
Enhanced optical transmission, beaming and focusing through a subwavelength slit under

excitation of dielectric waveguide modes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Opt. A: Pure Appl. Opt. 11 125702

(http://iopscience.iop.org/1464-4258/11/12/125702)

Download details:

IP Address: 150.244.9.175

The article was downloaded on 27/10/2009 at 08:42

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1464-4258/11/12
http://iopscience.iop.org/1464-4258/11/12/125702/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


IOP PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS

J. Opt. A: Pure Appl. Opt. 11 (2009) 125702 (8pp) doi:10.1088/1464-4258/11/12/125702

Enhanced optical transmission, beaming
and focusing through a subwavelength slit
under excitation of dielectric waveguide
modes
A Yu Nikitin1,2, F J Garcı́a-Vidal3 and L Martı́n-Moreno1

1 Instituto de Ciencia de Materiales de Aragón and Departamento de Fı́sica de la Materia
Condensada, CSIC-Universidad de Zaragoza, E-50009, Zaragoza, Spain
2 A Ya Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Sciences,
61085 Kharkov, Ukraine
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Abstract
We explore the transmission and beaming properties of a single subwavelength slit flanked by a
finite array of indentations made on a thick metallic film for both s- and p-polarizations. If a
dielectric slab is placed onto the metal film, excited dielectric waveguide modes drastically
change the diffraction of a plane wave. We show that if a dielectric slab is placed at the
incoming face of the film, the transmission can be greatly enhanced for wavelengths which are
close to the Bragg reflection condition. For the same wavelengths, the waveguide modes can be
redirected into a highly collimated beam within a few degrees; however, in this case, the slab
must be placed at the outgoing face of the film.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The diffraction of optical waves by nano-apertures has been
a subject of intense research over the last decade. The latest
achievements in both theoretical and experimental studies
demonstrate that, transmission characteristics of the structure
suffer drastic changes whenever bounded electromagnetic
(EM) waves are involved in the diffraction by subwavelength
apertures. For instance, a periodic array of subwavelength slits
in a metal film shows, apart from Fabry–Perot-like peaks, a
significant enhancement of the transmission (compared to the
single slit) at certain wavelengths [1–6]. These resonances
have been associated with localized surface modes that could
be both spoof and conventional surface plasmon-polaritons
(SPPs) supported by the corrugated metallic surfaces [7–9].
Since SPPs are p-polarized, only the p-polarization component

of the incident radiation can be resonantly transmitted through
subwavelength slits. In this sense, subwavelength slit arrays
act as polarization selectors: the penetration of the s-polarized
component of the filed is suppressed. However, if the dielectric
layers are deposited onto the metal film, the structure supports
s-polarization dielectric waveguide modes (DWMs). DWMs
then play the part of SPPs and s-polarized radiation can also be
resonantly transmitted through subwavelength slits [10].

Another attractive configuration is a single slit in a
metal film flanked by corrugations. The periodic location
of the corrugations from each side of the slit results in
the formation of electromagnetic surface resonances that can
provide enhanced transmission [11–14] and beaming [15–21]
of p-polarized radiation. Similar effects have been found for
the same geometrical structures with other physical properties:
for matter [22] and sonic waves [23, 24].
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Figure 1. The geometry of the studied system and the dispersion
curves of both TM (dashed lines) and TE (continuous lines) DWMs
existing in the glass slab (ε = 2.25) placed onto the metal surface.
The highlighted regions represent single-mode regimes.

In this paper we study the transmission of the plane
electromagnetic wave through the slit drilled in a metal film
with additional dielectric layers bounding to the film faces.
The slit is surrounded by indentations so that resonance
effects due to the launching and re-emission of DWMs take
place [25]. Since the DWMs are supported both for p- and s-
polarizations, the enhanced transmission and collimation of the
radiation in the far- and near-field regions are achieved for both
polarizations.

2. Spectral properties

Consider a plane monochromatic wave normally incident onto
the perfect electric conductor (PEC) metal film of thickness hf

with 2N indentations flanking symmetrically a slit of width a
from each side, see figure 1. The indentations, of depth h and
width a, are placed either on the incoming face of the film, or
on the outgoing one. The distance between the indentations L
(the period) is equal to the distance from the center of the slit
to the center of the first indentation. The metal film bounds to
the dielectric layer of thickness d with dielectric permittivity
ε. Due to the in-plane geometry, s- and p-polarizations can be
treated separately (there is no cross-conversion).

