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Geometrically induced modification of surface
plasmons in the optical and telecom regimes
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We demonstrate that the introduction of a subwavelength periodic modulation into a metallic structure
strongly modifies the guiding characteristics of the surface plasmon modes supported by the system. More-
over, it is also shown how a new type, to our knowledge, of a tightly confined surface plasmon polariton mode
can be created by just milling a periodic corrugation into a metallic ridge placed on top of a metal surface.
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Photonics based on the exciting capabilities of sur-
face plasmon polaritons (SPPs) has become a very ac-
tive area of research during the last decade [1-3].
Strong localization of electromagnetic (EM) fields
and the building up of ultrasmall SPP-based
waveguides [4,5] have been achieved thanks to the
subwavelength (the term “subwavelength” refers to
the vacuum wavelength) nature of the SPP fields,
thus enabling a great variety of applications in optics
[6,7].

However, in order to fulfill the potentialities of
light guiding based on SPP excitation, it is conve-
nient to search for effective ways to control and tune
the propagation characteristics of SPP modes. The
concept of geometrically induced SPPs [8-13] (also
named spoof SPPs) has proven to be very powerful in
tailoring the dispersion relation of the propagating
surface EM modes in the microwave and terahertz
regimes. The aim of this Letter is to transfer the
spoof SPP concept to the optical and telecom ranges.
We will demonstrate how the dispersion relation of
propagating SPP modes can be tuned by introducing
a periodic modulation in the metal surface in a length
scale much smaller than the wavelength (\). Even
more, we will show how this modulation could also
“build-up” tightly confined SPP modes in structures
where these modes were not supported in the noncor-
rugated case.

First we consider a SPP mode that is bound to and
propagates along a finite V-shaped groove milled in a
metal film, the so-called channel plasmon polariton
(CPP). The propagation characteristics of these CPP
modes have been studied both theoretically [14-16]
and experimentally [17] in recent years, and even
prototype CPP-based photonic circuits have been al-
ready fabricated [18]. In Fig. 1(a) we plot the disper-
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sion relation (frequency versus parallel momentum)
of the fundamental CPP mode for a V-shaped groove
whose geometrical parameters are taken from experi-
ments [19]. The metal considered is gold, and its
frequency-dependent dielectric function is taken from
[20]. All the numerical calculations presented in this
paper have been performed using a finite element
method (FEM). Owing to the finite depth of the
grooves, this CPP mode presents a cutoff wavelength
that, for the chosen set of geometrical parameters
(see caption of Fig. 1), appears at around 1.3 um.
Gray curves in Fig. 1(a) illustrate the modification of
the CPP dispersion relation induced by a sub-\ peri-
odic modulation in the V-shaped groove. The main ef-
fect of the corrugation is to shift the cutoff wave-
length of the CPP mode to longer wavelengths,
reaching a value of 1.6 um for the shortest period
analyzed, d=25 nm. Also, as its dispersion relation
departs more from the light line, the CPP for the cor-
rugated V-shaped groove becomes more localized
than the pure one.

Our finding that cutoff wavelength shifts to longer
wavelengths in corrugated V-shaped grooves could
explain why in the experiments there exists a propa-
gating CPP mode in the wavelength range between
1424 and 1640 nm [17], despite the fact that calcula-
tions for a noncorrugated V-shaped groove with the
same geometrical parameters (6=25 deg) predict a
cutoff wavelength of 1440 nm [16]. Scanning electron
microscope images reveal the presence of a weak pe-
riodic modulation in V-shaped grooves fabricated
with focused ion beam techniques. When a shallow
corrugation with a period d=25nm is now intro-
duced in the V-shaped groove, our calculations show
that the cutoff wavelength moves from 1440 to 1750
nm, larger than the wavelength range analyzed in
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Fig. 1. (Color online) (a) Dispersion curves for CPPs. Red

and blue curves represent those for a CPP mode of the
V-shaped groove without corrugation for two different
angles, #=30° and #=15°. The depth of the V-shaped groove
is h=1.1 um and the radii of curvature at the edges are r
=10 nm and R=100 nm. Grey lines display the dispersion
curves for CPP modes of the corrugated V-shaped groove
(6=30°) where the depth of the grating is fixed at 30 nm
and three different periods are studied: d=400, 100, and 25
nm. Inset shows the geometry. (b) Dispersion curves for slot
waveguide modes. Red and gray curves are those for the
slot without grating. Blue curve is the dispersion curve for
a corrugated slot. The period of the grating is d=100 nm.

the experiments.

