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Abstract. The light transmission properties of holey metal films in the
metamaterial limit, where the unit length of the periodic structures is much
smaller than the operating wavelength, are analyzed theoretically utilizing
the modal expansion formalism. A detailed derivation of the transmission
coefficients of both one-dimensional (1D) slit and 2D hole arrays is presented.
We show that under certain assumptions the transmission coefficient becomes
unity independent of the parallel momentum of the incident field. This result
indicates that holey metal films can be used as endoscopes; i.e. they are
capable of transforming an image with subwavelength resolution from the input
to the output surface of the film. We also demonstrate how such films can
effectively be mapped into homogenous anisotropic films with optical properties
controlled by the geometrical parameters of the holes. Lastly, the subwavelength
imaging properties of an endoscope based on a 1D slit array is demonstrated for
p-polarized light using numerical simulations.
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1. Introduction

The pioneering work of Ebbesen et al [1] on extraordinary optical transmission (EOT) through
an optically thick metal film perforated with subwavelength holes has opened a new avenue
of research within electromagnetism. This scientific avenue was at first dedicated to revealing
the physics of the EOT phenomenon [2]–[4], and later to studying light transmission through
various holey metal films [5]–[7] and single subwavelength holes [8]–[14].

Ebbesen and co-workers discovered that holey metal films can exhibit transmission
resonances with efficiencies orders of magnitude larger than those predicted by the standard
aperture theory [15], and they also pointed out that there is a link between EOT resonances and
excitation of surface plasmon polaritons (SPPs) in the film. A few years later, this connection
was substantiated with a theoretical explanation of the EOT phenomenon [4]. Using the multiple
scattering formalism, this full three-dimensional (3D) theoretical study of EOT revealed that the
enhancement of the optical transmission is due to photon tunneling through SPPs formed on the
individual metal–dielectric interfaces of the film. Surprisingly, the theory also predicted that
EOT through holey metal films exists even when the metal is treated as a perfect electrical
conductor (PEC). In the beginning, this was considered strange because a flat PEC surface does
not support SPPs. However, it was also known that corrugated PEC surfaces indeed support
bound surface modes, and that the corrugations strongly compress the electromagnetic (EM)
field of the surface modes in the material above the surface active medium [16, 17]. More
recently, it was discovered that if a PEC structure is perforated by an array of subwavelength
holes, it behaves as an effective medium where the EM waves are governed by an effective
dielectric constant which is form invariant with the dielectric constant of a simple plasma
(ε = 1 − ω2

p/ω
2) [18, 19]. In the case of a holey PEC surface, the plasma frequency ωp is not

an intrinsic material property, but it is given by the cut-off frequency of the hole waveguides
[18, 19]. This result has two important implications. First, as the dielectric constant is reduced
to the simple plasma form, it means that a holey PEC surface can support bound surface EM
modes whose properties mimic those of canonical SPPs. This is because the interface between,
for example, air and a medium described by a dielectric constant of the simple plasma form
fulfills the criteria for the existence of bound surface modes [20]–[22]. However, as these
geometrically induced SPPs (i.e. spoof SPPs) have a completely different origin than canonical
SPPs, spoof SPPs are supported for frequencies below ωp and not ωp/

√
2 as with canonical
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SPPs [18]. This is due to the anisotropy in the optical response of the structure. Second,
as the plasma frequency is given by the cut-off frequency of the hole waveguides, which is
strongly dependent on the size of the waveguide, this plasma frequency can be tailored by means
of the size of the holes. Recently, the existence of spoof SPPs governed by the cut-off frequency
of the hole waveguide has been experimentally verified in the microwave regime [23]. It is
now generally accepted that EOT through holey metal films is attributable to photon tunneling
through SPPs formed on the two surfaces of the film, where the SPPs can be either spoof or a
mixture of spoof and canonical SPPs depending on the conductivity of the metal. Even more
generally, extraordinary transmission of waves (matter and acoustic waves, for example) can be
expected whenever the surface of the structure supports surface modes [24]–[26].

Another important discovery within electromagnetism that also relies on excitation of SPPs
is superlensing. Less than ten years ago, Pendry proved that a planar film with a refractive
index of −1 can be used as an almost perfect lens that not only cancels out the phase delay
of the propagating waves, but is also capable of compensating for the exponential decay of
the evanescent ones [27]. In this seminal work, Pendry showed that in the electrostatic limit
where the two polarizations become decoupled, near-field superlensing can be achieved with a
thin metal slab. This was later verified by experiment [28, 29]. The physical mechanism behind
electrostatic superlensing is enhancement of evanescent waves by means of resonantly excited
SPPs [27]. At the spectral location where the permittivity of the metal εm fulfills −εm ∼ ε,
ε being the permittivity of the dielectric that surrounds the metal, the SPP dispersion relation
becomes virtually flat for large parallel momenta, meaning that the band of parallel momentum
where it is possible to excite SPPs becomes very broad, which results in the superlensing
effect [28].

In [30], we presented a theoretical analysis of holey metal films based on the multiple
scattering formalism. The original idea was to take advantage of the spoof SPP concept in holey
metal films in order to transfer Pendry’s idea of superlensing in the optical regime to lower
frequencies. We found that spoof SPPs on holey metal films are not able to amplify the EM
field associated with the incident evanescent waves as canonical SPPs do in an un-corrugated
metal film. Instead, our theoretical analysis demonstrated that in the metamaterial limit (λ � d,
where d is the unit cell size of the holey metal film), where diffraction effects can be neglected,
and at some resonant Fabry–Perot frequencies, all incident plane waves (both propagating and
evanescent) are transmitted with unit efficiency, meaning that a holey metal film can act as a
perfect endoscope, where an image is transferred from the input surface to the output surface
with a subwavelength resolution. As a difference, in the EOT regime (λ ∼ d), where diffraction
effects are important, spoof SPPs help to enhance the incident propagating plane waves, but
their spectral location is very sensitive to the parallel momentum, i.e. angle of incidence.

