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Abstract—In this paper, we analyze in detail the characteristics
of surface electromagnetic modes that can propagate along a peri-
odically corrugated, perfectly conducting wire. We show how these
modes, termed spoof surface plasmon polaritons, resemble surface
plasmon polaritons supported by metallic wires at optical frequen-
cies. The important point is that the dispersion relation of spoof
surface plasmon polaritons is mainly controlled by the geometry
of the corrugation. This fact allows the tuning of the properties
of these modes via changes in corrugation geometry. Important
applications lie in high-confinement waveguiding at far-infrared
and microwave frequencies, including the possibility of efficient
propagation to the tip of tapered structures for focusing.

Index Terms—Focusing, plasmonics, terahertz radiation.

I. INTRODUCTION

THE ABILITY to localize electromagnetic energy to below
the diffraction limit of classical optics via the exploitation

of surface plasmon–polaritons (SPPs)—electromagnetic surface
waves sustained at the interface between a conductor and a di-
electric [1]—is currently being exploited in a plethora of studies
spanning from photonics, optoelectronics, and materials science
to biological imaging and biomedicine [2]. While the basic
physics of SPPs has been described in a number of seminal
papers spanning the last century [3]–[5], the more recent emer-
gence of powerful nanofabrication and characterization tools
has catalyzed a vast interest in their study and exploitation. The
dedicated field of plasmonics [6] is now firmly established not
only within the photonics community, but bringing together re-
searchers and technologists from a variety of disciplines wanting
to take advantage of subwavelength light localization effects in
the near field of the conductor.

Most interest is understandably focused on the spectral
regime, where SPPs are strongly confined to the respective
conductor/dielectric interface, i.e., where subwavelength mode
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localization is achieved in the direction perpendicular to the
interface. The same holds true for more complex geometries,
such as metallic slabs, wires, or particle arrays, where the high
field localization and concomittant field enhancement has been
utilized, for example, for optical nanowaveguides [7]–[12] or
single-molecule Raman spectroscopy [13], [14]. These strongly
confined SPPs occur at frequencies, which are still an apprecia-
ble fraction of the intrinsic plasma frequency of the conductor in
question. In a simple picture, here the motion of the conduction
electrons at the interface shows an appreciable phase lag with
respect to the driving electromagnetic fields, leading to a reduc-
tion in both phase and group velocity of the SPP, and therefore,
to strong localization. An appreciable fraction of the SPP field
energy resides inside the conductor, causing the well-known
tradeoff between localization and loss.

Most plasmonics research has thus far focused on the no-
ble metals Ag, Au, and Cu, which show plasma frequencies
in the UV. Therefore, the aforementioned strong localization
is only achieved for visible frequencies. As the frequency gets
lowered from the near-infrared to the microwave regime of the
electromagnetic spectrum, the field localization to the interface
decreases (on the dielectric side) from the subwavelength regime
to distances of many wavelengths, and SPPs acquire the char-
acter of a grazing-incidence light field, with phase velocities
asymptoting the phase velocity of light in the dielectric. It is
interesting that the first theoretical descriptions of SPPs treated
this regime, namely the seminal publications by Sommerfeld [3]
and Zenneck [15] on electromagnetic surface wave propagation
at radio frequencies along cylindrical metal wires and planar
metal interfaces. The link with more localized SPP excited via
optical beams on diffraction gratings [4] or via electron im-
pact [5] occured only decades later.

Recently, there has been a resurgence of interest into SPP
propagation along metal wires in the terahertz (THz) regime of
the spectrum [16], [17], mostly in a context of biochemical sens-
ing. However, the delocalized nature of the Sommerfeld waves
(typical wavelength λ = 300 µm at 1 THz, yet the fields extend
over many millimetres away from the wire) sets constraints upon
the achievable sensitivity, and leads to significant radiation loss
at bends and surface imperfections. Generally, the field confine-
ment decreases with increasing conductivity of the conductor,
and in the limit of a perfect electrical conductor, planar inter-
faces and wires do not sustain electromagnetic surface waves
anymore (in the later case, for azimuthally independent modes).

