the I-III symmetry in Eq. �26�.

B. Thick and medium films

The EM fields inside a subwavelength hole decay expo-
nentially with both the film thickness and the propagation
constants of the waveguide modes. In the limit of a very
thick film e−2�qz��h�1, the coefficients of Eq. �8� are simpli-
fied and the solution of the system of Eq. �6� can be cast in
the matrix form

Ê � D̂−1Î, Ê� � D̂−1d̂D̂−1Î , �27�

where

D̂ = �G�� + i��,�Y��, d̂ = − 2i���,�Y�eiqz�h� . �28�

Thus, for very thick films the waveguide mode amplitudes
on the input side do not depend upon h and are of the same
order as the incident field. Conversely, the field amplitudes
on the output side are exponentially decreased.

For very thick films only the fundamental TE waveguide
mode is expected to contribute into the coupling between
both sides of the hole. Therefore, we can retain in the diag-

onal matrix d̂ only the element corresponding to the funda-
mental waveguide mode. This means that for a thick film the
transmittance decays as T�e−2�qz0�h, where qz0 is the propa-
gating constant of the fundamental waveguide mode. For a
rectangular hole with the sides 2ax and 2ay, qz0
=�g2− �� /2ay�2� i� /2ay, and for a circular hole of the ra-
dius a, qz0=�g2− �u1 /a�2� iu1 /a �see the definition of um in
Appendix, Sec. 1�. Then for arbitrary film thickness it is
useful to rewrite T given by Eq. �15� in the following form:

T = 4e−2�qz0�hC�h� . �29�

The computations of C�h� in the interval h /a� �0,1� for
both the square and circular holes are shown in Fig. 4. In
both cases we phenomenologically adjust this dependency by
the function

C�h� = C� + �C − C��e−�h/a, �30�

containing fitting parameters C, C�, and �. In the limit of a
screen h=0, Eq. �29� transforms into Eq. �22�, while for the
infinite film thickness f�h� becomes a constant C�=C���.
The constants C have been given in Sec. III A. The values of
the constants for the infinite film thickness have been found
to be C�

� �0.1694 and C�
� �0.3027. The values for param-

eters � are ���6 and ���5.
For the rectangle the constants C and C� in Eq. �30� are

functions of the aspect ratio. C=C��� is given by Eq. �23�
and C�=C���� reads
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FIG. 3. �Color online� Transmittance for the rectangular aperture
in the PEC screen normalized by �gax�2�gay�2. The shape of the
rectangle for ax /ay equals to 1/3, 1, and 3 is presented.
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FIG. 4. �Color online� The normalized transmission through
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Calculations using only the fundamental waveguide mode are rep-
resented by dashed lines. The values for the fitted expression �30�
are marked by “�.”
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C���� = 0.2298/� + 0.08262/�2. �31�

Thus, the formula �29� is applicable for the rectangle as well,
if we replace →�xy in Eq. �29� and h /a→h /ay in Eq.
�30� �we find that � for the rectangular hole coincides with
that for the square hole ���.

In order to make our results more accessible, we summa-
rize in Table I the constants appearing in Eqs. �29� and �30�.

As we see from the dependencies shown in Fig. 4, the
difference between the full calculation and single-mode ap-
proximation decreases when h increases. For the zero-
thickness screen it is of the order of 30% and for the limit
h→� it is of the order of 10%. However, if we extract the
amplitude of the fundamental waveguide mode from the full
�many-mode� solution and use only this waveguide mode to
compute the transmission according to Eq. �11�, the differ-
ence between this calculation and the exact value is reduced.

To summarize this section, in the extreme subwavelength
regime, many waveguide modes are necessary to provide the
precise value for the transmittance. On the other hand, the
fundamental waveguide mode plays a crucial role in the pro-
cess, especially in the coupling between the fields on top and
bottom faces of the hole. As we will show, this reflects the
fact that the fundamental waveguide mode possesses the
largest induced dipole moment �see Sec. V below�.

IV. HOLES OF MODERATE SIZE

The sizes of apertures used in the experimental samples
are often not in the extreme subwavelength limit considered
in Secs. III A and III B. For example, in original experiments
on enhanced optical transmission4 the sizes of the holes were
of the order of 200–300 nm, so the parameter  was �1 in
the visible range of the spectra.