To solve the EM problem, we use the coupled mode
method [11, 15, 22], see appendix A. The fields in the
dielectric slab and dielectric half-spaces are projected onto a
basis of plane waves, and inside the slit and the cavities they

Figure 2. Transmission spectra for s-polarized (a) and for
p-polarized (b) waves as a function of the number of indentations N ,
placed on the side of incidence. In (a) hf = 370 nm, h = 200 nm,
L = 636 nm, a = 300 nm and in (b) hf = 370 nm, h = 100 nm,
L = 750 nm, a = 100 nm.

are projected onto a set of waveguide modes. Then the fields
in different regions are matched on the surfaces and the system
of equations for the modal amplitudes is derived. The solution
of this system of equations gives the modal amplitudes, from
where the scattering parameters (transmittance, reflectance,
scattering cross-section, etc) can be computed, see appendix A.
Throughout, we consider a normal incidence illumination by a
monochromatic plane wave with wavelength λ.

Let us start by considering the transmission spectra of the
slit symmetrically flanked by indentations in the film placed
between two semi-infinite vacuum media. The indentations
are placed in the side of incidence. We assume that both
the slit and the indentations are filled by a dielectric with
refractive index 1.5 and that there is no additional dielectric
layer (d = 0). The transmittance spectra, normalized to the
slit width, for different numbers of indentations are shown in
figure 2. An essential difference between the spectra of p-
and s-polarized radiation is already noticeable for a single slit
without corrugation. While for the p-polarization the spectra
are always composed of interlaced maxima associated with the
Fabry–Perot slit waveguide resonances [15], for s-polarization
the resonance maxima change to a rapid falling [25, 26]. Such
a distinct spectral behavior is due to the existence of the slit
mode cutoff at the wavelength λc for s-polarization. For the
lowest slit mode TE1, the cutoff wavelength λc is given by
λc = 2a

√
εs, where εs is the dielectric permittivity of the slit
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Figure 3. Normalized to the slit width transmission spectra ((a), (b)) and DWM current ((c), (d)) for s- and p-polarized waves. In all panels
hf = 370 nm, d = 250 nm. In ((a), (c)) h = 200 nm, a = 300 nm, L = 636; in ((b), (d)) h = 100 nm, a = 100 nm, L = 550 nm.

and indentations filling. Therefore, for a 300 nm slit width
filled by glass, λc = 900 nm, see figure 2(a).

Once the cavities appear on the incoming face of the metal
film, EM resonances associated with them have a significant
effect on the transmittance spectra for p-polarization. The
resonances are originated by the interplay between the groove
cavity mode and the in-phase groove re-emission mechanisms.
The standard Fano-type resonance transmission peaks are
clearly seen close to λ � 850 nm (shaded region in
figure 2(b)). Increasing the number of indentations, the
resonance becomes narrower, indicating that a spoof plasmon
mode formation takes place. With the presence of indentations,
the transmittance value is increased approximately by an order
of magnitude as compared to the transmittance value for the
single slit. In contrast, the s-polarization case does not present
such an enhancement, see figure 2(a). With the growing
number of indentations, the transmission coefficient increases
close to the Fabry–Perot peaks but not as strongly as for the
p-polarization. This could have been expected since for the in-
plane geometry the corrugated metal interface does not support
EM eigenmodes.

To enhance the transmission for s-polarization, the
waveguiding dielectric layer can be used in order to involve
the DWMs [10]. The transmission spectra for the slit in the
metal film bounded to the waveguiding layer are shown in
figures 3(a) and (b) for s- and p-polarizations respectively.
Distinct curves correspond to different numbers of indentations
N surrounding the slit. The resonant peaks growing with the
increase of the number of indentations are clearly seen both
for s- and p-polarization. In order to interpret the resonant
behavior of the spectra, the influence of the DWM of the
bounding dielectric modes should be analyzed.