It would be highly desirable—also in a context of
waveguiding—if stronger localization to wavelength and
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subwavelength dimensions could also be achieved in this spec-
tral regime with metallic guiding modalities. This is indeed pos-
sible if the metallic interfaces show subwavelength structure,
even in the limit of perfect conductivity [18]–[20]. This can be
understood by realizing that the subwavelength surface struc-
ture is not directly sampled by the wave, and can therefore, be
seen as an effective medium surface layer, applying effectively
the concept of metamaterials. THz surface waves with stronger
localization than expected for Sommerfeld waves have, for ex-
ample, been observed on thin metallic meshes [21]. For planar
interfaces structured with 2-D arrays of holes or 1-D arrays of
grooves, it can be shown that this effective surface layer can be
described with a dielectric permittivity of the Drude form, with
the plasma frequency entirely controlled by geometry [22]–[24].
This way, a plasma frequency in the THz regime of the spec-
trum can be achieved for metallic interfaces structured in easily
realizable geometries [25]. In the perfect conductor limit, these
designed surface waves are known as spoof surface plasmon
polaritons.

Our paper is structured as follows. In Section II, we briefly
analyze in a didactical nature the mode characteristics of surface
plasmon polaritons propagating along wires of finite conductiv-
ity. The concept of spoof plasmons applied to wires is then
introduced in Section III, which presents a detailed analytical
model of their dispersion and mode profile. Examples for guid-
ing and focusing are briefly discussed in Section IV, followed
by concluding remarks.

II. AZYMUTHALLY-INDEPENDENT SURFACE PLASMON

POLARITONS ON METALLIC WIRES

In this section, we analyze the properties of azimuthally-
independent SPPs propagating along the surface of metallic
cylindrical wires (the so-called Sommerfeld waves [3], [26],
[27]). The rotational symmetry implies that the electromagnetic
(EM) fields do not depend on θ (where θ is the azimuthal angle),
leading to a decoupling of both light polarizations (s and p).
Since SPPs are transverse magnetic (TM) modes, we restrict
our study to p-polarized light, i.e., magnetic field normal to
the wire axis (z-direction). In each region of the structure, we
write the relevant field components (Ez and Hθ ) in terms of
the corresponding solutions of Maxwell equations. Thus, in the
vacuum region surrounding the wire, we have

EV
z (r, z) = EV K0(qV r)eikz z

HV
θ (r, z) = YV (kz )EV K1(qV r)eikz z (1)

where k0 = ω/c is the wave vector modulus and qV =√
k2

z − k2
0 its radial component. The decaying behavior of the

EM fields with increasing r is given by the modified Bessel
functions of the second kind K0 and K1 , whereas the mode
admittance is YV (kz ) = ik0/qV .

Inside the metallic wire, EM fields must decay inward with
increasing distance from the wire surface (decreasing r). They
can be expressed as

EM
z (r, z) = EM I0(qM r)eikz z

HM
θ (r, z) = YM (kz )EM I1(qM r)eikz z (2)

Fig. 1. Dispersion Relation of SPPs on lossless Au wires of different radii (R):
10 µm (dashed line), 3 µm (dotted line), 0.2 µm (dotted-dashed line), 0.1 µm
(dashed-doubled-dotted line), and 0.05 µm (short dashed line). Inset: Radial
component of the electric field versus r for the SPPs supported by metallic wires
(R = 0.35 µm, f = 330 (THz) with different dielectric constants: ε = −34
(short dashed line), ε = −200 (dotted-dashed line), ε = −400 (dotted line),
and ε = −1000 (solid line).

where now qM =
√

k2
z − ε(ω)k2

0 is the wave vector radial com-
ponent into the wire, and ε(ω) is the metal dielectric func-
tion. The radial dependence of the EM fields is now given by
the modified Bessel functions of the first kind, I0 and I1 . Fi-
nally, the mode admittance inside the metal is now defined as
YM (kz ) = −iε(ω)k0/qV .

Imposing continuity of the EM fields at the cylindrical wire
surface, we obtain the condition for the existence of nonzero
solutions for the electric field amplitudes, EV and EM . This
condition yields the dispersion relation of the SPP modes sup-
ported by the structure

qV
K0(qV R)
K1(qV R)

= − qM

ε(ω)
I0(qM R)
I1(qM R)

(3)

where R is the radius of the metallic wire.
In Fig. 1, the dispersion relations of the azimuthally-

independent SPPs supported by lossless Au wires of different R
calculated from Eq. (3) are plotted. The gold dielectric function
considered in our calculations is taken from the experimentally
fitted Drude–Lorentz-like formula of ref. [28]. We take only
the real part of the complex Au ε neglecting absorption ef-
fects inside the metallic wire. The wires radii (R) range from
0.02 µm (cyan short-dashed line) to 10 µm (green dashed line).
It is worth commenting that the SPPs dispersion relation for the
R = 10 µm wire coincides with the SPPs supported by a loss-
less Au flat surface, whereas for narrower wires, the frequency
of the SPPs grows more slowly with increasing kz , leading to
stronger localization to the wire.

