
Holey metal films make perfect endoscopes

J. Jung,1,2 F. J. García-Vidal,2,* L. Martín-Moreno,3 and J. B. Pendry4

1Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark
2Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

3Departamento de Física de la Materia Condensada and Instituto de Ciencia de Materiales de Aragón (ICMA),
CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain

4Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BW, United Kingdom
�Received 23 December 2008; revised manuscript received 18 March 2009; published 23 April 2009�

Possible superlensing effects in holey metal films are theoretically analyzed using the multiple-scattering
formalism. We show that within the effective-medium limit and at some resonant frequencies, holey perfect
conductor films make perfect endoscopes, i.e., are capable of transforming an image from the input to the
output surface of the film with subwavelength resolution. To corroborate our finding in a realistic structure, a
full numerical calculation including diffraction and losses is presented for a one-dimensional perforated metal
film in the terahertz regime.
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The idea of subwavelength imaging using a slab of an
artificially engineered metamaterial �superlensing� was pro-
posed some years ago.1 It was proved that a thin slab of
material with a refractive index of −1 yields a lens with
almost unlimited resolution. The challenge is now to engi-
neer a metamaterial with the desired optical properties. In the
electrostatic limit, near-field superlensing can be obtained
with a thin metal slab.1–3 Examples of metamaterials that
have been recently investigated for subwavelength imaging
are layered metal-dielectric structures,4–9 metallic wire
media,10–13 and electromagnetic �EM� or photonic
crystals.14–17

The key to perfect lensing appearing in a homogeneous
metal slab is the amplification of evanescent waves by means
of resonantly excited surface plasmon polaritons �SPPs�.
More specifically, this phenomenon is linked to the existence
of a flat region in the dispersion relation of SPPs for large
parallel momenta at optical frequencies.1 In this Brief Report
we analyze whether this superlensing effect can be extended
to lower frequencies by taking advantage of the so-called
spoof SPPs.18,19 These surface EM modes emerge when a
perfect conductor film is perforated with a periodic array of
apertures �see Fig. 1� and have similar characteristics to ca-
nonical SPPs. Here we will demonstrate that, contrary to the
aforementioned expectations, superlensing effects do not ap-
pear in holey metal films. Instead, these structures can oper-
ate as perfect endoscopes, i.e., transmit all incident plane
waves �propagating and evanescent� with unit efficiency at
some resonant wavelengths.

Holey metal films have been extensively studied in recent
years mainly in connection with the emergence of the phe-
nomenon of extraordinary optical transmission.20 In our the-
oretical analysis we first assume that all metal regions be-
have as perfect conductors, which is a good approximation in
a wide range of frequencies, from dc up to terahertz frequen-
cies. The effect of the finite absorption present in a real metal
will be checked at a second stage.

An incident plane wave will excite several waveguide
modes �TE and TM� within the holes but, in the very sub-
wavelength regime, the fundamental mode dominates the
transmission process because all higher-order modes are

strongly evanescent. It is therefore a very good approxima-
tion in that limit to consider only the fundamental waveguide
mode.21 We also assume that the two surrounding dielectric
media �1 and 3 in Fig. 1� and the medium within the aper-
tures are the same. Within the single-mode approximation,
the transmission coefficient of a holey metal film associated
with the nth diffraction order can be written as a sum of all
the multiple-scattering events,

t�n� = �12�23
�n� exp�iqzh� + �12�23

�n��2 exp�3iqzh�

+ �12�23
�n��4 exp�5iqzh� + ¯ =

�12�23
�n� exp�iqzh�

1 − �2 exp�2iqzh�
,

�1�

where �12, �23
�n�, and � are the different two-media scattering

coefficients for a single interface and qz is the propagation
constant of the fundamental waveguide mode. �12 is the
transmission amplitude by which an incident plane wave in
medium 1 is transmitted into medium 2, � is the reflection
amplitude of the waveguide mode when it scatters from ei-
ther interface 2-1 or 2-3, and �23

�n� is the transmission ampli-
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FIG. 1. Two examples of holey metal films. �a� One-
dimensional metal film periodically perforated with subwavelength
slits of width a and lattice constant d. �b� Two-dimensional metal
film perforated with a�a square holes in a d�d lattice. The thick-
ness of both films is h and extents along the z axis.
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tude by which the waveguide mode, traveling towards the
interface 2-3, transmits into a plane wave of diffraction order
n that propagates away from the interface in medium 3. To
simplify the notation, index n should be regarded as an index
that comprises both polarizations and diffraction orders. The
different two-media scattering coefficients can be determined
by a proper matching of the parallel components of the EM
field at the interfaces. After matching and substituting into
Eq. �1� we obtain for t�n�,

t�n� =
4YholeY0S�0��S�n� exp�iqzh�

�Yhole + G�2 − �Yhole − G�2exp�2iqzh�
, �2�

where Yhole is the admittance of the waveguide mode within
the holes �Yhole=qz /k0 if the fundamental mode is TE or
Yhole=k0 /qz for a TM mode� and S�n� is the overlap integral
between an nth diffraction order and the fundamental wave-
guide mode. The term G contains a sum over diffracted
modes, G=�n=−�

� Yn�S�n��2, where Yn is the admittance that
relates the electric and the magnetic components of the plane
waves in regions 1 and 3: Yn=k0 /kz

�n� for p polarization and
Yn=kz

�n� /k0 for s polarization, with kz
�n� being the component

of the wave vector along the z axis. The wave number in free
space is k0=� /c, where � is the frequency and c the speed
of light.