According to the DWM dispersion (see figure 1), the
interval of the single-mode regime is gd � [1.43, 4.21] for
the TE case and gd � [0, 2.81] for the TM case (TM DWMs
do not present cutoff), where g = 2π/λ. The thickness
d = 250 nm corresponds to the wavelength interval λ �
[372.68, 1097.84] nm for TE DWMs and λ � [581.78,∞] nm
for TM DWMs. Therefore, for the chosen glass layer
thickness, only one DWM can be supported for the wavelength
interval in figure 3. For each wavelength, the DWM is launched
due to the diffraction on the slit and indentations. The DWM
can be reflected and emitted by them, and the efficiency of the
interaction at a certain wavelength depends upon the location
of the indentations. Close to the wavelength λn of the nth peak,
the DWM is efficiently reflected back from the gratings to the
slit, originating the field enhancement inside the latter. The
opposite side of the slit plays the role of the emitting aperture
and generates the transmitted out-off-plane radiation. The
wavelength of the transmission maximum is approximately
defined by the Bragg reflection condition λn = 2Lqw/n, where
L is the period, qw = kxw/g is the normalized momentum of
the DMW, and n numerates the band-gaps of the reminiscent
periodic structure. In fact, the resonance condition is somewhat
more complicated due to both the dispersion of the DWM
[qw = qw(λ)] and the radiation losses and finiteness of
the structure. We would like to point out that while for s-
polarization the transmission peaks are solely due to DWM
launching, for p-polarization DWM resonances are mixed up
with the spoof SPPs.

Figures 3(c) and (d) illustrate the spectra of the DWM
energy flux. The dependency on wavelength is strongly
non-monotonic. Close to the transmission peaks, the DWM
current also increases significantly. This is due to the in-phase

3
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Figure 4. Scattering cross-sections in polar coordinates. The parameters of the structure are the same as in figure 3 for s- and p-polarizations
respectively. In (a) the number of indentations from each side of the slit is N = 0 at λ = 804 nm (dashed line), N = 1 at λ = 812 nm
(dash–dotted line) and N = 2 at λ = 816 nm (continuous line); in (b) N = 7 at λ = 792 nm. In (c) N = 0 at λ = 650 nm (dashed line),
N = 1 at λ = 622 nm (dash–dotted line) and N = 2 at λ = 640 nm (continuous line); in (d) N = 7 at λ = 652 nm. The wavelengths
correspond to the gray circle markers located on the spectral curves of figures 3(a) and (b).

conversion of the incident plane wave into the DWMs by the
arrays of indentations: the part of the DWM energy that is not
transmitted through the slit is taken away along the interface
forming the DWM currents.

3. Beaming characteristics

The transmitted radiation cross-section Sr(θ) is given by the
field distribution on the slit and the cavities placed on the
outgoing face of the film. More precisely, the field is given
by the convolution of the electromagnetic propagator with the
fields of all the exit apertures. If the indentations are not
present on the outgoing face of the slit, the cross-section for
s-polarization is reminiscent of the radiation pattern of a two-
dimensional dipole, Sr(θ) ∼ cos2 θ , where θ is a polar angle
counted from the normal to the film face. For p-polarization,
the radiation pattern is almost isotropic, Sr(θ) ∼ const. The
presence of the dielectric layer on the outgoing face of the
film deforms the cross-section and the diffraction shadow
appears. The energy flux inside the diffraction shadow is
mainly provided by DMW channels.

When the indentations appear on the exit face of the film,
the output side of the slit diffracts a transmitted field into
the dielectric regions and into the cavities. The cavities in
turn, scatter radiation either into other indentations or out-of-
plane (or both). Therefore, the indented surface presents a
set of localized emitters with self-consistently formed phases
and amplitudes. The radiation pattern then depends upon the
phase and the amplitude differences between the slit and the
indentation regions.

An interesting situation occurs when the diffracted beam
generates a leaky surface mode. On these conditions, the
beams from all grooves and the slit are in phase. The leaky
mode can be formed at the exit side, if the surface has a
sufficient number of periodically-located grooves. Actually,
if the structure does not have a waveguiding layer, the
modes (both leaky and non-leaky) can appear only with the
presence of the grooves. The field of the leaky mode has
some radiative components through which the mode loses the
energy by radiating in certain directions. These directions
correspond approximately to the propagation directions of
the homogeneous diffracted plane waves that appear in the
case of the infinite periodic structure (when the number of
indentations tends to infinity). The tangential components of
the wavevectors of these plane waves are expressed as knx =
±kw + nG (knx < g), where kw is the mode wavevector x-
component, G = 2π/L is the modulus of the shorter Bragg
vector, n is an integer, and ± defines the propagation direction
of the surface mode. Then the angles θ±

n = arcsin(±qw +
nλ/L) provide the beaming directions [15, 20], that is, the
directions corresponding to the radiation pattern maxima.