In the inset of Fig. 1, the radial dependence of EV
r =

(kz/k0)HV
θ associated to the SPPs supported by metallic wires

of radius R = 0.35 µm at 330 THz is depicted. The wine-colored
short dashed line shows the field decay for a lossless Au wire
(ε = −34 for gold at 330 THz). It can be observed how for
increasing absolute values of the dielectric constant, ε = −200
(grey dotted-dashed line), ε = −400 (magenta dotted line), and
ε = −1000 (dark cyan solid line), while EV

r tends to the 1/r
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Fig. 2. Schematic picture of the structure supporting cylindrical spoof SPPs:
a perfect conducting wire of radius R perforated with a periodic array of rings.

dependence (black dashed line) expected for a perfect conduct-
ing wire. This asymptotic behavior can be obtained from (3)
taking ε → −∞. The dispersion relation of the surface modes
supported by the structure approaches the light line (k0 → kz ,
qV → 0). As a result, EM fields are expelled out from the wire,
while in the vacuum region, EV

r = HV
r ∝ K1(qV r) → 1/r

[29]. It can be easily demonstrated that these asymptotic EM
fields do not satisfy Gauss law in the absence of free charges.
Thus, we can conclude that perfect conducting wires do not
support surface EM modes [30].

III. SPOOF SURFACE PLASMONS ON CORRUGATED PERFECT

CONDUCTING WIRES

Now that we have seen that uncorrugated metallic wires do not
support SPPs in the ε → −∞ limit, in this section, we analyze
in detail the formation of surface EM modes on periodically
corrugated perfect conducting wires [31] (the cylindrical analog
of the so-called spoof SPPs on a corrugated perfect conducting
2D plane [22], [23]).

We develop a modal expansion formalism, an extension of the
one applied in the aforesaid section, in order to solve Maxwell
equations for the structure schematically depicted in Fig. 2:
a perfect conducting wire of radius R drilled with a periodic
array of subwavelength rings. We introduce the term metawire
for such a structure, as the emergence of the electromagnetic
surface mode can be viewed in a context of metamaterials. We
label the array period as Λ, and the rings width and depth as a
and h, respectively. Taking advantage of the periodic character
of the structure, we can apply Bloch’s theorem to the problem
and solve Maxwell equations only inside the unit cell of length
Λ (see Fig. 2). Within this unit cell, EM fields are nonzero only
in the vacuum region surrounding the wire (region I), and inside
the perforated rings (region II). As in the previous section, in our
analysis, we will look for azimuthally-independent p-polarized
surface modes. Under this constraint, EM fields in region I can
be expressed as a sum over diffraction modes in the z-direction
whose radial dependence is again given by the modified Bessel
functions of the second kind

EI
z (r, z) =

∞∑
n=−∞

CnK0
(
qI
nr

)
φn (z)

HI
θ (r, z) =

∞∑
n=−∞

Y I
n CnK1

(
qI
nr

)
φn (z) (4)

where now, kn = kz + n 2π
Λ and qI

n =
√

k2
n − k2

0 . Y I
n = ik0/qI

n

is the admittance of the Bloch wave φn (z) = ei k n z
√

Λ
.

Inside the rings, EM fields can be expanded as a sum over
propagating and counterpropagating waveguide modes in r-
direction as

EII
z (r, z) =

∑
l

Dl(J0(qII
l r) − αlN0(qII

l r))χl(z)

HII
θ (r, z) =

∑
l

Y I I
l Dl(J1(qII

l r) − αlN1(qII
l r))χl(z) (5)

where qII
l =

√
k2

0 − (lπ/a)2 and Y II
l = −ik0/qII

l . The
ring waveguide modes are given by χl(z) =

√
(2 − δl,0)/a

cos lπ
a (z + a/2) for |z| < a/2 (inside the ring) and χl(z) = 0,

otherwise. The radial dependence of these modes is described
by Bessel and Neumann functions J0,1 and N0,1 . The con-
stant αl = J0 [qII

l (R − h)]/N0 [qII
l (R − h)] is defined so that

the electric field satisfies perfect conducting boundary condi-
tions at the ring bottom [Ez (r = R − h) = 0].