A much stronger effect associated with a longitudi-
nal sub-\A periodic corrugation is seen for another
type of SPP modes: a slot SPP mode that propagates
along a gap carved between two metal plates. Here,
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we consider a waveguide structure that is composed
of a slot perforated on a thin silver film deposited on
top of a glass substrate (¢=2.25); see inset of Fig.
1(b). The main geometrical parameter that controls
the dispersion relation of these modes is the width of
the slot, w. Figure 1(b) shows two different noncorru-
gated structures, w;=75nm and wy=135 nm. The
geometry of the corrugation is chosen so the distance
between two deepest points, W, is equal to wo,
whereas the minimal distance is equal to wq; see in-
set of Fig. 1(b). The introduction of a periodic modu-
lation has a dramatic effect on the dispersion rela-
tion. One could naively expect that the resulting
dispersion curve would be located between those for
the noncorrugated cases. However, the band for the
corrugated slot departs strongly from those two
curves, resulting in a much longer cutoff wavelength
and larger confinement. Then, our results clearly
show that a sub-\ periodic modulation could also be
used to improve the guiding properties of slot wave-
guide modes.

Now we demonstrate that a sub-A periodic modula-
tion could indeed create a SPP mode in structures
where, without corrugation, laterally confined SPP
modes are not supported. As an example we consider
a metallic ridge (height 42 and width L) placed on top
of a substrate made of the same metal, see Fig. 2(b).
This structure does not support the propagation of
SPP modes transversally localized. In Fig. 2(a) we
render the dispersion relations of the geometrically
induced SPP modes that emerge when a sub-\ peri-
odic modulation is introduced into a gold ridge. The
six curves correspond to different values of the modu-
lation depth, g. As clearly seen in the figure, even the
weakest modulation (g =20 nm) is able to create a lat-
erally confined SPP mode (i.e., the dispersion curve is
lower than the SPP curve for the flat metal surface).
When the depth is enlarged, the dispersion relation
further departs from the light line, increasing the
mode localization. Accompanying this movement, the
cutoff frequency shifts to lower frequencies. The in-
crease in the mode localization also affects the propa-
gation length of these geometrically induced SPP
modes. For a fixed wavelength, the transversally con-
fined mode decays faster for a larger g, see Fig. 2(c).
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(Color online) Creation of a geometrically induced ridge SPP mode. (a) Dispersion curves for SPP modes running on

a corrugated ridge with different modulation depths. (b) Geometry of the ridge structure with a modulation: corrugation
period d =75 nm, width of the ridge L=37.5 nm, height of the ridge ~=120 nm and the grooves width a=d/2=37.5 nm. (c)
Corresponding propagation lengths for the cases analyzed in panel (a).
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Fig. 3. (Color online) Electric and magnetic fields associ-
ated with a DPP mode. Electric field intensity map is
evaluated on a horizontal plane located on top of the
domino structure. The geometrical parameters of the
domino structure are modulation period d=75 nm, lateral
width of the ridge L=37.5 nm, height =120 nm, and the
grooves’ width a=d/2. The operating wavelength is A
=1.5 um. The definition of the Cartesian axes is also
depicted.

In the case where the grating depth is equal to the
height of the slab, the geometry resembles a one-
dimensional (1D) chain of metallic box-shaped par-
ticles placed on top of a metal film. From now on, we
name the mode supported by this structure as
domino plasmon polariton (DPP). This DPP mode
has a high electric field localization near the top part
of the domino structure; see Fig. 3. In this figure the
horizontal slice renders the electric field intensity
evaluated in a xz plane that is parallel to the metal
substrate and located 5 nm above the domino’s top
face. The intensity also presents a strong subwave-
length confinement in the transversal direction. Re-
garding the vectorial nature of the EM fields associ-
ated with a DPP, the electric field has mainly y and z
components (see Fig. 3), whereas the magnetic field
has predominant x and z components (see Fig. 3).

It is worth discussing the differences between the
DPP modes described above and the plasmon modes
supported by 1D arrays of metal nanoparticles placed
on top of a dielectric film [21,22]. In this last case, the
near-field coupling between the localized plasmon
modes of the metal nanoparticles leads to the forma-
tion of a very flat plasmon band characterized by a
deep sub-\A confinement but short propagation
length. However, in the case of DPP modes, the pres-
ence of the metal substrate results in the emergence
of a “polaritonic” part in the dispersion relation that
runs close to the SPP band of the flat surface [see Fig.
2(a)]. Accordingly, DPP modes operating within this
polaritonic regime posses a very long propagation
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length but, as expected, are much less confined than
the modes supported by a chain of metal nanopar-
ticles.

In conclusion, we have shown that the application
of the spoof plasmon concept in the optical and tele-
com regimes allows tailoring of the guiding proper-
ties of SPP modes. Moreover, we have also demon-
strated that the same approach leads to the
emergence of guided modes in geometries where con-
ventional SPPs are not supported.

This work was sponsored by the Spanish Ministry
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CSD2007-046-NanoLight.
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