In this section we study holes of moderate sizes: still in
the subwavelength limit, but with the condition �13� not ful-
filled. However, we still consider wavelengths larger than the
resonant wavelength of the hole. For the resonant transmis-
sion through a single hole at wavelengths close to the cutoff,
we refer the reader to Ref. 14.

When the size of the hole increases, the transmittance
value can be refined by retaining the next terms in the ex-
pansion over . For a circular aperture in the PEC screen of
zero thickness a few first terms were computed by
Bouwkamp.19 However, such a series has a radius of conver-
gence R�1 and therefore is applicable in a narrow region
of .

For arbitrary film thickness and size of the hole, the trans-
mission can be accurately computed numerically using the
modal expansion. But from the practical point of view it is
useful to have an analytical formula containing the param-
eters of the hole. We have numerically computed the trans-
mission through a square hole retaining many waveguide
modes in the system of Eq. �6� in a wide range of the size 2a
and the thickness h. Then we have approximated the calcu-
lations generalizing dependency �29� by adding a quadratic
in  term to the function C�h�,

T = 4e−2�qz0�h�C�h� + 2C2�h�� , �32�

where C2�h� has the same form that C�h� in Eq. �30�,

C2�h� = C2
� + �C2 − C2

��e−�h/a. �33�

The adjusting constants are C2��0.66 and C2�
� �0.43

�Fig. 5�. This dependency provides the transmission with an
error not exceeding a few percents in the region a /��1 /6
�i.e., �� /3� and for an arbitrary film thickness h. In the
limit of the zero-thickness screen, Eq. �32� has a form similar
to Bouwkamp’s expansion �up to the sixth-order term�.19

However, C2 is not a constant defining the sixth-order term
of the authentic expansion over . The latter term in the real
expansion only refines the value of the transmittance in the
small hole limit; meanwhile C2 results from the fitting of the
spectrum captured in a wider region.

V. HOLE AS A MULTIPOLE

It is well known that the EM field of any source can be
considered as resulting from a superposition of multipoles
�see, e.g., Ref. 2 and references therein�. Recently this view-
point has been used to study the transmission properties of

TABLE I. Resume of the parameters appearing in the analytical
representation of the transmission; see Eqs. �29� and �30�.

Circular hole
�radius=a�

Square hole
�side=2a�

Rectangular hole

�sides=2ax ,2ay, �=
ax

ay
�

C 64
27�2

a 0.4565 0.0132+ 0.2127
� + 0.2174

�2

C� 0.1694 0.3027 0.2298
� + 0.08262

�2

�qz0� ��
u1

a �2−g2 �� �

2a �2−g2 �� �

2ay
�2−g2

� 6 5 5

aReference 1.

FIG. 5. �Color online� The normalized transmission through
small rectangular hole C�h�+2Cq�h� as a function of the film
thickness h /a and the wavelength � /a in the units of the hole half
side.

NIKITIN et al. PHYSICAL REVIEW B 78, 165429 �2008�

165429-6



collections of holes.20 In this section we establish the con-
nection between the mode-matching formalism and the mul-
tipole expansion. For this purpose let us focus our attention
on the far field. The in-plane components of the electric field
are given by Eq. �3� and its z component can be derived from
Maxwell’s equations by a straightforward differentiation.
The expression for the far field can be derived with the help
of the scalar free-space Green’s function associated to the
Helmholtz equation in three dimensions.16 Additionally, in
the region of transmission, the expression for the E far field
can be computed by using the Green’s function identities.3

The expression for E in terms of the integration of the field
at the face of the hole Et�rt� over the hole area is

EIII
far�r� =

ig

2�

eigr

r
u � �

S

dS�n � Et��rt��e
−igur�, �34�

where u is the unit vector pointing into the observation point
u=r /r and n is the external normal. Equation �34� has the
form of retarding potentials3 resulting from the charges in-
duced by the electric field on the face of the aperture. The
field on the face of the hole z=h is expressed through the
waveguide mode amplitudes,

Et��rt� = − �
�

E���rt��� . �35�

In the reflection region I, the scattered far field has a form
similar to Eq. �34�, but in terms of the field on the interface
z=0, i.e., −E�� is replaced by E� in Eq. �35�.