We impose continuity to the EM fields at the wire outer ra-
dius interface (r = R). The z-component of the electric field
must be continuous everywhere on the interface, whereas the
θ-component of the magnetic field is continuous only at the
rings openings. Projecting the electric continuity equations over
Bloch modes, and the equations linked to the magnetic field con-
tinuity over ring waveguide modes, we remove the dependence
on z of the matching equations. Defining the quantities

El = Dl(J0(qII
l R) − αlN0(qII

l R)) (6)

which are related to the l-modal amplitude associated with the
z-component of the electric field at the rings apertures, the set
of EM fields continuity equations can be rewritten as

(Gll − εl)El +
∑
s �= l

GlsEs = 0 (7)

where l and s labels the ring waveguide mode order. The differ-
ent terms appearing in this set of linear equations have a simple
physical interpretation. The term

εl ≡ Y II
l

J1(qII
l R) − αlN1(qII

l R)
J0(qII

l R) − αlN0(qII
l R)

(8)

describes all the bouncing processes experienced by the EM
fields linked to mode l along the radial direction inside the
rings, whereas

Gls ≡
∞∑

n=−∞
Y I

n

K1(qI
nR)

K0(qI
nR)

ΩlnΩ∗
sn (9)

takes into account the EM radiation emitted by waveguide mode
m into vacuum Bloch waves and collected by mode l, with
Ωln =

∫
χl(z)φn (z) dz being the overlap integral between the

waveguide mode l and the n-Bloch mode. It controls the cou-
pling between EM fields associated to different ring waveguide
modes.

Once the set of homogeneous matching equations (7) has
been built up, the dispersion relation of the spoof SPPs sup-
ported by the ring array is given by the nonzero solutions of the
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Fig. 3. Normalized ω versus kz for the θ-independent spoof SPPs supported
by perforated wires of radius R = 2Λ for three different ring depths. For all
the structures, the ring width is a = 0.2Λ. Inset: Electric field pattern at kz =
0.455(2π/Λ) associated to the four SPP bands shown in the main panel.

electric field modal amplitudes El . Here, we introduce a fur-
ther approximation in our theoretical analysis by assuming that
the wavelength of the light is much larger than the rings width
(λ = 2π/k0 � a). In previous papers [32]–[34], it has been
demonstrated that within this subwavelength regime, it is a very
good approximation to consider only the first waveguide mode
(here, l = 0) inside the cavity perforated on the perfect conduct-
ing surface (note that in this case, irrespective of the ratio be-
tween a and λ, this first waveguide mode is always propagating).
Within this approximation, the condition (G00 − ε0) = 0 gives
the dispersion relation (ω(kz )) of the azimuthally-independent
spoof SPPs propagating along the structure, which can be writ-
ten as

∞∑
n=−∞

k0

qI
n

K1(qI
nR)

K0(qI
nR)

|Ω0n |2 = −J1(k0R) − α0N1(k0R)
J0(k0R) − α0N0(k0R)

(10)

where Ω0n =
√

a
Λ sinc(kna/2) is the overlap integral between

the first ring waveguide mode and the n-Bloch wave.
In Fig. 3, the spoof SPP bands for three different ring arrays

are plotted. Since we are considering perfect conducting bound-
ary conditions, all lengths within the structures are scalable and
we can take the period Λ as the unit length. The perforated
wire radius is R = 2Λ, and the ring width a = 0.2Λ. The three
ring depths considered in the calculations are: h = 1.6Λ (red
solid line), h = 0.8Λ (green dotted line), and h = 0.4Λ (blue
dashed line). We can observe how the spoof SPP dispersion
relation departs from the light line, resembling the behavior of
SPPs propagating along metallic wires at optical frequencies
(see Fig. 1).