Other examples of metamaterials that have been investigated for subwavelength imaging
are layered metal-dielectric media [31]–[35], metallic wire media [36]–[39] and photonic
crystals [40]–[43]. Some of these, e.g. metallic wire media, can also work as superlenses at
terahertz frequencies, where they are capable of transforming all incoming plane waves with
unit efficiency through the medium. Thus, as with holey metal films, a lens based on a metallic
wire medium can transform an image with subwavelength details across the lens. However,
unlike metal wire media, holey metal films are readily implemented and therefore much more
attractive from an applications point of view. With the nanofabrication tools available today,
it is considered an easy task to make holes in metal films, even on a scale of sub-optical
wavelengths. It is also important to notice that Babinet’s principle is not applicable for screens
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of finite width, so there is no obvious relation between holey metal films and metallic wire
media. Hence, the previous work on metallic wire media [36]–[39] cannot be used to explain
the optical transmission properties of the holey metal films analyzed in this work.

This paper is a follow up to our short paper [30], where some of our work on holey metal
films was presented on a superior level. In this work, we present in detail the derivation of
the transmission coefficients for light transmission through holey metal films using the modal
expansion formalism. We also analyze the effective optical properties of holey metal films and
derive how holey metal films can be mapped into anisotropic homogenous media, with optical
properties determined by the geometrical parameters of the holes in the film. Lastly, we present
subwavelength imaging through an analysis of an endoscope consisting of a PEC film perforated
with an arrangement of periodic cut-through 1D slits. Important issues, such as the ultimate
resolution and optimal configuration of the holes, are also analyzed and discussed.

The paper is organized as follows. Section 2 is devoted to the set up and study of the
transmission coefficients of holey metal films. The 1D slit and 2D hole arrays are analyzed in
individual subsections (2.1 and 2.2, respectively). In section 3, the effective optical properties of
holey metal films are analyzed, and section 4 presents a discussion of subwavelength imaging.
In section 5, we deliver our conclusions.

2. Light transmission through holey metal films in the metamaterial limit

The transmission coefficients of holey metal films are derived using the quasi-analytical modal
expansion formalism. The idea of the formalism is to expand the EM field in terms of plane
wave eigenmodes outside the film and in waveguide eigenmodes inside the holes of the film.
We assume that the metals of the films are PECs and that the fields in the metal regions are
therefore zero. The PEC assumption is valid for low frequencies and all the way up to terahertz
frequencies. We consider an incident p-polarized plane wave with parallel momentum described
by kx (thus ky = 0). Inside the holes several waveguide modes will be excited by the incident
field, but in the metamaterial limit only the fundamental waveguide mode will be important for
the transmission properties, as all higher order modes are strongly evanescent [4]. By matching
the EM fields at the input and output surfaces a self-consistent set of linear equations is obtained.

2.1. One-dimensional (1D) slit array

First we analyze an array of 1D apertures (slits) drilled into a PEC film of thickness h. The
width of the slits is a and the size of the unit cell is d . We assume that the media outside the film
and within the holes are the same, and described by a dielectric constant ε = 1. The coordinate
system is chosen so that the z-axis is perpendicular to the film plane, and z = 0 and z = h are
the positions of the input and output surfaces of the film, respectively (figure 1).

We consider the case where the film is illuminated by a p-polarized plane wave, which only
has parallel momentum along the x-axis (k‖ = kx ). The EM field associated with the incident
field at point Er = (x, z) is given as

Ei(Er) =
1

√
d

eikx xeikz z

(
x̂ −

kx

kz
ẑ

)
, Hi(Er) =

Y
√

d
eikx xeikz z ŷ, (1)

where Y = k0/kz is the admittance, kz =

√
k2

0 − k2
x , k0 = ω/c, ω is the angular frequency, and

c is the speed of light in vacuum. The refracted and transmitted plane waves associated with
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Figure 1. The 1D film perforated with subwavelength slits. The film thickness
is h, the width of the slits is a and the size of the unit cell is d. The film is
illuminated from region 1 by a p-polarized incident field characterized by the
parallel momentum k‖ = kx .

the nth order of diffraction can be written as

E(n)(Er) =
1

√
d

eik(n)
x xe±ik(n)

z z

(
x̂ −

k(n)
x

k(n)
z

ẑ

)
,

H(n)(Er) =
±Y (n)

√
d

eik(n)
x xe±ik(n)

z z ŷ, (2)

where ‘+’ is used for the transmitted plane waves in region 3 and ‘−’ is used for reflected plane

waves in region 1 (see figure 1), k(n)
x = kx + n2π/d, k(n)

z =

√
k2

0 − k(n)2
x and Y (n)

= k0/k(n)
z . The

EM field associated with the fundamental TEM waveguide mode inside the slits, α, can be
written as

Eα(Er) =
1

√
a

e±ik0z x̂, Hα(Er) =
±Yα
√

a
e±ik0z ŷ, (3)

where ‘−’ is used in the case of backward propagating TEM waveguides modes and the
admittance is Yα = k0/k0 = 1. The x component of the electric field Ex , that must be continuous
at every point within the unit cell, can be expanded in terms of the eigenmodes in the three
different regions (before, in, and after the film) as

|E1
x 〉 = |kx〉e

ikz z +
∞∑

n=−∞

ρ(n)
|k(n)

x 〉e−ik(n)
z z,

|E2
x 〉 = |α〉

(
Aeik0z + Be−ik0z

)
,

|E3
x 〉 =

∞∑
n=−∞

t (n)
|k(n)

x 〉eik(n)
z (z−h), (4)

where we have introduced the Dirac notation as

〈r|k(n)
x 〉 =

eik(n)
x x

√
d

, 〈r|α〉 =
1

√
a

and 〈r| EE〉 ≡ EE(Er), (5)

and ρ(n) and t (n) are the nth order reflection and transmission coefficients, respectively, and
A and B are the constants of the linear combination of the forward and backward propagating
TEM waveguide modes within the holes. The magnetic field H = Hy ŷ, which must be
continuous only across the holes, can be related to Ex as −µz × H = ±Y (n)Ex x̂ using the
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Maxwell equations, where µz is a unit vector along the z-direction. Thus, in the three regions