If we expand the exponent in the integral of Eq. �34�,
e−igur�=1− igur�+. . ., the far field can then be written in the
form of effective multipoles2

Efar�r� = g2eigr

r
	u � p + m +

ig

2
u · Q̂m + ¯
 � u , �36�

where p and m are the effective electric and magnetic-dipole

moments, respectively, Q̂m is the effective magnetic-
quadrupole tensor, etc. Comparing Eq. �36� with Eqs. �34�
and �35�, we conclude that each waveguide mode can be
interpreted as a superposition of effective multipoles; the far
field then results from the contribution of the multipoles of
all the waveguide modes. For example, the effective mag-
netic and electric-dipole moments of the waveguide mode
��� read

m� =
1

2�ig
�

S

dS�n � �rt���� ,

p� =
1

2�
�

S

dS�rt� � �n � �rt����� . �37�

Denoting the dipole moments of the reflection region by p
and m and those of the transmission region by p� and m�, we
write them as

m = �
�

E�m�, p = �
�

E�p�,

m� = − �
�

E��m�, p� = − �
�

E��p�. �38�

Thus the hole of a finite thickness can be considered as a
coupler between induced multipole moments at both faces.
For example, the systems of Eqs. �38� and �6� describe the
coupling between dipole moments that is enough in the low-
order approximation, when the hole is small. We would like
to stress that the effective dipole moments are coupled
through all the waveguide modes presented inside the hole.
For thick films, however, the contribution of the fundamental
waveguide mode dominates over the other modes.

Only waveguide modes with zero effective electric-dipole
moment couple to normal-incident light and generate the far
field. For the circular hole calculations �made with the help
of Eq. �37�� show that only “horizontal” TE1n waveguide
modes with integer n contribute to the magnetic-dipole mo-
ment. For the rectangular hole the contributing waveguide
modes are TE0m and TEm0 with odd m. When the incident
electric field is directed along Ox �magnetic field along Oy�,
the magnetic-dipole moment induced on the incoming face
of the hole with the area S is21

m = �Sey, � = �
�

Ẽ�C�. �39�

We obtain that for the circular and rectangular holes, the
constants C� have the values

Cn
circ =

1

i�2�3�un
2 − 1�

, Cm
rect =

�2�

im�2 , �40�

where n is integer and m is odd. For the dipole moment m�

induced on the outgoing face of the film Ẽ� must be changed

to −Ẽ�� . We have checked that the value for � of the circular
hole in the limit of zero-thickness screen �that we obtain with
the help of 50 modes�, ��=0.076 24, reproduces the Bethe’s
value 4 / �3�5/2��0.076 22. For the square hole we have
found ��=0.082 53.

Figure 6 renders the effective dipole moments and the
exact fields of the small circular and rectangular holes in the
PEC slab of the finite width. The contribution from the fun-
damental waveguide mode is dominant so that the field dis-
tribution inside the hole is very similar to that of the funda-
mental waveguide mode. Interestingly, the vector lines of the
full field are similar for square and circular holes.

It must be noted that in our method the effective dipoles
must be computed after solving the systems of Eqs. �6� and
�38�. We have been unable to derive the equations governing
the effective dipoles directly without previous calculation of
the amplitudes E� and E�� .

VI. CONCLUSIONS

To conclude, this paper has explored the EM transmission
through both small and medium-size isolated holes in a per-
fect electric conductor screen of arbitrary thickness. We have
used the modal expansion and have shown that this tech-
nique is applicable even in the limit of zero film thickness.
This latter limit has been used to check the correctness of the
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theory through the comparison with Bethe’s result. We have
phenomenologically fitted the transmittance in a wide region
of parameters by simple analytical functions.

We have connected the formalisms based on either modal
or multipole expansions and showed that the induced dipole
moments are coupled via all the waveguide modes inside the
hole. Our results indicate that the fundamental �lowest-order�
waveguide mode possesses the largest dipole moment. It is
also responsible for the attenuation of the transmission with
the increase of the film thickness T�e−2�qz0�h.
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APPENDIX: COMPUTATION OF THE GREEN’S TENSOR

Here we give explicit expressions for the tensor G�� in
the small hole limit. When the parameter  is small, the

integral in Eq. �9� can considerably be simplified. We illus-
trate these simplifications on the example of the diagonal
element for the fundamental mode of the square hole with
side 2a. This diagonal element has the following form in
polar coordinates �qx=q cos �, qy =q sin �, and q=k /g�:

GTE01TE01
= 8i�

0

�/2

d��
0

�

dq
1 − q2 sin2 �

q�1 − q2

�
�1 − cos�2q cos ����1 + cos�2q sin ���

�42q2 sin2 � − �2�2cos2 �
.