At low frequencies (λ � Λ, a), and for wires much thicker
and rings much shallower than the array period (R,R − h �
Λ), we can obtain an analytical expression for the spoof SPP
dispersion relation by introducing the asymptotic expansions of

Fig. 4. Spoof SPP dispersion relation including all the different azimuthal
behaviors (labeled with m) supported by a perfect conducting wire of radius
R = 2Λ drilled with rings of width a = 0.2Λ and depth h = 0.5Λ. The insets
show the electric field amplitude at k = π/Λ associated to the different bands
with m running from the left bottom corner to the right top corner of the figure.

the different Bessel functions involved in (10), obtaining

kz = k0

√
1 +

( a

Λ

)2
tan2(k0h). (11)

This expression coincides with that given in [23] for spoof SPPs
propagating along a perfect conductor surface perforated with
an 1-D array of grooves of width a and depth h. As seen in Fig. 3,
the key parameter governing the surface EM mode confinement
is the depth of the rings, h.

It is well known that the dispersion relation of SPPs in a flat
2-D surface approaches ωs = ωp/

√
2 (where ωp is the plasma

frequency of the metal) as the parallel momentum is increased.
In the case of a periodically perforated perfect conductor wire,
it is possible to define an analogous asymptotic frequency, ωs .
An analytical expression for ωs can be extracted from (11) by
imposing the condition tan(k0h) → ∞, obtaining ωs = πc/2h.
This inversely proportional dependence of ωs with h gives rise
to a lowering of the spoof SPP bands as h is increased. This
fact can be observed in bands (b)–(d) of Fig. 3. The electric field
associated to these modes do not present any node in r-direction
(see the inset of Fig. 3) and the flat region of ω(kz ) occurs at
lower frequencies as the rings depth is enlarged. For h = 1.6Λ,
another band linked to a spoof SPP mode presenting a radial
node inside the ring [see inset (a)] appears at larger frequencies.
Although the condition R − h � Λ is not fulfilled, we can as-
sociate it to another asymptotic frequency ωs = 3(πc/2h) also
satisfying tan(k0h) → ∞.

In Fig. 4, the dispersion relation of the spoof SPPs supported
by a perfectly conducting wire of radius R = 2Λ perforated by
a periodic array of rings of dimensions a = 0.2Λ and h = Λ
is depicted. In this calculation, there is no restriction regarding
the azimuthal dependence of the EM fields. The dispersion re-
lation (red dots) has been obtained by means of a 3-D FDTD
numerical calculation. The number of mesh points considered
in the calculation are 240 × 240 × 40, with a mesh size equal to
0.08Λ. The different bands (labeled with index m) correspond
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Fig. 5. Quasi-analytical dispersion relation (a) and electric field plots (b–d)
for terahertz spoof SPPs propagating along a metawire of radius R = 150 µm
perforated by an array of ring of period Λ = 100 µm. The ring’s width and
depth are 50 µm. Dotted lines show the three different frequencies (1.0, 0.6,
and 0.4 THz) considered in the (FIT) simulations of the averaged electric field
amplitude for metawires of length 20 × Λ illuminated from the left by a radially
polarized plane wave.

to different azimuthal symmetries of the electric field amplitude
shown in the insets of the figure. For the structure considered,
m ranges from m = 0 (θ-independent SPPs) to m = 5 (insets
from left bottom corner to right top corner of Fig. 4). The elec-
tric field associated to the mth azimuthal mode presents 2m
nodes and/or maxima in θ. The solid blue line shows the m = 0
band calculated from (10). We can see the very good agree-
ment between the numerical and quasi-analytical results for the
azimuthally-independent spoof SPP dispersion relation.

IV. GUIDING AND FOCUSING OF LIGHT BY MEANS OF

CYLINDRICAL SPOOF SURFACE PLASMONS

One of the possible applications of these cylindrical spoof
SPPs is to guide EM radiation with frequencies lying within the
microwave or THz ranges of the EM spectrum along a metallic
wire. This functionality is illustrated in Fig. 5.

In this case, the geometry of the ring array (period, width, and
depth of the rings) is chosen such that the optimal frequencies
for guiding would be around 0.6–0.8 THz. Panel (a) shows the
dispersion relation of the spoof SPPs supported by the infinite
structure, whereas panels (b)–(d) depict the E-field amplitude
patterns (evaluated at three different frequencies) for a finite
version of the structure (containg 20 periods) illuminated by
a radially polarized broadband terahertz pulse. These pictures
have been obtained by numerical simulations using a finite in-
tegration technique (FIT). As clearly seen in this figure, for the
lowest frequency considered, f = 0.4 THz, as kz is close to the
light line, the guiding properties are poor in comparison with
the frequency f = 0.6 THz in which the EM radiation is guided
and strongly confined along the wire surface. At f = 1.0 THz,
no spoof SPPs are supported by the system [see Fig. 5(a)] and
the incident radiation is scattered at the left entrance.