−µz × |H1
〉 = Y |kx〉e

ikz z
−

∞∑
n=−∞

ρ(n)Y (n)
|k(n)

x 〉e−ik(n)
z z,

−µz × |H2
〉 = |α〉

(
Aeik0z

− Be−ik0z
)
, (6)

−µz × |H3
〉 =

∞∑
n=−∞

t (n)Y (n)
|k(n)

x 〉eik(n)
z (z−h),

must be continuous only over the holes. By matching parallel components of the electric field
in equation (4) using standard boundary conditions at z = 0 and z = h and then projecting the
equations into the set 〈k(n)

x |, one readily obtains

t (n)
= −S(n)E ′, ρ(n)

= −δ0,n + S(n)E, (7)

where δ is the Kronecker delta function, E = A + B, E ′
= −(Aeik0h + Be−ik0h) and S(n)

=

〈α|k(n)
x 〉 is the overlap integral between an nth order plane wave and the TEM waveguide mode

given as

S(n)
=

1
√

ad

∫ a/2

−a/2
e−ik(n)

x x dx =

√
a

d
sinc

(
k(n)

x a

2

)
. (8)

By matching equation (6) at z = 0 and z = h, projecting the equations into the set 〈α|, and
substituting with equation (7), one obtains after some algebra a self-consistent set of linear
equations in E and E ′

(G − 6)E − E ′GV
= I0, (9)

(G − 6)E ′
− EGV

= 0,

where I0 = 2iY (0)S(0)∗, G = i
∑

∞

n=−∞
Y (n)

|S(n)
|
2, 6 = 1/tan(k0h) and GV

= 1/sin(k0h).
Solving for E ′ in equation (9) and substituting into equation (7) yields an expression for the
transmission coefficients

t (n)
=

−S(n) I0GV

(G − 6)2 − GV 2
. (10)

By substituting for I0, GV and 6 this can, after algebra, be rewritten as

t (n)
=

4Y (0)S(0)∗S(n)eik0h

e2ik0h(G − i)2 − (G + i)2
. (11)

In the metamaterial limit, all diffraction effects can be neglected and the transmission coefficient
t ≡ t (0) can be reduced to

t =
4Y (0)

|S(0)
|
2eik0h[

1 + Y (0)|S(0)|2
]2

−
[
1 − Y (0)|S(0)|2

]2
e2ik0h

. (12)

Equation (12) coincides with the general expression stated in [30] for the case of a 1D slit array.
As a difference, in [30] the multiple scattering formalism was used in the derivation of t .
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Figure 2. The 2D perfect conductor film perforated by a × a square
subwavelength holes in a d × d lattice. The film thickness is h, and the film
is illuminated from region 1 by a p-polarized plane wave with parallel
momentum kx .

2.2. Two-dimensional (2D) hole array

Now we consider PEC films perforated with a periodic 2D array of square holes. The hole area
size is a × a, the unit cell size of the lattice is d × d and the thickness of the film is h. The
dielectric medium within the holes is described by the dielectric constant εh and the medium
outside the film is described by ε = 1. The coordinate system is chosen so that the z-axis is
perpendicular to the film plane and z = 0 and z = h are located at the input and output surfaces
of the film, respectively (figure 2). Again, we consider the case where the film is illuminated
by a p-polarized plane wave (k‖ = kx ). The EM field associated with the incident field may be
written as

Ei(Er) =
1

d
eikx xeikz z

(
x̂ −

kx

kz
ẑ

)
, Hi(Er) =

Y

d
eikx xeikz z ŷ, (13)

where Y = k0/kz is the admittance. The EM field outside the metal film is expanded in p- and
s-polarized plane wave eigenmodes. The EM field associated with an n, m order diffracted
eigenmode may be expressed as

E(n,m)
p (Er) =

1

d
eik(n)

x xeik(m)
y ye±ik(n,m)

z z

(
k(n)

x

k(n,m)

‖

x̂ +
k(m)

y

k(n,m)

‖

ŷ −
k(n,m)

‖

k(n,m)
z

ẑ

)
,

E(n,m)
s (Er) =

1

d
eik(n)

x xeik(m)
y ye±ik(n,m)

z z

(
−k(n)

y

k(n,m)

‖

x̂ +
k(m)

x

k(n,m)

‖

ŷ

)
,

H(n,m)
p (Er) =

±Y (n,m)
p

d
eik(n)

x xeik(m)
y ye±ik(n,m)

z z

(
−k(n)

y

k(n,m)

‖

x̂ +
k(m)

x

k(n,m)

‖

ŷ

)
,

H(n,m)
s (Er) =

±Y (n,m)
s

d
eik(n)

x xeik(m)
y ye±ik(n,m)

z z

(
−k(n)

x

k(n,m)

‖

x̂ +
−k(m)

y

k(n,m)

‖

ŷ +
k(n,m)

‖

k(n,m)
z

ẑ

)
,

(14)

where the subscripts p and s refer to p- and s-polarization, ‘+’ is used for the transmitted
eigenwaves in region 3, ‘−’ is used for reflected eigenwaves in region 1, k(x)

x = kx +

2πn/d , k(m)
y = 2πm/d, k(n,m)

z =

√
k2

0 − k(n)2
x − k(m)2

y , k(n,m)