The beaming effect in the normal direction θ = 0 is
illustrated in figure 4. The computed examples correspond
exactly to the structures shown in figure 3, but with the
incidence from the other side of the film. The beaming
wavelengths coincide with those for the resonant transmission
peak, where the surface modes are formed. As seen in figure 4,
the scattering cross-sections are highly directional at the
wavelengths corresponding to the spectra maxima within the
shaded regions in figures 3(a) and (b). The beaming intensity
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Figure 5. Field intensity spatial distribution. (a) The parameters of the structure for s-polarization are the same as in figures 3(a) and (c). The
number of indentations from each side of the slit is N = 7; the wavelength is λ = 792 nm. (b) The parameters are the same as in figures 3(b)
and (d), except for the dielectric slab thickness which is d = 648 nm; N = 7, λ = 656 nm. The fields are normalized to their maximal values
in the shown region.

increases with the number of indentations and saturates after
N ∼ 10.

4. Focusing of the field

The resonant excitation of the bound mode can also lead
to the focusing of the field in the output region for the
wavelengths at which beaming and enhanced transmission
appear. The long focus (of several tens of wavelengths) is seen
in figure 5, where the spatial electric field modulus distribution
is plotted. For s-polarization, the chosen wavelength was
792 nm, which provides the maximal transmission for the
inverse configuration with 7 indentations from each side of the
slit. For p-polarization, however, the focus is better exhibited
when several DWMs are excited simultaneously. We have
chosen the dielectric layer thickness d = 648 nm so that the
layer supports 3 DWMs (TM0, TM1, TM2, see figure 1) at the
resonant wavelength λ = 656 nm (gd � 6.21).

We would like to stress that if both output and input
surfaces are corrugated, then the amplitude of the collimated
beam and the field in the focus can be increased by orders
of magnitude. This occurs since the beaming is accompanied
by the enhanced transmission, and these two phenomena act
independently.

5. Concluding remarks

We have theoretically shown that the transmission of
both s-polarized and p-polarized waves through a single
subwavelength slit can be enhanced when a waveguiding

dielectric layer is placed at the incoming face of the film and
the aperture is periodically flanked by indentations. If the wave
is incident from the other side of the film (so that the output
surface is corrugated), the structure displays both beaming and
lensing effects. All these phenomena are due to the formation
of bounded EM waves: DWMs for the s-polarization and both
spoof SPP modes and DWMs for p-polarization.

Such sandwiched structures are possible candidates to
form the part of detectors and other optical devices, where a
strong film collimation and enhancement is needed.
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Appendix A. Theoretical formalism

Let us briefly describe the coupled mode method that we have
used to treat our problem. The geometry is shown in figure A.1.
The regions in the dielectric half-spaces are labeled as ‘1’, ‘5’
and inside the additional dielectric layers as ‘2’, ‘4’. Let the
region ‘1’ be the half-space where the incident wave comes
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Figure A.1. The geometry of the problem.

from. The fields inside these regions can be represented as

|E1(z)〉 = eikz0 z|κ0〉 +
∑

k

rκe−ikz1 z|κ〉,

|E2(z)〉 =
∑

k

[ρ+
k2eikz2(z−d2) + ρ−

k2eikz2(d2−z)]|κ〉,

|E4(z)〉 =
∑

k

[ρ+
k4eikz4(z−d2−hf) + ρ−

k4eikz4(hf+d2−z)]|κ〉,

|E5(z)〉 =
∑

k

tκeikz5(z−d2−hf−d4)|κ〉.