In the extreme subwavelength regime ���d�a�, Eq. �2�
can be further simplified if all diffraction effects are ne-
glected. In this way, t� t�0� becomes the only nonzero trans-
mission coefficient,

t =
4YholeY0�S�0��2exp�iqzh�

�Yhole + Y0�S�0��2�2 − �Yhole − Y0�S�0��2�2exp�2iqzh�
.

�3�

Equation �3� is valid for both s and p polarizations, and the
difference in the transmission enters via the admittances and
the overlap integral S�0�. In particular, for a p-polarized inci-
dent field, we obtain

t =
4kzqz	 exp�iqzh�

�qz + 	kz�2 − �	kz − qz�2exp�2iqzh�
, �4�

where kz
�0� has been replaced with kz and 	 is given as

	 =
qz

2

�S�0��2k0
2 . �5�

Equation �4� is exactly the transmission coefficient of
p-polarized light through a homogeneous slab of thickness h
characterized by a dielectric constant 	. Additionally, as the
propagation constant inside the effective medium is qz, the
effective magnetic permeability is 
= �S�0��2. More precisely,
in the two-dimensional �2D� case and for a square periodic
array, the electric permittivity is a diagonal second-rank ten-
sor with 	x=	y =	 and 	z=�. In this case, qz=�k0

2−�2 /a2

and S0=2�2a / ��d� and the permittivity shows a Drude-type
behavior in which the cutoff frequency of the hole wave-
guide acts as an effective plasma frequency �see Eq. �5��.
The effective permeability takes a constant value 
x=
y
=8a2 / ��2d2�. Interestingly, the same expressions for the
electric permittivity and magnetic permeability were ob-

tained when the concept of spoof SPP was first introduced,18

although in that case the analysis was done for a semi-
infinite slab, and not for a film of finite thickness. For the
one-dimensional �1D� case, however, 	x=	 and 	y =	z=�
with qz=k0 and S0=�a /d. Thus, the 1D structure resembles
an anisotropic dielectric medium with 	x=d /a, 
x=1, and

y =
z=a /d.19

It is interesting to notice that Eq. �4� is equivalent to the
expression that was used to demonstrate perfect lensing.1 In
the electrostatic limit, perfect lensing in an uncorrugated film
is achieved when 	→−1 because then qz=kz for all parallel
momenta k	 =�kx

2+ky
2. For this condition, Eq. �4� reduces to

t=exp�−ikzh� for all k	, which shows how evanescent waves
are amplified. For a holey metal film, however, qz is fixed by
the fundamental waveguide mode and it is not equal to kz

=�k0
2−k	

2. Thus, we conclude that perfect lensing with holey
metal films �requiring t=exp�−ikzh� for all k	� cannot be re-
alized. However, one may realize that at the Fabry-Pérot
resonance condition �qzh=m� ,m�0�, Eq. �4� simplifies sig-
nificantly to

t = eim� = �− 1�m ∀ k	 . �6�

At the Fabry-Pérot resonance condition, all incident plane
waves �both propagating and evanescent� are perfectly trans-
mitted through a holey perfect conductor film. This resonant
regime where all incoming plane waves are transmitted with
unit efficiency has been recognized before for metallic wire
media.10–13 Notice that the condition for excitation of spoof
SPPs at large parallel momenta reads qz=0, which fulfills the
Fabry-Pérot resonance condition for m=0. Therefore, within
the effective-medium limit ���d�a� and at the Fabry-Pérot
resonances, Eq. �4� predicts that a holey perfect conductor
film makes a perfect endoscope capable of transforming an
image at the input surface with subwavelength resolution to
the output surface of the film. This is the main conclusion of
this Brief Report.

For proof-of-principle purposes, here in this Brief Report
we analyze the simplest holey metal film: an infinite slit
array �Fig. 1�a��. The Fabry-Pérot resonance condition in this
case is �=2h /m with m�1. Given the input surface being at
a distance z1 from the incident field, we calculate the image
at a distance z2 from the output surface. The incident field is
p polarized with its electric field directed along the x axis
and consists of two spikes of height E0, width w, and sepa-
ration l. This field is expanded in terms of p-polarized plane
waves characterized by parallel momentum kx

�0�. From the
knowledge of the different transmission coefficients t�n� �Eq.
�2�� and by taking into account diffraction effects, it is
straightforward to calculate the electric field at the image
plane.