‖
=

√
k(n)2

x + k(m)2
y and the admittances

are Y (n,m)
p = k0/k(n,m)

z and Y (n,m)
s = k(n,m)

z /k0. As the EM boundary conditions only require
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continuity in the parallel components (x and y) of E and H, we disregard the z component
and introduce bivectors in order to apply matching conditions at z = 0 and z = h. The bivectors
for p and s polarization are given as

〈r|k(n,m) p〉 =
eik(n)

x x eik(m)
y y

dk(n,m)

‖

(
k(n)

x x̂ + k(m)
y ŷ

)
,

〈r|k(n,m)s〉 =
eik(n)

x x eik(m)
y y

dk(n,m)
‖

(
−k(m)

y x̂ + k(n)
x ŷ

)
,

(15)

respectively. By means of equation (15), we can express the parallel components of the
eigenmodes outside the film as

|E(n,m)
σ 〉 = |k(n,m)σ 〉e±ik(n,m)

z z,

−µz × |H(n,m)
σ 〉 = ±Y (n,m)

σ |k(n,m)σ 〉e±ik(n,m)
z z,

(16)

where σ is the polarization (either p or s). The EM field of the fundamental TE01 waveguide
mode within the holes α can be written as

Eα(Er) =

√
2

a
sin
(

k ′

y y +
π

2

)
e±ik′

z z x̂,

−µz × Hα(Er) =
±Yα

√
2

a
sin
(

k ′

y y +
π

2

)
e±ik′

z z x̂,

(17)

where ‘−’ is used for backward propagating TE01 waveguide modes, k ′

y = π/a, k ′

z =√
εhk2

0 − (π/a)2, and the admittance of the hole waveguide mode is given as Yα = k ′

z/k0. Note
that primed wavevectors are used inside the holes. As in the 1D case, the parallel components
of the field in the three regions (figure 2) can be expanded in terms of the eigenmodes

|E1
〉 = |k(0,0) p〉eik(0,0)

z z +
∑

σ

∞∑
n,m=−∞

ρ(n,m)
σ |k(n,m)σ 〉e−ik(n,m)

z z,

|E2
〉 = |α〉

[
Aeik′

z z + Be−ik′
z z
]
,

|E3
〉 =

∑
σ

∞∑
n,m=−∞

t (n,m)
σ |k(n,m)σ 〉eik(n,m)

z (z−h),

−µz × |H1
〉 = Y (0,0)

p |k(0,0) p〉eik(0,0)
z z

−

∑
σ

∞∑
n,m=−∞

Y (n,m)
σ ρ(n,m)

σ |k(n,m)σ 〉e−ik(n,m)
z z,

−µz × |H2
〉 = Yα|α〉

[
Aeik′

z z
− Be−ik′

z z
]
,

−µz × |H3
〉 =

∑
σ

∞∑
n,m=−∞

t (n,m)
σ Y (n,m)

σ |k(n,m)σ 〉eik(n,m)
z (z−h).

(18)

By applying a scheme similar to the 1D case, we obtain equations for the reflection and
transmission coefficients as

ρ(n,m)
σ = −δn,0δm,0δσ,p + S(n,m)

σ E, t (n,m)
σ = −S(n,m)

σ E ′ (19)
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and a set of linear equations in E = A + B and E ′
= −(Aeik′

zh + Be−ik′
zh), which

is form invariant with equation (9). For 2D hole arrays, I0 = i2Y (0,0)
p S(0,0)∗

p , G =

i
∑

σ

∑
∞

n,m=−∞
Y (n,m)

σ |S(n,m)
σ |

2, 6 = Yα/tan(k ′

zh), GV
= Yα/sin(k ′

zh) and S(n,m)
σ is the overlap

integral between an eigenmode (of diffraction order n, m and polarization σ ) and the
fundamental TE01 waveguide mode. The overlap between the p-polarized incident field and
the waveguide mode is given as

S(0,0)
p =

√
2

ad

∫ a/2

−a/2

∫ a/2

−a/2
eikx x sin

(π

a
y +

π

2

)
dx dy

=
2
√

2a

dπ
sinc(kxa/2) (20)

and, in general, the overlap integral for p-polarization yields

S(n,m)
p =

√
2k(n)

x

adk(n,m)

‖

∫ a/2

−a/2

∫ a/2

−a/2
eik(n)

x eik(m)
y y sin

(π

a
y +

π

2

)
dx dy

=
−2π

√
2k(n)

x asinc(k(n)
x a/2) cos(k(m)

y a/2)

dk(n,m)

‖
(k(m)

y a + π)(k(m)
y a − π)

. (21)

For s-polarization, the general overlap integral can be readily found as S(n,m)
s = −k(m)

y S(n,m)
p /k(n)

x .
By solving E ′ in equation (9), substituting into equation (19), and using the analytical
expressions for GV , 6 and I0, one obtains after algebra a final result for the transmission
coefficients of 2D hole arrays

t (n,m)
σ =

4YαY (0,0)
p S(0,0)∗

p S(n,m)
σ eik′

zh

e2ik′
zh(G − iYα)2 − (G + iYα)2

. (22)

In the metamaterial limit, where all diffraction effects can be neglected, the only nonzero
transmission coefficient t ≡ t (0,0)

p [S ≡ S(0,0)
p and Y ≡ Y (0,0)

p ] reduces to

t =
4YαY |S|

2eik′
zh[

Yα + Y |S|2
]2

−
[
Yα − Y |S|2

]2
e2ik′

zh
, (23)

which coincides with the general expression stated in [30] for the case of a 2D hole array.