(A.1)

Here kzl = √
εl g2 − k2 is the z-component of the wavevector

inside the ‘l’th dielectric media; the notation |κ〉 (where κ =
(k, l)) implies the mode representation in Dirac’s notations so
that 〈r|κ〉 provides the coordinate representation of a bi-vector
(〈κ |r〉 = 〈r|κ〉∗, where ∗ means complex conjugate) having x
and y components. The latter has the following form for s- and
p-polarization:

s: 〈r|κ〉 = eikx

√
2π

(
0
1

)
,

p: 〈r|κ〉 = eikx

√
2π

(
1
0

)
.

(A.2)

The symbol of the summation represents the integral over the
whole continuum of k: ∑

k ≡ ∫
dk. The mode |κ0〉 related to

the incident wave will be further specified.
Inside the cavities, the field is represented in terms of the

modes of the infinite metal waveguide

|E3(z)〉 =
∑

α

[A+
α eikzα(z−dα) + A−

α eikzα (dα−z)]|α〉, (A.3)

where for the indentation bounding to the layer ‘2’ dα = d2,
for that bounding to the layer ‘4’ dα = d2 + hf and for the slit
dα = hf. The coordinate representation of the cavity modes |α〉
(where the Latin marker α = (m, i) includes the mode order
m, and the index i characterizing the position of the cavity xi ,
the permittivity of the cavity filling εi , the width ai and the
height hi ) reads

TE: 〈r|α〉 = cα

(
0
1

)
sin

[
qα

(
x − xi + ai

2

)]
,

TM: 〈r|α〉 = cα

(
1
0

)
cos

[
qα

(
x − xi + ai

2

)]
.

(A.4)

Here qα = mπ/ai . The cavities are numerated so that i = 0
labels the slit. The normalizing constants are cα = √

2/ai for
the TE case and for the TM case if m 
= 0; cα = 1/

√
ai for

TM modes under m = 0. The z-propagation constants of both
types of modes read kzα = √

g2εi − q2
m . Representation of

the modes (A.2), (A.4) provides their orthogonality: 〈α|α′〉 =
δα,α′ , 〈κ |κ ′〉 = δκ,κ ′ , where each projection is given by the
integration over the coordinate x : e.g. 〈α|k〉 = ∫

dx 〈α|r〉〈r|k〉.
Matching the fields on the interfaces, we arrive at a system

of linear equations for the modal amplitudes
∑

β ′
G12

ββ ′ Eβ ′ + σβ Eβ + δi,0gβ E ′
β = Iβ,

∑

γ ′
G45

γ γ ′ E ′
γ ′ + σγ E ′

γ + δi,0gγ Eγ = 0.
(A.5)

The indices β correspond to both the modes of the indentations
bounding to the layer ‘2’ and to the slit modes (i = 0), while
the indices γ mark both the set of modes of the indentations
bounding to the layer ‘4’ and the slit modes as well. The
renormalized modal amplitudes are introduced as follows

i 
= 0:
{

Eβ = (A+
β + A−

β ),

Eγ ≡ E ′
γ = −(A+

γ + A−
γ ),

i = 0:
{

Eα = A+
α + A−

α ,

E ′
α = −(A+

α eα + A−
α e−1

α ),

(A.6)

with eα = exp(ikzαhi), h0 ≡ hf. The boundary conditions
on the bottom of the indentations provide the relation between
amplitudes of the backwardly and forwardly propagating
waves inside the slit: A−

β = −A+
β e2

β and A−
γ e2

γ = −A+
γ .

We see from equation (A.5) that the modes of the ‘upper’ and
‘lower’ indentations are coupled through the slit modes.

The coefficients gα that describe the coupling between the
input and output sides of the slit and the coefficients σα arising
from the reflection of the waveguide mode at the openings are
given by

gα = 2Zα

eα − e−1
α

, σα = Zα

eα + e−1
α

eα − e−1
α

, (A.7)

where Zα = kzα/g (TE) and Zα = gεi/kzα (TM) are the cavity
waveguiding mode admittances.