�A1�

We have taken into account the parity of the integrant both in
qx and qy, and, therefore, integrated over the first quadrant of
the qx-qy plane only.

We see that the integrant in Eq. �A1� is either purely real
or purely imaginary depending only upon the square root
�1−q2. Therefore, the integral over q can be separated into
two integrals, one from zero to one �yielding the imaginary
part of GTE01TE01

� and the other from one to � �yielding the
real part of GTE01TE01

�. Then we expand the integrant for the
imaginary part into a series over the parameter , retain the
leading terms only and take the integral analytically. The
result is Im�GTE01TE01

��322 / �3�3�. To treat the integral for
Re�GTE01TE01

�, we make the change of the variable �=2q.
Taking into account that the region ��2 weakly contributes
to the integral, we simplify the square root as �1−q2� iq.
Then we replace the lower limit �=2 for �=0 and approxi-
mate 1−�2 sin2 � /2 by −�2 sin2 � /2 in the denominator, so
that the real part of GTE01TE01

becomes

Re�GTE01TE01
� � −

4


�

0

�/2

d� tan2 ��
0

�

d�

�
�1 − cos�� cos ����1 + cos�� sin ���

��2 sin2 � − �2�2 .

�A2�

In order to perform the integration over � analytically, we
extend the integrant into the complex plane, changing the
trigonometric functions of � to the exponential functions. Fi-
nally, Eq. �A2� is derived applying the Residue theorem by
taking into account the presence of the poles on the real axis
�. The integral over � is taken numerically.

The other nonvanishing tensor elements both for circular
and rectangular holes are simplified analogously. Note, how-
ever, that for a circular hole it is more convenient to perform
the analytical integration over � in the real part of G��, using
the identities for the Bessel functions. The integral over � can
then be performed numerically.

In Appendix, Secs. 1 and 2 we give the simplified Green’s
tensor elements for the rectangular and circular holes.

1. Circular hole

Consider a circular hole of radius a. The imaginary part of
the Green’s tensor is approximated as

FIG. 6. �Color online� The magnetic-dipole moments and the
electric-field amplitude spatial distribution �at z=h /2� for the
square and circular holes. The amplitudes of the dipole moments are
shown by the bars. The radius of the circular hole is a and the side
of the square hole is 2a. The considered PEC slab has thickness h
=0.1a. The distribution of the total electric-field modulus together
with the electric-field lines are shown in �a� and �d�. The contribu-
tion into magnetic moments from the two lowest waveguide modes
and the fields of these waveguide modes are also shown for both
hole shapes: TE01 and TE03 of the square are represented in �b� and
�c�; TE11 and TE12 of the circle are shown in �e� and �f�.
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Im�GTE1mTE1m�
� =

22

3��um
2 − 1��um�

2 − 1�
, �A3�

where um are the solutions of the equation J1��um�=0. After
performing the integration over �, the real part reads

Re�GTE1mTE1m�
� =

2

��um
2 − 1��um�

2 − 1�

� �
0

�

d�
��J0��� − J1����2

�1 − � �
um

�2��1 − � �
um�

�2� .

�A4�

The right-hand side term of Eq. �6� is

ITE1m
= 2i� 2

um
2 − 1

. �A5�

2. Rectangular hole

For a rectangular hole with the sides 2ax and 2ay the
imaginary part of G�� simplifies to

Im�GTEnmTEn�m�
� = �n,0�n�,0

32xy

3mm��3 , �A6�

where x,y =ax,yg. The real part takes the following form:

Re�GTEnmTEn�m�
� =

1

x
�

0

�/2

d��
0

�

d��nm;n�m���,�� ,

�A7�

where

�nm;n�m���,�� = −
2�n�n�

��n2 + m2�2��n�2 + m�2�2��4�1 − cos�� cos ����1 + cos���−1 sin ���

sin2 � cos2 ���2 − � n�
cos ��2���2 − � n��

cos ��2���2 − � m��
sin ��2���2 − �m���

sin � �2� . �A8�

If n=0 then �n=�2 and 2 otherwise. To simplify the double integral �A7� we transform the cosines in the nominator of � into
exponential functions. The integration over � is performed analytically, extending the integrand into the upper complex half
plane and using the Residue theorem. The illumination term of Eq. �6� is

ITEnm
= �n,0

4i�2

m�
. �A9�
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