3. Effective medium theory of holey metal films in the metamaterial limit

In this section, we present a scheme for deriving the effective optical parameters of holey metal
films. Using these, holey metal films can be effectively mapped into anisotropic homogenous
media. The method is to set up expressions for the transmission coefficients of anisotropic
homogenous films, compare them to the metamaterial limit transmission coefficients of holey
metal films (equation (12) for 1D slit arrays and equation (23) for 2D hole arrays) and, from
the comparison, extract the effective optical parameters of the holey metal films. We present the
full scheme for 2D hole arrays. For 1D slit arrays, we only present the starting point and the
final results. In the case of a 1D slit array, the starting point is that a corresponding anisotropic
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τ τ’

Figure 3. Light transmission through an anisotropic film of thickness h.

homogenous film would have permittivity and permeability tensors of the form [19]

ε̄−1
1D =

ε−1
x 0 0

0 0 0
0 0 0

 , µ̄−1
1D =

1 0 0
0 µ−1

y 0
0 0 µ−1

z

 . (24)

In the case of a 2D hole array with square holes in a square lattice, symmetry requires that
the response tensors have diagonal elements of the form εx = εy = ε‖ and µx = µy = µ‖.
Furthermore, as the fundamental waveguide mode within the holes shows no dispersion with
the parallel momentum, a further requirement is εz = µz = ∞ [18, 19]. The relative permittivity
and permeability tensors of a corresponding anisotropic homogenous film therefore take
the form

ε̄−1
2D =

ε−1
‖

0 0
0 ε−1

‖
0

0 0 0

 , µ̄−1
2D =

µ−1
‖

0 0
0 µ−1

‖
0

0 0 0

 . (25)

We now start the derivation for 2D hole arrays. The first step is to set up the transmission
coefficient for light through an anisotropic homogenous film of thickness h using the response
tensors of equation (25) (figure 3). We consider monochromatic plane waves, where ∇× → ik×

and ∂/∂t → −iω. Starting from the Maxwell curl equations in k and ω space, the wave equation
of the electric displacement D within the film can be written as

k2
0D = −k′

× µ̄−1
2Dk′

× ε̄−1
2D D = −ε−1

‖
µ−1

‖

−k
′2
z 0 0

0 −k
′2
z 0

k ′

xk ′

z k ′

yk ′

z 0

D. (26)

Note again that primed wavevectors are used inside the film. Equation (26) has two degenerate
nontrivial solutions, where for p-polarization the important one is

D = k ′

x x̂ + k ′

y ŷ −
k

′2
x + k

′2
y

k ′
z

ẑ, with k
′2
z = k2

0ε‖µ‖. (27)
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For a p-polarized incident field, the wavevector in vacuum outside the film is given as
ki = kx x̂ + kz ẑ. This leads to a solution of the wave equation of the electric displacement in
vacuum as

Di = kz x̂ − kx ẑ, with k2
0 = k2

x + k2
z . (28)

The EM boundary conditions are that Ex and Dz must be continuous across the interface.
Matching Ex and Dz at both z = 0 and z = h (figure 3) yields two media transmission and
reflection coefficients as

τ =
2ε‖k ′

zkz

(ε‖kz + k ′
z)kx

, τ ′
=

2kx

ε‖kz + k ′
z

, r = r ′
=

ε‖kz − k ′

z

ε‖kz + k ′
z

. (29)

The transmission through the entire film is given by summing all the multiple scattering events,
which yields

t =
ττ ′eik′

zh

1 − r ′2e2ik′
zh

=
4ε‖k ′

zkzeik′
zh

(ε‖kz + k ′
z)

2 − (ε‖kz − k ′
z)

2e2ik′
zh

. (30)

By comparing equation (30) with equation (23) (the metamaterial limit transmission coefficient
of 2D hole arrays) an expression for ε‖ can be extracted. First, we substitute for Y = k0/kz and
Yα = k ′

z/k0 in equation (23) and, rearranged, this yields

t =

4 k
′2
z

|S|2k2
0
k ′

zkzeik′
zh(

k′2
z

|S|2k2
0
kz + k ′

z

)2
−

(
k′2

z

|S|2k2
0
kz − k ′

z

)2
e2ik′

zh

, (31)

which after comparison with equation (30) yields

ε‖ =
k

′2
z

|S|2k2
0

=
d2π 2εh

8a2sinc2(kxa/2)

(
1 −

π 2c2

a2ω2εh

)
, (32)

where equation (20), k ′

z =

√
εhk2

0 − (π/a)2 and k0 = ω/c have been used. In the metamaterial
limit, where λ is large, kxa is small and ε‖ can be approximated as

ε‖ =
d2π 2

8a2εh

(
1 −

ω2
p

ω2

)
, (33)

where ωp = πc/(
√

εha). As k
′2
z = k2

0ε‖µ‖, we immediately see from equation (32) that in the
long wavelength limit [sinc(kxa/2) ≈ 1]

µ‖ = |S|
2
=

8a2

d2π 2
. (34)

Equations (25), (33) and (34) present the effective EM response of a 2D holey metal film in the
metamaterial limit. From equations (34) and (33) it is seen that the corresponding anisotropic
homogenous film is described by a constant effective permeability and an effective permittivity
on the canonical plasma form, where the cut-off frequency of the hole waveguide [πc/(

√
εha)]

plays the role of an effective plasma frequency. The same expressions were obtained when spoof
SPPs were first predicted [18], although in that work the analysis was based on an infinite thick
surface perforated with subwavelength holes and not on a film of finite thickness h.
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In the 1D case, the effective optical parameters become

εx =
d

a sinc2(kxa/2)
≈

d

a
, µy = µz =

a sinc2(kxa/2)

d
≈

a

d
, µx = 1, (35)

which together with equation (24) present the effective optical parameters of a 1D slit array in
the metamaterial limit [19].