In order to approach the effective-medium limit where Eq.
�4� is valid and where diffraction can be safely neglected,
t�0�� t�n� for n�0 should be satisfied. For a slit array, kx

�n�

=kx
�0�+n 2�

d and kz
�n�= i�kx

�n�2−k0
2. If we choose parameters

such that ��w�d, it is obvious that the evanescent decay of
all the diffracted waves for n�0 is dominated by the term
� /d, whereas the dominant kx

�0�’s are on the order of � /w.
Hence, in the extreme near field of the output surface �z2
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0�, higher-order diffracted waves will distort the perfect
image that only can be obtained if diffraction can be com-
pletely neglected. However, one may realize that the higher-
order diffracted waves will die much faster than the zero-
order diffracted waves as w�d. Thus, if the distance from
the output surface to the image plane z2 is increased, the
higher-order diffracted waves will disappear from the image.
To illustrate this, we have calculated the image for different
distances z2 from the slit array �Fig. 2�. For details of the slit
array, incident field, and wavelength, see caption of Fig. 2. It
is clear that there are two near-field zones: one for z2d,
where the higher-order diffracted modes from the array dis-
tort the image �Fig. 2�a�� and the other one emerges at d
�z2�w where the image of the two spikes is recovered
�Fig. 2�b�� with subwavelength resolution. Notice how the
field for z2=d is nicely reconstructed in a subwavelength
image of the source. In the absence of the holey metal film,
most information of the source would be lost at this plane
after free-space propagation �see the curve with label free
space 51d in Fig. 2�b��. This is also the case if the image
plane is located at z2�d. As seen in Fig. 2�b�, for z2
=10d ,20d it is no longer possible to distinguish the two
spikes of the incident field.

By reducing the width of the spikes and its separation
�results not shown here�, we have found that the ultimate
resolution of the endoscope is d, which is the period of the
array. This is similar to what occurs in the perfect lens in the
optical regime,1 in which the ultimate resolution would be
the interatomic distance if the absorption in the metal film
could be ignored.22 We have also checked that almost iden-

tical images are obtained for film thicknesses hm=m� /2 �m
�1� that fulfill the Fabry-Pérot resonance condition at that
particular wavelength. In this way, the thickness of the endo-
scope could be much larger than the operating wavelength.

To test the effect of the absorption in the metal and the
accuracy of the single-mode approximation, we have carried
out numerical calculations using the commercial finite ele-
ment solver provided by COMSOL MULTIPHYSICS �Fig. 3�.
We have considered a 1D slit array where the period is
d=1 
m and the relation to all the other parameters of the
film and source are the same as before �see caption of Fig. 2�.
This yields the first Fabry-Pérot resonance frequency at �0
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FIG. 2. �Color online� �Ex�x�� for different distances z2. The
distance z1 is chosen to be 0. d is used as the unit length of the
structure and the resonant wavelength is �=2h=100d. The width of
the slits is a=0.5d and the thickness of the film is h=50d. The
parameters of the incident field are E0=10, l=15d, and w=10d. In
panel �b�, it is also shown the image of the E field after free-space
propagation through a h+d distance �the curve with label free space
51d�.
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FIG. 3. �Color online� �a� E-field amplitude (�Ex�x ,z��) evalu-
ated at the first Fabry-Pérot resonance. The incoming p-polarized
field is impinging from above into an opaque screen in which two
subwavelength apertures have been perforated �marked with arrows
in the figure�. The opaque screen is placed just in front of the input
surface of the structure. The output surface of the slit array is
marked by the x axis in the figure. �b� Calculation of �Ex�x�� at
different distances z2 from the slit array in which Ohmic losses in
the metal have not been included. �c� �Ex�x�� at several z2’s that
correspond to different cuts in the figure of panel �a�.
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=3 THz. Losses of the metal regions are included through
the Drude model 	m=1−�p

2 / ����+ i���, where �p=13.8
�1015 s−1 is the plasma frequency, �=1.075�1014 s−1 is
the damping constant, and the values are for gold and taken
from Ref. 23. The 2D field distribution of �Ex�x ,z�� including
losses is presented �Fig. 3�a�� and the image of the source for
different distances z2 is shown for both the cases without and
with absorption �Figs. 3�b� and 3�c�, respectively�. It is seen
that the endoscope effect in holey metal films is not very
sensitive to losses; the only difference when losses are in-
cluded is a small damping of the field when compared to the
lossless case.

In conclusion, we have shown how holey metal films can
behave as perfect endoscopes at some resonant frequencies,

i.e., they transmit light with unity efficiency for both propa-
gating and evanescent incoming plane waves. In the terahertz
regime, we have exemplified our ideas by means of a full
numerical calculation on a 1D slit array where both diffrac-
tion effects and losses were included. Our findings suggest
that holey metal films may find useful applications for sub-
wavelength imaging.
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