The tensor elements Gln
αα′ (l = 1, 5; n = 2, 4) present the

summation of the projections of the modes over all k-states

Gln
αα′ =

∑

k

Zkl
f +
kln

f −
kln

〈α|k〉〈k|α′〉, (A.8)

where Zkl = kzl/g (TE), Zkl = gεl/kzl (TM) are
the free-space mode admittances in lth dielectric media.
The coefficients f ±

kln related to the reflections inside the
waveguiding layers are

f +
kln = cos φn − i

Zkl

Zkn
sin φn,

f −
kln = i sin φn − Zkl

Zkn
cos φn,

(A.9)

6
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with φn = kzndn. Notice that the relation f −
kln = 0 defines the

eigenmodes of our sandwiched system without corrugations.
The integration over x in the mode projections is easily
performed analytically and has the following form

TE: 〈α|k〉 = cα

√
2

π

qαSkα

q2
α − k2

eikxi ,

TM: 〈α|k〉 = cα

√
2

π

kSkα

q2
α − k2

eikxi ,

(A.10)

where for the TE case

Skα =
{

cos(kai/2), m-odd,

−i sin(kai/2), m-even,
(A.11)

and for the TM case the rhs of equation (A.11) must be
multiplied by −i .

The rhs term Iβ in (A.5) reads

Iβ = −2Zk01

f +
k021

〈β|k0〉, (A.12)

where k0 is the x-component of the incident wave wavevector.
The mode |κ0〉 is defied analogously to equation (A.2), but has
an additional factor c0 = √

2π/(Zk01a0) so that the Poynting
vector flux of the incident wave through the area of the slit is
J0 = 1/2.

The integration in equation (A.8) is performed numeri-
cally in the complex plane of k, see appendix B. Then, after
calculation of all the unknowns of the system of equation (A.5),
the amplitudes of the waveguide cavity modes Eα , E ′

α can be
found. All the amplitudes of the modes in the dielectric re-
gions ‘1, 2, 4, 5’ are expressed in terms of the amplitudes Eα ,
E ′

α and thus, energy fluxes can be computed. For instance, the
amplitudes tk

tk = 1

f +
k45

∑

γ

E ′
γ 〈k|β〉, (A.13)

are related to the Poynting vector S = 1
2 Re(E × H∗) flux

J5 = limz→∞
∫

dx Sz as follows

J5 = 1
2

∑

k

′
Zk5|tk |2, (A.14)

where the prime implies the summation over the propagating
states only. Then using relation (A.13), the transmission
coefficient T = J5/J0 can be written as

T =
∑

γ,γ ′
GT

γ γ ′ E ′
γ E ′∗

γ ′,

GT
γ γ ′ =

∑

k

′ Zk5

| f +
k45|2

〈γ |k〉〈k|γ ′〉.
(A.15)

Appendix B. Green’s function numeric integration

The integration inside the tensor Gαα′ in equation (A.8)
presents evident problems due to the presence of the poles
on the real axis of k. The physical origin of the poles given

Figure B.1. The schematic representation of the integration path in
the complex plane k of the x-component of the wavevector. The
infinitesimally small absorption is ‘switched on’ in order to represent
the branch cuts.

by f −
kln = 0 is attributed to the DWMs of the layers ‘2’ and

‘4’, see figure A.1. In order to prevent the integration of the
singularity, the integration path should be modified continuing
analytically the integrant into the complex plane of the variable
k. According to Cauchy’s theorem, the value of the integral is
not affected by the integration path if the deformation of the
initial path does not lead to the crossing of the pole and the
branch cuts. The branch points correspond to the vanishing of
the z-components of the wavevectors in the dielectric media,
kzl = 0. Thus, the integration path can be chosen as is shown
in figure B.1.

Denoting the integrand by the function F(k), the integral
reads

I =
∫ ∞

−∞
dk F(k) �

∫ M

−M
dk F(k), (B.1)

where the integration inside the infinite limits is approximated
by the integral in a finite domain of size 2M . Then the
integration path shown in figure B.1 can be split into 3 parts,
and inside each part the path is parameterized k j = k j(t)
( j = I, II, III) so that the integration is reduced to the domain
[0, 1]:

I �
∑

j

∫ 1

0
dt F[k j(t)]dk j

dt
, (B.2)

where

kI(t) = −M + (M − δ)t,

kII(t) = −δ + 2δt + iw sin(2π t),

kIII(t) = δ + (M − δ)t,

(B.3)

where the parameters M , δ and w are chosen so that the best
convergency of the integrals is provided. The integral over t is
performed using Simpson’s rule.
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