Our analysis shows how holey metal films can effectively be mapped into homogenous
media with optical properties predominantly controlled by the geometrical parameters of the
holes (d and a). This is important because optical material properties are normally regarded
as intrinsic, related to the underlying electronic states and therefore difficult to change or
control [44]. Note that the effective optical parameters, presented in equation (35), do not concur
with the result presented in [44], where the authors derived an effective refractive index of the
slit array, n = d/a. However, it is important to realize that in that work a scaling of the film
thickness is also involved in the derivation of the effective optical response.

4. Subwavelength imaging using holey metal films

Now we consider subwavelength imaging using holey metal films. In [27], Pendry showed that
a thin homogenous isotropic metal slab can be used as an electrostatic near-field superlens
for p-polarization. By using two-media Fresnel reflection and transmission coefficients and
by summing all multiple scattering events Pendry derived the transmission coefficient for
p-polarization as

t =
4εk ′

zkzeik′
zh

(εkz + k ′
z)

2 − (εkz − k ′
z)

2e2ik′
zh

, (36)

where ε is the dielectric constant of the homogenous isotropic slab, k ′

z = i
√

k2
x + k2

y − εµk2
0 is

the z component of the wavevector inside the slab, kz = i
√

k2
x + k2

y − k2
0 is the z component

of the wavevector in vacuum outside the slab, and h is the thickness of the slab [27]. In the

electrostatic limit, where k0 �

√
k2

x + k2
y the two z components of the wavevectors become

identical k ′

z = kz [27]. With this in mind, it is easy to see from equation (36) that the dependence
of µ completely disappears for p-polarization in the electrostatic limit. If we take the limit
of the SPP resonance frequency ε = −1, the transmission coefficient of p-polarization in the
electrostatic limit simplifies as

t = e−ikzh, ∀

√
k2

x + k2
y. (37)

It is important to note that equation (37) is truly independent of the parallel momentum, which
means that not only the phase of propagating waves is corrected, but also that evanescent waves
are exponentially amplified across the lens. Thus, the proper alignment of the source, lens and
image plane enables near-field perfect lensing where both propagating and evanescent waves
contribute to the reconstruction of the image.

In the previous section, we derived the effective optical parameters of 2D hole arrays
by requiring that the transmission coefficients of equations (30) and (31) be identical.
By comparing these two equations with the transmission coefficient derived by Pendry
(equation (36)), it can be seen that all three are form invariant. This is also the case for the
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transmission coefficient of slit arrays (equation (12)), if it is properly rewritten. Thus, in the
metamaterial limit, transmission coefficients of both 1D and 2D holey metal films can be
rewritten so that they are form invariant with the expression that Pendry used to demonstrate
near-field perfect lensing. Even though this is indeed true, it can readily be shown that perfect
lensing is not possible utilizing holey metal films. Pendry’s perfect lens relies on the fact
that the z components of the wavevectors inside and outside the lens become identical for all
parallel momenta. This can be achieved for a homogenous isotropic film either with a negative
refractive index of n = −1, where perfect lensing can be realized for both polarizations, or
in the electrostatic limit where k ′

z becomes identical to kz, as shown above. In the electrostatic
limit, the two polarizations simply become decoupled and for p-polarization perfect lensing can
be realized with only ε = −1. Likewise, for s-polarization electrostatic perfect lensing can be
achieved with only µ = −1. For holey metal films, however, the condition k ′

z = kz for all parallel
momenta cannot be met. Differing from homogenous isotropic films, the z component of the
wavevector inside holey metal films is not a function of the parallel momentum; instead it is
constant and fixed by the fundamental waveguide mode. As the z-component of the wavevector
outside the film is always a strong function of the parallel momentum, we can therefore conclude
that perfect lensing, as suggested by Pendry in [27] for isotropic homogenous films, cannot be
realized with holey metal films.

A second difference between holey metal films and homogenous metal films is related to
the difference between canonical SPPs and spoof SPPs. In the electrostatic limit, perfect lensing
for a homogenous metal film is achieved at the SPP resonance frequency where ε = −1. The
resonance frequency of spoof SPPs of holey metal films, on the other hand, is not at ε‖ = −1,
but ε‖ = 0 [18]. Thus, in the limit ε‖ = −1, where the transmission coefficient would simplify to
equation (37) if k ′

z = kz were true for all k‖, there are no well-defined resonantly excited spoof
SPPs, and hence there is no physical mechanism behind a possible exponential enhancement of
evanescent waves across the lens. This again prevents perfect lensing by means of holey metal
films.

However, as k ′

z is fixed by the fundamental waveguide mode (independently of the parallel
momentum), another interesting phenomenon that can be used for subwavelength imaging exists
in holey metal films. If the fixed k ′

z fulfill the condition k ′

zh = mπ , the transmission coefficient
of holey metal films simplifies significantly

t = (−1)m
∀ kx , (38)

which can be seen by substituting k ′

zh = mπ into equation (30). k ′

zh = mπ is the well-known
Fabry–Perot resonance condition. Equation (38) shows that at some resonance wavelengths,
a holey metal film can, for p-polarization, work as a perfect endoscope that is capable of
transforming all waves independent of the parallel momentum from the input to the output
side of the film. This means that holey metal films can transform an image with subwavelength
details across the film. In contrast to the perfect lens where evanescent waves are amplified
across the lens, holey metal films do not amplify the evanescent waves and therefore cannot
cancel out the evanescent decay of evanescent waves outside the film. Previous work on wire
media also discovered a resonant regime where all incoming plane waves are transmitted with
unit efficiency through the structure; this regime was named the canalization regime [42].