By taking advantage of the dependence of the spoof SPP
confinement on the geometry of the ring array, it is feasible to
design a periodically corrugated wire that is able to concentrate
EM energy at the end of the cylindrical wire. In this paper, we

Fig. 6. Frequency versus parallel wavevector for spoof SPPs supported by
metawires of different radii perforated with periodic ring arrays of period
Λ = 100 µm and ring dimensions a = 50 µm and h = 30 µm. Dotted lines
indicate two different frequencies (0.6 and 1.2 THz). Inset: Electric field ra-
dial component versus r − R at f = 0.6 THz for the four infinite metawires
considered in the main panel.

present just one possible structure. It is a conical wire, in which
the external radius is gradually decreased along the wire but the
depth of the rings is fixed.

In Fig. 6, we render the dispersion relation of the spoof SPPs
supported by infinite cylindrical wires in which the depth of the
rings (h = 30 µm), their width a = 50 µm, and the period of
the array Λ = 100 µm are fixed. The four curves correspond to
dispersion relation for four different values of R, ranging from
R = 140 µm to R = 40 µm. As expected, as R is decreased, the
dispersion relation departs more and more from the light line.
This implies that the confinement of the corresponding surface
EM mode is increased as R is reduced, as can be seen in the
inset of the figure, which shows the radial component of the
E-field (Er ) as a function of the distance to the wire (r − R).
This magnitude is evaluated at f = 0.6 THz for the four different
structures.

Therefore, it is expected that if we construct a finite metawire
in which the depth of the grooves is fixed and the external ra-
dius is gradually reduced from R = 140 µm to R = 40 µm, EM
radiation of frequency f = 0.6 THz will be focused at the end
of the conical wire. This focusing effect is nicely demonstrated
in Fig. 7, which shows FIT simulations on a conical wire of
length 2 mm (that contains 20 periods of the ring array) for
two different frequencies f = 0.6 THz and f = 1.2 THz. As
expected from the calculations for infinite wires, at f = 0.6 THz
EM radiation is guided along the wire and focused as it prop-
agates through it. As a comparison, we also depict the E-field
pattern for f = 1.2 THz in which EM is scattered at the entrance
of the wire due to the nonexistence of spoof SPPs at that particu-
lar frequency. It is worth noticing that focusing is also expected
to occur with smooth tapered wires [35]. However, in this case,
significant losses into the radiation continuum can be expected
for fabricated structures due to scattering of the weakly confined
modes at surface imperfections. Even for the case of a perfectly
smooth interface, a detailed comparision of the mode focusing
characteristics between smooth and metawire tapers in terms of
efficiency has yet to be performed.
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Fig. 7. Focusing and guiding of light through spoof SPPs propagating along a
perfect conducting cone of length 2 mm corrugated by a ring array in which the
radius is gradually reduced from R = 140 µm to R = 40 µm. As expected from
the dispersion relation of Fig. 6, spoof SPPs are excited at f = 0.6 THz, while
at f = 1.2 THz these surface EM modes are not supported by the structure.

V. CONCLUSION

In conclusion, we have presented a detailed study of the sur-
face electromagnetic modes that can propagate along a period-
ically corrugated perfect conductor wire. Firstly, we have ana-
lyzed the SPPs supported by an uncorrugated metallic wire at
optical frequencies. Although the confinement of these modes
disappears as we approach to the limit ε → −∞, the confine-
ment is recovered when the surface of the perfect conductor is
corrugated with a periodic array of rings. We have shown how
the dispersion characteristics of these geometry-induced surface
electromagnetic modes is completely governed by the depth of
the rings. This allows guiding radiation at microwave or THz
frequencies along a corrugated wire. Moreover, by a clever de-
sign of the corrugation along the wire, it is possible to focus
electromagnetic energy of a given frequency at the end of the
wire. We strongly believe that these ideas will find important
applications in the THz or microwave ranges of the electromag-
netic spectrum, enabling a new class of research and technology
in which the tunability of the guiding properties of the spoof
SPPs will play a key role.
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