For 1D slit and 2D square hole arrays, k ′

z is k0 and
√

εhk2
0 − (π/a)2, respectively. This yields
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Figure 4. An incident field at a source plane at a distance z1 from the lens is
propagated through the lens and to an image plan at a distance z2 from the lens.

resonance wavelengths for 1D slit and 2D square hole arrays as

λm =
2h

m
, for m > 1, λm =

2
√

εh√(
m
h

)2
+
(

1
a

)2
, for m > 0, (39)

respectively. In the metamaterial limit, where λ � d > a, it is important to note that in order for

k ′

z =

√
εhk2

0 − (π/a)2 for 2D square hole arrays to be real, so that the resonance condition for
subwavelength imaging (k ′

zh = mπ ) can be fulfilled, a relatively large value of εh is necessary.
One way to realize the resonance condition and simultaneously avoid very large values of εh , is

to make the holes rectangular with ay � ax . In that case the k ′

z will be
√

εhk2
0 − (π/ay)2, which

is real, even for a small εh , if ay is of the order of the wavelength.
In order to prove that 1D holey metal films can work as endoscopes for p-polarization, and

to support our ideas, we investigate what happens when diffraction effects are included. Using
the modal expansion formalism, we present numerical calculations including all the diffraction
modes needed to achieve convergence, and study in detail the imaging properties of the simplest
holey metal film: a 1D slit array.

4.1. Imaging properties of slit arrays

Starting with an incident EM field at a source plane on one side of the slit array, we calculate
the field at an image plane on the other side. The distance between the source plane and the slit
array is denoted by z1, and the distance between the slit array and image plane is z2 (figure 4).
We choose a p-polarized (Ei

= E i
x ) incident field that consists of two subwavelength w wide

spikes separated by a subwavelength center-to-center gap distance l

E i
x(x) =

{
E0, for −l−w

2 < x < −l+w

2 and l−w

2 < x < l+w

2 ,

0, otherwise.
(40)

A schematic of the incident field at the source plane can be seen in the inset of figure 5(b). Its
Fourier space representation E i

x(kx) is given as

E i
x(kx) = 2E0w cos(kxl/2)sinc(kxw/2) (41)
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Table 1. Parameters of the standard configuration of the slit array endoscope.
Note that λ = 2h is chosen as the operating wavelength. This is the first
Fabry–Perot resonance with m = 1.

Symbol Description Value

a Width of the slits 0.5d
h Thickness of the slit array 50d
λ Wavelength 100d
l Center-to-center distance between spikes 15d
w Width of the spikes 5d
E0 Strength of the spikes 10
z1 Distance between lens and image plane 0
z2 Distance between source plane and lens d

and the field at the image plane is calculated as

Ex(x) =
1

2π

∫
∞

−∞

E i
x(kx)Eo

x(kx)e
ikz z1dkx , (42)

where Eo
x(kx) is the Fourier space representation of the field at the output side of the slit array,

given as a sum over all the diffracted plane waves

Eo
x(kx) =

∞∑
n=−∞

t (n)eik(n)
x xeik(n)

z z2, (43)

where t (n) is the transmission coefficients specified in equation (11).
We start analysis of the slit array endoscope by introducing a configuration of parameters

that specifies what we will refer to as the standard configuration of the endoscope. Investigation
of how the various parameters of the endoscope affect the imaging properties of the system
will be performed within the standard configuration for comparison purposes. To study
subwavelength imaging, the wavelength must be larger than the parameters specifying the
source λ � w, l, and to enter into the metamaterial limit, the unit cell size of the slit array must
be smaller than the operating wavelength λ � d. As we are working in the PEC limit, where all
results are scalable, all length parameters of the standard configuration are specified with respect
to the unit length of the slit array, d. The standard parameters of the endoscope are presented in
table 1. First, we will investigate the evolution of the image as the distance between the lens and
the image plane z2 is increased (figure 5). In figure 5(a), the image of the source is calculated
for different z2s, all smaller than the period of the slit array. It is seen that when z2 is small
compared to d the image of the source is distorted by the higher order diffracted waves. This is
because, close to the lens, strongly evanescent higher order diffracted waves are present and will
distort the perfect image that can only be obtained if all diffraction effects can be completely
neglected, as they are in the derivation of equation (38). However, as the higher order diffracted
waves are more strongly evanescent than the zero-order diffracted waves, they can be excluded
from the image if the distance z2 is increased. This is presented in figure 5(b), where z2 is equal
to or larger than the period of the array d. Note how the image of the subwavelength incident
field is nicely reconstructed in an image with subwavelength resolution for z2 = d (blue curve).
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Figure 5. |Ex(x)| at the image plane for different distances z2. All other
parameters are specified by the standard configuration (see table 1).
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Figure 6. |Ex(x)| at the image plane for different wavelengths. In (a) all other
parameters are specified by the standard configuration, see table 1, and in (b) the
hole size has been changed to a = 0.1d.

Also shown in figure 5(b) is the image after free space propagation through a distance h + d (the
curve with legend fs 51d). To illustrate the effect of the slit array, this free space propagation
image must be compared to the image at z2 = d. It is seen that in the absence of the lens most of
the source’s information is lost at this plane, whereas if the lens is present a nice subwavelength
image of the source is revealed. At distances z2 = 10d, 20d and 50d it is seen that it is no
longer possible to distinguish the two spikes of the incident field. At the distance z2 = 50d the
image is almost identical to the image of the free space propagation of 51d, which indicates
that the incident field is almost perfectly transmitted from the input to the output side of the
slit array.

To illustrate that the endoscope effect in holey metal films is a resonant phenomenon, we
next investigate how the image changes if the wavelength is varied. The image is calculated for
wavelengths at and between the first- and second-order Fabry–Perot resonances (λ = 2h = 100d
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Figure 7. (a) |Ex(x)| at the image plane for different thicknesses of the slit array.
(b) |Ex(x)| at the image plane for different hole sizes a. All other parameters are
specified by the standard configuration (see table 1).

and λ = h = 50d, respectively). This is done for two hole sizes, a = 0.5d in figure 6(a) and
a = 0.1d in figure 6(b). Both configurations show that at the two Fabry–Perot resonances almost
identical images are obtained, whereas the image can be heavily distorted if the wavelength
is off-resonance. For a hole size of a = 0.5d , the calculations show that the two Fabry–Perot
resonances are approached in a different manner. For a wavelength close to the first Fabry–Perot
resonance, some features of the incident field can be recognized in the image, whereas for a
wavelength close to the second Fabry–Perot resonance the field is strongly oscillating and it is
impossible to see features of the incident field at the image plane. By comparing the results in
figures 6(a) and (b) it can be seen that the spectral bandwidth of the imaging resonances changes
with the hole size of the slit array. The spectral bandwidth of the first-order imaging resonance
is larger for a = 0.5d than for a = 0.1d . This implies that larger holes are preferable in order to
achieve large spectral bandwidths of the imaging resonances.

In order to show that the thickness of the slit array can be much larger than the operating
wavelength, we have calculated the image for a series of thicknesses, all of them fulfilling
the Fabry–Perot resonance condition hm = mλ/2(m > 1) (figure 7(a)). The same result is
obtained for all three thicknesses, even for the thickness h20, where the slit array endoscope
is 10 times thicker than the operating wavelength. This indicates that as long as the thickness
of the endoscope matches the Fabry–Perot resonance condition for a given wavelength, the slit
array endoscope can be of an almost arbitrary thickness.

In [30], we presented a full numerical calculation including both diffraction effects and
losses, where the result showed that losses in the metal (at least in the terahertz regime) have
hardly any effect on the imaging properties of the slit array endoscope. The effect of including
losses in the metal was a small overall damping of the field at the image plane. Thus, even in
the terahertz regime, a slit array endoscope can be made very thick and is therefore capable
of transforming an image with subwavelength resolution over several wavelengths (into the
far-field zone of the source). The possibility of a large z-shift of a subwavelength image is
very attractive from a technological point of view, where endoscopes based on holey metal
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Figure 8. The gap between the spikes in the incident field is in steps reduced
to zero. All other parameters are specified by the standard configuration (see
table 1).

films may find many useful applications. One example could be in a scanning near-field optical
microscope, where holey metal film could enable near-field optical probing in a situation where
the probe is in the far-field zone of the sample.

In figure 7(b), we investigate how the image changes when we vary the width of the slits.
The results show a tendency towards a slightly better image when the slits are large compared
to the metal regions between them. However, the image is only marginally modified when a is
varied, even if the change in a is large, as in, e.g. from a = 0.1d to a = 0.9d (blue and green
curve, respectively).

In order to clarify how well the slit array endoscope can resolve an image, we made
calculations that start from the standard configuration and reduce in steps the center-to-center
distance between the two spikes of the incident field, l, until the gap between them closes
(figure 8). The results show how the dip between the two spikes disappears as the two spikes
approach each other. However, even for a gap size of only d (the dashed green curve for l = 6d)
the two spikes of the source field can still be distinguished in the image. To further investigate
the ultimate resolution of the slit array endoscope, we made calculations where the width of the
two spikes in the incident field was varied (figure 9(a)), showing how the strength of the field is
damped as the width of the two spikes is reduced. For a width of only d, the lens is still capable
of producing an image where the main features of the source can still easily be recognized.
In the ultimate test of the resolution of the slit array endoscope, the distance between two spikes
of width d is reduced in steps to zero (figure 9(b)). Here it is seen that, even when two spikes
of width d are separated by only a gap size of d, the dip in the field between the two spikes
can be distinguished in the image produced by the slit array endoscope. We therefore conclude
that the ultimate resolution of the slit array endoscope is in the range of the period of the slit
array d. This is similar to the perfect lens in the optical regime suggested by Pendry [27], where
the ultimate resolution would be the inter-atomic distance between the atoms in the lattice if
absorption in the metal could be ignored [45].
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Figure 9. (a) |Ex(x)| at the image plane for different widths of the spikes in the
incident field. (b) The width of the spikes in the incident field is reduced to d and
the gap between the spikes is reduced in steps to zero. All other parameters are
specified by the standard configuration (see table 1).

5. Conclusion

Light transmission properties of holey metal films in the metamaterial limit, where the
operating wavelength is much larger than the unit length of the holey metal films, have been
analyzed with the focus on effective medium theory and subwavelength imaging. Transmission
coefficients of both 1D slit and 2D hole arrays have been derived in the perfect conductor
approximation using the modal expansion formalism. We have presented the effective medium
theory of holey metal films, which shows how such films can effectively be mapped into
anisotropic homogenous film with optical properties dictated by the geometrical parameters
of the holes; e.g. in the case of a 2D hole array, the x and y components of the diagonal
relative permittivity tensor show a Drude-like behavior, where the cut-off wavelength of the hole
waveguide λ = 2a

√
εh plays the role of an effective plasma frequency. We have shown that the

transmission of light through holey metal films becomes particularly simple if the operating
wavelength matches the Fabry–Perot resonance condition of the structure. In that case the
metamaterial limit transmission coefficient for p-polarization becomes unity independent of
the parallel momentum, meaning that all EM waves, both propagating and evanescent, are
perfectly transmitted though the film. Using the derived modal expansion transmission
coefficients, the subwavelength imaging properties of a 1D slit array endoscope have been
analyzed. The analysis shows that the ultimate resolution of an endoscope, based on a 1D perfect
conductor film periodically perforated with subwavelength apertures, is of the order of the unit
cell size and that such an endoscope is capable of transforming an image with subwavelength
resolution into the far-field zone of the source. All these properties of holey metal films make
them attractive from a technological point of view and we are confident that they will find
many useful applications within near-field imaging.
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